
J Intell Inf Syst (2018) 51:49–70
https://doi.org/10.1007/s10844-017-0490-3

Toward analyzing impact of disjoint axioms for merging
heterogeneous ontologies

Muhammad Fahad1

Received: 27 December 2015 / Revised: 24 October 2017 / Accepted: 27 October 2017 /
Published online: 18 November 2017
© Springer Science+Business Media, LLC 2017

Abstract In recent years, the question on Automatic Ontology Merging (AOM) become
challenging to address for the researchers. Our research and development for the Disjoint
Knowledge Perservation based Automatic Ontology Merging (DKP-AOM) is a milestone in
the same direction. This paper provides a more specific discussion about disjoint knowledge
axioms in DKP-AOM and makes an assessment of our merge algorithm that looks-up within
disjoint partitions of concept hierarchies of ontologies. The significant use of disjoint knowl-
edge is corroborated by testing conference and vertebrate ontologies. The results reveal that
disjoint knowledge axioms help identifying initial inaccurate mappings and remove ambigu-
ity when the concept with same symbolic identifier has a different meaning in different local
ontologies in the process of ontology merging. Disjoint axioms separate the knowledge in
distinct chunks and enable concept matching within the boundaries of sub-hierarchies of the
entire ontology concept hierarchy. While finding matches between concepts of ontologies,
disjoint partitions with the disjoint knowledge about concepts in source ontologies minimize
the search space and reduce the runtime complexity of ontology merging. We also discuss
encouraging results obtained by our DKP-AOM system within the OAEI 2015 campaign.

Keywords Ontology merging · Heterogeneous ontologies · Disjoint axioms · Consistency
and redundancy · OAEI competition 2015 · Semantic web

1 Introduction

Ontology merging is proposed as one of the solutions to achieve the demands of interoper-
ability among multi-vendor’s systems. It is a process of generating a single ontology from

� Muhammad Fahad
fahad.muhamamd@cstb.fr

1 Center Scientifique et Technique du Batiment (CSTB), 290 Route des Lucioles, 06904 Sophia
Antipolis, France

http://crossmark.crossref.org/dialog/?doi=10.1007/s10844-017-0490-3&domain=pdf
mailto:fahad.muhamamd@cstb.fr


50 J Intell Inf Syst (2018) 51:49–70

different heterogeneous source ontologies individually working in different (or overlapping)
domains. Mainly, it consists of two primary steps. First, the source ontologies are looked-
up for the similarities between them. Second, duplicate-free union of source ontologies is
achieved based on the established similarities. The source ontologies contain overlapping
domain knowledge, but can contain different types of semantic heterogeneities which create
conflicts when merged. The new merged ontology, that is the result of the union of source
ontologies, should provide a unified consistent and coherent view about the source ontolo-
gies. An initial report on combining and relating ontologies with an analysis of problems
and their solutions is provided by Klein (2001). During the last decade, it has been agreed by
the researchers that the problem of ontology matching and merging is very hard to perform
manually beyond a certain degree of complexity, size, and number of ontologies (Euzenat
et al. 2007). Ontology Merging requires fully automatic methods for enabling interoperabil-
ity in the dynamic environments, such as the semantic web and data warehouses where the
analysis context is made on-the-fly (Maiz et al. 2010). Although, there is a great effort seen,
but, still existing merging systems are semi-automatic. These systems reduce the burden of
manual creation and maintenance of mappings, and also need human intervention for their
validation. These systems and approaches use different aids, such as common vocabulary,
reference ontology, basic initial alignments by expert, etc., each of which might be appro-
priate in some tasks with given set of circumstances, but are not feasible for the dynamic
environments. Recent studies on ontology merging show that due to conceptualization and
explication mismatches between local ontologies, fully automatic merging is unattainable
(Kotis et al. 2006). But, effective algorithms for computing semantic correspondences help
us reach at a position, where ontology merging can be carried out with a minimum human
intervention. In fully automatic merging, it is very difficult to trust on the automatic merge
results without insight in the conflict resolution strategies; how elements are merged and
what are the reasons behind their integration (El Jerroudi and Ziegler 2008). On the other
hand, semi-automatic systems provide flexibility for determining the results of the merging
process and keep the user updated about the merging sub-tasks. In addition, in a study about
the gap analysis between ontology mapping and merging techniques, Anjum et al. (2010)
reported, “The gap identified here suggests that research is required to find ways through
which different conceptualization mismatches can be detected and resolved in order to give
accuracy to the process of mapping and thus verifying the knowledge being shared”. One
of the methods to identify conceptualization mismatches is to analyze disjoint knowledge
in the process of ontology merging (Qadir et al. 2007). Thus, in the recent ontology-based
research, disjoint knowledge axioms gained much popularity as they separate the domains
and build boundaries of concepts so that machine can reason in the semantically sound
manner.

Völker et al. (2007) proposed learning mechanisms about disjoint knowledge within the
hierarchies of concepts to automatically enrich a single ontology with disjoint axioms. Qadir
and Noshairwan (2007) proved that the omission of disjoint knowledge in an ontology that
serves as a backbone in the critical system may lead to erroneous and catastrophic situations,
and proposed a criterion to generate alarms for the disjoint knowledge omission between
concepts in ontologies. There are several intra-ontology errors that occur due to disjoint
knowledge omission and wrong placement of disjoint axioms which cause inconsistency
and in-conciseness in an ontology. However, these works only discuss the intra-ontology
issues about disjoint knowledge within a single ontology. Besides the fact that differences in
modeling can lead to conflicts (Fahad and Qadir 2008), the other hurdles for the automatic
ontology merging are ontological errors (Brank et al. 2005) and design anomalies (Baumeis-
ter and Seipel 2005) present in the source ontologies. Firstly, ontological errors and design



J Intell Inf Syst (2018) 51:49–70 51

anomalies that can occur in the source ontologies detract reasoning and inference mecha-
nisms and create bottlenecks in their integration tasks. Secondly, during merging of several
on-line ontologies, we came across various situations when the individual ontologies are
free from errors, but during the similarity computation, some of the identified mappings lead
toward an erroneous situation producing several types of errors in the merged ontology. For
building effective ontology merging algorithm, it is essential to incorporate ontological error
check during the validation of the ontology mapping process. We incorporate these aspects
and build semantic based ontology merging system DKP-AOM. First, our merging system
DKP-AOM builds consistent and coherent mappings. Then, it merges the source ontology
by established accurate mappings to build the conflict free union of source ontologies. The
details of these aspects are reported in the following papers Fahad et al. (2011, 2012).

This paper provides more details about the DKP-AOM system in terms of its use of dis-
joint axioms. This paper describes the different steps of merging ontologies in DKP-AOM.
It provides more specific discussion on disjoint knowledge axioms and corroborates these
axioms with the case study results. It presents how disjoint knowledge axioms help to iden-
tify initial inaccurate mappings and remove ambiguity when concept with same symbolic
identifier have different meanings in different local ontologies in the process of ontology
merging. Disjoint axioms separate the knowledge in distinct chunks and enable concept
matching within the boundaries of sub-hierarchies of the entire ontology concept hierarchy.
While finding matches between concepts of ontologies, domain specific heuristics about
disjoint knowledge between concepts in source ontologies minimize the search space and
thus reduce the runtime complexity of ontology merging. Finally, it makes an assessment
of our merge algorithm that looks-up within disjoint partitions and reduces search space on
the basis of disjoint axioms.

The rest of paper is organized as follows. Section 2 highlights existing features of exist-
ing ontology merging systems. Section 3 defines our ontology merging process by different
steps involved. Section 4 provides a case study to analyze the impact of disjoint knowl-
edge axioms and disjoint partition lookup for the integration of heterogeneous ontologies.
Section 5 concludes the paper and show future directions.

