
J Intell Inf Syst (2017) 49:407–433
DOI 10.1007/s10844-017-0455-6

Materialized view selection using evolutionary algorithm
for speeding up big data query processing

Rajib Goswami1 ·D. K Bhattacharyya1 ·
Malayananda Dutta2

Received: 6 March 2015 / Revised: 14 February 2017 / Accepted: 1 March 2017 /
Published online: 16 March 2017
© Springer Science+Business Media New York 2017

Abstract For speeding up query processing on Big Data, frequent sub-queries or views
may be materialized such that the query processing cost is minimized with optimum cost
of maintaining the materialized views and/or queries. Materializing frequent sub-queries
and views means that resultant data set of the views reside in the memory of one or more
nodes in the cluster, so that it reduces the MapReduce cost, submission and scheduling
cost of Distributed File System jobs for query processing. We have defined materialized
views as resultant data of frequent sub-queries and aggregation functions of a set of Big
Data warehousing queries that are saved for enhancing query performance. The problem is
defined as a multi-objective optimization problem for minimizing the total query processing
MapReduce cost, MapReduce cost for maintaining the materialized views and the number of
views selected for materializing with maximized total size of the views selected. We applied
Differential Evolution algorithm and NSGA-II to study their performances for developing
a recommendation system for selecting views for materializing in Big Data warehousing.

Keywords Big data warehouse · Differential evolution algorithm · Hadoop · Hive ·
Materialized view · Multi-objective optimization · NSGA-II
1 Introduction

Views are derived relations from the base relations or tables used for increasing performance
of data warehouse query processing. In data warehousing, historical data are analyzed by

� Rajib Goswami
rgos@tezu.ernet.in

D.K Bhattacharyya
dkb@tezu.ernet.in

Malayananda Dutta
malay@iiitg.ac.in

1 Department of Computer Science and Engineering, Tezpur University, Tezpur, 784028, India

2 Department of Computer Science and Engineering, Indian Institute of Information Technology
Guwahati, Guwahati, 781001, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s10844-017-0455-6&domain=pdf
http://orcid.org/0000-0001-7019-2595
mailto:rgos@tezu.ernet.in
mailto:dkb@tezu.ernet.in
mailto:malay@iiitg.ac.in

408 J Intell Inf Syst (2017) 49:407–433

making some complex queries. Some of these queries are triggered very frequently in On-
Line Analytical Processing (OLAP) applications. Views are set of logical relational data
derived from the base tables so that complex queries can be simplified by accessing these
views. If the retrieved data of intermediate views of these queries are saved or material-
ized then instead of generating and retrieving data from the base tables for these derived
relations again and again, they may be directly read from the materialized views. The
materialized views can be indexed for further increasing the query performance. These
materialized views are designed by aggregate functions on base tables, or as copies of fre-
quently executed sub-queries of a set of frequent queries. Materialized views are to be
refreshed or maintained for up to date data incurring some amount of processing cost. Mate-
rialization of the intermediate temporary views generated while processing queries means
extra requirement of space. Therefore, it is necessary to select an optimum set of views
to materialize to increase query processing performance, with optimized materialized view
maintenance cost and materializing space cost. The selection of views for materializing to
minimize query processing cost with minimized view maintenance cost and space require-
ment for saving the selected views is termed as the materialized view selection problem
(Harinarayan et al. 1996; Gupta et al. 1997; Goswami et al. 2016).

1.1 Views, materialized views and materialized queries in Big-Data management
technologies

Big Data management by Distributed File System (DFS) is a cost-effective framework that
binds very large data sets in a cluster of computers into a pool for distributed processing
(Dean and Ghemawat 2004). It imposes a programming model termed as MapReduce that
breaks-up computation tasks into smaller jobs for distributing them around the data cre-
ated by splitting large amount of data into a cluster of commodity computer hardware for
distributed processing (Dean and Ghemawat 2004; White 2012). The distributed file sys-
tem used in Big Data management by Apache (Roy and Fielding Laguna Beach 1999) is
known as Hadoop Distributed File System (HDFS) (Foundation 2014a; White 2012). For
Data Warehousing applications in HDFS, Hadoop (Foundation 2014a) provides a tech-
nology called Hive and an SQL like language called HiveQL (Foundation 2014b). Total
MapReduce cost against generating responses of a set of queries depends on MapReduce
splits. MapReduce costs are thus involved in creation of temporary views while processing
queries. To make query responses faster, if these temporary views are saved for future query
processing, MapReduce cost is also to be incurred for updating the views.The problem of
view selection for materializing is that - a set of views, generated while processing a set of
queries are to be selected for materializing, so that if this set is materialized or saved, the
total query MapReduce cost and MapReduce cost for maintaining the materialized views
are minimum.

Julian Hyde proposes an extension to materialized views called Discardable, In-Memory
Materialized Query - DIMMQ for Hadoop (Hyde 2014). DIMMQ proposes that the resul-
tant dataset of some frequent queries reside in the memory of one or more nodes in the
cluster. Discardable means that the system can remove the in-memory materialized queries
when they are not used for a long time. Here it is proposed that some sub-queries may be
saved in the memory of hardware cluster with mapping to their resultant data in disk. But
even here the MapReduce overheads for job submission and job scheduling remains along
with the maintenance cost for refreshing the mapping between in-memory queries and the
disk data. Therefore whether it is materialized views or in-memory materialized queries, a
sub-set from the candidate set of views or queries are to be selected for materializing such

J Intell Inf Syst (2017) 49:407–433 409

that all related costs are minimized with minimized total query processing cost of a set of
queries defined as frequent warehouse queries for a specific data warehouse application.

1.2 Materialized view selection for big data management framework

In Big Data management framework a query is executed by accessing data spread over
a cluster of hardware storage or data-nodes as distributed file system (DFS) by MapRe-
duce jobs. Therefore the query processing cost is not just the cost of accessing rows of
base tables stored in disk. The DFS overhead of distributing data into data-nodes, map-
ping and tracking of processing and then reducing the results also are involved. As every
complex query may have several sub-queries with multiple number of aggregation func-
tions, therefore either these sub-queries may be materialized in memory of hardware cluster
with mapping to their resultant data in disk or the intermediate result of sub-queries may
be materialized in disk as materialized views. Thus by materializing these intermediate
views, the MapReduce cost of repeated processing of these sub-queries can be avoided.
But the DFS overhead cost for materializing these views and refreshing them periodically
are still to be incurred. The materialization of temporary views also needs space in the
hardware cluster. Therefore a system may be designed to recommend a set of intermedi-
ate views so that if they are materialized, the total query processing cost savings for the
selected set of frequent queries is maximized with minimized materialized view refresh-
ing cost and space cost. Thus the materialized view selection problem is an optimization
problem.

If, the number of queries considered as frequent queries increases, then the number
of candidate views or sub-queries for materializing also increases. Different solution set
of views amounts to different query processing costs and other associated costs for dif-
ferent combination of views, independent of total number of views selected. Thus the
solution space increases exponentially with increased number of queries and underlying
views considered. Thereby the problem becomes NP-hard.

