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Environmental sound recognition using short-time
feature aggregation

Gerard Roma1 ·Perfecto Herrera2 ·
Waldo Nogueira3

Abstract Recognition of environmental sound is usually based on two main architectures,
depending on whether the model is trained with frame-level features or with aggregated
descriptions of acoustic scenes or events. The former architecture is appropriate for applica-
tions where target categories are known in advance, while the later affords a less supervised
approach. In this paper, we propose a framework for environmental sound recognition based
on blind segmentation and feature aggregation. We describe a new set of descriptors, based
on Recurrence Quantification Analysis (RQA), which can be extracted from the similar-
ity matrix of a time series of audio descriptors. We analyze their usefulness for recognition
of acoustic scenes and events in addition to standard feature aggregation. Our results show
the potential of non-linear time series analysis techniques for dealing with environmental
sounds.
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1 Introduction

Technologies for recording digital audio at a reasonable quality have become increasingly
available and affordable. As a result, it is now very easy to collect information from our
environment through audio recording. However, manual segmentation and labeling of audio
are labor-intensive tasks. Thus, potential uses of that information are limited by our ability
to automatically describe the contents of the recordings, which is still quite modest. In
this paper, we address two problems that have received considerable attention in recent
years: classification of acoustic scenes, and automatic labelling of acoustic events. In the
first case, long recordings have to be assigned to one type of scene or environment, such
as a train station or an office. In the second case, we zoom into the particular events that
happen in scenes and attempt to detect and annotate their sources, such as human voices or
alarms. An evaluation methodology and associated datasets were proposed in the context
of the first IEEE AASP Detection and Classification of Acoustic Scenes and Events (D-
CASE) Challenge (Giannoulis et al. 2013). In this paper we present an evolution of our work
submitted to this challenge (Roma et al. 2013), and validate it with additional experiments
and datasets. During the preparation of this work, a second D-CASE challenge has been
conducted, and thus we will refer to the first one as D-CASE2013, and to the second one as
D-CASE2016.

1.1 Related work

1.1.1 Acoustic scenes

The idea of classifying acoustic scenes into discrete categories has met growing interest with
potential applications in robotics (Chu et al. 2006) and ubiquitous computing (Eronen et al.
2006). Most approaches can be classified into two groups: in the first case, some descrip-
tors are computed frame-wise from the audio signal using short overlapping windows. The
most common features are Mel Frequency Cepstral Coefficients (MFCCs). Some statisti-
cal model is then trained directly from the frame-level features, without any integration
step. Scenes are commonly considered to be mainly stationary (Chachada and Kuo 2014;
McDermott and Simoncelli 2011), so their identification does not depend on the long-term
temporal evolution of audio features. Thus, Gaussian Mixture Models (GMMs) are a com-
mon choice (Aucouturier et al. 2007; Dargie 2009), although low-order Hidden Markov
Models (which become a GMM in the single-state case) have also been used (Eronen et al.
2006). These methods are useful when the classes are known a priori, and can be applied in
an online (e.g. real-time) setting.

The second approach consists in summarizing the entire recording into a single fea-
ture vector, often ignoring the order (i.e. a “bag of frames”) and training the classification
model document-wise with these vectors. Again, given the stationarity assumption it is
common to use simple statistics of MFCC features. Support Vector Machines (SVM), K-
nearest neighbor (KNN) and GMMs are popular choices for the classification model (Chu
et al. 2006). Other than traditional MFCC features, promising results (although very differ-
ent depending on the class) have been obtained with matching-pursuit features (Chu et al.
2009). However, their computational cost may make them unpractical in the context of large
audio databases. Methods based on vector-quantization of frame-level descriptors have also
been tried with acoustic scenes in the context of consumer videos (Lee and Ellis 2010),
although the improvement over standard statistics is small. In this case, a global dictionary
is first obtained by clustering a large amount of frames. Each file is then represented as a
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normalized histogram of the dictionary items. One problem with this method is that the dic-
tionary is often trained with the whole dataset, before partitioning it into training and test
sets. This avoids re-training the dictionary for each fold when cross-validation is used for
evaluation, but favors overfitting. Methods based on aggregation can be used for labelling
using different vocabularies in larger scale applications, for instance when recordings are
stored in a database. More recently, Non-negative matrix factorization (NMF) techniques
have been introduced for unsupervised feature learning in scene classification (Bisot et al.
2016). Another related proposal is the use of latent acoustic topics, learnt from event signals
(Imoto et al. 2013).

One general problem in comparing different methods is the lack of common datasets
and benchmarks. The D-CASE2013 challenge was proposed and conducted for bench-
marking different methods for recognition of acoustic scenes and events. The baseline
system proposed by the challenge organizers was based on MFCCs and a GMM classifier,
while the best performing systems used SVMs. The highest accuracy for scene classifi-
cation was achieved by the system described in this article, summarizing the evolution of
MFCCs in intermediate windows of 400 ms. Another approach achieved similar perfor-
mance using a wavelet variant of MFCCs and other features averaged over windows of
4 s, plus an extra classifier to decide for the class of the whole recording (Geiger et al.
2013). Such intermediate “texture windows” are commonly used in Music Information
Retrieval (MIR) (Tzanetakis and Cook 2002). In the second iteration of the D-CASE chal-
lenge (D-CASE2016) some of the best approaches used deep learning architectures. These
architectures are being used in many domains because of their ability to generalize using
large training datasets (at high computational cost). However, research datasets in this field
are still small.