2 State-of-the-art merging systems

In the research literature, there are many diverse approaches, techniques and systems for
the ontology mapping and many detailed survey papers are available for reading. In a very
recent survey on ontology matching, Shvaiko and Euzenat (2013) analyzed state-of-the-art
ontology matching tools and also provided future perspectives for the ontology alignment
research. But their work is limited to only mapping and alignment systems and techniques,
and does not incorporate ontology merging systems. They analyzed the empirical results
of Ontology Alignment Evaluation Initiative (OAEI) and compared the precision and recall
of systems that participated in OAEI. According to them, ontology alignment research has
gained measurable progress and became much mature but with slow speed in the last decade.
The reader can find their analysis of six years on ontology alignment evaluation initiative in
Euzenat et al. (2011). Detailed comparison between our system DKP-AOM (Fahad 2015)
and ontology matching systems can be found on OAEI 2015 official web page.1 Here,
we consider only those mapping system under the related work of this paper which have

1http://oaei.ontologymatching.org/2015/results/index.html

http://oaei.ontologymatching.org/2015/results/index.html


52 J Intell Inf Syst (2018) 51:49–70

extended their work for the merging of heterogeneous ontologies. Therefore in this section,
we discuss approaches and systems only for the ontology merging.

Stumme and Maedche (2001) proposed a Formal Concept Analysis methodology called
as FCA-MERGE based on a bottom-up technique for the ontology merging. It takes the
source ontologies and text documents which contain instances, and matches the application
specific instances. When it finds common instances between them, then the concepts that
instantiate them are taken as candidates for merging. Finally, it adopts the semi-automatic
methodology with user intervention to build the target merged ontology. The instance based
approach serves best when instance repository is available, but, this is not the case for
on-line ontologies which are mostly without instance repositories. Noy and Musen (2003)
developed the interactive ontology merging tools named iPROMPT, i.e., Prompt equipped
with Anchor-Prompt. Prompt, a semi-automatic tool, exploits label matching techniques for
the initial comparisons between source ontologies to produce suggestions to the end-users
who then merge heterogeneous ontologies interactively. When the user accepts a sugges-
tion, Prompt system merges the concepts and updates the suggestion list, and this process
goes iteratively until the merged ontology is achieved. During the merging process, it identi-
fies name conflicts and redundancy in the class hierarchy, and suggests user to take actions.
In Anchor-Prompt, they embedded graph based techniques to identify more similarities
between concepts of source ontologies. The PromptDiff tool compares two versions of the
same ontology and finds structural differences between them. PromptFactor aims at gener-
ating newer ontology from an existing ontology. It allows user to extract the desired portions
of large ontology into a new ontology preserving the semantics of the concepts. These tools
are available as plug-ins of Protégé which is the mostly used open source ontology editor by
the semantic web community. McGuinness et al. (2000) developed Chimera for the ontol-
ogy editing, merging, and diagnostic environment to meet the demands of representation
and reasoning tasks on the Web. They use concept label matching techniques and termino-
logical resources (such as term names and definitions, possible acronym, suffix similarity
and expanded forms) for the merging of ontologies. Like Prompt, Chimera performs merge
operations on found matchings between the source ontologies on the user feedback. These
are the pioneer ontology merging tools, but today’s rich ontologies need more than this
functionality for the merging of complex semantic web OWL ontologies.

The approach proposed by Chalupsky (2000) is not to produce a complete merged
ontology, but, a bridge ontology to provide services, such as dataset translation, ontology
extension generation and querying different ontologies. The list of suggestions containing
candidate merge concepts is identified and provided to the end-user. The drawback appears
as an end-user receives no guidance during the merging process of heterogeneous ontologies
except the initial list of matches. Mitra and Wiederhold (2002) proposed ONION System,
which is different from other systems, rely on producing a separate single merged ontol-
ogy from the existing ones. ONION system produces rules/articulations between the source
ontologies by using the string matching, structure of taxonomy, co-occurrence of words in
a text corpus for the merging of heterogeneous ontologies. The rules or linkages between
the source ontologies are generated by a semi-automatic tool with the help of an end-user.
This system is designed especially for promoting interoperability between heterogeneous
sources to reliably answer user queries. Kim et al. (2005) developed many facilities such as
importing, matching, modifying and merging of ontologies in their tool named MoA. Their
tool uses string matching and synonym matching by associating concepts with their mean-
ing with the help of Wordnet for finding correspondences between the source ontologies.
They also focus to handle compound words within the source ontologies. Its intermediate



J Intell Inf Syst (2018) 51:49–70 53

output is related to ONION as it produces articulation rules, and finally produces a new
merged ontology like other semi-automatic systems (Prompt and Chimera).

Kotis et al. (2006) proposed the HCONE-Merge methodology which uses linguistic and
structural knowledge about source ontologies to formalize the Latent Semantics Indexing
method. Then, they use the Latent Semantic Indexing mechanisms for the computation of
all possible mappings by analyzing intended informal meanings of source concepts with
the Wordnet senses. Then the merging process needs human expert for the validation of the
proposed mappings between the source ontologies. Finally, they use the reasoning services
of description logic for the automatic merging of local ontologies. In their methodology,
WordNet plays an important role, therefore HCONE-Merge gives poor performance without
exploiting it. There is another way of merging ontologies based on prioritized input ontol-
ogy named asymmetric merging also known as target-driven merging. Raunich and Rahm
(2011) developed a tool named ATOM for the automatic target-driven ontology merging.
ATOM merges large taxonomies based on the Equivalence Matching (EM) strategy between
a source and target taxonomy. Their target-driven methodology saves the structure of the tar-
get ontology (prioritized input ontology) and instances of both input ontologies during the
merging of source taxonomy into the target taxonomy to produce a unique merged ontology.
Their asymmetric nature of merging algorithm is helpful when extending an ontology with
the additional source ontologies. They integrated their methodology with the COMA++
schema matching system which allows semi-automatic execution for the merging process.
Their methodology is only limited for the extension of an ontology and does not feasible
for the merging of ontologies having complex DL axioms or terminological differences.

LogMap toward ontology mapping (Jiménez-Ruiz and Grau 2011) and ContentMap
toward ontology merging (Jiménez-Ruiz et al. 2008) are the significant milestones toward
ontology based research. ContentMap tool provides a general method to facilitate the inte-
gration of heterogeneous ontologies by using existing mapping tools (such as OLA, CIDER,
AROMA). For the integration of ontologies, the user has to provide initial mappings or
existing mapping tools can be used for identifying mappings, evaluate the entailments
before and after the integration and repair the consequences of the integration process. They
also extended their work and provided a logic-based methodology (2009) to support the
user in the safe use of imported symbols and in the economic import of the relevant part
of the imported ontology. Their tool named Safe Protégé Manager (ProSE) as a protégé
plug-in supports safe import and relevant parts of the imported ontology. (See comparison
between LogMap family tools and our DKP-AOM on the official site of OAEI). El Jer-
roudi and Ziegler (2008) developed a tool for the semi-automatic merging of ontologies
named IMerge which provides different visualization facilities. First, the SmartTree-View
displays the hierarchical structure of source ontologies. Second, the Matrix-View com-
pares two source ontologies and provides visualization of the possible mappings between
them.Third, the Merge-View builds an interactive mode of merging with the user feed-
back by accepting, changing or rejecting proposed options for each of the candidate Merge
options. The candidate pair concepts for the merging are detected based on the string, struc-
ture and additional input document that has annotations to the concepts of source ontologies.
The drawback appears when the source ontologies are much complex then only consisting
hierarchical structure. Another approach for the automatic ontology merging is formal-
ized based on the hierarchical clustering and inference mechanisms (Maiz et al. 2010).
They proposed hierarchical clustering algorithm for the computation of equivalent entities
between two or more ontologies and use description logic services of Pellet Reasoner to find
all possible relations between the concepts of source ontologies. Finally, it integrates the



54 J Intell Inf Syst (2018) 51:49–70

correspondences between source ontologies to build the automatic global merged ontology
for the mediation based virtual data warehousing. The drawback of their approach is that it
ignores the underlying semantic inconsistencies which possibly arise for the generation of
merged ontology.