1.3 Existing approaches

Initially, several heuristic greedy approaches have been proposed by defining different
cost parameters to deal with the view selection for materializing problem in conventional
RDBMS based data warehousing (Harinarayan et al. 1996; Gupta et al. 1997; Gupta and
Mumick 1999; Nadeua and Teorey 2002; Serna-Encinas and Hoya-Montano 2007). In dif-
ferent representation of the view selection problem using conventional relational model,
it has been observed that the materialized view selection problem is an NP-hard prob-
lem (Gupta and Mumick 1999; 2005; Aouiche and Darmont 2009). Therefore, various
stochastic, evolutionary algorithms and data mining with clustering based approaches have
been proposed with different types of data structures and representations (Derakhshan et al.
2006; Derakhshan et al. 2008; Yang et al. 1997; Zhang and Yang 1999; Zhang et al. 2001;
Aouiche et al. 2006; Song and Gao 2010; Goswami et al. 2012; 2013; Goswami et al. 2016).
Recent approaches use randomized algorithms such as Simulated Annealing (SA), Parallel
Simulated Annealing (PSA), Multi Objective Simulated Annealing (MOSA), Evolutionary
Algorithms like Genetic andMemetic Algorithm (MA), Particle SwarmOptimization (PSO)
etc. using query execution plan derived directed acyclic graphs (DAG) representation from
frequent query workload over a historical period (Lawrence 2006; Derakhshan et al. 2006;
Derakhshan et al. 2008; Loureiro and Belo 2006; Zhang and Yang 1999; Zhang et al. 2001;
Lee and Hammer 2001; Sun and Wang 2009; Qingzhou et al. 2009; Goswami et al. 2012;

410 J Intell Inf Syst (2017) 49:407–433

2013). In some recent approaches the problem has been handled by defining the problem as
multi-objective optimization problem (Lawrence 2006; Goswami et al. 2012, 2013).

1.4 Our approach on materialized view selection for big data warehousing

In this paper we present our attempt to design a system for finding solution set of views
for materializing to optimize query processing cost, materialized view maintenance cost
and HDFS storage from views generated while processing a set of queries on Big Data
warehousing in HDFS framework. The problem is defined as a multi-objective opti-
mization problem for finding non-dominated solution set of views using Multi-objective
Differential Evolution algorithm and Non-dominated Sorting Genetic Algorithm-NSGA-II
(Deb et al. 2002). The Differential Evolution (DE) algorithm is a powerful stochastic
real-parameter optimizer for non-linear and non-differentiable continuous space function
(Storn and Price 1997). Gong and Tuson (2006) present the use of forma analysis to exploit
usage of DE for discrete optimization problem. Here, we customized forma analysis based
single objective DE presented in Gong and Tuson (2006) to multi-objective DE for binary
encoded data (MODE-BE) for selecting views for materializing in HDFS data warehouse
framework by promoting diversity in decision vector space. In NSGA-II the diversity of
large number of solutions are promoted by computing crowding distances between solutions
in objective function value space. We have also developed a prototype of recommendation
system using NSGA-II on this problem to analyze performances between NSGA-II based
systems and MODE-BE based recommendation systems for materialized view selection in
Big Data management framework.

1.5 Organization of this paper

The problem of selecting views for materializing in DFS data warehousing is defined in
Section 2. In Section 3, materialized view selection in HDFS is defined as a multi-objective
optimization problem. Multi-objective Genetic Algorithms and Differential Evolution algo-
rithms in solving multi-objective optimization problems are discussed in Section 4. The
design of a Multi-objective Differential Evolution algorithm with Binary Encoded solution
representation for materialized view selection (MODE-BE) and implementation of Non-
dominated sorting Genetic Algorithm, NSGA-II, in materialized view selection for Big Data
warehousing is presented in Section 5. In Section 6, the experimentation process has been
presented with test data and frame work used, along with an analysis on obtained results by
implementing the algorithms discussed in Section 5. Section 7 presents comparative anal-
ysis of state-of-the-art techniques with respect to quality of solutions for materialized view
selection problem in Big Data warehousing. Finally in Section 8 concluding remarks and
perspectives are presented.

2 The problem of selecting views for materializing in big data
management framework

To make query response faster, a set of views are to be selected for materializing to min-
imize total query response cost of a set of frequent data warehouse queries with optimum
maintenance cost or updating cost of the materialized views. Hive uses the advantage of
Hadoop’s scale out and robust capabilities for data storage and processing on large number
of commodity hardware. HiveQL enables to do ad-hoc querying, summarization and data

J Intell Inf Syst (2017) 49:407–433 411

analysis on massive data easily (Foundation 2014b). The DFS and MapReduce paradigm
are used for working with massive data for storage and analysis at Internet scale which is
otherwise unmanageable by conventional data processing with database management sys-
tem. HiveQL (Foundation 2014b) query processing on Hadoop version 1 often had to submit
number of MapReduce jobs to complete a query processing.With Hadoop2 and Tez platform
the cost of job submission and scheduling is minimized by removing the restriction that the
jobs are to be done only by Map and Reduce for all kind of processing (Hagleitner 2014).
But in general, for Big Data management in HDFS, processing standard is by MapReduce
(Foundation 2014a). Though Map tasks write intermediate output to the local disks, input to
a single Reduce task is normally the output from all Map tasks. The Map outputs are trans-
ferred across the network to the node running Reduce tasks and the merged output is to be
passed to the user-defined Reduce function. Thus the intermediate MapReduce result sets
are needed to be stored in DFS and thereby the MapReduce jobs in the system degrades the
system performance. Also submitting jobs and scheduling them across the DFS adds extra
costs (Hagleitner 2014).

2.1 The cost model and problem definition of view selection for materializing
in HDFS big data management

The cost model to be used for handling materialized view selection problem for HDFS is
different from cost models used in approaches used for conventional Client-Server archi-
tecture with RDBMS based data warehousing. The main reason behind this is that, in
conventional RDBMS based system the data access pattern is mainly dominated by ”seeks”
and ”seek time”, whereas in HDFS or in similar distributed framework, the data access
pattern is mainly dominated by data transfer rate and MapReduce costs. The MapRe-
duce paradigm is designed to analyze massive amount of unstructured or semi-structured
data in batch fashion unlike the traditional RDBMS where data-set has been indexed to
deliver low-latency seek and update time (Dean and Ghemawat 2004). As for increased
size of data, a bigger sized commodity hardware cluster may be used, therefore the per-
formance of MapReduce functions are independent of size of the data or rows to be
accessed.

The MapReduce overheads are composed of data transfer cost of transferring data into
number of data nodes across the DFS cluster, running job trackers and task trackers, creation
of Mapppers and Reducers, substantial overheads in job submission and scheduling. In Big
data management DFS, block size and split size are fixed. Therefore, in HDFS/MapReduce
framework, a small number of large files are better than large number of small files (White
2012). This means that in case of HDFS, smaller number of bigger views are to be preferred
for materializing. This criterion is not applicable in case of traditional RDBMS based data
warehouse materialized views. The different costs and benefits that are to be optimized
for materializing views to enhance query processing in Big Data warehousing are formally
defined below.