1.1.2 Acoustic events

When we focus on acoustic events they usually happen in an environment that has a
characteristic acoustic signature, usually as background “noise” (i.e., a bird chirp over a
park environment background, a train whistle over a railway station background, etc.). We
can therefore decompose those sounds into background noise and salient acoustic events.
With respect to events, two main tasks can be identified: detection of events and their
classification into discrete categories.

The task of segmentation, that is, finding the location of acoustic events in longer
recordings, has been approached from several disciplines. In speech recognition, effective
techniques have been developed for Voice Activity Detection (VAD) (Sohn et al. 1999),
which have been widely applied in telecommunications. In MIR, a long tradition exists for
the detection of instrument note onsets (Klapuri 1999; Böck and Widmer 2013). From the
perspective of environmental sound, systems have been developed for applications such as
surveillance (Clavel et al. 2005), or indexing of video content (Xu et al. 2003).

The task of acoustic event classification can be traced back to early experiments with
audio retrieval, mainly in the context of indexing sound effects libraries. Early research
focused on small datasets assigned to a handful of concepts. Very high classification accu-
racies were reported using HMMs (Zhang and Kuo 1998). For big collections of sound
effects, though, it is more common to aggregate features at the file level and use generic
machine learning models. For example, statistics of a large set of features have been used
along with K-NN classifiers for large scale applications (Cano et al. 2005).

Like in the case of scenes, vector quantization has been used as a simple yet effec-
tive way to obtain sparse features (Chechik et al. 2008; Lee and Ellis 2010). Also, like in
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the case of scenes, most recent work still oscillates between the HMM/GMM paradigm
(Heittola et al. 2013) and the feature aggregation approach (Huang et al. 2013). The
D-CASE2013 challenge included tasks for identification of both overlapping and non-
overlapping events. Most approaches were based on some sort of HMM, including the
top performers. In this paper, we show how a combination of blind segmentation and
SVM classification approaches the best results obtained in the challenge. Again, HMMs
are better suited for joint segmentation and annotation of a few predefined concepts,
but for large scales, including many files and labels, their complexity makes them less
attractive. Like in the case of scenes, deep learning architectures are becoming increas-
ingly popular for event detection (Zhang et al. 2015), but their computational cost makes
them also less attractive for large vocabularies. Aggregation-based systems afford a more
generic and cost-effective approach, as the number of required parameters is generally
smaller.

1.1.3 Feature aggregation

In this paper, we analyze the problem of feature aggregation for environmental sound.
Aggregation of features over time is usually a required step when using many machine
learning algorithms to automatically label audio segments or files. Most approaches are
driven by results on available research data, with limited theoretical insight about the tem-
poral evolution of the signal. An example is automatic generation of features (Pachet and
Roy 2007). More recently data-driven unsupervised feature learning has become popular
(Lee et al. 2009). Feature aggregation based on theoretical insight is less common. A com-
mon approach in MIR is to consider musical concepts such as rhythm (Tzanetakis and
Cook 2002). In the case of environmental sound, feature aggregation can still be consid-
ered an open issue. As an example, the “bag of frames” model associated with common
statistics was initially considered “good enough” (Aucouturier et al. 2007), but the merits
were more recently attributed to the research datasets used (Lagrange et al. 2015). While
speech and conventional musical audio is produced by well known specialized sound pro-
duction systems (typically the vocal tract and musical instruments), environmental audio
can contain a wide range of sounds. For instance, the datasets used in the scene classifica-
tion experiments (Section 3.2) contain recordings from urban environments, such as public
transportation, quiet and busy streets, or restaurants. Many sounds in these environments
are produced by natural and social phenomena typically studied as complex dynamic sys-
tems, often exhibiting chaotic behaviour, such as weather conditions (wind, rain ...) or car
traffic. RQA features were devised to describe this kind of systems and have been applied
in many different domains. With respect to audio, RQA features have been applied to
pathological voice using raw waveforms (Washington et al. 2012) and only introduced for
environmental sound in the prototype version of this system, evaluated for acoustic scene
classification (Roma et al. 2013). RQA features derived from frame-level chroma features
have been tested in the cross-recurrence setting, where two different series are compared,
for cover song detection (Serrà et al. 2009). A more similar work has tested recurrence time
histograms (in this case extracted directly from the audio signal) for genre classification
(Serrà et al. 2011).