The idea of using disjoint axioms for logic based reasoning seems to be rather obvi-
ous, but there is not much work devoted to it in the research literature. Most importantly,
the above systems do not consider disjoint axioms in building search space and analyzing
inconsistent mappings between the ontologies. Therefore, we took this challenge and start
analyzing whether the disjoint knowledge between concepts is useful and how much help-
ful in reducing time and space complexity for the merging of heterogeneous ontologies. We
conclude that the analysis and use of disjoint knowledge during the mapping and merging
of ontologies reveals consistent mappings in the Query Answering (OA4QA) track at the
ontology alignment evaluation initiative (OAEI).

3 Ontology merging process

From the state-of-the-art ontology merging system, we analyze that the merging process is
dependent on the human expert for the validation of mappings and resolution of conflicts.
In addition, we analyze that there is a need of fully automatic methodology of ontology
merging for enabling interoperability in the dynamic environment, such as the semantic web
and virtual data warehouse where analysis context is required on-the-fly. The contribution
presented in this paper minimizes human involvement during the ontology merging pro-
cess by the automatic detection of semantic inconsistencies in the initial stages of ontology
merging and applying automatic conflict resolution strategies for building a merged ontol-
ogy without human involvement. We analyze all types of information, especially disjoint
knowledge analysis and preservation in the ontology merging helps to identify the conceptu-
alization mismatches between heterogeneous ontologies and provides more accuracy to the
process of mapping. Our ultimate goal is to check the semantic correctness and consistency
of mappings, and ensure the satisfiability of a merged ontology (as this will act as a funda-
mental analysis context later on in the semantic application). In order to achieve this, our
methodology detects semantic inconsistencies from the list of initial mappings by exploiting
Generalized Concept Inclusions (GCIs), and Disjoint Knowledge Axioms (DKA) present in
the local ontologies. It checks whether the lexically same concepts within the local source
ontologies must not contradict with each other by the set of GCIs or DKA. The consis-
tency checker module acts as a filter at the initial merging stage checking for a set of basic
conditions before allowing axioms to be added to the global ontology. In the case of vari-
ous conflicts, it exploits various resolution strategies automatically and builds the merged
ontology without any human involvement. Due to the use of more semantics present in the
source ontologies, test criteria for the validation of mappings and automatic conflict reso-
lution strategies, our approach enhances the accuracy of mappings and produces consistent,
complete and coherent global ontology. We aimed at managing the quality of mapping and
merging, also, with the intention of reducing its run-time complexity. Our hypothesis is that
the mapping lookup under disjoint partitions (or subclass hierarchies) at the first time can
generate most of the candidate mappings. By a divide and conquer strategy based on dis-
joint partition look-up, ontology merging process can gain tremendous efficiency, which is
desired for the large practical ontologies. Since, our solution for ontology merging performs
disjoint knowledge analysis and preservation, and the mapping lookup is also based on Dis-
joint Knowledge Partitions, we named it as DKP Automatic Ontology Merger (AOM). The



J Intell Inf Syst (2018) 51:49–70 55

detail about the various aspects of our ontology merging framework, i.e., merging process,
algorithm, conflict resolution, etc., is discussed as follows. Our ontology merging approach
is based on the following steps of the process model. These steps are explained below for
both modes of merging operation, i.e., semi-automatic and fully-automatic. We also com-
pare our merging process with the merging process of semi-automatic ontology merging
system Prompt (Noy and Musen 2003).

3.1 Feature engineering

The ontology merging framework gets OWL ontologies for their merging purpose. At the
initial step, it has to perform certain tasks such that merging can be performed easily. These
tasks are the formulation of ontology graphs and pre-processing of concept labels.

Formulation of OWL graphs. One of such tasks that facilitates ontology matching and
merging is to formulate the OWL ontologies in memory in such a way that underlying
processing can be performed easily. Jena Semantic Web Framework aims at providing
these services for the semantic ontologies. As compared with Prompt that used RDFS, we
formulate OWL ontology graphs based on the Jena semantic web framework.

Pre-processing of Ontology Terms. Before comparing labels/terms of concepts and prop-
erties in ontologies, it is vital to perform normalization, tokenization and elimination as a
pre-processing step. It significantly improves the results of the matching process because
of inherent semantic heterogeneities of terminologies used in source ontologies. Secondly,
when performing synonym based matching, the dictionary or lexical database can recognize
them. There are many types of normalization and tokenization that can be employed to gain
advantages. These are as follows.

1. Case Normalization. Case normalization is a process in which all the characters in
the concept name are transformed in either lowercase or uppercase format before
comparison. For example, ‘UNIVERSITY’ or ‘University’ is changed to ‘university’.

2. Special Character/Blank/Digit Stripping. Concept names that contain special symbols
like underscore, apostrophes, dashes, etc., are stripped before comparison. For example,
‘MS-Student’ is split into ‘MS’ and ‘Student’ terms. Similarly, digits and whitespaces
like blank, spaces, tabulation, etc., are also trimmed. For example, ‘MacDonald4U’ is
transformed into two labels ‘MacDonald’ and ‘U’.

3. And Stripping. ‘And’ or ‘&’ are stripped off from the concept name. For example,
concept names ‘Photo and Camera’ or ‘Camera & Photo’, return a set of two elements,
i.e., Photo, Camera

4. Tokenization. Compound words need tokenization so that when performed synonym
matching, the dictionary or lexical database can recognize them. For example, when
concept ‘CsDepartment’ or ‘PhdStudent’ are looked in the Wordnet for synonyms, no
results are retrieved. Tokenization of these words into Cs, Department and Phd, Student
would be beneficial and provide proper senses of these concept terms. It is significant
in the case of concepts and properties that are represented in the source ontologies by
the joint (or compound) words. Without tokenization, identification of these concepts
and properties is not possible. This results low precision and recall values, and also cre-
ates redundancies in the merged ontology. For example consider property pairs, such
as (displayManuscript, showManuscript), (giveDemo, presentDemonstration), (record-
Presentation, tapePresentation), (makeSchedule, create-Agenda), (ReviewAndSuggest,
critiques and proposes), etc. Identification of such properties are important and chal-
lenging task, but is only possible if we apply tokenization mechanism. It is also



56 J Intell Inf Syst (2018) 51:49–70

important to apply Elimination technique to remove special and stopwords (for instance
And, , -, etc.) before tokenization technique, otherwise WordNet does not recog-
nize the substrings and we cannot achieve our purpose. Figure 1 shows an algorithm
that DKPAOM embeds for the tokenization of semantically similar properties. First,
it calls the method named Joint Synonym Properties to get the splitting index of the
compound-word property which is based on the method getSplittingIndex. Method
getSplittingIndex gets substrings c and d i.e., c(0,i) and d(i,n) from the start of the
compound word till its ending. Then it checks their existence in the wordnet for the
substrings c and d, returns the index when both c and d are recognized in the WordNet.
On getting the index, method Joint Synonym Properties makes the tokens of com-
pound word. Finally, it detects mappings of tokens and proposes their mappings. At
the time of OAEI 2015 participation, the proposed algorithm for the tokenization of
ontological entities only tackles joint words that contain two individual words (e.g.,
make Schedule). Due to the semantic heterogeneities it is possible that web ontolo-
gies contain joint words that contain more than two individual words. But, due to

Fig. 1 Algorithm of Tokenization technique embedded in DKP-AOM



J Intell Inf Syst (2018) 51:49–70 57

Fig. 2 Disjoint partitions in Vertebrates ontologies

the complexity of checking substrings in the wordnet, we restricted our algorithm for
checking only joint words that comprise two separate words.