2.1.1 Query processing cost

The total query processing cost of a set of frequent queries may be considered as the total
MapReduce overheads for executing the set of queries. If the results of some sub-queries
and aggregate functions used in these queries are materialized or saved, then in subsequent
execution of the queries, MapReduce overheads of executing these sub-queries or views are
saved. If a set of sub-queries of a set of frequent queries are processed and composed as

412 J Intell Inf Syst (2017) 49:407–433

views and materialized in HDFS, the query processing cost of the set of considered queries
may be defined as Definition 1.

Definition 1 For a set of n number of frequent queries Q ={q1, q2, · · · , qn} on a data
warehouse, where V is the set of m intermediate views generated by Q, and n ≤ m, if
V ′ ⊆ V is the set of views V ′ ={v1, v2, · · · , vp} that are materialized, the total HDFS
query processing cost can be defined by the following expression.

C
Q

V ′ = C
Q
|V ′|=0 −

p∑

i=1

Mvi
(1)

where C
Q
|V ′|=0 = ∑n

i=1 Mqi
is the total query processing cost of Q without materializing,

and
∑p

i=1 Mvi
is the MapReduce cost of processing V ′.

2.1.2 Materialized view maintenance cost

In Big Data analysis on HDFS based warehouse, there are generally very few occurrence
of updating operations. But whenever there is a change in the base data, the materialized
views are to be updated. In case of in-memory query materialization, frequent refreshment
is needed as in this case infrequent queries are to be discarded after each fixed period of time
(Hyde 2014). Materialized view maintenance means re-processing the aggregate functions
and/or corresponding sub-queries and then updating the views in disks or solid state drives.
Thus there will be another set of DFS overheads. The materialized view maintenance cost
therefore may be defined as follows.

Definition 2 For a set of materialized views V ′ ={v1, v2, · · · , vp} for processing a set of
queries Q, the materialized view maintenance cost may be expressed as

U(V ′) =
p∑

i=1

Uvi
(2)

where Uvi
, i = 1, 2 · · · , p , are the maintenance MapReduce overheads for the set of

materialized views vi ∈ V ′, i = 1, 2 · · · p.

2.1.3 Number of views to be materialized and storage space requirements

In HDFS, smaller number of bigger tables are preferred (as discussed in Section 2.1). The
storage space requirements for p number of materialized views V ′, where

∣∣V ′∣∣ = p, can be
defined as Definition 3 below.

Definition 3 If Svi
is the storage space required by ith materialized view, then the total

space required for materializing p number of views is

S(V ′) =
p∑

i=1

Svi
(3)

2.1.4 The materialized view selection problem

Considering the Definitions 1, 2 and 3, the view selection for materializing in HDFS based
data warehousing can be stated as Definition 4 below.

J Intell Inf Syst (2017) 49:407–433 413

Definition 4 The view selection for materializing in DFS based data warehousing for a
given set of n frequent queries Q ={q1, q2, · · · , qn} on an HDFS based data warehouse,
where V is a set of m views generated while processing Q, such that n ≤ m, a set of views
V ′ ={v1, v2, · · · , vp}, V ′ ⊆ V i.e. p ≤ m, is to be selected such that it minimizes

1. C
Q

V ′ defined by (1),
2. U(V ′) defined by (2) and
3. |V ′| = p with maximized S(V ′) as defined by (3).

In next section we define materialized view selection as a multi-objective optimiza-
tion problem and present a discussion on applying Multi-Objective Evolutionary Algorithm
(MOEA) for solving this problem.

3 Materialized view selection in big data management by DFS:
A multi-objective optimization problem

From the above Definitions 1, 2, 3 and problem statement in Section 2.1.4, for a given set
of views, say V , the view selection problem is to find the set V ′, V ′ ⊆ V , to minimize -

Y = f(V′) ≡ (C
Q

V ′ , U(V ′), |V ′|) (4)

such that the space requirement for materializing V ′ i.e., S(V ′) is maximized.

3.1 Simple problem representation

Deb et al. (2001) suggest few important features that must be present in an multi-objective
optimization problem for solving by randomized and evolutionary algorithm. According to
Deb et al. (2001), very importantly the problem should be easy to construct with known
dimensions. In our problem definition it is assumed that a set of frequently processed queries
are known and thereby the frequent temporary views or sub-queries and aggregate func-
tions triggered on the HDFS data warehouse can be derived or known. In our definition
this known set of views are defined as V . Where |V | = m and the cardinality of selected
views for materializing V ′, |V ′| = p. As p ≤ m, the dimension of the solution is m. A
solution vector may be defined as a string of bits of length m as each of the m dimensions
may be represented as a decision variable that may be either selected or not selected for
materializing.

In our representation of the problem and solution, we have labelled each of the candidate
views with a serial number starting from 1 to m for m dimensions of each solution vector.
In solution string, the first bit represents the candidate view labelled as the first view, the
second bit represents the view labelled as second view and so on. If a view is not selected
then the corresponding bit i.e., the corresponding dimension in the candidate solution vector
is set as 0 and otherwise, if the view is selected for materializing, it’s corresponding bit is
set as 1.

For two solution strings, say S0 and S1 of length m, if CQ(S0) and CQ(S1) are the total
query processing costs for a set of frequent query Q having m number of candidate views
for materializing, U(S0) and U(S1) are the corresponding maintenance cost of the views
if materialized, and if num(S0) and num(S1) are number of views selected in solution S0
and S1, then iff CQ(S0) ≤ CQ(S1) and U(S0) ≤ U(S1) and num(S0) ≤ num(S1), then
if CQ(S0) < CQ(S1) or U(S0) < U(S1) or num(S0) < num(S1), then the solution S0

414 J Intell Inf Syst (2017) 49:407–433

dominates solution S1 which is expressed as S0 ≺ S1. If S0 �≺ S1 and S1 �≺ S0, then S0 and
S1 are two non-dominating solutions of the problem.

Definition 5 The materialized view selection problem is the problem of finding the set of
non-dominating solutions which is an approximation to the true Pareto front of the problem
defined by (4).

3.2 Scalability

In Deb et al. (2001), it has been presented that the test problem for applying multi-objective
optimization problem should be scalable. In our representation of the problem, the solu-
tion vectors are of dimension m, where m is the total number of candidate views. As each
decision variable is expressed as a single dimension of a solution vector, the solution vec-
tor representation is linearly scalable with number of dimensions i.e., value of the variable
m. For m number of decision variables of a solution vector, the size of the solution vec-
tor space will be 2m. Thus with increasing dimension in decision vector space, the solution
vector space increases exponentially. Due to this, stochastic, randomized or evolutionary
algorithms are suitable for handling this problem.

3.3 Well defined objectives

For defining a problem as multi-objective optimization problem and solving it by evolution-
ary or randomized algorithm, most importantly the objectives should be distinct and well
defined. In our problem definitions and by (4), three objectives are clearly defined. With
these three objectives a clearly visible Pareto-front or Pareto-optimal surface may be plotted
for getting a clear idea of performance by a multi-objective optimization technique applied
on this problem.

