Y
J Intell Inf Syst (2018) 50:597-619 @ CrossMark
DOI 10.1007/s10844-017-0484-1

Profile based recommendation of code reviewers

Mikotaj Fejzer! - Piotr Przymus’ - Krzysztof Stencel®

Received: 16 November 2016 / Revised: 31 July 2017 / Accepted: 6 August 2017/
Published online: 15 August 2017
© The Author(s) 2017. This article is an open access publication

Abstract Code reviews consist in proof-reading proposed code changes in order to find
their shortcomings such as bugs, insufficient test coverage or misused design patterns. Code
reviews are conducted before merging submitted changes into the main development branch.
The selection of suitable reviewers is crucial to obtain the high quality of reviews. In this
article we present a new method of recommending reviewers for code changes. This method
is based on profiles of individual programmers. For each developer we maintain his/her
profile. It is the multiset of all file path segments from commits reviewed by him/her. It will
get updated when he/she presents a new review. We employ a similarity function between
such profiles and change proposals to be reviewed. The programmer whose profile matches
the change most is recommended to become the reviewer. We performed an experimental
comparison of our method against state-of-the-art techniques using four large open-source
projects. We obtained improved results in terms of classification metrics (precision, recall
and F-measure) and performance (we have lower time and space complexity).

Keywords Code review - Mining software repositories - Reviewer recommendation

P< Mikotaj Fejzer
mfejzer @mat.umk.pl

Piotr Przymus
eror@mat.umk.pl

Krzysztof Stencel
stencel @mimuw.edu.pl

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Torun, Poland

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10844-017-0484-1&domain=pdf
mailto:mfejzer@mat.umk.pl
mailto:eror@mat.umk.pl
mailto:stencel@mimuw.edu.pl

598 J Intell Inf Syst (2018) 50:597-619

1 Introduction

Software quality is one of the main concerns of software engineering. Numerous systematic
approaches to assure this quality exist and are applied. Among industry accepted prac-
tices there are peer code reviews. They help to obtain a high quality code, better adjusted
test coverage, consistent adherence to language standards and lower number of bugs. The knowl-
edge about the project can be reinforced by code reviews (Nelson and Schumann 2004). How-
ever peer code reviews are time-consuming activities that require good cooperation of both
the reviewer and the author of the reviewed code. Both participants will benefit if the time
spent between a code change (a commit) and the start of the review process is decreased.
Commits without assigned reviewers take the longest time to be merged due to the lack of
both interest and proper domain knowledge (Drake et al. 1991; Jeong et al. 2009). Further-
more, some reviewers can be overburdened due to their specific focus on a sole aspect of
a project. Moreover, there is also a problem of proper reviewer selection. Therefore, quick
and accurate reviewer selection is the key success factor of peer code reviewing.

In this article, we focus on the automation of the code reviewer selection. Various tools
and algorithms were proposed to solve this problem. Thongtanunam et al. (2015) propose
measuring the similarity of commit file paths to match best reviewers, thus creating reviewer
recommendation tool Revfinder. Balachandran designed Review Bot (Balachandran 2013)
which uses repository annotations to assign authors of modified files as reviewers. Yu et al.
(2014) and Yu et al. (2016) propose to assign reviewers via measuring the cosine similarity
between the last reviews done by them and utilization of social network between reviewers
sharing common interests. In this article we propose a new algorithm that avoids short-
comings related to previous methods, such as high complexity of file path comparison in
Revfinder and low accuracy in Review Bot.

This article makes the following contributions:

— we propose a novel method to nominate reviewers in the peer reviewing process;
— we perform thorough experimental evaluation of this method;
— we compare this methods with state-of-the-art techniques to prove its quality.

The article is organized as follows. Section 2 addresses the related work. Section 3
defines the problem. Section 4 presents our algorithm. Section 5 describes dataset and
metrics used for experimental evaluation. Section 6 shows the results of an experimental
evaluation of the proposed method and describes significance of our findings. Section 7
concludes and rolls out possible future directions of research.

2 Background and related work

The practice of peer code reviews understood as reading and evaluating quality of code
changes by other developers is known from 1960s (Bisant and Lyle 1989). Since that time it
has played an important role in the life cycle of numerous projects. When done properly, it
may help spreading knowledge among developers and encouraging the emergence of code
standards for the project (Nelson and Schumann 2004). It also affects the final quality of
the project as better code review coverage results in less post-release defects (McIntosh
et al. 2014). Therefore, it is not surprising that the code review is commonly applied in
top software projects, like Linux or Android operating systems, software frameworks such

@ Springer

J Intell Inf Syst (2018) 50:597-619 599

as Akka, Mozilla, Qt or Spring, libraries like SciPy, software platforms like OpenStack
or OpenShift, databases like PostgreSQL, standalone applications such as LibreOffice or
projects maintained by open source foundations like Apache or Eclipse.

Advances in distributed version control systems encouraged easy adaptation of code
reviews into the lifecycle of a project. A developer may work on a change set on his/her
private repository and later ask for a review, before putting the change into the main branch
of the project. There are various approaches when it comes to adapting code reviews into
the lifecycle of a project. A well organized mailing list, as seen in Linux Kernel develop-
ment, may be more than sufficient. Some may prefer automated code review systems, like
Gerrit, GitLab, Phabricator, Review Board, Rietveld or Rhodecode, that can be configured
to enable merging source code changes into the main repository only when the code review
is successful.

Social coding platforms, like GitHub or Bitbucket, use a pull request model. In this model
a contribution is done by: (1) forking the selected repository, (2) creating changes locally,
(3) adding these changes to the remote fork, and finally (4) creating a pull request between
the fork and the original repository. A pull request usually undergoes a code review before
being accepted into the main repository. Due to the possibility to invite programmers to
review code across all projects hosted on the platform, the number of potential participants
is significantly higher than in a traditional code review system like Gerrit.

A code review process takes a noteworthy amount of time and effort of the reviewer.
Moreover, it requires a good cooperation between the author and the reviewer. Both parties
will benefit, if the overall code review time is reduced. However, commits without pre-
assigned reviewers will take longer to be reviewed (Drake et al. 1991; Jeong et al. 2009).
As a consequence, they will wait longer before being included into the main repository.
Naive solutions like random assignment of reviews or round-robin queuing of the reviewers
also have certain limitations. If a reviewer nomination is inadequate (i.e. beyond expertise
of the reviewer), the quality of the review may suffer from Parkinson’s law of triviality.
According to the law, a reviewer who scrutinizes a code lying outside his/her knowledge
focuses on unimportant details (Rigby and Storey 2011). Furthermore, according to Nelson
and Schumann (2004), it is difficult for all reviewers to spot performance problems, race
conditions or synchronization issues. Fortunately, some automated tools may aid develop-
ers in such cases (Nelson and Schumann 2004). They provide fully automated solutions
for obvious cases or semi-automatic solutions that annotate suspected code and/or sug-
gest a domain expert who should review the code. As a consequence quick and accurate
reviewer recommendation is an important code review aspect. This may be done manually,
e.g. Linux kernel uses a mailing list where experts receive broadcast about reviews match-
ing specific domain (Rigby and Storey 2011), or automatic. This paper focuses on the latter
variant.

Mining software repositories is a relatively young research area focused mostly on min-
ing pieces of information that possibly lead to better quality of software projects (Kagdi
et al. 2007). In consequence, it has caused a new research trend which inspected the impact
of those methods on various aspects of a software project lifecycle (Kagdi et al. 2007; Rigby
and Storey 2011). Among a variety of the applications we may list bug prevention and
prediction, development process guidance, team dynamics analysis, contribution detection,
code reuse pattern analysis, coupling detection, architecture management and refactori-
sation support (Radjenovic et al. 2013; D’ Ambros et al. 2010; Kim et al. 2008; Hassan
2008).

@ Springer

600 J Intell Inf Syst (2018) 50:597-619

An important group of methods in this field focuses on measuring the similarity of
entities stored in the repositories. Radjenovic et al. (2013) use code metrics in a system
that focused on bug prevention and bug detection. When the techniques got enriched with
the analysis of text data (D’Ambros et al. 2010), new possibilities of research appeared,
such as combined approaches using both metrics and text processing (Kim et al. 2008).
Due to the need of large dataset analysis it is common to use information retrieval and
machine learning algorithms (Kagdi et al. 2007). One of the greatest challenges in soft-
ware repository mining is addressing the problem of integrating multiple data sources, such
as code repositories, issue trackers, bug databases and archived communications (Hassan
2008).

The validation of the research is usually conducted with standardized and preprocessed
datasets containing information from repositories and code reviews systems. Here is a list
of datasets known to the authors of this article:

— HTorrent (Gousios 2013) includes all events related to all projects hosted on Github
platform, including interconnected data about pull requests, issues and users, captured
from 2013 onwards.