5. Elimination. Often property names use prepositions, articles or helping words to add
semantic expressions between the concept names. For example, RegistersIn (Student,
Course), ReviewedBy (Paper, Reviewer), has Address (Person, Location), etc. There-
fore, properties need elimination of helping words such as ‘In’, ‘By’, ‘From’, ‘Has’,
‘A’, ‘An’, ‘The’, etc.

3.2 Identification of mappings

The desired task of ontology merging requires the identification of merging candidates on
the basis of mappings between the constructs of ontologies. Identification of mappings is
based on these steps.

1. Selection of Search Space: This is very important to build the search space for the
lookup of mappings between ontologies. In general, it requires exhaustive analysis (or
complete comparison) for the similarity computation between the concepts of ontolo-
gies, where each concept c of the ontology Oa is matched with each concept c’ of the
ontology Ob. This is similar to the existing methodologies of ontology merging sys-
tems, e.g., Prompt. But, we propose a divide and conquer approach to build up the
search space with the help of disjoint partitions. For example, consider Vertebrates
ontology in Fig. 2, where disjoint axiom partition the vertebrates into two disjoint
partitions, i.e., Birds and Animals. We are using microsoft translate API2 to find map-
pings between multi-lingual ontologies. When our algorithm gets mappings between
concepts (vertebrates and vértébrés), and (invertebrates and invértébrés), it looks the
mappings of their children concepts under their hierarchy and not in the disjoint par-
tition or in the whole ontology. This restriction minimizes the search space for the
mapping look up. We believe this idea of divide and conquer is very helpful for large
ontologies. The more disjoint axioms that are modeled in ontology, the more the search

2Microsoft Translate API: https://code.google.com/p/microsoft-translator-java-api/

https://code.google.com/p/microsoft-translator-java-api/


58 J Intell Inf Syst (2018) 51:49–70

space is restricted, which impacts in lower the number of comparisons for the identifi-
cation of mappings. For example, consider a situation having primary mapping between
(O1 Animal : O2 Animaux), in addition there are many types of Dogs within the hier-
archy of concept Animals only, and made disjoint with other categories of animals. In
such a situation, when concept Dog is mapped on the concept Chien (in french), then
the children of Dog concept should be searched under the subconcepts of Chien. But,
It may be possible that there is no concept ‘Chien’ where O1:Dog should be mapped
on O2, and ontologist has placed all the types of Chien under Animaux concept. There-
fore, this requires searching in the same level Animaux in O2. Our algorithm builds the
search space on the basis of the same criteria of disjointness, and priorities the search
space. First, it looks for the mapping concepts within the search space under disjoint
axiom. If the mapping is not found, then it looks for the upper level space of disjoint
concepts, as it represents the more general space. The least priority is given to the
disjoint sibling space for the mapping look up.

2. Similarity Computation: Heterogeneous ontologies need various types of similarity
measures for the identification of mapping candidates. Prompt uses string matching for
finding only the identical labels. But, we have seen in the previous sections, that only
string matching technique does not tackle all the situation of semantic heterogeneities.
Therefore, our similarity computation is based on many parameters (syntactic, seman-
tic, axiomatic, etc.). Each of the parameters has its own value, and this value may
vary according to the ontologists’ perception. The utmost value is for the label of con-
cepts, but, the label itself only does not correspond to the semantics of the concept.
Thus, weighted mechanism is adjusted that defines the value of these parameters during
similarity computation.

3. Similarity Aggregation: When similarities between the concepts of source ontologies
are computed, aggregation is performed to find the combined representative similarity
value for a concept based on all the types of similarity values produced by the indi-
vidual matchers. Prompt exploits only one similarity measure that does not require
aggregation. Our methodology exploits many similarity computation factors, therefore
aggregation is required to find the best possible mapping candidates. There are many
methods to get an aggregation of individual similarities. One of the simplest meth-
ods (i.e., combination) is to get the values from the individual matchers and select the
maximum value. This maximum similarity value is the representative of an aggregative
similarity value of a concept. For instance, consider an example of the enumerated class
ContributionType in the source ontologies O1:ContributionType oneOF AbstractPaper,
PositionPaper, ConferenceFullPaper, O2:ContributionType oneOF AbstractPaper, Con-
ferenceFullPaper. A string-based Label matcher Sim(lab) produces a similarity value
equal to 1, as their labels completely match in the ontologies. An Axiom matcher
Sim(axm) based on Jaccard’s Measure produces 0.667 as the similarity value. The cal-
culations are as below. Sim(lab) = 1 and sim(axm) = s1 ∩ s2/s1 ∪ s2 Sim(axm) =
2/3 = 0.667 For the aggregation of similarity values, the maximum value (i.e., 1) is
chosen as the best representative similarity value between ContributionType concepts
of the source ontologies. Secondly, aggregation can be computed by a simple aver-
age where each of the matchers contributes equally to the final similarity value. An
average value is calculated by taking the summation of the individual similarity val-
ues divided by the number of total matchers. Let there are m number of matchers.
For a concept con in the ontologies Oa and Ob, each matcher produces its output as
Sim(mch) that denotes the similarity value between the concept con in the ontologies



J Intell Inf Syst (2018) 51:49–70 59

Oa and Ob. Then the aggregated similarity value Sim(con) is the average value com-
puted by summing the individual similarities Sim(mch) divided by the m (i.e., total
number of matchers). For instance, in the example above m = 2 as we have two match-
ers (i.e, label and axiom). Aggregated similarity is calculated as (1+0.667)/2 = 0.833.
Thirdly, aggregation can be computed as a weighted mean (or average) value on the
basis of the weights (or importance) of the matchers that are given according to the
human preference. We need this criteria because some matchers contribute more than
others. For example, concept Label has the maximum weight as it shows the real sig-
nificance of a concept. In the field of statistics, a weighted average is calculated as:
weighted mean = w1x1+w2x2+...+wnxn

w1+w2+...+wn

On the basis of this formula, weighted aggregated similarity value Wg Sim(con)
is computed by multiplying the weight wgi to the Sim(mch) value before taking their
average. As an input let the user give weight = 1 to the label matcher and weight
= 0.8 to the axiom matcher, then the Wg Sim(con) is calculated as (1 ∗ 1 + 0.8 ∗
0.667)/(1 + 0.8) = 0.852. When the weights of label matcher and axiom matcher are
same or equal to 1, the weighted average produces the same value as simple average by
(1∗1+1∗0.667)/(1+1) = 0.833. The following formula represents how Wg Sim(con)
(weighted average) is computed when there are m matchers each with weight Wg.

wg sim(con) =

m∑

i=1
wgi ∗ simmchi

m∑

i=1
wgi

(1)

4. Interpretation When the candidate pairs based on different similarity measures are com-
puted, there is a need to define interpretation for the best candidate pairs of mappings
which lead toward the generation of a merged ontology. One criterion is to define a
threshold value as in the case of Prompt. The candidate pairs with a similarity value
above a defined threshold are considered as merge candidates, and presented to the user
as a list of suggestions for their merger. In our merge methodology, validation is the
fundamental part to make interpretations about the candidate merge pairs. Hence, inter-
pretation is based on the validation of mappings and only validated mappings serve as
candidates for merging.