In (1) and (2), Mvi
and Uvi

for ith view vi and Mqi
for ith query are independent vari-

ables.
∣∣V ′∣∣ cannot determine C

Q

V ′ and U(V ′), and C
Q

V ′ cannot determine
∣∣V ′∣∣ and U(V ′).

Similarly U(V ′) cannot determine
∣∣V ′∣∣ and C

Q

V ′ . Therefore, multi-objective optimization
can be designed to introduce controllable hindrance to getting trapped in local optimum.

4 Genetic algorithms and differential evolution algorithms in solving
multi-objective optimization problem

Due to exponential expansion of solution search space with number of decision vectors,
the problem is best suited for applying randomized algorithms (Zhang et al. 2001). The
basic Multi-Objective Evolutionary Algorithm (MOEA), known as Multi-Objective Genetic
Algorithm (MOGA) has been successfully used in view selection problem for conventional
data warehousing (Lawrence 2006) for it’s ability to find multiple Pareto-optimal solutions
in one single run (Deb et al. 2002). But with basic MOEAs like NSGA (Srinivas and Deb
1995), criticisms like high computational complexity of non dominating sorting, lack of
elitism etc. were there. NSGA-II is an improved version of NSGA proposed by Deb et al.
in Deb et al. (2002).

Differential Evolution (DE) algorithm is another Evolutionary Algorithm introduced
by Storn and Price (1997), which outperforms Genetic Algorithms (GAs) on many
numerical single objective optimization problem (Tusar and Filipic 2007). Though the orig-
inal DE was designed for single objective optimization, recently many approaches have

J Intell Inf Syst (2017) 49:407–433 415

been developed that use NSGA-II suggested non-dominated sorting of Pareto-ranks and
crowding distance based elitism of solution population for adopting multi-objective opti-
mization problem (Tusar and Filipic 2007; Madavan 2002; Xue et al. 2003; Iorio and Li
2006; Kukkonen and Lampinen 2005). In (Deb et al. 2001), a set of 9 test problems termed
as DTLZ test problems for testing and comparing performances between different MOEAs
are suggested. In Kukkonen and Lampinen (2005), a generalized DE algorithm for multi-
objective optimization named GDE3 was presented where it was presented that with certain
parameters, tri-objective test problems DTLZ1 and DTLZ4 performs better than NSGA-II.
Another version of multi-objective DE named DEMO, that uses NSGA-II based methods
for diversity preservation and elitism in solution, shows comparable performances with
respect to NSGA-II in case of DTLZ1 to DTLZ7, when tested for 2,3 and 4 objectives
(Tusar and Filipic 2007) (Table 1).

Next, we present a customized multi-objective DE and an NSGA-II using binary encoded
solution vector population for materialized view selection problem.

5 Multi-objective differential evolution algorithm and NSGA-II
for materialized view selection in HDFS based data warehouse

It has been observed from our discussion presented in Sections 4 and 5 that multi-objective
Evolutionary Algorithms (MOEAs) are suitable for applying in materialized view selection
problem. In our solution representation for handling this problem we have defined solution
vectors as a string of bits. Therefore, we have customized single objective DE for binary
encoded data as presented by Gong and Tuson (2006) for multi-objective optimization to
handle materialized view selection problem. We have also implemented NSGA-II proposed
by Deb et al. (2002) to handle this problem for analyzing their performances.

Table 1 Performances of multi-
objective DE and NSGA-II with
respect to DTLZ test problems

Test Problem Algorithm Performance

compared to NSGA-II

for 3 objectives

DTLZ1 DEMONS−II Almost same

GDE3 Almost same

DTLZ2 DEMONS−II No difference

GDE3 Not evaluated

DTLZ3 DEMONS−II Almost same

GDE3 Not evaluated

DTLZ4 DEMONS−II No difference

GDE3 Almost same

DTLZ5 DEMONS−II No difference

GDE3 Not evaluated

DTLZ6 DEMONS−II Almost same

GDE3 Not evaluated

DTLZ7 DEMONS−II No difference

GDE3 Not evaluated

416 J Intell Inf Syst (2017) 49:407–433

5.1 Multi-objective DE with binary encoded solution representation
(MODE-BE) for materialized view selection

The Differential Evolution (DE) algorithm is a stochastic parallel direct search method
for real vectors. DE uses NP number of D-dimensional parameter vectors xi,g , i =
1, 2, · · · , NP , representing NP as the population size for a population generation g of an
evolutionary system (Storn and Price 1997). For mutation, in one variant of DE, known as
DE/rand/1/bin, new population vectors are generated by finding the weighted difference
between two random population and then by adding it to a third random population vectors
of the NP population. The DE introduced by Storn and Price in Storn and Price (1997) was
originally designed for global optimization problem over continuous spaces using solution
population of real vectors. In DE/rand/1/bin version of DE, the mutant vector for next
generation g + 1 for each target vector xi,g , i = 1, 2, · · · , NP , is generated as (5).

vi,g+1 = xr1,g + F.(xr2,g − xr3,g) (5)

where r1, r2, r3 ∈{1, 2, · · · , NP }, r1 �= r2 �= r3, F is a real constant factor ∈[0,1] and
F > 0. Here F is used to scale the influence of the randomly selected population vectors
xr2,g, xr3,g while calculating the mutation value.

Gong and Tuson (2006) used forma analysis (Radcliffe 1991a, b) to derive discrete
DE operators for discrete single objective otimization problem.For a population vector
� = {ψ1, ψ2, · · · , ψD} of D dimensions, each decision variable ψi may be considered as
a single dimension which may have either 0 or 1 as it’s value. To compute mutant vector
in DE, the difference between two random vectors of the population, xr2,g and xr3,g is to
be amplified by a real amplication factor F and then it is added to another random vector
xr1,g of the population. By using forma basis (Radcliffe 1991a, b), Gong and Tuson (2006)
expressed mutant vector defined by (5) for binary encoded solution vector as (6).

vj,i,g+1 = D�j
(xr1,g, F.D�j

(xr2,g, xr3,g)) (6)

Where, xr2,g and xr3,g are considered as two strings of bits of length D and each j th dimen-
sion difference between xr2,g and xr3,g , D�j

(xr2,g, xr3,g) is represented by using formae
basis (Gong and Tuson 2006) �j as (7).

D�j
(x, y) =

{
0, if xj = yj

1, otherwise
(7)

As in DE, F is a real number in the range [0, 1], F.D�j
(xr2,g, xr3,g) will be real value F

or 0, and the vector will be transformed into a real vector. Therefore, to interpret the scaled
difference F.D�j

(xr2,g, xr3,g) of j th dimension rounded to 1 or 0, (8) is used.

F.D�j
(xr2,g, xr3,g) =

{
1, if random [0, 1] < F ∧ (D�j

(xr2,g, xr3,g) = 1)
0, otherwise

(8)

For selecting materialized views for conventional data warehousing, the mutant vec-
tors in multi-objective DE with binary encoded data, the forma basis as discussed in
Radcliffe (1991a, b) has been used in Goswami et al. (2013). We have used forma basis
based multi-objective DE for binary encoded data (MODE-BE) to design Algorithm 1 for
selecting views to materialize in HDFS data warehousing.