— Hamasaki dataset (Hamasaki et al. 2013) includes data on commits and reviews from
the following projects: Android, Chromium, OpenStack and Qt. This dataset includes
logs of events created by Gerrit code review system, the complete description of event
model and commit metadata.

— Thongtanunam dataset (Thongtanunam et al. 2015) is a modified version of Hamasaki
et al. (2013). It contains LibreOffice instead of Chromium.

2.1 Reviewer assignment problem

In general, the election of reviewers for documents of various kinds is known as the
Reviewer Assignment Problem (Wang et al. 2008). Disparate models have been proposed
in this area. They are based on information retrieval, natural language processing, graph
analysis, recommender systems, supervised learning and clustering (Wang et al. 2008;
Conry et al. 2009). In particular, Latent Semantic Indexing as a similarity function between
potential reviewer biographies and documents was used by Dumais and Nielsen (1992).
Yarowsky and Florian (1999) proposes the usage of cosine similarity between vectors
of words obtained from papers published by candidate reviewers and from the paper be
reviewed. He uses them to train the Naive Bayes classifier. An approach based on col-
laborative filtering was proposed by Conry et al. (2009). He uses the cosine similarity of
abstracts for manuscript-to-manuscript likeness and the number of co-authored papers for
reviewer-to-reviewer correspondence. Another recommender system known as the Toronto
Paper Matching System (Charlin and Zemel 2013) uses a similarity function defined as the
dot product of topic vectors, obtained via Latent Dirichlet Allocation from a manuscript
and candidate reviewers’ publications. Insights on mathematical constraints and efficiency
of recommender systems were discussed by Xie and Lui (2012). He concludes that hetero-
geneous review strategies result in similar or lower workload, but offer higher accuracy.
Tang et al. (2010) creates a convex cost network. Edges of such a network describe var-
ious constraints, while nodes correspond to experts and queries. The selection of experts
is based on finding the maximal flow between selected nodes. Bootstrapping can be done
using traditional similarity measures. Liu et al. (2014) proposes a model using Random
Walk with Restart to traverse the graph of potential reviewers. The information on authority,

@ Springer

J Intell Inf Syst (2018) 50:597-619 601

expertise and diversity are used to build this network. This method outperforms models
based on text similarity and topic similarity. In our method presented in this article we
are not inspired directly by any of those approaches. However, we build the method from
well-known elements (like user and item profiles) and adapt them to new contexts.

2.2 Automatic reviewer recommendation systems

Current approaches to the problem of finding appropriate reviewers are based on compar-
isons of various entities that quantify persons and the changed code.

The authors of “Who Should Review My Code” (Thongtanunam et al. 2015) suggest
using the file paths of the project. They created a tool called Revfinder which uses (1) the
information about modified file paths in a commit, and (2) string comparison functions to
compute the file path similarity between a new commit and previous reviews of each of the
candidate reviewers. The candidate with the maximum score is recommended to become
the reviewer. This tool was tested on the Hasamaki dataset (Hamasaki et al. 2013) expanded
to contain LibreOffice.

A different tool called Review Bot is used in VMware (Balachandran 2013). The pro-
posed algorithm examines each modified line in a code change in a similar manner to
git blame or svn annotate commands. Each author who worked on a given source
code change is awarded points. Authors of more recent changes gain more points than
authors of older changes. The final sum for each author is then used to elect top k authors
recommended to become reviewers.

The authors of “Automatically Prioritizing Pull Requests” (van der Veen et al. 2015) try
to solve a slightly different problem. However, their results are still significantly related
to the recommendation of reviewers. The goal of (van der Veen et al. 2015) is to find
which pull request is more worthy of reviewers’ attention. It is based on the prediction
which pull request shall receive the users’ attention in a specific time window. Authors used
475 projects from GHTorrrent dataset (Gousios 2013). Three algorithms: Logistic Regres-
sion, Naive Bayes and Random Forests were trained and evaluated using 90% training and
10% testing data with 10-fold cross-validation. Random Forests obtained 86% accuracy on
average across all projects. It was the highest score among the evaluated methods.

In “Reviewer Recommender of Pull-Requests in GitHub” (Yu et al. 2014) the problem of
reviewer selection was addressed in terms of similarity usage, an expertise score and inter-
ests shared between developers. The interest sharing information is stored in a comment
network. A model based on the vector space is used to check the cosine similarity between
pull requests. Then, each developer is assigned an expertise score. For each project a undi-
rected graph called comment network of interaction between programmers is maintained.
Its vertices represent programmers. An edge between two programmers exists, if they com-
mented on the same pull request. Edges are weighted by the number of such commonly
commented pull requests. All new pull requests are scored using the expertise score and then
assigned to reviewers with similar interests as found in the comment network. The method
was evaluated on GHTorrrent dataset (Gousios 2013) narrowed to 10 projects with more
than 1000 pull requests. It has been revealed that an increase of the number of recommended
reviewers lowers the precision and boosts the recall. If one reviewer is recommended, the
precision is 0.71 and the recall equals 0.16. On the other hand, when 10 top reviewers are
recommended, they the precision is 0.34 and the recall is 0.71.

A further extension of the results from Yu et al. (2014) was proposed in “Reviewer rec-
ommendation for pull-requests in GitHub: What can we learn from code review and bug

@ Springer

602 J Intell Inf Syst (2018) 50:597-619

assignment?” (Yu et al. 2016). The authors utilize the information on developer interac-
tions in the comment network (Yu et al. 2014) as a standalone method and also as a fusion
with other methods. In order to select n reviewers, a breadth-first search is started on the
comment network from the author of the pull request.

The authors tested their algorithm on 84 open-source projects against three other
approaches: (1) state of the art FL-based system Revfinder (Thongtanunam et al. 2015), (2)
an information retrieval algorithm based on the cosine similarity between vectors of words
from each pull request, and (3) support vector machines trained to recognize pull requests
reviewed in the past by a particular reviewer. The method based on comments networks had
similar precision and recall as Revfinder. To improve the results authors also experimented
with fusion models that combined their solution with other state-of-the-art techniques. As a
result they selected the model that combined information retrieval techniques with comment
networks. This model outperformed known models.

3 Problem statement

In a typical code review system a version control facility issues a list of commits to be scru-
tinized. There are various approaches on how to present this list of commits for a potential
reviewer. The simplest approach is to display the list of all available commits together with
some decision supporting tools (e.g. search and filter). The downside of this approach is that
it lengthens the review process. This may lead to delaying the whole process or omitting
some commits indefinitely (van der Veen et al. 2015).

In order to shorten the process, usually a review recommendation system is used. The
idea of such a system is to prepare a sorted list of commits that fits the field of expertise of
the reviewer, starting with best matching commits. Such systems may be based on human
suggestions of who should review a commit and/or on an automatic system that learns about
reviewers’ preferences and their fields of expertise by analyzing the history of reviews. In
this article we concentrate on automatic reviewer recommendation systems.

In such a system for each new (not yet reviewed) commit and for each prospective
reviewer a matching score is computed. The higher is this score the better is the match
between the reviewer and the commit. The input to the computation of this score is the com-
mit at hand and the past work of the potential reviewer. When a new review appears in the
system it is included in the reviewer’s past work.

An automatic reviewer section system, being the subject of our research, nominates
reviewers for incoming commits using the information on the reviewers’ past work and on
the commit itself.

3.1 Notations

Let C be a time ordered stream of commits. By C; we will denote the commit that appears
at the time ¢ in the commit stream C. As a whole, each commit carries a source code diff
and additional meta information. We are interested only in the list of names of modified
files. By f(C)) = [f{. f3+---, flf] we will denote the list, where f! is the name of the i-
th file modified by the commit C; fori = 1, ..., [;, where /; is the number of files in the
commit C;. More precisely, fl.t is a path, i.e. the string representing the file location in the
operating system. This string will also be considered as a sequence of words separated by
a special character depending on the underlying operating system. Additionally, let R =
[R1, ..., R,] be the list of candidate reviewers.

@ Springer

J Intell Inf Syst (2018) 50:597-619 603

Let h(t) be the set of commits up to time ¢t. Moreover, let us put %,(¢) as the set of
commits that at the time ¢ have already been reviewed, and 4, (f, R;) as a set of commits
that at the time ¢ have already been reviewed by the reviewer R;.

h() .= {C; i <t}
h.(t) := {C; :i <t A C;is already reviewed at t}
hy(t,Rj) == {C; :i <t ANC; € hy(t) A C; is reviewed by R; at time ¢}

We aim to build a similarity function s: C x 2¢ — R. This function for a commit
Cy+1 and a reviewer’s history %, (¢, R;) quantifies how this commit matches this reviewer’s
history. A larger value of s (C;11, h, (¢, R;)) indicates a better match. In this article we
assume that a commit is represented by the list of modified files, and that at any given
time ¢ for a reviewer Ry the set of his/her past reviews h, (¢, Ry) is available. The similarity
function must be practically computable even for large repositories with abundant streams
of incoming commits.