3.3 Validation of mapping

Validation of mapping is necessary for achieving the consistency and accuracy of a merged
ontology. There are many factors on the basis of which, the merging process can validate
the mappings so that the merged ontology stays consistent, complete and coherent.

3.4 Merging of candidate mappings

Merge Operation requires the list of validated mappings so that each candidate mappings
are merged together. There are two main considerations in this step, i.e., Conflict Resolution
mechanism and Execution of Merge Operation. In semi-automatic mode, resolution of con-
flict and selection of merge candidate is based on the user feedback. In Prompt, for every
conflict or mismatch, the system prompts to the user to handle the situation. Then, with
the subject knowledge and intelligence of user, candidate pair are selected from the list of



60 J Intell Inf Syst (2018) 51:49–70

suggestions and merged to produce the merged ontology. In our methodology, where there
is a preference given to the source ontology, most of the conflicts are solved as merger has
to follow the semantics of preferred ontology. For example, consider the case where a prop-
erty Amount:float in Oa and Amount:Double in the preferred ontology Ob are going to be
merged. The merging process automatically resolves such conflict on the basis of prefer-
ence. In another case, where preference is not given, it looks up in the resolution table or
does apply inference mechanisms for the resolution of conflicts during the merge operation.
Finally, our merging process is executed as to produce a merged ontology. Our algorithms
for the merging of Axiomatic definitions of concepts are further elaborated here (Fahad
2017). We believe the execution of ontology merging process should be executed in such a
manner that reduces costs of machine resource, i.e., memory and time. Our merging algo-
rithm generates the merged ontology by merging a single source ontology into another.
First, it performs merging of level one concept, and then map and merge the rest of the con-
cepts below them (i.e., sub-hierarchies). There are many reasons behind the execution of
our merged algorithm in this manner. Firstly, it is easy to get all the knowledge of O1 and
add O2 into it to generate a merged ontology O3 which unifies and conceptualizes all the
domain knowledge of source ontologies. Secondly, concepts at level 1 are more generic than
concepts at other levels and can be used in defining contexts of other concepts, therefore
we believe merge algorithm should first look for their mapping and perform merging. Once
level one concept are mapped and merged, then the rest of the concepts are looked up and
merged under their parent concepts. The algorithm is presented in Fig. 3 and the evolution
of O3 as a merged ontology is depicted in the Fig. 4.

Fig. 3 Execution of ontology merging process



J Intell Inf Syst (2018) 51:49–70 61

Fig. 4 Evolution of O3 as a merged ontology

3.5 Verification of merged ontology

Once the merged Ontology is generated, it is highly important to check its accuracy.
It may be possible that the merged ontology contains inconsistencies, incompleteness
and/or redundancies. Existing ontology DL reasoning or evaluation tools can be used
to check the verification of a merged ontology. We build our evaluation criteria based
on Consistency, Completeness and Redundancy criteria for the verification of merged
ontology and this is well elaborated in Fahad et al. (2012), and out of scope of this
article.

3.6 Iteration

The process of merged ontology generation has a very high complexity. The whole process
from mapping identification to their validation and conflict resolution to merged ontology
generation can be error prone. In addition, for semi-automatic mode of ontology merging, it
is necessary to perform iteration to allow manual refinements in the underlying steps. When
the user selects the candidate concepts for merging, merged concept is generated in the
merged ontology, and the system performs an iteration to see the impact of merged concepts,
verifies its consistency and accuracy, and updates the list of suggestions for next candi-
date pairs for merging. Fully automatic mode of ontology merging also requires iteration
to check and analyze the accuracy of merged ontology. It verifies that the merged ontol-
ogy unifies all the information present in the source ontologies in a consistent and concise
manner.



62 J Intell Inf Syst (2018) 51:49–70

4 Assessing the importance of disjoint axioms and disjoint partition
lookup

For finding the best match of any concept of ontology O1 with n1 concepts needs an
exhaustive analysis with entire concepts of ontology O2 with n2 concepts, resulting n1xn2
comparisons between them. Disjoint axioms separate the knowledge in distinct chunks and
enable concept matching within boundaries of sub-hierarchies of the entire ontology con-
cept hierarchy. When disjoint axioms are properly placed in class hierarchies, then the
run-time significantly reduces. For example, in Vertebrates and Vértébrés ontologies, when
Birds are mappings on Oiseaux concept and Animal on Animaux, specified that these con-
cepts are disjoint in individual ontologies, then the merging algorithm should look the
mappings of sub-concepts of Birds under the sub-concepts of the Oiseaux concept and not in
the whole ontology. This concept of lookup within disjoint partitions significantly reduces
the search space of the merge algorithm. We have tested the multilingual ontologies with
and without disjoint axioms to measure the efficiency of the merge algorithm. The test is
performed on 4 sets of ontologies and the runtime complexity is measured.

1. Test set 1 contains Vertebrates ontology (in English) with 14 concepts and Wirbeltiere
ontology (in German) with 15 concepts. The class hierarchies of these ontologies
(Vertebrates, Wirbeltiere).

2. Test set 2 contains CMT Conference ontology with 36 concepts and CRS DR with 14
concepts. These ontologies are well known about the conference domain and developed
for the conference management systems. The detail of these ontologies is provided in
section 4.3.

3. Test set 3 contains Vertebrates ontology (in English) with 50 concepts and Vértébrés
ontology (in French) with 52 concepts.

4. Test set 4 contains Vertebrates ontology (in English) with 85 concepts and Vértébrés
ontology (in French) with 86 concepts.

4.1 Estimated time calculations

On the basis of these data sets, time is measured to access the importance of disjoint axioms
in the source ontologies. Figure 5 shows the statistics of the experiment performed with

Fig. 5 Estimated time consumed with and without disjoint axioms lookup in ontologies



J Intell Inf Syst (2018) 51:49–70 63

disjoint axioms (WDA) and without disjoint axioms (WODA) approach for the mapping
lookup. From the estimated time, we conclude that the disjoint partition lookup strategy
works well for building the search space for the mapping identification between the hetero-
geneous ontologies. Once the upper level concepts are mapped, then the lookup for their
children should first be made in their down hierarchies, rather than in all the ontology.
This technique of lookup serves good in reducing time complexity and memory resources,
especially when source ontologies have a large number of concepts.

4.2 Comparison performed for concept mappings

In O1:Vertebrates and O2:Wirbeltiere ontologies, disjoint axioms between level-1 concepts
partition the domain concepts into two non-overlapping domains. There are 14 concepts in
O1:Vertebrates and 15 concepts in O2:Wirbeltiere. For concept matching, it needs 14∗15 =
210 comparisons. But, the lookup in disjoint partitions makes the search space much
smaller, and requires maximum 71 comparisons for mapping the concepts of these ontolo-
gies. In the conference ontologies, there are 14 concepts in O1:CRS DR and 36 concepts in
O2:CMT. In CRS DR ontology, three disjoint axioms between level-1 concepts, partition
the domain concepts in four non-overlapping domains, i.e., Program, Person, Document and
Event. CMT ontology partitions the concept into six disjoint categories, i.e., Person, Deci-
sion, Document, Conference, Preference, etc. Figure 6 shows the top level disjoint partitions
in CRS DR and CMT conference ontology. The ontologies allow the concept mapping
search space look-up within disjoint partitions. For example, search spaces look-up within
(O1:Person, O2:Person), (O1:Document, O2:Document), (O1:Event, O2:Conference). For
concept matching, it needs 14 ∗ 36 = 504 comparisons. But, the lookup in disjoint parti-
tions makes the search space much smaller, and requires maximum 155 comparisons for
mapping the concepts of these ontologies. From this experiment, we conclude that Disjoint
Axioms Analysis plays a vital role in controlling the search space for finding similarities
between ontologies. Look up within disjoint partitions significantly reduces the time com-
plexity of the merging algorithm. While finding matches between concepts of ontologies,
domain specific heuristics about disjoint knowledge about concepts in source ontologies
minimize the search space and thus reduce the runtime complexity of ontology merging.