We propose an integrated framework for environmental sound recognition based on blind
segmentation and feature aggregation, and evaluate the use of RQA features for classi-
fication of acoustic scenes and events. In the next section, the main components of the
framework are described. In Section 3, we present several experiments to assess different
algorithms for each component.
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2 Proposed approach

2.1 Environmental sound recognition framework

Considering aggregation of both sound scenes and events affords a general perspective on
the issue of environmental sound recognition. This way, we can analyze our environment
as a composition where events are perceived in the context of a sound scene. By combining
event detection and feature aggregation, a general framework for automatic recognition of
environmental sound can be devised and implemented. Figure 1 shows a block diagram
of the proposed framework. The system is based on blind segmentation of monophonic
events, implying a distinction between salient events and background. This allows more
flexible and scalable architectures, since the classifier models do not need to be evaluated
for all of the audio in a scene. The combination of scene classification and event detection
and recognition obviously depends on the development of suitable categories. While the
issue of concept ontologies is beyond the scope of this paper, an example is provided by
the “office” category in the D-CASE2013 challenge. In an application scenario, a scene
classification model could be used to recognize “office” scenes (Section 3.2) and then a
segmentation and classification step would be used to detect events happening in an office
(Section 3.3).

The process starts by performing a time-frequency analysis via the Short Time Fourier
Transform (STFT) (note that other time-frequency representations are possible without
changing the general scheme). For scene classification, spectral frames are parametrized
using MFCCs (again other descriptors could be used). This results in a multivariate time
series that is aggregated at two levels: first we compute general statistics of the whole avail-
able recording of the scene. We analyze also short-term texture windows, from which we
extract both conventional statistics and non-linear features. Local features are averaged and
concatenated with global statistics. The joint feature vector is then classified by an SVM
model, which is trained with previously labelled scenes.

MFCC

Event detection

Feature 
aggregation

Noise reduction

STFT

MFCC

WindowingGlobal statistics

SVMScenes DB

Feature 
aggregation

SVM Events DB

Scene class Event class

Audio input

Fig. 1 Block diagram of the proposed system
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For event recognition, several algorithms can be used for event detection from the
spectral frames. Before segmentation, a noise reduction stage is introduced, since events
are embedded in the scene background. Frames within each segment are then aggregated
directly (i.e. no texture window is used) and the segments are classified in the same way as
scenes.

2.2 Noise reduction

The assumption of salient events over background noise is common for speech processing.
Single channel noise reduction (SCNR) algorithms are commonly used for speech enhance-
ment (Martin 1994), for example they are used in automatic speech recognition systems
(Yu et al. 2008) and hearing aid devices (Brons et al. 2014) to improve speech recognition
performance. The same principles can be applied for environmental sound.

The SCNR algorithm is applied to the event detection subsystem from the initial STFT
frames Y (n) of the incoming sound y(l), where n and l denote the frame index and the
discrete time index respectively. It is assumed that the noise is additive, i.e. y(l) = x(l) +
v(l), where x(l) denotes the acoustic events and v(l) the additive noise. The algorithm is
applied to a set of spectral bands combined from the linearly-spaced FFT bands. The bands
are spaced logarithmically along frequency with constant Q. Each band z contains Lz bins
and so the power in each band is computed as follows:

A2
y(n, z) =

kstartz+Lz∑

k=kstartz

Re{Y 2(n, k)} + Im{Y 2(n, k)}, (1)

where kstartz denotes the FFT bin number where band z starts. Moreover, it is assumed that
the acoustic events and the noise are uncorrelated, i.e.:

E{A2
y(n, z)} = E{A2

x(n, z)} + E{A2
v(n, z)}, (2)

where A2
x(n, z) and A2

v(n, z) denote the power of the acoustic event and the background
noise signals respectively.

Given the signal model, a subtraction rule for the noise reduction filter H(n, z) is derived
by minimizing the mean-squared error:

H(n, z) = argmin
H(n,z)

E{‖Ax(n, z) − H(n, z)Ay(n, z)‖2}. (3)

The result is the well-known Wiener filter:

H(n, z) = E{‖A2
x(n, z)‖}

E{‖A2
x(n, z)‖} + E{‖A2

v(n, z)‖} . (4)

In order to implement the filter it is necessary to estimate Ã2
x(n, z) and Ã2

v(n, z) from the
noisy observation A2

y(n, z).
The SNR, i.e. the difference between the event and noise power in dB, is estimated

assuming that events produce fast increases and decreases in power with respect to the
background noise. For this reason, the event Ã2

x(n, z) and the background noise Ã2
v(n, z)

power are estimated using first-order recursive averaging with a relatively fast and slow
time constant respectively:

Ã2
x(n, z) = αsÃ

2
x(n, z) + (1 − αs)A

2
y(n, z), (5)

Ã2
v(n, z) = αvÃ

2
v(n, z) + (1 − αv)A

2
y(n, z), (6)
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where αs = e
1
τs and αv = e

1
τv are the smoothing constants for the events and the back-

ground noise respectively. When Ã2
x(n, z) exceeds Ã2

v(n, z) by 6 dB it is assumed that an
event occurred and (5) is updated, otherwise (6) is updated. For each audio frame, Ã2

x(n, z)

and Ã2
v(n, z) are substituted in (4) to obtain the noise reduction filter.