4 The proposed method

When a new commit arrives at a repository, the reviewer recommendation system must nom-
inate the best candidates to review this commit. State-of-the-art systems (Thongtanunam
et al. 2015; Balachandran 2013) read and analyze the whole history of the reviews and com-
mits up to now. In our opinion, such approaches are impractical, because they consume too
much time and system resources. Assume a commit C;1. For C;41 we have to read and
process |h(t)| = t historical commits. Therefore, up to the time ¢t + 1 the reviewer rec-
ommendation system has to process O(h(®)]?) = O(t%) commits in total. Even for large
repositories it is a feasible effort from the point of view of a single repository. However, it
could be a serious problem for repository hosting companies like github or bitbucket
that store and serve millions of repositories. In order to overcome this problem, we propose
a model based on profiles of reviewers. For each reviewer R; € R we create his/her profile
P; € P, where P is set of all available profiles. The profile P; will be updated each time the
reviewer R; comments on a commit. Therefore, each time a new commit C; is reviewed
in the system, it will be added to the reviewer’s profile.

Moreover, instead of the similarity function mentioned in Section 3.1, we rather use a
similarity function s: C x P — R that for a commit C; 4 and a reviewer profile P; quantifies
how this commit fits this reviewer’s history. In order to find best nominee to review a commit
C;41 from a set of reviewers R, we compute the value of this function for each candidate
reviewer’s profile. Therefore, we have to process | R| reviewer’s profiles but not commits.
At time ¢ + 1, such a system needs to process O (|R| - |h(¢)|) commits. This is a significant
improvement as |R| is usually notably smaller than |C|. For large open-source projects that
we have evaluated, it holds that |R| < 0.02 - |C|, see Section 5 Table 4. Therefore, to make
the whole method feasible, we need (1) a data structure to store reviewers’ profiles that has
small memory footprint, (2) a suitable similarity function s that can be effectively computed,
and (3) a fast profile updating mechanism to be applied whenever a reviewer comments on a
commit. Fast updates of reviewer profiles are required as such system at time 7 4 1 will have
to perform O (|h(t)|) = O(t) profile updates.1 The remainder of this section is devoted to
tackling those challenges.

IThis will be usually close to # as most often there is only one review per commit, see Table 4 in Section 5.

@ Springer

604 J Intell Inf Syst (2018) 50:597-619

4.1 The reviewer profile

In Section 3.1 we have introduced the notion of a commit as the list of modified files
) =1fl. f3.-.-, flf], where [; is the number of modified files in this commit. Each
modified file path f/ € f(C;) in a commit C; is a string representing file location in the
project. The file path may also be seen as a sequence of words separated by a special charac-
ter. We can also drop the order of this words and treat their sequence as a multiset of words
(or bag of words). We follow the semantics of multisets from Knuth (1981) and Singh et al.
(2007).

By m(f!) we will denote the mapping that converts a file path f/ into the multiset
of words (path segments) that occurs in f/. Furthermore, we can compute the multiset-
theoretic union of m (flf) for all paths in f(Cy):

mcy= |J miH
flefcn

We will treat m (C;) as the representation of the commit C; used to construct the reviewers’
profiles. We define the profile P; for the reviewer R; at the time ¢ as the multiset-theoretic
union of m for all commits previously reviewed by R;, i.e.:

roy= | J mw

Crehr(1,R;)

In order to illustrate the above procedure, assume a repository containing commits Cy, C»
and Cs and an assignment of reviewers R4 and Rp as shown in Table 1.
The commit C; has the following representation as the multiset m(C):

(java : 3), (main : 2), (packagel : 2), (package? : 1), (src : 3),
m(Cy) = (test : 1), (SomeClass.java : 1), (DifferentClass.java : 1),
(someClassTest.java : 1)

Since the commit C is the first reviewed by R4, m(C1) becomes the profile P4 of the
reviewer R4 attimet = 1 as:

(java : 3), (main : 2), (packagel : 2), (package2 : 1), (src : 3),
Ps(1) = (test : 1), (SomeClass.java : 1), (DifferentClass.java : 1),
(someClassTest.java : 1)

Table 1 Example repository and assignment of reviewers

Commit List of reviewers Paths (modified files)

C Ra src/main/java/packagel/SomeClass.java”
”src/main/java/package?2/DifferentClass.java”
”src/test/java/packagel/SomeClassTest.java”

Cy R4, Rp ”src/main/java/package?2/DifferentClass.java”
“src/test/java/package2/DifferentClassTest.java”

C3 Rp ”src/main/java/package1/SomeClass.java”
”src/main/java/package2/DifferentClass.java”

src/test/java/packagel/SomeClassTest.java”

@ Springer

J Intell Inf Syst (2018) 50:597-619 605

After the commit C; (at the time ¢ = 2) this reviewer’s profile P4 becomes m (C1) Um(C>):

(java : 5), (main : 3), (packagel : 2), (package? : 3), (src : 5),
Ps(2) = (test : 2), (SomeClass.java : 1), (DifferentClass.java : 1),
(someClassTest.java : 1)

4.2 The implementation of the reviewers’ profiles

The proposed algorithm makes an extensive use of the reviewers’ profiles. Therefore, they
must be efficiently implemented. We have chosen hash tables for this purpose, since they
provide average constant time of insertions and lookups. The hash function is used to map
each word in a profile to its multiplicity. Hash tables are implemented in most popular
programming languages.

In order to create the multiset-based representation m(C;) of a commit Cy, (1) all file
paths modified in this commit are retrieved; (2) these paths are tokenized into words; and
eventually (3) added to the hash table (by incrementing the occurrence counter). The com-
putation of m(C;) performs O(K) lookups in the hash table where K is the number of
words (paths segments) in the file names modified by C;. Since the expected time of a hash
lookup is O (1), the complexity of computation of m(C;) is O(K).

An update of a reviewer’s profile is the second most frequently performed operation
in our reviewer recommendation algorithm. When a reviewer comments on a commit, the
multiset-based representation of this commit gets added to his/her profile. This operation
can be implemented as an iteration over items in the multiset-based representation of this
commit. For each item in the commit, we appropriately increment the number of its occur-
rences in the profile. The time-complexity of such an update is equivalent to O(S) hash
lookups where S is the number of words in the multiset-based representation of the commit.
Since the expected time of a hash lookup is O(1), the complexity is O(S).

A profile can contain only the words that are path segments (names of directories and
files) in the repository. Therefore, a profile cannot be larger than a tree representation of all
file paths in the directory structure of the repository. Table 8 in Section 5 shows memory
footprint of such repository structures of analyzed projects. There are 47233 unique words
for Android, 60521 for Libre Office, 9759 for Open stack and 98897 for Qt. Thus, the
actual sizes of reviewer profiles are relatively small making the whole algorithm applicable
in practice.

4.3 Computing the similarity between a profile and a pending commit

When a new commit arrives, our algorithm compares its multiset-based representation with
profiles of all reviewers in order to elect the best candidate to review this commit. Vari-
ous functions are commonly used to measure the similarity between source code entities
(Terra et al. 2013). Most of them were first defined on sets and then adapted to the software
engineering context via the transformation of source code entities into items of the function
domain.

We selected two such functions, namely, the Jaccard coefficient and the Tversky index.
The Jaccard coefficient is one of the most widely adopted similarity functions. It is defined
for two sets X and Y as

|XNY]|
X UY]|

It computes the fraction of overlapping items in the two sets.

J(X,Y) =

@ Springer

606 J Intell Inf Syst (2018) 50:597-619

On the other hand, the Tversky index is a generalized form of Tanimoto coefficient and
is used to compare a variant to a prototype. For two sets X and Y it is defined as:
|XNY]|
XUY|—a|lX —Y|—BlY — X|
The two parameters « (corresponding to the weight of a prototype) and § (corresponding
to the weight of variant) need to be tuned for the specific application. This tuning for our
method is described in Section 6.1.

We adapted set similarity functions such as Tversky index and Jaccard coefficient to work on
multisets by replacing set operations such as union, intersection and relative complement
to those defined on multisets (Petrovsky 2012; Singh et al. 2007; Knuth 1981). We decided
to use Tversky index as the main similarity function due to the possibility of adjusting the impor-
tance ratio between a profile and a review. We use Jaccard coefficient for completeness as a
baseline multiset similarity function in order to verify if our assumptions are correct.

Each of these two similarity measures can be efficiently implemented using hash tables.
If the sizes of sets X and Y are M and N, the computation of their multiset union, difference
and intersection requires at most O (M + N) hash lookups which leads to the overall average
time-complexity O (M + N).