Fig. 6 Top level disjoint partitions in CRS DR and CMT Conference Ontologies



64 J Intell Inf Syst (2018) 51:49–70

Table 1 DKP-AOM results on
conference track ontologies Alignments Precision F.5-measure F1-measure F2-measure Recall

ra1-M1 0.84 0.77 0.69 0.63 0.59

ra1-M3 0.84 0.74 0.63 0.54 0.5

ra2-M1 0.79 0.72 0.63 0.57 0.53

ra2-M3 0.79 0.69 0.57 0.49 0.45

rar2-M1 0.78 0.72 0.65 0.58 0.55

rar2-M3 0.78 0.69 0.59 0.51 0.47

However, domain specific heuristics can only be applied on well-known ontologies where
we do not expect any alignment conflict within the sub-hierarchies of disjoint concepts.

4.3 Merging conference ontologies

Due to unavailability of merging systems, we are unable to conduct an experimental com-
parative analysis between them. Therefore, we participated in the OAEI 2015 in order to
show the efficiency and effectiveness of our system. Our participation results are found
here Conference,3 OA4QA4 and Anatomy5 tracks. The results are very encouraging pro-
vided by the OAEI 2015 campaign as our system is acceptable and comparable with other
participants (Fahad, 2015). In OA4QA track, DKP-AOM out-performed in the evaluation.
DKP-AOM is among five ontology matchers whose alignments allowed to answer all the
queries of the evaluation. The best global results have been achieved for violation queries,
that has been correctly covered w.r.t. RA1. Notably, DKP-AOM achieved an impressive f-
measure of 0.999 w.r.t. RAR1, showing an effective handling of logical violations. In the
anatomy track, it has produced alignments within an allocated time and appeared in the list
of seven systems which produce only coherent results.

Here, we are elaborating results of our system on the Conference domain ontologies.
The goal of conference track is to find alignments among 16 ontologies6 relatively smaller
in size (between 14 and 140 entities) but rich in semantic heterogeneities about the con-
ference organization domain. As a result, Alignments are evaluated automatically against
reference alignments. Therefore, it is very interesting to measure the Precision, Recall and
F-measure of our system on ontologies rich in OWL DL axioms of various kinds, and
also does a comparison between existing systems to see their performance on real world
datasets. The resultant match quality was evaluated against the original (ra1) as well as
entailed reference alignment (ra2) and violation free version of reference alignment (rar2).
We achieved F-Measure values better than the two Baselines results (edna, StringEquiv).
Table 1 presents the results obtained by running DKP-AOM on the Conference track of
OAEI campaign 2015. Our system DKP-AOM has produced very competitive results among
top ranked systems. Our precision measure is significantly high, recall is good, giving com-
parable F-measure value to depict a real effort toward detecting heterogeneities for the goal
of ontology matching.

3Conference track: http://oaei.ontologymatching.org/2015/conference/eval.html
4OA4QA track: http://www.cs.ox.ac.uk/isg/projects/Optique/oaei/oa4qa/2015/results.html
5Anatomy track: http://oaei.ontologymatching.org/2015/results/anatomy/index.html
6Conference ontologies: http://oaei.ontologymatching.org/2015/conference/index.html

http://oaei.ontologymatching.org/2015/conference/eval.html
http://www.cs.ox.ac.uk/isg/projects/Optique/oaei/oa4qa/2015/results.html
http://oaei.ontologymatching.org/2015/results/anatomy/index.html
http://oaei.ontologymatching.org/2015/conference/index.html


J Intell Inf Syst (2018) 51:49–70 65

DKP-AOM has given excellent performance for the evaluation based on the logical
reasoning where oaei competition applied detection of conservativity and consistency prin-
ciples violation. While consistency principle proposes that correspondences should not lead
to unsatisfiable classes in the merged ontology, conservativity principle proposes that corre-
spondences should not introduce new semantic relationships between concepts from one of
input ontologies (Solimando et al.). Our DKP-AOM is among the five best tools which have
no consistency principle violation (see Table 2 bold entries), as we have employed various
algorithms for the validation of initial mappings. For evaluation details, please refer to oaei
evaluation results. The lowest number of conservativity principle violations has LogMap-
C which has a repair technique for them. DKP-AOM has produced second-lowest number
of conservativity principle violations, and employed algorithms to maintain conciseness
and avoid redundancies in the resultant ontology. Conservativity principle violations can be
favored by redundancies, but those are not the only source of violations, due to possible
complex interactions with other axioms in both ontologies. Further four tools have average
of conservativity principle around 1.

We have also evaluated our research prototype implementation for ontology merging
and performed different experiments on the web ontologies that belong to the 5 different
categories, i.e., University, Publication, Book, Travel and Conference. Here, we are elab-
orating only the experimental results about the Conference ontologies developed in OWL
by different communities. The Conference ontologies are PCS, CRS DR and CMT, which
are freely available on the internet and being used by Ontology Alignment Evaluation Ini-
tiation (OAEI) since many years. CMT ontology is used for the Conference Management
Toolkit (CMT) developed by the Microsoft’s Academic Conference Management Service.
It is written in ALCIN(D) with concept (36), datatype properties(10), object properties (49)
and has 27 dijsoint axioms. CRS DR ontology is developed by the Conference Reviewing
System (CRS) to manage scientific research paper submission and reviewing. It is written
in ALCIF(D) with concept (14), datatype properties(2), object properties (15) and has 12
disjoint axioms. PCS ontology is developed by the Precision Conference Solutions (PCS).
It is written in ALCIF(D) with concept (23), datatype properties(14), object properties (24).

Analysis and discussion One can download subset of all alignments for which there is a
reference alignment generated by the SEALS platform automatically for OAEI 2015 . But,
in this subsection, we only limit our experimental details for ontology merging. We have
manually checked the OWL ontology constructs in global merged ontology to measure the
consistency, completeness and coherency. The experiment result can be positive or negative
depending on the merging algorithm’s accuracy. Figure 7 illustrates an output ontology O3

Table 2 Statistics of consistency and conservativity principle violations

Matcher #unsat. #align #incoh. #totalConser. #avgConser. #totConsist. #avgConsist.

onto align Viol. Viol. Viol. Viol.

LogMap-C 0 21 0 5 0.24 0 0

DKP-AOM 0 21 0 16 0.76 0 0

XMAP 0 21 0 19 0.9 0 0

JarvisOM 0 21 0 27 1.29 7 0.33

LogMap 0 21 0 29 1.38 0 0

AML 0 21 0 39 1.86 0 0



66 J Intell Inf Syst (2018) 51:49–70

Fig. 7 Output ontology O3 from merging CMT and PCS Conference Ontologies

from merging CMT and PCS Conference Ontologies. The experimental results for each
concept may or may not match with the manual expert discussion, resulting in four different
cases.