J Intell Inf Syst (2017) 49:407–433 417

418 J Intell Inf Syst (2017) 49:407–433

In Algorithm 1, a set of initial solutions x1, x2, · · · , xNP are generated for a given set
of frequent queries Q that satisfy the space constraint. In each generation of a evolutionary
process g, against each solution vector xi, i = 1, 2, · · · , NP , a mutant vector vi,g+1 is
generated as expressed in (6) (and (8)). Then trial vector ui,g+1 is formed by crossover.
To adapt the problem of view selection to materialize in HDFS Data Warehouse, the query
processing cost, the materialized view maintenance cost and the number of views in solution
sets of the considered HiveQL frequent queries Q, for each solution vector xi,g and trial
vector ui,g+1 are computed using (1),(2) and by counting number of selected views in xi,g

and ui,g+1. If ui,g+1 ≺ xi,g , then xi,g+1 is set as ui,g+1, else if xi,g ≺ ui,g+1, then ui,g+1
is discarded. Otherwise, in case ui,g+1 �≺ xi,g and xi,g �≺ ui,g+1, ui,g+1 is appended to the
population for next generation g + 1. Thus the population may go on increasing. To control
the population growth in each generation of DE, when the population size touches a limit,
i.e when NP becomes �N , N being the initial population size NP , a technique is used to
filter out NP elite solution population that maintains diversity in the solution population as
discussed in Section 5.1.1. This evolutionary process is continued till it reaches a maximum
number of generation specified, say gmax . The dominated solutions in the final population
are then removed from the archive to return the non-dominated solutions of the problem.

5.1.1 Promoting diversity and controlling the size of solution population

To control the population size by keeping the diversity in solution population in the inter-
mediate generations of DE in our approach, diversity in solution space is promoted with
necessary elitism. When the population size NP in a generation becomes �N , where N

is the initial value of NP in that generation, the solutions of intermediate generations are
ranked according to their Pareto dominance levels as discussed in Deb et al. (2002). To
include all previous and current population members to ensure finding out the most elite
NP solutions, Deb et al. (2002) suggests � = 2. For each i − th solution of the population,
the maximum distance to other solution vectors in the population Maxi is measured. Since
the solution vectors are represented as a string of bits and a particular bit as 1 or 0 does
not mean any preference over each other, the Simple Matching Co-efficient (SMC) distance
measure (Sokal and Michener 1958) is used . The solution population is then first sorted in
ascending order of their Pareto fronts and then on descending order of their maximum dis-
tances to other solutions in the population. From the doubly sorted solution population, the
top NP solutions are selected as next generation population. We used density in solution
space instead of crowding distance in objective function value space to promote diversity in
solutions.

5.1.2 Complexity

The number of operations in DE/rand/1/bin is proportional to the total number of basic
loops executed till it reaches the termination criteria. The algorithm terminates when the
maximum specified number of generations, i.e., gmax is reached. Therefore, the run time
complexity is O(NP.D.gmax) (Das and Suganthan 2011). As the solution space of the
problem increases exponentially with the dimensions of the problem, the space complexity
usually increases with the size of the problem. For M objectives, to control the pop-
ulation sizes in intermediate generations within N , first non dominated sorting is done
as suggested in NSGA-II. The overall complexity for M objectives is thus O(MN2)

(Deb et al. 2002). For computing SMC based maximum neighborhood distances of each of
the N solutions, complexity is O(N2). For two independent sorting of at most N solutions,

J Intell Inf Syst (2017) 49:407–433 419

complexity is O(2NlogN). Thus these three processings are governed by non domi-
nated sorting complexity O(MN2). Therefore, the overall complexity may be expressed as
O(gmax(N.D + MN2)) i.e. O(gmax(N(D + MN))). For a series of experiments, dimen-
sion D and objectives M (=3) are held constant. Thus the overall run time complexity is
O(gmax.N

2).

5.2 Implementing NSGA-II for materialized view selection in big data
management by DFS

In Lawrence (2006), two implementations of multi-objective GA for materialized view
selection have been presented. These two approaches used non-elitist multi-objective evo-
lutionary algorithms for selecting views under storage space constraint. Deb et al. (2002)
presented that elitism can speed-up the performances of the GA significantly and also can
help retaining good solutions generated during intermediate generations. In multi-objective
GAs for ensuring diversity in solution population, the concept of sharing parameter σshare

in objective space is used. But a parameter less diversity preservation mechanism is better.
To address this issue NSGA-II was suggested (Deb et al. 2002).

To adapt NSGA-II for selecting views to materialize in Big Data warehousing with dis-
tributed file system framework, particularly HDFS, we used the cost model and problem
definition as discussed in Sections 2 and 3.

Each solution vector in our solution model is represented as � = {ψ1, ψ2, · · · , ψD} of
dimension D, where each dimension is a decision variable of one bit such that ψ1 represents
whether ith view is selected for materializing or not. First a random solution population
�1, �2, · · · , �NP are created. For generating ith random solution, initially all decision
variables of �i are set as 0. A random integer in the range [0,D] is generated for deciding
how many dimensions of �i is to be set as 1. This random number is the cardinality of the
set of views selected V ′ in �i , expressed as |V ′| = p in Definition 4. Randomly these p

number of decision variables are set as 1 for the vector �i . As discussed in Section 2, in
Big Data framework based data warehousing, smaller number of larger sized views are to
be selected for materializing. Therefore, the solution vector �i is added to the list of initial
population only if the total size of the set of p number of views of the set V ′ satisfies the
minimum space criteria specified and �i is already not in the solution population.

In subsequent generations, the usual binary tournament selection, recombination and
mutation operators are applied to the NP solutions to create offsprings. In each generation,
against a selected solution from the NP solutions, one offspring is generated. For finding
domination or non-domination between two solutions, say �i and �j , where V ′

i is the set of
non-zero dimensions of �i and V ′

j is the set of non-zero dimensions of �j , the three objec-

tive functions (1) the query processing costs C
Q

V ′
i

, C
Q

V ′
j

, (2) maintenance costs U(V ′
i), and

U(V ′
j) and (3) |V ′

i |, |V ′
j | are evaluated. If the generated offspring dominates the selected

solution vector, then the new offspring replaces the selected vector. Otherwise , if the newly
generated offspring does not dominate the solution vector and if the selected solution also
does not dominate the offspring, the offspring vector is added to the population. Thus a new
offspring population of size N is created. Whenever N becomes 2NP , the solution popula-
tion in the list are ranked in their non-domination levels. The ranked solution population are
sorted in ascending order of their non-domination ranks. The crowding distance among the
solutions are then computed in objective function space and sorted in descending order of
their crowding distances. The solutions are sorted in ascending order of ranks for providing
higher priority for keeping the solutions of lower domination ranks in next generation, so

420 J Intell Inf Syst (2017) 49:407–433

that the most elite solutions are retained in subsequent generations. The solution population
are sorted in descending order of objective function based crowding distances to preserve
diversity among solution population in each generation.