T(X,Y) =

4.4 The reviewer recommendation model

In the proposed method, when a new commit C;4 arrives at the repository, it is mapped
to its multiset-based representation m (C;1) and compared to profiles of reviewers P. The
similarity between m (C,41) and all profiles is computed (we use Tversky index and Jaccard
coefficient for reference). Eventually, top n reviewers are selected. Table 2 summarizes the
semantics of all necessary operations.

Using the values of the similarity function applied to profiles of reviewers with respect
to the multiset-based representation of a commit, we order reviewers according to this
similarity (the highest similarity first). We assume that a higher similarity implies better
competences to review the pending commit. By this method we obtain the similarity values
for all available reviewers. In order not to bother worse-matched reviewers, we select only
n best fitting from the ordered list. When two or more reviewers obtain the same similarity,
we use dates of their last review to break the ties. A reviewer who did most recent review
takes precedence.

4.5 Extensions to reviewer recommendation model

In the model presented above, the passing time and the dynamics of teams are not reflected.
A person who contributed to a particular functionality two years ago and left the project

Table 2 Operations in our method

Function Definition Description

Pi(t) Ucyen, .z Mm(Ci) Construction of a profile

m(Cy) U rrefcym(hH Creation of multiset-based representation
s(Ciy1, Pi (1)) T(P;(t),m(Ci+1)) Tversky index as the similarity function
$(Cry1, Pi(1)) J(P; (1), m(Ci11)) Jaccard coefficient as the similarity function
top(Cry1, 1) (Ri1, Ri2, ..., Rin) Computation of top-n

@ Springer

J Intell Inf Syst (2018) 50:597-619 607

does not have to be the best candidate to review most recent changes. We address this issue
by extinguishing older reviews in reviewer profiles. Extinguishing is done by multiplying
frequencies of words in profiles by a factor lesser than one. The factor can be tuned to
obtain different qualities of recommendations. This approach is similar to time-decaying
Bloom filters (Cheng et al. 2005). The main differences are the method to calculate the
factor and the data structure used. Some authors researched evolutionary rules in the context
of membrane computing, and used multiset extinguishing to decrease factor of such rule
activation (Arteta et al. 2011).

The extinguishing factor for a number of days (or the number of commits in between) d
is computed by the formula:

ex(d) = (/1)

where f is the decaying factor and / the number of days (commits) for which the decaying
factor is to be fully employed. The tuning of these two parameters for our algorithm is
discussed in Section 6.1. For example, if f = % and [= 180, then after half a year (or
after 180 commits) each item in a reviewer profile is halved. Let id(C;) and date(C;) denote
respectively the sequence number of the commit C; and the number of day between commits
C| and C;.

We also consider another version of the selection of n top candidates to do the pending
review when some profiles have exactly the same similarity with respect to the analyzed
commit. In the non tie-breaking version of the algorithm we use the function

"TOP(CtJrl, n) = <<Rl,l’ ey Rl,m1>7 ey (Rn,l’ ey Rn,m,,))

where all reviewers on a single sublist (e.g. (Ry1, ..., Ry m,)) have the same similarity
to the commit. Moreover, preceding lists contain reviewers with higher similarity to the
commit than the following lists (Table 3).

4.6 Possible extensions to profile creation

We create reviewer profiles capturing a subset of features from a project history, namely the
reviewed file paths. Other kinds of features obtained from different views on the same repos-
itory can also be aggregated into profiles. Such features can simply be already present in a
repository, e.g. the author of each line. They can also be computed by a separate algorithm,
e.g. a topic model of commit metadata via Latent Dirichlet Allocation. The data preprocess-
ing method can also be adjusted to cater the needs of a specific project. In certain projects

Table 3 Modified operations in our method

Function Definition Description
I"iid(t) U m(Cy) - ex(id(Cy) — id(Cx_1)) Construction of profile
Ckehy (t,R;) extinguished by id
p’_da’“(;) J m(Cy) - ex(date(Cy) — date(Cy—1)) Construction of profile
Crehy (t,R;) extinguished by date
5(Cry1, P(1) T(PH(t), m(Cy41)) Similarity extinguished
by id
$(Cri1, PA (1)) T (P (1), m(Cy11)) Similarity extinguished
by date
ntop(Cry1, n) Rty s Rimy)s oo (Ruts ooy Rumy)) Non tie-breaking top n

computation

@ Springer

608 J Intell Inf Syst (2018) 50:597-619

the analysis of merge/maintenance commits might introduce unnecessary noise. However,
other projects can benefit from it.

In a typical software development environment the roles of the code reviewer and the
code author often belong to the same set of individuals. Thus, the information on the code
authorship can be aggregated to build authors’ profiles. Assume two distinct possible pro-
files for each person, i.e. his/her reviewer profile and author profile. Given these two distinct
profiles, we can consider at least the four following scenarios to use them: (1) recom-
mendation via reviewer profile only, (2) recommendation via authorship profile only, (3)
combining the similarity score from both profiles, (4) combining both profiles into one
author/reviewer profile. The third scenario requires post-processing of similarity scores to
create one unified list of reviewers possibly using different similarity functions for each
kind of profile. The fourth scenario can be implemented via obtaining authorship informa-
tion on file path level and adding those file paths to existing reviewer profile. It seems easier
to implement, but it lacks the flexibility of the third scenario. We did not have a dataset
with authorship information. Therefore, we implemented only the first scenario. However,
we hope to analyze multiple views (at least reviewers’ and authors’) on the same repository
in future work.

5 Empirical evaluation

In this section we detailed the empirical evaluation of the proposed method. We examined its
accuracy, performance and memory footprint. We used the Thongtanunam dataset (Thong-
tanunam et al. 2015) that is based on mature and well-known open-source projects with
long development history (see Table 4). We compared the obtained results with the state-of-
the-art methods, i.e. ReviewBot (Balachandran 2013) and Revfinder (Thongtanunam et al.
2015). Additionally, we have reimplemented Revfinder. In the remainder of this article our
implementation of Revfinder will be referenced as Revfinder*. The original implementa-
tion of Revfinder is not available. However, we wanted to compute more quality metrics of
their results than they had published. They showed only the recall, while we needed also the

Table 4 Statistics of processed projects

Projects
Statistic Android LibreOffice OpenStack Qt
Commits 5126 6523 6586 23810
(duplicated) 0 1 0 1
Reviewers 94 63 82 202
(only one review) 7 10 1 7
Reviews 5467 6593 9499 25487
First review 2010-07-13 2012-03-06 2011-07-18 2011-05-18
Last review 2012-01-27 2014-06-17 2012-05-30 2012-05-25
Average review distance
seconds 9492 11032 4160 1354
ids 5.951814 1.499617 1.207865 1.140529
Sample size (MB) 3.8 5.5 4.2 19

@ Springer

J Intell Inf Syst (2018) 50:597-619 609

precision and F-measure. We also wanted to assess the efficiency of their method that had
not been mentioned in their article. We did not create a reimplementation of ReviewBot,
since its quality had been verified to be inferior to Revfinder.

5.1 The experimental setup

We have run all experiments on a computer with two Six-Core AMD Opteron™ processors,
32 GB RAM, Intel® RAID Controller RS2BL040 set in RAIDS, 4 drives Seagate Constel-
lation ES ST2000NMO0011 2000 GB. There was no other load on this machine during the
experiments.

The time consumption was measured using Python’s timeit module. For our method we
took the average of 10 runs on each project. In case of Revfinder* (for LibreOffice, Open-
Stack and Android), we also executed 10 runs and took their average execution time. For
Revfinder* on Qt we performed only one run, since the run-time exceeded 5 days and
consumed excessive memory.

The memory footprint was measured using Python’s psutil for the whole program and
sys.getsizeof function for selected data structures, such as lists of reviewer profiles and
arrays containing all distances. Our sequential reimplementation of Revfinder had lower
memory consumption than the parallel version. However, it was more time and CPU
consuming.

We published the sources of our implementation in order to aid replicating our results
(Fejzer and Przymus 2016).

5.2 Experimental dataset

We used the Thongtanunam dataset (Thongtanunam et al. 2015) that contains data on code
reviews of the following projects: Android (a mobile operating system), LibreOffice (an
office suite), OpenStack (a cloud computing platform) and Qt (an application framework). A
summary of this dataset is presented in Table 4. This dataset contains contributors’ activity
recorded by the Gerrit code review systems. Gerrit works with Git repositories. By default
it allows a commit to enter a repository only if this commit has at least one positive review
and it has been blocked by no reviewer. The dataset contains data on reviews. The features
of each review are its unique identifier, the list of reviewers, the list of files, the creation
date, the completion date, the name of the project and the information whether this code
review has been merged.