1. First, True Positive (TP) or Correct Mappings, which means that OWL Concept Ca is
correctly mapped on Cb in merged ontology and Human Expert is agreed with it.

2. Second, True Negatives (TN) or Correct Not-Mappings, which means that OWL Con-
cept Ca is not mapped on Cb in merged ontology and Human Expert is agreed
with it.

3. Third, False Positives (FP) or Incorrect Mappings, which means that OWL Concept Ca
is incorrectly mapped on Cb in merged ontology and Human Expert is not agreed with
it.

4. Fourth, False negative (FN) or Missed Mappings, which means that OWL Concept Ca
is not mapped on Cb in merged ontology and according to Human Expert it should
be mapped. On the basis of these four cases, Precision and Recall values are calcu-
lated with the following formula Precision = T P

T P+FP
and Recall = T P

T P+FN
, and

visualized in Fig. 8.

The overall results of our hybrid approach are promising as the test criterion has rejected
the initial incorrect linguistic mappings. The experiments show that our approach with auto-
matic inconsistency detection yields a significantly higher precision. When the precision is
equal to 1, it means that there are no False Positives, i.e., concepts that should be mapped
between local ontologies are truly mapped by the approach. But, when the precision is low,
it means that the approach has made some concept mappings which it should not make.
Working with conference ontologies yield precision equal to 1, which is very good for auto-
matic ontology merging. Similarly, when the recall is equal to 1, it means that there are
no False Negatives, i.e., concept mappings made by approach are actually be made. But,
when the recall is low, it means that the approach has missed some concept mappings that



J Intell Inf Syst (2018) 51:49–70 67

Fig. 8 Precision and recall on conference ontologies

it should make according to the human expert. Inconsistent situations in the class hierar-
chies are very much common dealing with the real world heterogeneous ontologies due to
inherent semantic conflicts that came out from different communities over the web. These
inconsistencies between local ontologies can also occur during the mappings of proper-
ties to build the property hierarchies in the merged ontology, but with lesser tendency. Our
hybrid merging approach exploits basic techniques (string and synonym matching), analy-
sis of axiomatic definitions and disjoint knowledge between concepts and properties during
merging of local ontologies, and applies quality criteria to avoid erroneous situations in
global merged ontology. In this way, ontology mapping and merging system finds more reli-
able similarities between concepts and properties between heterogeneous ontologies, and
enable them to communicate, share, and exchange information in semantically sound and
consistent way in the presence of several types of semantic heterogeneities. We have imple-
mented the algorithm of detecting inconsistencies and evaluated the working of the system
on the real world anthologies. The outcomes are very interesting by embedding inconsis-
tency detection algorithms inside the ontology merging system in terms of precision of
results, reduction of human expert dependability, computational efficiency, and good level
of automatic consistency checking, etc. Our experiments on the real world ontologies yield
good precision and recall values. The hybrid approach employs a restricted criterion that
produces significant higher values for precision, as it aims at identifying real mappings. But,
such restricted criteria often ignore some of the mappings, which effect recall values. By
manual inspection, we conclude that the incorrect or missed mappings are due to the con-
cept labels formed from composite words or defined by technical terms, and their detection
is beyond the power of linguistic or synonym strategies. By these experiments, we conclude
that there are several benefits of disjoint knowledge analysis and preservation in ontology
merging, as outlined below.

1. Incompleteness in Merged Ontology: According to the Ontological Error’s Taxonomy,
disjoint knowledge omission among concepts in ontology is categorized as Incom-
plete Partition Error (Fahad and Qadir 2008). During the ontology merging process, if



68 J Intell Inf Syst (2018) 51:49–70

we ignore disjoint knowledge axioms then the merged ontology would be incomplete
with respect to all type of knowledge hidden in local ontologies leading to catastrophic
complications in practice.

2. Inconsistency in Merged Ontology: Disjoint knowledge analysis avoids chances of
inconsistencies in merged ontology. When disjoint knowledge is not considered in the
ontology merging process, initial mappings lead toward inconsistent merged ontology
with respect to local ontologies. For example, let O1 and O2 be two local ontologies.
In ontology O1, concepts Student and Employee are taken as disjoint which means that
there is no instance student that is also an instance of employee. But, in ontology O2,
Student can be an Employee, e.g., PhD Researcher, Erasmus Mundus Scholar, etc., and
hence represented as overlapping concepts. When these local ontologies are merged,
then a common class (i.e., PhD Researcher) between disjoint classes (Employee and
Student) occurs which creates inconsistency in the global ontology.

3. Reduce Search Space and Runtime Complexity: Disjoint axioms separate the knowl-
edge in distinct chunks and enable concept matching within boundaries of sub-
hierarchies of the entire ontology concept hierarchy. While finding matches between
concepts of ontologies, domain specific heuristics about disjoint knowledge about con-
cepts in source ontologies minimize the search space and thus reduce the runtime
complexity of ontology merging. However, domain specific heuristics can only be
applied to well-known ontologies where we do not expect any alignment conflict within
the sub-hierarchies of disjoint concepts. This point is well elaborated above by testing
on real world ontologies.

4. Detecting Inaccurate Mappings by Concept name matching strategy: Disjoint knowl-
edge axioms help identifying initial inaccurate mappings and remove ambiguity when
concept with same symbolic identifier have different meaning in different local ontolo-
gies in the process of ontology merging. For example, consider ontologies O1 and O2.
In ontology O1, the Course concept is further classified as BS and MS courses, and in
ontology O2 the concept Student is categorized according to his qualification as BS,
MS and PhD students. If mapping and merging based on concept label maps BS of O1
to BS of O2, based by linguistic (or synonym) matches, then this would lead toward
inconsistent global merged ontology. By exploiting disjoint knowledge in ontology
O1, which restricts the concept Course as disjoint with Person, ontology mapping and
merging systems should reject such initial mappings to avoid inconsistencies in merged
ontology. Moreover, disjoint axioms together with equivalence axioms help validation
of initial alignments and mappings found in first stages of ontology merging. For exam-
ple, explicit descriptions about the disjointness of two concepts (C and D) in ontology
O1 and equivalence of concepts (D’ and F) in ontology O2 help to detect semantically
inaccurate mapping between concepts (D and F).

5. Detecting Inaccurate Mappings by Instance matching strategy: Disjoint knowledge
axioms help identifying the initial inaccurate instance based mappings that originate
when same instance propose semantically distinct concept as merge candidate in the
process of ontology merging. For example, consider ontologies O1 and O2 as shown
in Fig. 5 where instance based matching technique identify concept Professor of ontol-
ogy O1 as the candidate of merge with the concept Researcher of ontology concept O2
based on Identical Instance JOHN. These mappings could be rejected if merging sys-
tem considers disjoint knowledge axioms in local ontologies that separate the domain of
concepts Student and Staff (Faculty) while calculating similarities to produce mappings
of semantically distinct concepts.



J Intell Inf Syst (2018) 51:49–70 69

6. Better reasoning and inference mechanisms with disjoint-of axioms among properties:
Due to the significance of disjoint-of axioms, W3C has included the construct disjoint-
of to specify disjointness between properties and their hierarchies in new specie of
OWL, i.e., OWL 2 that serves as current recommendation (2009) for building ontolo-
gies. During evaluation of current description logic reasoners, we observed that they do
not fulfill the existing demands of enriched expressive ontologies with the constraints of
disjointness and lack reasoning when used in real applications. Reasoning and inference
with disjoint axioms between concepts and properties furnish more semantic power,
spark the inference mechanism and provide better automatic reasoning capability to the
ontology merging process, and help to build more well formed ontologies, which fulfill
their purposes when used in applications. This requires that ontology merging systems
should avoid all type of errors especially disjoint knowledge omission, common class
or property in disjoint decomposition, redundancy of the disjoint-of relations among
concepts and properties during construction of a merged global ontology from local
ontologies.