5.2.1 Complexity of NSGA-II for materialized view selection in HDFS

The basic operations of NSGA-II based application’s worst case complexities as presented
in Deb et al. (2002) are - (1) for non-dominated sorting is O(M(2N)2), (2) for crowding
distance assignments is O(M(2N)log(2N)) and (3) for sorting on crowding distances is
O(2Nlog(2N)). Here, M is the number of objectives and N is the number of solution
population. Thus the over all complexity is dominated by O(M(2N)2). As our problem is
defined with 3 objectives therefore it becomes O(3(2N)2). Thus the overall complexity is
O(N2).

6 Experimentation and discussion

For experimental analysis we implemented Multi-Objective DE for Binary Encoded solu-
tions (MODE-BE) and NSGA-II as a recommending system which takes input from
log-files generated on processing HiveQL instructions by HDFS. The recommended solu-
tion sets generated by both the implementations are analyzed. A set of HiveQL queries
has been synthesized for triggering on data warehouse in a single node implementation of
experimental HDFS. This set of queries considered as the set of frequent queries and are
broken-up into some sub-queries or views which are considered as candidate views for our
experimentation.

6.1 Experimental setup

For our experimental setup, we used Hortonworks Data Platform (HDP) version 2.0.6
with Hortonworks Sandbox version 2.0 VMware for 64 bit CentOS operating system
workstation 6.5-7.x virtual machine (Inc. 2014). This is a single node implementation for
experimenting HDFS. We used Hadoop version 2.2.0 and Hive version 0.12.0 of Apache
(Foundation 2014b), which lets us manage data, perform ad-hoc queries and analysis of
large data-set/data warehouse in Hadoop cluster. For executing HiveQL queries, we used an
HDP interactive interface to HiveT M named Beeswax provided by HDP. Using Beeswax we
can type in HiveQL queries and have Hive evaluate them for us using a series of MapReduce
jobs.

A block diagram of our test-bed is presented in Fig. 1. Though generally ”Big Data”
means database of Tera byte/Peta byte size, HDP is designed for single node implemen-
tation for experimenting HDFS with smaller sized databases. In our experimentation we
used Lahman Baseball Database of American Major League Baseball statistics from 1871
through 2011 (Lahman 2014) as suggested by HDP 2.0.6 for experimenting with Hadoop
version 2.2.0 .

We synthesized 20 HiveQL queries on Lahman baseball database for our experimenta-
tion. The constituent views and aggregation functions that are to be considered as candidate
views for materializing are extracted from these queries by a semantic analysis process. The
queries and their constituent views are presented in Table 2. The queries and constituent
views are triggered to HDP to get query processing costs, view processing costs and main-
tenance costs in terms of MapReduce time along with the space requirements for the views.

J Intell Inf Syst (2017) 49:407–433 421

The HDP and Beeswax interface generates responses as well as log-files against HiveQL
commands. These log-files contain all MapReduce split details and associated CPU costs
along with the MapReduce jobs creation details. Different costs against these queries and
views are extracted from log-files and stored in a database. The extracted costs of our
queries in one instance of execution are presented in Tables 3 and 4. The materialized view
selection process takes input from this database for recommending optimum sets of views
for materializing. All the selected frequent queries and candidate views are indexed and
labelled to represent the solution vectors such that if the first dimension of the solution
vector is 1, the first view is selected for materializing and if the second dimension of the
solution vector is 0, the view labelled as second view is not to be selected for materializ-
ing and so on. This representation is used in many materialized view selection techniques
(Derakhshan et al. 2006; Derakhshan et al. 2008; Goswami et al. 2012, 2013). The extracted
costs of our queries in one instance of execution as we present in Tables 3 and 4 are used as
input to our multi-objective EA based view selection recommendation system.

6.2 Parameters used

In Differential Evolution (DE) algorithm based applications the main control parameters
are the mutation scaling factor F , the solution population size NP and the cross-over
parameter CR. In Storn and Price (1997) it has been suggested that the value of NP

should be around 5 to 10 times the dimensionality of the problem. Therefore, for 25 can-
didate views, we may st values of NP between 125 to 250. In DE, a good choice of F is
0.5. The value of CR indicates number of inheritance by the mutant vector. According to
Das and Suganthan (2011) and Tusar and Filipic (2007), for population size NP between
3 to 8 times of the dimensionality of the problem, the mutation scaling factor F=0.6 and

User NoSQL/HiveQL queries

Extract
frequent
queries

Extract
sub−queries/
views/
aggregation
functions as
candidate
views to materialize

Multi−objective
optimization based

views/sub−queries
recommendation of

for materializing.

MapReduce
log file.

Distributed File System in cluster of
commodity hardware resources.

Response

Framework for

Fig. 1 Test-bed for selecting non-dominated solution sets of materialized views

422 J Intell Inf Syst (2017) 49:407–433

Table 2 Considered frequent
HiveQL queries and constituent
views

HiveQL queries Constituent views

Q1 v1, v2

Q2 v1, v3

Q3 v4, v5

Q4 v4, v6

Q5 v2, v7

Q6 v8, v9

Q7 v10, v11, v12

Q8 v9, v13

Q9 v6, v14

Q10 v14, v15

Q11 v16, v17

Q12 v18, v19

Q13 v20

Q14 v21

Q15 v22

Q16 v22

Q17 v23

Q18 v23, v24

Q19 v25

Q20 v25

cross-over ratio CR between 0.3 to 0.9 are good choices. In our multi-objective DE for
binary represented decision variables (MODE-BE) we used the following parameters -

– the population size, NP=125,
– number of generations=50,
– selection scheme=DE/rand/1/bin,
– F=0.5,
– binary cross-over probability CR=0.3.

To compare the performance of MODE-BE and NSGA-II in materialized view selection
problem for HDFS based data warehousing, we used following parameters with NSGA-II
based system.

– the population size, NP=125,
– number of generations=50,
– Size of mating pool=125,
– tournament size=2,
– individual cross-over probability=1,
– individual mutation probability=1.

Two other problem specific parameters - maximum number of views that may be selected
and minimum size of storage space to be used are also to be specified as well. These two
parameters are mainly dependent on size of memory block size and split size of the HDFS.
Generally HDFS block-size and split-size are of 64MB or 128MB. Therefore, as small files

J Intell Inf Syst (2017) 49:407–433 423

Table 3 Query responding
MapReduce costs of selected
queries

HiveQL queries HDFS MapReduce

cost (in Seconds)

Q1 45.05

Q2 37.62

Q3 37.35

Q4 42.59

Q5 25.51

Q6 24

Q7 25.48

Q8 38.87

Q9 29.77

Q10 18.29

Q11 22.57

Q12 14.15

Q13 12.68

Q14 29.27

Q15 13.83

Q16 20.56

Q17 22.04

Q18 21.82

Q19 2.39

Q20 2.31

may use unnecessary MapReduce split and overhead, Hadoop works better with smaller
number of larger files (White 2012).