It should be noted that it is impossible to obtain 100% accurate reviewer recommenda-
tions, because the authors of some reviews have no previous review history. Knowing that
we can identify the highest possible accuracy of recommendation as: 98% (Android) and
99% (LibreOffice, OpenStack and Qt), we performed initial analysis of reviewers’ activity
in order to understand the dataset better.

The left column of Fig. 1 shows the number of reviews per a single reviewer. For all
four projects the diagram conforms to an exponential distribution. Most reviewers create
less than 20 reviews for Android and LibreOffice and less than 60 reviews for OpenStack
and Qt. In our opinion, these numbers result from a reviewer’s focus on a specific bug or a
feature request.

The middle column of Fig. 1 shows the durations of individual reviewers’ activity. In
case of Android and LibreOffice they are significantly longer than for Qt and OpenStack. It
is probably caused by designated maintainers working for companies contributing to these
projects.

@ Springer

610 J Intell Inf Syst (2018) 50:597-619

® ® o
5] o 16 o 16
3 40 314 s 1
s S 12 S 12
@ 30 2 10 2 10
5 5 8 G 8
- 20 o e
@ g 6 g 6
£ 10 £ 4 £
E] S 2 5 2
Z o Z o Z o0
0 100 200 300 400 500 60O 0O 5 10 15 20 25 30 35 40 0O 5 10 15 20 25 30 35 40
Reviews per reviewer Activity span (months) Review time (days)

(a) Android insights

40
35
30
25
20
15
10

5

Number of reviewers

Number of reviewers
©

Number of reviewers
©

0
0 100 200 300 400 500 600 700 800 0 5 10 15 20 25 30 4 6 8 10 12
Reviews per reviewer Activity span (months) Review time (days)

(b) LibreOffice insights

<)
N

30
25
20
15

Number of reviewers

Number of reviewers
(=]

Number of reviewers
(=]

0 100 200 300 400 500 600 700 800 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Reviews per reviewer Activity span (months) Review time (days)

(c) OpenStack insights

60
50
40
30
20
10

0
0 200 400 600 800 1000 1200 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

Reviews per reviewer Activity span (months) Review time (days)

(d) Qt insights

70
60
50
40
30
20
10

0

30
25
20
15
10

Number of reviewers
Number of reviewers
Number of reviewers

Fig. 1 Evaluated projects insights

The right column of Fig. 1 depicts the durations of individual reviews. For all projects the
majority of reviews are completed up to three days for LibreOffice and OpenStack projects,
up to two days for Qt and up to six days for Android. The longest review time and existence
of outliers in case of Android suggests that a reviewer recommendation system can aid
prioritizing the process (Yu et al. 2014).

5.3 Applied metrics

We computed the precision, the recall and F-measure in order to assess the quality of our
solution. These metrics are commonly used in data mining and in particular in bug detec-
tion and reviewer recommendation (Lee et al. 2013; Jeong et al. 2009). We assume that
actual(C;41, n) is the actual n reviewers of the commit C; 1. We define the metrics for our
experimental evaluation using operations from Section 4.4. Therefore, actual(C;+1, n) is
the set of n persons recommended at time ¢ to review the commit Cy .

. ltop(Ci 41, n) Nactual(Cy41, n)|
precision(t + 1,n) =
[top(Ci41, n)|

@ Springer

J Intell Inf Syst (2018) 50:597-619 611

top(Ci41, n) Nactual(Ciq,
recall(t +1,n) = ltop(Ci41, n) Nactual(Ci4.1, n)|

lactual(Ci41, n)|
2 - precision(t + 1, n) - recall(t + 1, n)
precision(t + 1, n) + recall(t + 1, n)

The authors of Revfinder compared their tool to ReviewBot (Thongtanunam et al. 2015;
Balachandran 2013) using only top-n recall and the mean reciprocal rank (MRR). We com-
pare their results to ours with respect to those metrics. The mean reciprocal rank is the metric
commonly used in information retrieval (Voorhees 1999). It aids evaluating any process that
produces a list of possible responses to a series of queries, ordered by the probability of
their correctness.

For the problem of reviewer recommendation we assume that rank: R — N is the index of
the first actual reviewer in the prediction. Then we define mean reciprocal rank as follows:

F-measure(t + 1,n) =

t+1 1
MRR =t +1])

t=1

rank(top(Cyy1, 10))

5.4 Parameter selection

Tversky index (see Section 4.3) has two parameters & and . They are weights applied to
sizes of multiset differences. The value o weighs the difference between a profile and a
commit, while § weighs the reverse difference. We used an exhaustive search to discover
appropriate values of these parameters. We found out that « = 0 and 8 = 1 gave best
results for the problem of reviewer recommendation. We checked possible values of those
parameters on 10% of dataset in range between 0 and 1, by step 0.01, every time satisfying
the equation o 4+ B8 = 1. These values of parameters mean that we use only the commit-to-
profile difference, the intersection of a profile and a commit and their union.

We also tuned the extinguishing of profiles’ content by date. We assumed that the impact
of a review is halved after half a year. Therefore, we put/ = 183, f = 0.5.

For the extinguishing of profiles’ content by id, we used / = 2500, f = 0.5. The
number 2500 is slightly less than the half the number of reviews for Android, LibreOf-
fice and OpenStack. Our results show that the method based on Tversky index enhanced
by the extinguishing is not a significant improvement. The method with extinguishing has
better accuracy on the mean reciprocal rank than standard Tversky index on OpenStack
and Qt projects since those project have the larger number of reviews and smallest average
time between their submission (see Table 4). Thus, older reviews are more likely to have
significant impact.

6 Results and discussion
6.1 Recommendation system accuracy

We tested the method presented in Section 4 against state-of-the-art methods using the
dataset described in Section 5.2.

We experimented with five implementations. Three of them are based on Tversky index
as the similarity function. The first variant denoted by Tversky No Ext has no extinguishing
mechanism. The other two use extinguishing by id (denoted by Tversky Ext id) and by
date (Tversky Ext date) as described in Section 4.3. The fourth implementation used the
Jaccard coefficient as the similarity function (denoted by Jaccard). The fifth variant was

@ Springer

612 J Intell Inf Syst (2018) 50:597-619

our reimplementation of Revfinder denoted by Revfinder*. In the tables we also present
the results of Revfinder and ReviewBot as published in Thongtanunam et al. (2015) and
Balachandran (2013).

Figure 2 summarizes the results. We can see that Tversky No Ext obtains better precision-
to-recall ratio and higher F-measure than all other methods. Results gathered in Table 5
show a detailed comparison of the methods listed above in terms of the following metrics:
top-n recall for n € {1, 3,5, 10} and the mean reciprocal rank. Furthermore, for refer-
ence we include results published in articles on Revfinder (Thongtanunam et al. 2015) and
ReviewBot (Balachandran 2013). We conclude that the methods proposed in this article
obtain the higher recall and the mean reciprocal rank on all projects.

Next we have assessed whether the observed improvements in terms of used metrics are
statistically significant. We have compared the ratio of successful recommendations to all
recommendations, defined as [top(Ciy1, n) N actual(Cy4+1, n)|. Then, we have examined
results of top-n for all methods, all four projects and all n € {1, 2, ..., 10} . We used Levene
test for equality of variances (Levene 1960) to ensure that the variance of the results is not
equal. Then we used the Kruskal-Wallis H-test (Kruskal and Wallis 1952) with null hypoth-
esis “Median coefficients specified for each method are equal.”, and p-value threshold equal
to 0.05. We were able to reject this hypothesis for all tests. Then we used Student’s t-test for
independent samples with the hypothesis “Two method results have the same average val-
ues” with the same p-value threshold. We were able to reject this hypothesis for most pairs
of results, namely 362 out of 400. The exceptions were (1) Tversky No Ext and Revfinder®
on OpenStack forn € {6,7, 8,9, 10}, (2) Tversky Ext id and Tversky Ext date for Android
and LibreOffice for all n.

Thus we conclude that, in majority of cases the methods proposed in this article show
statistically significant improvement of the precision, recall and F-measure metrics.