Various versions of my system can be found at my personal site7 under plugins tab. The
mapping system is separated from the merging system, and can be downloaded according
to needs. For the merging of ontologies, use the same command of seals platform with—“-
o” following three paths, two for source ontologies and one for the output merged ontology.
As a result of this command, a list of ontology mappings and a resultant merged ontology
are produced.

5 Conclusion

This paper presents our analysis and role of disjoint knowledge axioms in the process of
ontology merging. It explains and investigates our hypothesis that the ontology merging can
be done better by considering disjoint partitions within the source ontologies. It provides a
discussion on the different steps involved by DKP-AOM for the merging of heterogeneous
ontologies. The whole merging process yields some significant points by the use of disjoint
axioms in the overall process of merging. Disjoint knowledge axioms help to identify initial
inaccurate mappings and remove ambiguity when concept with same symbolic identifier
have different meaning in different local ontologies in the process of ontology merging.
Disjoint axioms separate the knowledge in distinct chunks and enable concept matching
within the boundaries of sub-hierarchies of the entire ontology concept hierarchy. While
finding matches between concepts of ontologies, domain specific heuristics about the dis-
joint knowledge about concepts in source ontologies minimize the search space and thus
reduce the runtime complexity of ontology merging. We conclude that disjoint knowledge
analysis for the ontology merging is very much helpful for the detection of inconsistent ini-
tial mappings that originate from concept name or instance matching strategies. It reduces
the search space for concept matching, and promotes the consistent computation by exploit-
ing reliable logical inference on facts by axiomatization. We have also presented the results
of DKP-AOM in OAEI 2015 as a success in the conference and OA4QA track ontologies
by producing only consistent and coherent results.

7http://sites.google.com/site/mhdfahad

http://sites.google.com/site/mhdfahad


70 J Intell Inf Syst (2018) 51:49–70

References

Anjum, N., Harding, J., Young, B., Case, K. (2010). Gap analysis of ontology mapping tools and techniques.
In Enterprise interoperability IV (pp. 303–312). Berlin: Springer.

Baumeister, J., & Seipel, D. (2005). Smelly owls-design anomalies in ontologies. In FLAIRS conference
(Vol. 215).

Brank, J., Grobelnik, M., Mladenic, D. (2005). A survey of ontology evaluation techniques. In Proceedings
of the conference on data mining and data warehouses (SiKDD 2005) (pp. 166–170).

Chalupsky, H. (2000). Ontomorph: a translation system for symbolic knowledge. In KR (pp. 471–482).
El Jerroudi, Z., & Ziegler, J. (2008). imerge: interactive ontology merging. In Proceedings of the

international conference on knowledge engineering and knowledge management (EKAW 2008) (p. 52).
Euzenat, J., Shvaiko, P., et al. (2007). Ontology matching (Vol. 333). Berlin: Springer.
Euzenat, J., Meilicke, C., Stuckenschmidt, H., Shvaiko, P., Trojahn, C. (2011). Ontology alignment eval-

uation initiative: six years of experience. In Journal on data semantics XV (pp. 158–192). Berlin:
Springer.

Fahad, M. (2015). Dkp-aom: results for oaei 2015. arXiv preprint arXiv:151001659.
Fahad, M. (2017). Merging of axiomatic definitions of concepts in the complex owl ontologies. Artificial

Intelligence Review, 47(2), 181–215. https://doi.org/10.1007/s10462-016-9479-5.
Fahad, M., & Qadir, M. A. (2008). A framework for ontology evaluation. ICCS Supplement, 354, 149–158.
Fahad, M., Moalla, N., Bouras, A. (2011). Towards ensuring satisfiability of merged ontology. Procedia CS,

4, 2216–2225.
Fahad, M., Moalla, N., Bouras, A. (2012). Detection and resolution of semantic inconsistency and redun-

dancy in an automatic ontology merging system. Journal of Intelligent Information Systems, 39(2), 535–
557.

Jiménez-Ruiz, E., & Grau, B.C. (2011). Logmap: logic-based and scalable ontology matching. In The
Semantic Web–ISWC 2011 (pp. 273–288). Berlin: Springer.

Jiménez-Ruiz, E., Grau, B. C., Sattler, U., Schneider, T., Berlanga, R. (2008). Safe and economic re-use of
ontologies: a logic-based methodology and tool support. Berlin: Springer.

Kim, J., Jang, M., Ha, Y.G., Sohn, J.C., Lee, S.J. (2005). Moa: owl ontology merging and alignment tool for
the semantic web. In Innovations in applied artificial intelligence (pp. 722–731). Berlin: Springer.

Klein, M. (2001). Combining and relating ontologies: an analysis of problems and solutions. In IJCAI-2001
Workshop on ontologies and info sharing (pp. 53–62).

Kotis, K., Vouros, G. A., Stergiou, K. (2006). Towards automatic merging of domain ontologies: the
hcone-merge approach. Web Semantics: Science, Services and Agents on the World Wide Web, 4(1),
60–79.

Maiz, N., Fahad, M., Boussaid, O., Bentayeb, F. (2010). Automatic ontology merging by hierarchical
clustering and inference mechanisms. In Proceedings of I-KNOW (pp. 1–3).

McGuinness, D.L., Fikes, R., Rice, J., Wilder, S. (2000). An environment for merging and testing large
ontologies. In KR (pp. 483–493).

Mitra, P., & Wiederhold, G. (2002). Resolving terminological heterogeneity in ontologies. In Proceedings
of the ECAI workshop on ontologies and semantic interoperability.

Noy, N. F., & Musen, M. A. (2003). The prompt suite: interactive tools for ontology merging and mapping.
International Journal of Human-Computer Studies, 59(6), 983–1024.

Qadir, M. A., & Noshairwan, W. (2007). Warnings for disjoint knowledge omission in ontologies. In Second
international conference on internet and web applications and services, 2007. ICIW’07 (pp. 45–45).
IEEE.

Qadir, M. A., Fahad, M., Noshairwan, M. W. (2007). On conceptualization mismatches between ontologies.
In IEEE international conference on granular computing, 2007. GRC 2007 (pp. 275–275). IEEE.

Raunich, S., & Rahm, E. (2011). Atom: automatic target-driven ontology merging. In 2011 IEEE 27th
international conference on data engineering (ICDE) (pp. 1276–1279). IEEE.

Shvaiko, P., & Euzenat, J. (2013). Ontology matching: state of the art and future challenges. IEEE
Transactions on Knowledge and Data Engineering, 25(1), 158–176.

Stumme, G., & Maedche, A. (2001). Fca-merge: bottom-up merging of ontologies. In IJCAI (Vol. 1, pp.
225–230).

Völker, J., Vrandečić, D., Sure, Y., Hotho, A. (2007). Learning disjointness. In The semantic web: research
and applications (pp. 175–189). Berlin: Springer.

http://arxiv.org/abs/151001659
https://doi.org/10.1007/s10462-016-9479-5

	Toward analyzing impact of disjoint axioms for merging heterogeneous ontologies
	Abstract
	Introduction
	State-of-the-art merging systems
	Ontology merging process
	Feature engineering
	Identification of mappings
	Validation of mapping
	Merging of candidate mappings
	Verification of merged ontology
	Iteration

	Assessing the importance of disjoint axioms and disjoint partition lookup
	Estimated time calculations
	Comparison performed for concept mappings
	Merging conference ontologies
	Analysis and discussion


	Conclusion
	References