2.3 Event detection

Event segmentation or event activity detection (EAD) can be used as an independent step
for event recognition. In this section, we analyze approaches for monophonic event detec-
tion, i.e. only one event is recognized at a given time. While research on polyphonic event
detection in environmental sound is ongoing (Parascandolo et al. 2016), there are still valid
use cases for monophonic detection in environmental sound, such as application to quiet
environments (home, office) or detection of specific events. As an example, detecting crowd
excitement in sports audio is a polyphonic event that could be detected by a monophonic
method as a general energy transient. In this paper, we analyze the usefulness of common
monophonic event detection methods, developed in speech and music, for environmental
sound recognition. Voice activity detection (VAD) attempts to detect speech in the context
of relatively stable background noise. In the simplest case, detection is based on abrupt
energy changes, while more sophisticated approaches take into account specific characteris-
tics of speech. Here, we deal with different kinds of sounds in the context of a sound scene.
Thus, generic VAD approaches based on short-time energy could be useful. Similarly, onset
detection functions commonly used in MIR can be used to detect salient events in environ-
mental audio in a generic way. Here, we consider the ability of these functions to identify
the whole event instead of only the onset as is typical in MIR. Perhaps the most basic one
would be raw spectral energy:

E(n) =
N−1∑

k=0

|Xn(k)|2, (7)

where Xn(k) denotes the spectral band k at time frame n. High frequency content (HFC),
denotes a frequency dependent weight for spectral energy, which usually works for
percussive (i.e. non-pitched) onsets in music:

HFC(n) =
K−1∑

k=0

k|X(k)|2. (8)

We also consider a version (denoted HFC mel in the experiments) computed over the mel
bands in the MFCC framework, in the spirit of the variant proposed by Scheirer (1998).
Another common function is the “spectral flux”, computed as the magnitude of the complex
difference between successive frames:

FLUX(n) =
N−1∑

k=0

|Xn(k) − Xn−1(k)|. (9)

The ITU (ITU-T 2010) algorithm indicates if the input frame is speech or music
(speech/music discrimination). For an inactive frame, it indicates whether the frame is
a silence frame or an audible noise frame (silence detection). This algorithm has been
used to detect transitions from one state to another, therefore allowing its use also for the
segmentation of events.
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2.4 Recurrence quantification analysis features

After blind segmentation (using texture windows in the case of scenes, or using event detec-
tion functions in the case of events), we compute feature agregation, notably RQA features.
RQA (Zbilut and Webber 2006) is a set of techniques developed during the last decade in
the study of chaos and complex systems. The basic idea is to quantify patterns that emerge
in recurrence plots, which are obtained by thresholding the self-similarity matrix of a time
series. RQA has been applied in a wide variety of disciplines. The original technique starts
from one-dimensional time series which are assumed to result from a process involving sev-
eral latent variables. This multidimensionality is recovered by delaying the time series and
embedding it in a phase space. The distance matrix of the series is then computed and thresh-
olded to a certain radius r. The radius represents the maximum distance of two observations
of the series that will still be considered as belonging to the same state of the system.

In the case of audio analysis, it is common to work with multivariate spectral time
series. We adapt the technique by computing and thresholding the similarity matrix obtained
from the MFCC representation using a cosine distance. This distance metric is usually pre-
ferred to Euclidean distance for high-dimensional spaces and provided better results in early
experiments.

If we denote the series of cepstral coefficients vectors as C = C1, C2, C3...CN , then the
recurrence plot R is defined as

Ri,j =
{
1 if(1 − Ci ·Cj

||Ci ||||Cj || ) < r

0 otherwise
(10)

where r is the radius, and i, j are time indices.
Figure 2 shows two of such plots, one (left side) corresponding to a sound scene recorded

in a subway train (with high recurrence levels) and the other (right side) to a scene recorded
in a restaurant (low recurrence but some straight lines). The most relevant information
comes from diagonal lines, which represent periodicities in the signal (i.e., repeated or,

Fig. 2 Recurrence plots of tube (higher recurrence) and restaurant (lower recurrence) acoustic scenes, using
windows of 40 frames
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depending on the radius, quasi-repeated sequences of frames), and from vertical lines (or
horizontal, since the plot is symmetric), which represent stationarities, i.e., the system
remains in the same state. From these representations, several metrics have been developed
to quantify the size and length of lines of contiguous points in the matrix. Most features were
developed by Webber and Zbilut (1994). We extract the most commonly used ones and add
some more variables in order to obtain more features for the classifier. For completeness,
equations are included in the Appendix.