6.1.1 Non tie-breaking approach

The experiments presented above concern a tie-breaking version of the proposed model
(see Section 4.5). However, the non-tie-breaking version is an interesting alternative. If we

F-Measure Precision vs Recall

Average F-Measure
Average Recall

—+— Tversky No Ext —e— Tversky Ext id —— Tversky Ext date —— Jaccard —=— Revfinder*

Fig. 2 Metrics comparison

@ Springer

J Intell Inf Syst (2018) 50:597-619 613

Table 5 The recall and MRR for all methods and four projects

Recall MRR
Method Topl Top3 Top5 Top10
Android Tversky No Ext 0.5492 0.8034 0.8591 0.9066 0.7301
Tversky Ext id 0.5138 0.7467 0.8004 0.8469 0.7290
Tversky Ext date 0.4684 0.7315 0.7913 0.8460 0.6985
Jaccard 0.0788 0.1859 0.2544 0.3798 0.4070
Revfinder* 0.4686 0.7218 0.8098 0.8898 0.6640
Revfinder 0.46 0.71 0.79 0.86 0.60
ReviewBot 0.21 0.29 0.29 0.29 0.25
LibreOffice Tversky No Ext 0.3353 0.5390 0.6571 0.8106 0.5799
Tversky Ext id 0.3225 0.5216 0.6329 0.7872 0.5763
Tversky Ext date 0.2692 0.4917 0.6097 0.7748 0.5340
Jaccard 0.0239 0.0524 0.0747 0.1367 0.3559
Revfinder* 0.2816 0.5183 0.6428 0.7972 0.5417
Revfinder 0.24 0.47 0.59 0.74 0.40
ReviewBot 0.06 0.09 0.09 0.10 0.07
OpenStack Tversky No Ext 0.4177 0.6985 0.7967 0.8892 0.5500
Tversky Ext id 0.2916 0.4829 0.5537 0.6157 0.5530
Tversky Ext date 0.2260 0.4360 0.5176 0.6055 0.4924
Jaccard 0.0835 0.1937 0.2609 0.3884 0.3931
Revfinder* 0.3987 0.6846 0.7903 0.8854 0.5390
Revfinder 0.38 0.66 0.77 0.87 0.55
ReviewBot 0.23 0.35 0.39 0.41 0.30
Qt Tversky No Ext 0.3655 0.6351 0.7480 0.8540 0.5973
Tversky Ext id 0.3479 0.6014 0.7024 0.7962 0.6054
Tversky Ext date 0.2720 0.5586 0.6746 0.7771 0.5500
Jaccard 0.0226 0.0530 0.0785 0.1154 0.3926
Revfinder* 0.1899 0.3403 0.4184 0.5356 0.5290
Revfinder 0.2 0.34 0.41 0.69 0.31
ReviewBot 0.19 0.26 0.27 0.28 0.22

consider top-n groups of reviewers with the same score, we can observe the following.
Figure 3 shows histograms of group size for non-tie-breaking Tversky No Ext top-1. For all
projects singleton groups dominate. The number of smaller groups gradually decreases. This
indicates that our methods usually find a small number of matching reviewers. Thus, a valid
question arises: Do we really need to break the ties? For large and long-term projects it may
be fairly common that more than one person is responsible for specific parts of the project.
Therefore, more than one reviewer has appropriate knowledge to perform a review. Under
that assumption we investigate the predictive performance of this solution. We observe that
top-n groups yield a notably high recall rates. Table 6 shows the recall of top-n groups for
several values of n. We conclude that this approach is also applicable, especially when a
project’s maintenance is naturally divided among working groups. It happens in e.g. subsys-
tems in Linux kernel and FreeBSD operating system (Rigby and Storey 2011). In such sys-
tems, having the high accuracy of group based recommendation may be desirable.

@ Springer

614 J Intell Inf Syst (2018) 50:597-619

3000 3000
o o
= 2500 2 2500
9] 3]
3 2000 3 2000
G 1500 G 1500
é 1000 é 1000
S 500 S 500
b4 =4
0 0
0 5 10 15 20 0 5 10 15 20
Android - number of reviewers in non tie-breaking top 1 LibreOffice - number of reviewers in non tie-breaking top 1
3000 8000
g o
> >
3 2000 o 5000
G 1500 ‘G 4000
2 1000 g 3000
E s 52000
2 2 1000
0 0
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Openstack - number of reviewers in non tie-breaking top 1 Qt - number of reviewers in non tie-breaking top 1

Fig.3 The number of recommended reviewers in top-1 Tversky No Ext without tie-breaking. The horizontal
axis shows the number of reviewers recommended. The vertical axis presents the number of commits for
which this number of reviewers was recommended by this method

6.2 Performance evaluation

We measured the efficiency of three implementations, namely Tversky No Ext, Jaccard and
Revfinder*. We split the processing into three phases corresponding to operations in our
model (see Table 2). They are the transformation of a commit into a multiset, the actual
update of a profile and the similarity calculation in order to recommend the reviewers. Table 7
presents the results. The times for the three phases are total running times for all operations
per a single project. The rightmost column presents average processing time per a review in
a project.

The results presented in Table 7 are averages of running times for a number of executions.
We executed 10 consecutive runs of the sequential version of our algorithm, both Tversky
No Ext and Jaccard. In case of Revfinder®, we used 10 consecutive runs only on Android,
LibreOffice and OpenStack. We decided to evaluate Revfinder* on Qt using only 1 run. This
is due to the excessive consumption of resources for that project. One run took five days
to compute. In all tests our method was faster by an order of magnitude. The coefficient of
variation did not exceed 1% for all repeated runs. We used Mann-Whitney U two-sample
testny = np = 10, U = 100, p < 0.05 with null hypothesis “Median execution time for
Tversky No Ext and Revfinder® are equal on the same project.” on Android, LibreOffice
and Openstack projects. Median times of 10 consecutive runs for Tversky No Ext on those
projects were 248.84, 713.79 and 105.50 respectively. Median times of 10 consecutive runs
for Revfinder* on those projects were 15770.17, 24875.84 and 17235.29 respectively. We
rejected null hypothesis on all tested projects.

Table 6 The recall and MRR of
Tversky No Ext without Recall MRR
tie-breaking

Project Topl Top3 Top5 Top10

Android 0.7052 0.9058 0.9243 0.9317 0.8499
LibreOffice 0.4486 0.8013 0.8896 0.9402 0.6706
OpenStack 0.7486 0.9140 0.9417 0.9589 0.8289
Qt 0.6078 0.8798 0.9339 0.9633 0.7618

@ Springer

J Intell Inf Syst (2018) 50:597-619 615

Table 7 Results of the performance evaluation

Total time (in seconds) Average
Project Method Multiset Profile Similarity single

transf- update calculation review

ormation processing
Android Tversky No Ext 0.4232 5.3811 241.8630 0.0483
Android Jaccard 0.4147 5.7651 132.3110 0.0270
Android Revfinder* — 0.0181 15797.9000 3.0819
LibreOffice Tversky No Ext 0.6813 39.9458 668.6240 0.1087
LibreOffice Jaccard 0.6741 39.9517 356.9950 0.0610
LibreOffice Revfinder* — 0.0249 24875.2000 3.8135
OpenStack Tversky No Ext 0.3989 3.3080 101.1660 0.0159
OpenStack Jaccard 0.3964 3.3920 56.6723 0.0092
OpenStack Revfinder* - 0.0254 17227.2000 2.6157
Qt Tversky No Ext 2.3738 68.4784 4795.6800 0.2044
Qt Jaccard 2.3844 68.2125 2651.9200 0.1143
Qt Revfinder* — 2.0000 432000.0000 18.1437

The memory footprint of profiles created by our algorithm is smaller than Revfinder*
(which uses 10 GB of RAM for Android, 12 GB for LibreOffice, 11 GB for OpenStack,
and more than 32 GB for Qt). It is evidenced in Table 8.

This experimental observations confirm that our method uses significantly less comput-
ing power (Fig. 4) and memory than state-of-the-art methods. Thus, it is feasible to apply
our methods in large repositories such as Github.

6.3 Discussion

The methodology We created a new approach to the problem of reviewer recommenda-
tion. We started by defining two distinct phases of processing: (1) the aggregation of reviews
into profiles, and (2) the calculation of profile-to-review similarity. Later we analysed typi-
cal lifetime of a repository in terms of the number of occurrences of these two phases. That
led us to the proposed solution. It minimizes the cost of the second phase by spending more
time in the first phase. Both Revfinder and ReviewBot do it reversely. They have the low
complexity of the first phase and the high complexity of the second phase.

Table 8 Memory footprint of

Tversky No Ext (in MB) Multiset profile size
Project Virtual memory All Average
Android 396.6328 3.2235 0.0343
LibreOffice 411.6172 5.2938 0.0840
OpenStack 400.1172 1.8546 0.0226
Qt 530.0469 12.5634 0.0622

@ Springer

616 J Intell Inf Syst (2018) 50:597-619

Cumulative time (in seconds)

Android || Revfinder*
LibreOfficeU [Tversky No Ext
OpenStack|

ol
0

5k 10k 15k 20k 25k 30k420 425k 430k 435k 440k

Fig. 4 Performance difference between methods

Complexity comparison We accelerated the calculation of similarity in an analogous
manner as a database index enables more efficient access to records. However, a database
index adds storage and processing penalty. We are aware that, due to Amdahl law, the opti-
mization of the most common and costly operation shall give us better improvement. We
estimated that from two proposed phases the similarity computation shall be done notably
more often and shall determine the complexity of the whole algorithm. Usually, the num-
ber of reviewers is significantly lower than the number of commits/reviews. As shown in
Table 7 the computation of similarity is more expensive than other phases. Thus, it attests
our assumptions about the overall complexity.