6.3 Results and discussion

In our experimentation with our experimental setup, parameters and data we observe that,

– the NSGA-II based system converges more quickly than MODE-BE based recommen-
dation system. But, as for preserving diversity among solutions inMODE-BE, distances
among solutions in their solution vector space are used instead of crowding-distance
in objective function space, the standard deviation between solutions generated by
MODE-BE is 5.203402 whereas that of NSGA-II is 3.120897. The diversity in solution
vector space is preferred because diversity preservation on objective function values
may lead to loss of some significantly distinct solutions on the basis of constituent
selected views in them. This may obviously happen because a scalar valued function
with different vector parameters may result same scalar value.

– In our experimentation it can be observed that MODE-BE generates 37.04% more
number of solutions than NSGA-II based system. More number of solutions with com-
parable quality of solutions may be useful for selecting most appropriate solutions
depending on user application requirements. For filtering significant solutions from the
obtained solutions, distances in solution vector space for each solution to all other solu-
tions yielded may be computed and then based on the mean (μ) distances and their
standard deviation (σ), filtration criteria may be applied (Goswami et al. 2013).

424 J Intell Inf Syst (2017) 49:407–433

Table 4 Processing and
maintenance MapReduce costs
and space requirements of
candidate views

Candidate Processing Maintenance Space

view MapReduce cost MapReduce cost (in MB)

(in Seconds) (in Seconds)

v1 11.52 4.023 2.2

v2 16.34 4.234 2.236

v3 19.43 4.034 2.151

v4 14.16 2.652 2.2

v5 8.37 6.051 0.267

v6 13.85 13.042 2.9

v7 6.84 11.521 0.0956

v8 11.74 3.231 0.296

v9 7.75 6.455 0.001

v10 15.71 5.823 0.316

v11 16.98 10.034 0.313

v12 6.02 5.034 0.0252

v13 20.12 4.611 3.252

v14 11.05 6.810 0.3

v15 13.76 5.430 0.294

v16 6.61 4.517 0.026

v17 10.73 2.220 0.021

v18 10.11 4.315 0.297

v19 1.84 5.412 0.519

v20 7.28 3.021 0.061

v21 16.38 5.011 0.314

v22 8.07 9.025 0.075

v23 6.99 7.25 0.07

v24 11.58 9.312 0.299

v25 2.3 5.812 0.487

– From the query processing costs in terms of MapReduce time, plotted in Fig. 2, it can
be observed that solutions generated by MODE-BE are more costly in case of query
processing and responding than of NSGA-II generated solutions. But, the MapReduce
time for maintaining the materialized views are less in case of MODE-BE (Fig. 3).

– From Figs. 4, 5, 6 and 7 it can be observed that MODE-BE results are slightly better
based on the Hadoop framework’s basic criterion that lesser number of bigger views or
tables are to be considered for materializing. For our experimental data presented here,
we found that the minimum size of storage space requirement is slightly more in case
of MODE-BE.

– Again, by applying Mann-Whitney U test on both MODE-BE and NSGA-II gener-
ated solutions at 5 % level of significance, i.e at α = 0.05, we cannot reject the null
hypothesis that the solution vectors generated by both the systems are from the same
population.

J Intell Inf Syst (2017) 49:407–433 425

7 Comparative analysis of state-of-the-art techniques with respect
to quality of solutions

The pioneering non-deterministic optimization based approach used in selecting views for
materialization in data warehouse was a Genetic Algorithmic (GA) approach by Zhang
et al. (2001). Derakhshan et al. (2006) introduce an approach for materialized view
selection using Simulated Annealing (SA) with Multiple View Processing Plan (MVPP)
(Yang et al. 1997) of frequent data warehouse queries as input. This approach was later
modified by applying Parallel Simulated Annealing (PSA) (Derakhshan et al. 2008).
In (Goswami et al. 2012), Multi-Objective Simulated Annealing (MOSA) (Smith et al.
2004; Smith et al. 2008) and Archived Multi-Objective Simulated Annealing (AMOSA)
(Bandyopadhyay et al. 2008) are applied in materialized view selection problem using
MVPP based representation of the problem (Goswami et al. 2016). A comparative analysis
of Multi-Objective Simulated Annealing algorithm, MODE-BE and NSGA-II based tech-
niques with respect to quality of solutions in view selection problem in Big Data paradigm
has been presented in this section.

7.1 Comparison measures used and obtained values

The performance of different randomized multi-objective optimization algorithms may be
analyzed in different ways. In materialized view selection, the objective is to find solutions
as sets of views such that the solutions converge to the true sets of solutions that minimizes
query processing costs, materialized view maintenance costs and number of materialized
views with respect to size of the views. The obtained solutions should be the nearest to
the true solutions as well as they should be well represented from the actual complete set

Fig. 2 Processing MapReduce cost (in Seconds) by NSGA-II and MODE-BE generated non-dominated
solutions

426 J Intell Inf Syst (2017) 49:407–433

Fig. 3 Materialized view maintenance MapReduce cost (in Seconds) by NSGA-II and MODE-BE generated
non-dominated solutions

of non-dominated solutions. By a single measuring parameter the performance of a multi-
objective optimization algorithm in terms of quality of solutions can not be measured. In
our work three measures have been used to evaluate the quality of obtained solutions. They
are- (1) the extent of Convergence (Deb et al. 2002) of the solution set to an already known
set of Pareto optimal solutions, (2) the fraction of solutions that remain non-dominated with
respect to all solutions by other algorithms termed as the Purity (Bandyopadhyay et al. 2004)
of solutions and (3) uniformity of the Spacing (Schott 1995; Deb et al. 2002; Bandyopadhyay

Fig. 4 Number of views in solution sets for materializing

J Intell Inf Syst (2017) 49:407–433 427

Fig. 5 Space requirements by solution sets of views for materializing

et al. 2004) between the solutions over the non dominated front. Experimental data sets
have been generated using the setup presented in Section 6.1. Other than the 20 queries
and 25 associated views presented in Section 6.1, another set of data is generated for 109
queries and 51 candidate views for experimenting with higher dimensional data. Using this
109 queries, two other data sets have been generated for 50 and 60 queries sharing the 51
candidate views.

Convergence measure γ The convergence measure γ presented in Deb et al. (2002) is
used for measuring the extent of convergence by an algorithm to a known set of Pareto
optimal solutions. Smaller γ value means lesser distance from the true Pareto front. The
non-deterministic multi-objective optimization techniques are applied on those problems,
where the true Pareto optimal solutions are not known. Therefore the convergence measure
γ may be computed with respect to a set of uniformly spaced solutions from a set of Pareto
optimal solutions obtained by other accepted algorithms for comparative analysis. In this
case the measure γ reflects the relative convergence quality only. While experimenting with
the setup and data sets mentioned above, for AMOSA,MODE-BE and NSGA-II in selection
of views to materialize in data warehouse by binary encoded solution representation, the
convergence measure γ are evaluated as presented in Table 5. The convergence measures
presented in Table 5 are evaluated by considering the results where the maximum number
of solutions remain non dominated with respect to all non dominated solutions obtained by
other algorithms while executing the implementations for 20 times.