In order to analyze long series, a windowed version is often used, which consists in
computing the recurrence plots from overlapping windows of fixed size, as opposed to using
the whole time series. This is computationally much more efficient, and we found it to give
similar results in early experiments with acoustic scenes. Our interpretation of this is that,
in the case of scenes, relevant recurrences happen at a short time scale. The underlying
assumption is that the recurrence plots allow us to identify patterns in background noise
texture. Regarding the radius parameter, a set of guidelines for choosing a suitable value are
found in Webber and Zbilut (2005). Mainly, recurrence rate (see the Appendix) follows a
sigmoid curve as the radius is increased, and the value is chosen within the scaling region
of the sigmoid. We found the same behaviour for the case of audio spectral features, and
chose a value of r = 0.6 that works for all datasets in this paper, including scenes and
events. This ensures that our choice does not overfit a particular dataset. Similarly, for all
scenes datasets, a window size of 1.28 seconds was used. Features were standardized for
each window, which allowed the use of longer windows than in Roma et al. (2013) (note that
this also affects the useful range of r with respect to non-standardized windows). Figure 3
illustrates the main steps in the computation of the recurrence plot from the spectrogram.

Fig. 3 Steps in the construction of the recurrence plot
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3 Experiments

3.1 Overview

We have proposed a general framework for computational analysis of environmental sound.
Our approach is based on feature aggregation and classification of acoustic scenes, and
on blind segmentation, aggregation and classification of acoustic events. In this section
we compare different strategies and feature sets for the main components of the described
architecture. The first experiment compares different aggregation features for acoustic scene
classification. Analogously, the second experiment compares aggregation features for event
classification. In the third experiment, several methods for segmenting scenes into events
are compared. In a fourth experiment, the results of the previous two are analyzed in the
context of a joint segmentation and classification task, including the effect of noise removal.

The general methodology for the different experiments is as follows: first, STFT frames
were extracted from each recording using a sliding window of 25 ms with hops of 10 ms.
MFCCs (13 coefficients from 40 bands) were computed using the rastamat (Ellis 2005)
library. A larger number of coefficients provided no improvement in preliminary experi-
ments, while a smaller number had a negative impact, so the default was used. The resulting
frame-level features were aggregated using common statistics. From the same features,
RQA descriptors were obtained using recurrence plots computed via cosine distance (see
the Appendix). The total number of features is detailed in each experiment. Annotation of
unseen audio was done through an SVM classifier. We used the libSVM (Chang and Lin
2001) implementation with the default RBF kernel, the main hyperparameters being the
classification cost C and the kernel parameter γ . Evaluation was done using 5-fold cross-
validation following theD-CASE2013methodology. A nested cross-validation step (Cawley
and Talbot 2010) was used to select hyperparameters using grid search for each fold of the
outer cross-validation loop. The process was repeated for 100 times for different feature
aggregation sets, in order to account for the random partition in folds (Alpaydin 2014). The
resulting distributions were compared using a pair-wise Wilcoxon signed-rank test. Specific
settings for each experiment are described in the following sections.

3.2 Features for scene classification

Many acoustic scenes show low variability along a considerable time span (e.g. park atmo-
sphere, background in a tube station when the train is not there, beach seashore), and in this
sense, they can be characterized from global statistics. At the same time, the texture of the
background noise is likely to be an important cue for human recognition of different envi-
ronments, such as urban soundscapes. In this experiment, RQA features were compared to
standard aggregation (bag of frames). RQA features do not require assumptions about lin-
earity or stationarity of the time series. Hence, they seem a good complement or alternative
for the traditional averaging of spectral audio features in the case of environmental audio,
as in many environments there happen to be recurrent events.

3.2.1 Method

In order to test the generalization of the method proposed in Roma et al. (2013) beyond
the challenge dataset, we implemented classification of sound scenes using three different
datasets: the D-CASE2013 dataset (Giannoulis et al. 2013) contains 100 recordings of 30s,
corresponding to 10 different scenes (bus, busy street, office, open air market, park, quiet
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street, restaurant, supermarket, tube and tube station). The in-house dataset (Roma et al.
2013) contains recordings of the same categories (150 recordings, 15 per class) but collected
from several collections, mainly sound effects CDs or web pages. Finally, the Rouen dataset
(Rakotomamonjy and Gasso 2015) contains 3026 recordings of 19 different classes (plane,
bus, busy street, cafe, car, hall, hall gare, kid game, market, metro-paris, metro-rouen, pool
hall, quiet street, restaurant, rue pietonne, shop, train-ter, train-tgv and tube-station).

For the case of scenes, all files were analyzed as described in Section 3.1 with a frequency
threshold of 5000 Hz1 using a texture window of 1.28s. In addition to general statistics for
each recording, we also computed the local variance of features in the texture window, and
averaged all of these local features over the recording. In this context, we compared classi-
fication accuracy using different feature aggregation sets: global mean and variance (mv),
adding local variance (mvlv), adding RQA (mvrqa), and adding both (mvlvrqa). The overall
set of features (all), computed over 13 cepstral coefficients, amounts to 50 dimensions for
describing sound scenes.