Empirical comparison Our two phase approach allowed using various similarity func-
tions that yielded varying results. That enabled understanding the data better and selecting
a function maximizing the similarity between aggregated profiles and reviews. By adapting
two set difference functions (Tversky index and Jaccard coefficient) to multisets we discov-
ered that the most important feature for calculating similarity was the difference between
multisets of a commit and a profile. Our two phase approach also enabled adding optimiza-
tions during the aggregation phase, such as extinguishing of older reviews. The evaluation
of our method using Tversky index against state-of-the art methods shown that in most cases
we obtained statistically significant improvements for all metrics. Furthermore, we achieved
significantly lower time complexity. We have also proven that methods extinguishing past
reviews are comparable with the state-of-the-art (see Table 5).

Profile construction We build reviewers profiles based on reviewed file paths only, due
to the fact that previous studies had shown that file path solutions like Revfinder obtain
better accuracy than methods using code authorship like ReviewBot. Additionally, we were
limited in our selection of available features by dataset constraints. The dataset does not
contain detailed and complete information about code authorship. However, it is possible
to expand our model, for instance via the construction of separate profiles based on code
authorship and a redefinition of the similarity function including both profiles.

7 Conclusions and future work
The ability to elect competent reviewers for a commit in a large, industrial system is
extremely important. However, its automation can be undermined by limits created by both

the computing power and the available memory. In this article we introduced reviewers’
profiles that aggregate their expertise. We presented a novel method to suggest reviewers

@ Springer

J Intell Inf Syst (2018) 50:597-619 617

for code based on such profiles. This method has significantly higher accuracy and lower
computational complexity than state-of-the-art methods. We also showed the statistical
significance of the improvements of the precision, the recall and F-measure.

We also analysed the methods proposed in this article in terms of performance. We
concluded that they have smaller complexity and outperform the state-of-the-art methods.
Excessive experimental evaluation presented in this article proves that our methods can be
applied in large industrial system.

There are several possible future areas of research. Firstly, the usage of other data struc-
tures for reviewer profiles is worth considering, e.g. locality-sensitive hashing can yield
further performance improvements. Secondly, the prediction accuracy is also an issue. Due
to the small number of developers compared to the quantity of file paths in all commits, we
did not adopted collaborative filtering. In our opinion it can improve the accuracy of the
methods. Thirdly, recent studies (Yu et al. 2016) show that fusion methods can achieve sim-
ilar performance to the state-of-the-art. By introducing the social factors to our method as
a reviewer ordering mechanism we should be able to confirm or disprove this fact. Another
possible approach based on fusion is achievable by adding the whole repository to the
dataset. This possibly enables constructing more detailed profiles, based on available source
code contained in each commit, like code authorship information.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

Arteta, A., Blas, N.G., & de Mingo Lépez, L.F. (2011). Solving complex problems with a bioinspired model.
Engineering and Applications of Al, 24(6), 919-927. https://doi.org/10.1016/j.engappai.2011.03.007.

Balachandran, V. (2013). Reducing human effort and improving quality in peer code reviews using automatic
static analysis and reviewer recommendation. In Notkin, D., Cheng, B.H.C., & Pohl, K. (Eds.) 35t/ inter-
national conference on software engineering, ICSE ’13, San Francisco, CA, USA, May 18-26, 2013
(pp- 931-940). IEEE / ACM. http://dl.acm.org/citation.cfm?id=2486915.

Bisant, D.B., & Lyle, J.R. (1989). A two-person inspection method to improve programming pro-
ductivity. IEEE Transactions on Software Engineering, 15(10), 1294-1304. http://doi.org/10.1109/
TSE.1989.559782.

Charlin, L., & Zemel, R. (2013). The toronto paper matching system: an automated paper-reviewer assignment
system.

Cheng, K., Xiang, L., Iwaihara, M., Xu, H., & Mohania, M.K. (2005). Time-decaying bloom filters for data
streams with skewed distributions. In 15th international workshop on research issues in data engineering
(RIDE-SDMA 2005), stream data mining and applications, 3-7 April 2005, Tokyo, Japan (pp. 63—69).
IEEE Computer Society. https://doi.org/10.1109/RIDE.2005.15.

Conry, D., Koren, Y., & Ramakrishnan, N. (2009). Recommender systems for the conference paper assign-
ment problem. In Bergman, L.D., Tuzhilin, A., Burke, R.D., Felfernig, A., & Schmidt-Thieme, L. (Eds.)
Proceedings of the 2009 ACM conference on recommender systems, RecSys 2009, New York, NY, USA,
October 23-25, 2009 (pp. 357-360). ACM. https://doi.org/10.1145/1639714.1639787.

D’Ambros, M., Lanza, M., & Robbes, R. (2010). An extensive comparison of bug prediction approaches. In
Whitehead, J., & Zimmermann, T. (Eds.) Proceedings of the 7th international working conference on
mining software repositories, MSR 2010 (Co-located with ICSE), Cape Town, South Africa, May 2-3,
2010, Proceedings (pp. 31-41). IEEE Computer Society. https://doi.org/10.1109/MSR.2010.5463279.

Drake, J., Mashayekhi, V., Riedl, J., & Tsai, W.T. (1991). A distributed collaborative software inspection
tool: Design, prototype, and early trial. In Proceedings of the 30th aerospace sciences conference.

Dumais, S.T., & Nielsen, J. (1992). Automating the assignment of submitted manuscripts to reviewers. In
Belkin, N.J., Ingwersen, P., & Pejtersen, A.M. (Eds.) Proceedings of the 15th annual international ACM

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.engappai.2011.03.007
http://dl.acm.org/citation.cfm?id=2486915
http://doi.org/10.1109/TSE.1989.559782
http://doi.org/10.1109/TSE.1989.559782
http://dx.doi.org/10.1109/RIDE.2005.15
http://dx.doi.org/10.1145/1639714.1639787
http://dx.doi.org/10.1109/MSR.2010.5463279

618 J Intell Inf Syst (2018) 50:597-619

SIGIR conference on research and development in information retrieval. Copenhagen, Denmark, June
21-24, 1992 (pp. 233-244). ACM. https://doi.org/10.1145/133160.133205.

Fejzer, M., & Przymus, P. (2016). Implementation code repository. http://www-users.mat.umk.pl/~mfejzer/
reviewers_recommendation.

Gousios, G. (2013). The ghtorent dataset and tool suite. In Zimmermann et al. (Zimmermann et al. 2013)
(pp- 233-236). https://doi.org/10.1109/MSR.2013.6624034.

Hamasaki, K., Kula, R.G., Yoshida, N., Cruz, A.E.C., Fujiwara, K., & lida, H. (2013). Who does what during
a code review? Datasets of OSS peer review repositories. In Zimmermann et al. (Zimmermann et al.
2013) (pp. 49-52). https://doi.org/10.1109/MSR.2013.6624003.

Hassan, A.E. (2008). The road ahead for mining software repositories. In Frontiers of Software Maintenance,
2008. FoSM 2008 (pp. 48-57). IEEE.

Jeong, G., Kim, S., Zimmermann, T., & Yi, K. (2009). Improving code review by predicting reviewers and
acceptance of patches. In Research on software analysis for error-free computing center tech-memo
(ROSAEC MEMO 2009-006) (pp. 1-18).

Kagdi, H.H., Collard, M.L., & Maletic, J.I. (2007). A survey and taxonomy of approaches for mining soft-
ware repositories in the context of software evolution. Journal of Software Maintenance, 19(2), 77-131.
https://doi.org/10.1002/smr.344.

Kim, S., Whitehead, E.J., Jr., & Zhang, Y. (2008). Classifying software changes: Clean or buggy?. IEEE
Transactions on Software Engineering, 34(2), 181-196. https://doi.org/10.1109/TSE.2007.70773.

Knuth, D.E. (1981). The art of computer programming, volume II: seminumerical algorithms, 2nd Edn.
Addison-Wesley.

Kruskal, W.H., & Wallis, W.A. (1952). Use of ranks in one-criterion variance analysis. Journal of the
American statistical Association, 47(260), 583-621.

Lee, J.B., Ihara, A., Monden, A., & Matsumoto, K. (2013). Patch reviewer recommendation in OSS projects.
In Muenchaisri, P., & Rothermel, G. (Eds.) 20th Asia-Pacific software engineering conference, APSEC
2013, Ratchathewi, Bangkok, Thailand, December 2-5, 2013 - Volume 2 (pp. 1-6). IEEE Computer
Society. https://doi.org/10.1109/APSEC.2013.103.

Levene, H. (1960). Robust tests for equality of variances1. Contributions to Probability and Statistics: Essays
in Honor of Harold Hotelling, 2, 278-292.

Liu, X., Suel, T., & Memon, N.D. (2014). A robust model for paper reviewer assignment. In Kobsa, A., Zhou,
M.X., Ester, M., & Koren, Y. (Eds.) Eighth ACM conference on recommender systems, RecSys ’14,
Foster City, Silicon Valley, CA, USA - October 06 - 10, 2014 (pp. 25-32). ACM. http://doi.org/10.1145/
2645710.2645749.

Mclntosh, S., Kamei, Y., Adams, B., & Hassan, A.E. (2014). The impact of code review coverage and
code review participation on software quality: a case study of the qt, vtk, and ITK projects. In
Devanbu, P.T., Kim, S., & Pinzger, M. (Eds.) Proceedings of the 11th working conference on min-
ing software repositories, MSR 2014, May 31 - June 1, 2014, Hyderabad, India (pp. 192-201). ACM.
http://doi.org/10.1145/2597073.2597076.

Nelson, S.D., & Schumann, J. (2004). What makes a code review trustworthy? In 37th Hawaii international
conference on system sciences (HICSS-37 2004), CD-ROM / Abstracts Proceedings, 5-8 January 2004,
Big Island, HI, USA. IEEE Computer Society. https://doi.org/10.1109/HICSS.2004.1265711.

Petrovsky, A.B. (2012). An axiomatic approach to metrization of multiset space. In Multiple criteria decision
making: proceedings of the 10th international conference: expand and enrich the domains of thinking
and application (p. 129). Springer.

Radjenovic, D., Hericko, M., Torkar, R., & Zivkovic, A. (2013). Software fault prediction metrics: A sys-
tematic literature review. Information & Software Technology, 55(8), 1397-1418. http://doi.org/10.1016/
j-infsof.2013.02.009.

Rigby, P.C., & Storey, M.D. (2011). Understanding broadcast based peer review on open source software
projects. In Taylor, R.N., Gall, H.C., & Medvidovic, N. (Eds.) Proceedings of the 33rd international confer-
ence on software engineering, ICSE 2011, Waikiki, Honolulu, HI, USA, May 21-28, 2011 (pp. 541-550).
ACM. https://doi.org/10.1145/1985793.1985867.

Singh, D., Ibrahim, A., Yohanna, T., & Singh, J. (2007). An overview of the applications of multisets. Novi
Sad Journal of Mathematics, 37(3), 73-92.

Tang, W., Tang, J., & Tan, C. (2010). Expertise matching via constraint-based optimization. In Huang, J.X.,
King, I., Raghavan, V.V., & Rueger, S. (Eds.) 2010 IEEE/WIC/ACM international conference on web
intelligence, WI 2010, Toronto, Canada, August 31 - September 3, 2010, main conference proceedings
(pp. 34-41). IEEE Computer Society. https://doi.org/10.1109/WI-IAT.2010.133.

Terra, R., Brunet, J., Miranda, L.E., Valente, M.T., Serey, D., Castilho, D., & da Silva Bigonha, R. (2013).
Measuring the structural similarity between source code entities (S). In The 25th international conference
on software engineering and knowledge engineering, Boston, MA, USA, June 27-29, 2013 (pp. 753-758).
Knowledge Systems Institute Graduate School.

@ Springer

http://dx.doi.org/10.1145/133160.133205
http://www-users.mat.umk.pl/~mfejzer/reviewers_recommendation
http://www-users.mat.umk.pl/~mfejzer/reviewers_recommendation
http://dx.doi.org/10.1109/MSR.2013.6624034
http://dx.doi.org/10.1109/MSR.2013.6624003
http://dx.doi.org/10.1002/smr.344
http://dx.doi.org/10.1109/TSE.2007.70773
http://dx.doi.org/10.1109/APSEC.2013.103
http://doi.org/10.1145/2645710.2645749
http://doi.org/10.1145/2645710.2645749
http://doi.org/10.1145/2597073.2597076
http://dx.doi.org/10.1109/HICSS.2004.1265711
http://doi.org/10.1016/j.infsof.2013.02.009
http://doi.org/10.1016/j.infsof.2013.02.009
http://dx.doi.org/10.1145/1985793.1985867
http://dx.doi.org/10.1109/WI-IAT.2010.133

J Intell Inf Syst (2018) 50:597-619 619

Thongtanunam, P., Tantithamthavorn, C., Kula, R.G., Yoshida, N., lida, H., & Matsumoto, K. (2015). Who
should review my code? A file location-based code-reviewer recommendation approach for modern code
review. In Guéhéneuc, Y., Adams, B., & Serebrenik, A. (Eds.) 22nd IEEE international conference on
software analysis, evolution, and reengineering, SANER 2015, Montreal, QC, Canada, March 2-6, 2015
(pp. 141-150). IEEE. https://doi.org/10.1109/SANER.2015.7081824.

van der Veen, E., Gousios, G., & Zaidman, A. (2015). Automatically prioritizing pull requests. In /2th
IEEE/ACM working conference on mining software repositories, MSR 2015, Florence, Italy, May 16-17,
2015 (pp. 357-361). IEEE. https://doi.org/10.1109/MSR.2015.40.

Voorhees, E.-M. (1999). The TREC-8 question answering track report. In Voorhees, E.M., & Harman,
D.K. (Eds.) Proceedings of the eighth text retrieval conference, TREC 1999, Gaithersburg, Maryland,
USA, November 17-19, 1999, vol. special publication 500-246. National institute of standards and
technology (NIST). http://trec.nist.gov/pubs/trec8/papers/qa_report.pdf.

Wang, F., Chen, B., & Miao, Z. (2008). A survey on reviewer assignment problem. In Nguyen, N.T., Borzem-
ski, L., Grzech, A., & Ali, M. (Eds.) Proceedings of the new frontiers in applied artificial intelligence,
21st international conference on industrial, engineering and other applications of applied intelligent
systems, IEA/AIE 2008, Wroclaw, Poland, June 18-20, 2008, lecture notes in computer science (Vol.
5027, pp. 718-727). Springer. https://doi.org/10.1007/978-3-540-69052-8_75.

Xie, H., & Lui, J.C.S. (2012). Mathematical modeling of competitive group recommendation systems with
application to peer review systems. arXiv:1204.1832.

Yarowsky, D., & Florian, R. (1999). Taking the load off the conference chairs: towards a digital paper-routing
assistant.

Yu, Y., Wang, H., Yin, G., & Ling, C.X. (2014). Reviewer recommender of pull-requests in github. In 30th
IEEE international conference on software maintenance and evolution, Victoria, BC, Canada, September
29 - October 3, 2014 (pp. 609-612). IEEE Computer Society. https://doi.org/10.1109/ICSME.2014.107.

Yu, Y., Wang, H., Yin, G., & Wang, T. (2016). Reviewer recommendation for pull-requests in github: What
can we learn from code review and bug assignment? Information & Software Technology, 74, 204-218.
https://doi.org/10.1016/j.infsof.2016.01.004.

Zimmermann, T., Penta, M.D., & Kim, S. (Eds.) (2013). Proceedings of the 10th working conference on
mining software repositories, MSR ’13, San Francisco, CA, USA, May 18-19, 2013. IEEE Computer
Society. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6597024.

@ Springer

http://dx.doi.org/10.1109/SANER.2015.7081824
http://dx.doi.org/10.1109/MSR.2015.40
http://trec.nist.gov/pubs/trec8/papers/qa_report.pdf
http://dx.doi.org/10.1007/978-3-540-69052-8_75
http://arxiv.org/abs/1204.1832
http://dx.doi.org/10.1109/ICSME.2014.107
http://dx.doi.org/10.1016/j.infsof.2016.01.004
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6597024

	Profile based recommendation of code reviewers
	Abstract
	Introduction
	Background and related work
	Reviewer assignment problem*.25pt
	Automatic reviewer recommendation systems

	Problem statement
	Notations

	The proposed method*-.2pt
	The reviewer profile
	The implementation of the reviewers' profiles
	Computing the similarity between a profile and a pending commit
	The reviewer recommendation model
	Extensions to reviewer recommendation model
	Possible extensions to profile creation

	Empirical evaluation
	The experimental setup
	Experimental dataset
	Applied metrics
	Parameter selection

	Results and discussion
	Recommendation system accuracy
	Non tie-breaking approach

	Performance evaluation
	Discussion
	The methodology
	Complexity comparison
	Empirical comparison
	Profile construction

	Conclusions and future work
	Open Access
	References