3.2.2 Results and discussion

Figure 4 shows the results for each set of features for the three scenes datasets. All results are
well above the 10% random baseline (5% for the rouen dataset), but still below the median
human recognition rate of 75% reported for the D-CASE2013 dataset (Barchiesi et al. 2015)
(again except for rouen). It can be seen that local statistics improve accuracy in all cases.
Also, lv and rqa increase the overall accuracy when added together, which indicates that they
provide complementary information. Two of the datasets in this experiment, D-CASE2013
and rouen, were recorded in uniform conditions, i.e. using the same equipment, while the
in-house dataset contains sounds from different collections. Both the local variance and rqa
features, and also their combination, produce a greater improvement when combined with
global statistics. In general, our approach based on feature aggregation performs similarly
to models trained frame-by-frame for specific concepts (Stowell et al. 2015), but it can also
be used for analyzing databases with uncontrolled recording conditions. The best results are
obtained using the rouen, by far the largest of the three, which shows a clear improvement
for each descriptor set. Our results for this dataset are better than the MFCC+RQA combi-
nation reported in Rakotomamonjy and Gasso (2015) (86% accuracy) but probably below
more recent, though not directly comparable results (94.5% F1-score in Bisot et al. 2016).

3.3 Features for event classification

Like in the case of sound scenes, we compared RQA features to common methods for
aggregation of the time series of MFCCs.

3.3.1 Method

We analyzed the classification performance of an SVM classifier using different sets of fea-
tures and two different datasets. The first dataset was provided as part of the D-CASE2013

1Note that our original submission to the D-CASE challenge obtained very good results by narrowing the
frequency range to below 1 Khz. However in our experiments this only worked for the challenge dataset, so
for the sake of generality here we chose a wider range.
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Fig. 4 Classification accuracy for scene classification. All pair-wise differences are statistically significant
(p < 0.05) except when noted (ns = not significant). Boxes extend from lower to upper quartile, whiskers
indicate highest and lowest points within 1.5 IQR, points indicate outliers

challenge as a training set for the event detection task. It contains 320 samples classified
into 16 classes. The second dataset was collected in a previous work when investigating
audio indexing using the sound events taxonomy by Gaver (1993). It contains 1608 samples
from various collections, divided into 11 classes.

Apart from traditional statistics, MFCC and RQA features were computed as described
in Section 3.1. The following descriptor sets were compared: mean and variance (mv) (26
dimensions), adding mean and variance of the derivative (mvdmdv, 52), adding RQA (mvrqa
37) and adding both (all, 63).

3.3.2 Results and discussion

Figure 5 shows the classification accuracy for each set of features with the two events
datasets. Both results are also well above the implicit random baseline (6% and 9% respec-
tively). In this case the samples in the d case events dataset were all recorded in similar
conditions, while the gaver events contains sounds from different collections. RQA features
tend to give larger improvements than feature derivatives. This is especially noticeable for
the gaver events, which contains a much larger amount of sounds. Consistently with the pre-
vious experiment using scenes, our results confirm that using short-time feature aggregation
improves classification accuracy.

Fig. 5 Classification accuracy for event classification. All pair-wise differences are statistically significant
(p < 0.05). Boxes extend from lower to upper quartile, whiskers indicate highest and lowest points within
1.5 IQR, points indicate outliers
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3.4 Event segmentation

In this experiment, we compare two VAD implementations denoted VAD (Sohn et al. 1999)
and ITU (ITU-T 2010) in addition to onset detection functions discussed in Section 2.3:
HFC, HFC mel, FLUX and E (raw energy).

3.4.1 Method

All the onset detection functions (except V AD and IT U ) were post-processed in the fol-
lowing way: first, the function was z-scored, then smoothed with a 5-point moving average
filter, and then a long term (400-point) moving median filter was subtracted from the result-
ing signal (Bello et al. 2005). The V AD and IT U algorithms give a continuous probability
estimate and were not post-processed.

The algorithms were evaluated using the event office live dataset from the D-CASE2013
challenge, composed of three scripted recordings with labelled non-overlapping events. For
each recording, we computed a binary signal denoting the spectral frames attributed to
acoustic events vs background, and computed the Jaccard distance to the ground truth binary
signal:

Djac = 1 − p

p + q + r
(11)

where p is the number of frames where both the ground truth annotation and the estimate
predict an event, and q, r are the number of non-zero frames only in either the ground truth
or the estimate respectively.

3.4.2 Results and discussion

Figure 6 shows boxplots of the Jaccard distance when using each detection function for the
three scripts of the dataset.

It can be observed that the VAD and the HFC mel functions perform best. However, it
should be noted that the dataset, while not synthetic, was curated to provide an easy task,
also characterized by low noise conditions (indoor scenes). In this situation, the described
assumptions of the VAD algorithm about background noise do hold. In more realistic
situations, this algorithm may result in many false positives.

Fig. 6 Results for different onset detector methods. The results are given based on the Jaccard distance, the
lower this value, the better the performance. Boxes extend from lower to upper quartile, whiskers indicate
highest and lowest points within 1.5 IQR
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3.5 Joint detection and classification

In previous experiments, we have compared methods for blind segmentation (i.e., where no
model is used for the nature of the detected event) and for classification of sound events.
The idea was to provide a flexible framework that can be used in large-scale applications,
as opposed to detecting events by training models for specific classes of sounds. We now
compare the best features and event detection functions in a joint event recognition task (i.e.,
detecting that there is an event and deciding which category it belongs to). We also evaluate
the use of the noise reduction algorithm described in Section 2.2.

3.5.1 Method

Again the methodology and data for this experiment followed the event detection task in the
D-CASE2013 challenge. Using the same scripted recordings than in the segmentation exper-
iment, the EAD functions were computed to identify segments corresponding to events,
which were classified using the same SVM model for the d case events dataset in experi-
ment Section 3.3. For the noise reduction step, the parameters τs and τv (see Section 2.2)
were chosen experimentally to optimize the recognition of the events with values of 10 and
2000 ms respectively. The training set of event sounds was recorded in better conditions and
did not require noise removal, while the test scene contained consistent background noise.
Thus, SCNR was only applied to the test dataset. In the test stage, we considered whether
each 10 ms frame had been correctly assigned to its labelled class (note that many differ-
ent evaluation measures were used in the challenge (Giannoulis et al. 2013), we report only
frame-level F-measure for simplicity).

3.5.2 Results and discussion

Figure 7 shows the classification results for the feature sets of Section 3.3 and the best seg-
mentation functions of Section 3.4 (including ideal segmentation where the ground truth
annotations are used only for the segment boundaries) with and without noise reduction.
Unlike the plain classification task, derivative features generally do not improve classifi-
cation, while RQA features provide small improvements. Since the differences with the

Fig. 7 Results for event recognition using different feature sets and segmentation functions, with or without
noise reduction. All pair-wise differences across feature sets are statistically significant (p < 0.05) except
when noted (ns = not significant). All pair-wise differences across segmentation functions and across the
noise reduction condition are statistically significant (p < 0.05). Boxes extend from lower to upper quartile,
whiskers indicate highest and lowest points within 1.5 IQR, points indicate outliers
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classification task also hold in the ideal case, they are not due to segmentation errors, but
most probably to the presence of background noise in the recorded scripts. The inclusion of
the noise reduction step improved recognition in all cases. In that case the effect of adding
RQA features is no longer noticeable, except for ideal segmentation. This seems to imply
that these features are less disturbed by background noise, but are influenced by segmen-
tation errors. Using noise reduction and VAD for event detection, our system achieved a
value of 56% for frame-level F-measure, which is second to the best (61.52%) but above
the rest of systems submitted for the event recognition task of the D-CASE2013 challenge
(Stowell et al. 2015). It should be noted that in this experiment uses a relatively small test
set (in the order of 30 events per script, results being averaged across three scripts) where
the classes are not balanced. Thus, the experiment provides limited insight. In contrast, the
gaver events dataset used in Section 3.3 contains more than 1500 instances.

4 Conclusions

Recognition of environmental sound is a promising but also challenging research problem
with applications in diverse areas, from ubiquitous computing to robotics. Many research
efforts have, until now, concentrated on specific classes of sounds. This resulted in tailored
models that are not necessarily suited for large-scale recognition. In this work, we have pro-
posed a general framework for identifying arbitrary sounds both at the sound scene and the
sound event level, including detection of events along time. By separating segmentation and
classification, this architecture provides large-scale applications with more flexible ways
for automatically annotating scenes and events. We have analyzed the most important com-
ponents in this framework, with a focus on improving aggregation of frame-level spectral
features.

With respect to segmentation, we have shown that onset detection functions adapted from
MIR research can compete with traditional VAD on the task of blind event detection in
controlled noise environments. Further work is required for generalizing this comparison to
the case of events in noisy environments.

With respect to feature aggregation, we have introduced a set of features (RQA) from
nonlinear time series analysis, that provide distinct improvements with respect to traditional
statistics. We have shown that this features can be added to general statistics for improved
classification accuracy. Also, they are robust to varying recording conditions and back-
ground noise, which makes them attractive for dealing with large-scale and unstructured
databases.

With respect to background noise, we have seen that introducing a state-of-the art SCNR
algorithm from speech processing can be used to consistently improve event recognition in
the context of our framework.

In this framework, numerous opportunities are open for improving the different compo-
nents, such as replacing SVMswith more novel classifiers, or using different time-frequency
audio representations.
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Appendix: RQA features

This section details the equations used for computing this features, mostly derived from
Webber and Zbilut (1994). Here, R refers to recurrence plot as described in Section 2.4.

– Recurrence rate (REC) is just the percentage of points in the recurrence plot.

REC = (1/N2)

N∑

i,j=1

Ri,j (12)

– Determinism (DET ) is measured as the percentage of points that are in diagonal lines.

DET =
∑N

l=lmin
lP (l)

∑N
i,j=1 Ri,j

(13)

where P(l) is the histogram of diagonal line lengths l.
– Laminarity (LAM) is the percentage of points that form vertical lines.

LAM =
∑N

v=vmin
vP (v)

∑N
v=1 vP (v)

(14)

where P(v) is the histogram of vertical line lengths v.
– The ratio between DET and REC is often used. We also use the ratio between LAM

and REC, so we define them as

DRAT IO = N2

∑N
l=lmin

lP (l)

(
∑N

l=1 lP (l))2
(15)

V RAT IO = N2

∑N
v=vmin

vP (v)

(
∑N

v=1 vP (v))2
(16)

– LEN and Trapping Time T T are the average diagonal and vertical line lengths.

LEN =
∑N

l=lmin
lP (l)

∑N
l=lmin

P (l)
(17)

T T =
∑N

v=vmin
vP (v)

∑N
v=vmin

P (v)
(18)

– Another common feature is the length of the longest diagonal and vertical lines. The
inverse of the maximum diagonal (called Divergence) is also used. We use the inverse
of both vertical and diagonal maximum lengths.

DDIV = 1

max(l)
(19)

V DIV = 1

max(v)
(20)

– Finally, the Shannon entropy of the diagonal line lengths is commonly used. We also
compute the entropy for vertical line lengths.

DENT = −
N∑

l=lmin

P (l)ln(P (l)) (21)
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V ENT = −
N∑

v=vmin

P (v)ln(P (v)) (22)
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Böck, S., & Widmer, G. (2013). Maximum filter vibrato suppression for onset detection. In Proceedings of
the 16th international conference on digital audio effects (DAFx-13). Maynooth.

Brons, I., Houben, R., & Dreschler, W.A. (2014). Effects of noise reduction on speech intelligibility, per-
ceived listening effort, and personal preference in hearing-impaired listeners. Trends in Hearing 18.
https://doi.org/10.1177/2331216514553924.

Cano, P., Koppenberger, M., & Wack, N. (2005). An industrial-strength content-based music recommenda-
tion system. In Proceedings of the 28th annual international ACM SIGIR conference on research and
development in information retrieval (p. 673). Salvador.

Cawley, G.C., & Talbot, N.L. (2010). On over-fitting in model selection and subsequent selection bias in
performance evaluation. Journal of Machine Learning Research, 11, 2079–2107.

Chachada, S., & Kuo, C.C.J. (2014). Environmental sound recognition: a survey. APSIPA Transactions on
Signal and Information Processing, 3, e14.

Chang, C.C., & Lin, C.J. (2001). LIBSVM: a library for support vector machines. Software available at http://
www.csie.ntu.edu.tw/∼cjlin/libsvm.

Chechik, G., Ie, E., Rehn, M., Bengio, S., & Lyon, D. (2008). Large-scale content-based audio retrieval from
text queries. In Proceedings of the 1st ACM international conference on multimedia information retrieval
(MIR ’08) (p. 105). Beijing.

Chu, S., Narayanan, S., Kuo, C.C.J., & Mataric, M.J. (2006). Where am I? Scene recognition for mobile
robots using audio features. In 2006 IEEE International conference on multimedia and expo (pp. 885–
888).

Chu, S., Narayanan, S., & Kuo, C.C.J. (2009). Environmental sound recognition with time-frequency audio
features. IEEE Audio, Speech Language Processing, 17(6), 1142–1158.

Clavel, C., Ehrette, T., & Richard, G. (2005). Events detection for an audio-based surveillance system. In:
IEEE International conference on multimedia and expo (ICME 2005) (pp. 1306–1309).

Dargie, W. (2009). Adaptive audio-based context recognition. IEEE Transactions on Systems, Man and
Cybernetics Part A: Systems and Humans, 39(4), 715–725.

Ellis, D.P.W. (2005). PLP and RASTA (and MFCC, and inversion) in Matlab. http://www.ee.columbia.edu/
ln/rosa/matlab/rastamat/. Online web resource.

Eronen, A., Peltonen, V., Tuomi, J., Klapuri, A., Fagerlund, S., Sorsa, T., Lorho, G., & Huopaniemi, J. (2006).
Audio-based context recognition. IEEE Audio, Speech Language Processing, 14(1), 321–329.

Gaver, W. (1993). What in the world do we hear?: An ecological approach to auditory event perception.
Ecological Psychology, 5(1), 1–29.

Geiger, J.T., Schuller, B., & Rigoll, G. (2013). Recognising acoustic scenes with large-scale audio feature
extraction and SVM. Tech. rep. IEEE AASP challenge: detection and classification of acoustic scenes
and events.

Giannoulis, D., Benetos, E., Stowell, D., Rossignol, M., Lagrange, M., & Plumbley, M.D. (2013). Detection
and classification of acoustic scenes and events: an IEEE AASP challenge. In 2013 IEEE workshop on
applications of signal processing to audio and acoustics (WASPAA) (pp. 1–4). IEEE.

Heittola, T., Mesaros, A., Eronen, A., & Virtanen, T. (2013). Context-dependent sound event detection.
EURASIP Journal on Audio Speech, and Music Processing, 1, 1.

473 J Intell Inf Syst (2018) 51:457–475

https://doi.org/10.1177/2331216514553924
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.ee.columbia.edu/ln/rosa/matlab/rastamat/
http://www.ee.columbia.edu/ln/rosa/matlab/rastamat/
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