For computing Convergence (γ), first the set of non dominating solutions obtained by
already used algorithms for the application (materialized view selection), H , are found and
then for each solution obtained with an algorithm, the minimum Euclidean distance of it
from chosen solutions of H on the Pareto-optimal front are computed and the average of
these minimum distances is used as the Convergence measure γ . The lower the value γ ,
better is the convergence of the solution set obtained to the true Pareto optimal front.

428 J Intell Inf Syst (2017) 49:407–433

Fig. 6 Objective functions’ values by MODE-BE generated non-dominating solutions

Fig. 7 Objective functions’ values by NSGA-II generated non-dominating solutions

J Intell Inf Syst (2017) 49:407–433 429

Table 5 Convergence (γ)
Number of Number of AMOSA MODE-BE NSGA-II

queries candidate views γ γ γ

109 51 0.6549 0.2229 0.2874

60 51 0.8877 0.2732 0.1235

50 51 0.5967 0.7592 0.1342

20 25 1.6296 0.5317 1.5023

Average 0.942225 0.44675 0.51185

Purity The Purity measure (Bandyopadhyay et al. 2004) is the fraction of solutions from
one particular technique that remains non-dominated by all (non-dominated) solutions
obtained by the other techniques that are considered for comparing their solution quality.
The Purity measure obtained by AMOSA, MODE-BE and NSGA-II algorithms in mate-
rialized view selection for data warehousing in our experimentation using the data sets
mentioned above are presented in Table 6.

The Purity value 1 by an algorithm means all the solutions it has produced are not domi-
nated by solutions produced by any other algorithm so far. Therefore, the Purity value near
1 indicates better performance and the value near 0 means poorer performance.

Spacing and Minimal Spacing The multi-objective optimization techniques are aimed
to obtain a set of solutions spanning the entire Pareto-optimal region of the solution space.
Schott in Schott (1995) proposed the measure of Spacing, S, to reflect the uniformity of the
solutions over a non-dominated front. The Spacing, S is computed as expressed below.

S =
√√√√ 1

|Q|
|Q|∑

i=1

(di − d)2 (9)

where di = mink∈Qandk �=i

∑M
m=1 |f i

m − f k
m| and f i

m (or f k
m) is the mth objective value of

the ith (or kth) solution in the final non-dominated solution set Q , d is the mean value of
all dis. A value of S near 0 indicates that the solutions are uniformly distributed over the
Pareto optimal front. But it is not possible to indicate the actual spaces between the solu-
tions in cases where the complete true Pareto front is not known or only a segment of the
front is considered for computing the S. Therefore in Bandyopadhyay et al. (2004), a modi-
fied measure for thisMinimal Spacing, denoted as Sm is proposed, where |Q| is replaced by
|Q| − 1 as actually |Q| − 1 number of distances are considered here for measuring. Again

Table 6 Purity
Number of AMOSA MODE-BE NSGA-II

queries, shared views

109, 51 0.2143 0.8451 0.4909

60, 51 0.5 0.8 0.6

50, 51 0.3 0.4 0.7619

20, 25 1 1 0.6667

430 J Intell Inf Syst (2017) 49:407–433

Table 7 Minimal Spacing
Number of AMOSA MODE-BE NSGA-II

queries, shared views

109, 51 0.1655 0.0228 0.0410

60, 51 0.1247 0.0497 0.0630

50, 51 0.6665 0.0592 0.0737

20, 25 0.0296 0.0211 0.2782

there may be diverse objective function values. Therefore, the term |f i
m − f k

m| is divided
by |Fmax

m − Fmin
m | for normalizing the objective function values. Here Fmax

m and Fmin
m are

the maximum and minimum objective function values respectively of mth objective. Larger
value of Sm reflects that the solutions are not uniformly distributed over the known Pareto-
optimal front. That is, smaller value of S or Sm indicates better performance. In this work,
other than the Convergence and Purity measures, the algorithms are also analyzed for how
the solutions are distributed over the known true Pareto front using the Minimal spacing
measure Sm. Minimal Spacing values obtained by AMOSA, MODE-BE and NSGA-II algo-
rithms in materialized view selection for data warehousing using our data sets are presented
in Table 7.

7.2 Observations

The Convergence, Purity and Minimal Spacing, obtained by AMOSA, MODE-BE and
NSGA-II algorithms in materialized view selection, presented in Tables 5, 6 and 7
respectively, show acceptable values by all these three techniques. However the average
Convergence (γ) of MODE-BE is found to be the best. Though in one case AMOSA pro-
duces excellent Purity value, in case of other three data sets this measure is found to be
poorer than the other two methods. As smaller Minimal Spacing, Sm, reflects that the solu-
tions are uniformly distributed over the known Pareto-optimal front, it has been observed
that the MODE-BE yields the most uniformly distributed solutions compared to the other
two algorithms (Table 7). In case of materialized view selection problem, for large dimen-
sional problem, i.e, with large number of queries and views it is not possible to find the
true Pareto front beforehand. In our comparison metrics, only the segment of the front that
has been obtained by the considered algorithms have been used. MODE-BE and NSGA-
II both are evolutionary algorithms where cross-over and mutations among solutions are
done for generating new candidate solution. Whereas in case of AMOSA, candidate solu-
tions are generated by perturbing one or more dimensions of one solution vector at a time
during large number of iterations in the annealing process. Randomized function based gen-
eration of solutions by perturbing values of dimensions of solution vectors from randomly
selected solution vector (like in case of AMOSA) may produce distant solutions in objec-
tive function space. Overall it has been observed that the MODE-BE algorithm converges
very well empirically in this application and consistently well performing among these three
techniques in our experimental setup.

8 Conclusion and perspectives

We have presented here our study on view selection techniques for materializing in dis-
tributed commodity hardware file system data warehousing. Our main contribution here is

J Intell Inf Syst (2017) 49:407–433 431

establishing the view selection for materializing problem in distributed commodity hard-
ware file system as a multi-objective optimization problem and providing solution for
solving this problem. As it is an NP-hard problem, we used multi-objective evolutionary
algorithm based approach for designing a recommendation system for selecting materialized
views.

We have designed a prototype of view selection framework that uses log-files gener-
ated by single node implementation of HDFS based data warehousing framework and Hive
0.12.0 queries. As our approach is a generic one, it may be implemented easily for any kind
of similar framework that uses distributed cluster of commodity hardware.

Though, so far in our experimental framework, the cost functions, number of views in
different solution sets and space costs of each individual solutions are computed by the
recommending system, the semantic analysis process for extracting and composing can-
didate views is yet to be developed. At present the candidate views are fed to the HDP
by an offline process for computing different associated costs. The generation of database
from log-files produced by HiveQL query processing in HDFS is yet to be integrated to the
system. Therefore, these are the future extensions of our work.

The present popular version of HiveT M does not support materialized views. Our present
work leads towards selecting views for materializing in cluster of distributed commodity
hardware file system based data warehousing by using multi-objective DE and NSGA-II.
There may be alternative technologies for implementing the materialized view selection
and/or selection of response of queries for in-memory materialization like Discardable
In-Memory Materialized Query (DIMMQ), Spark’s Resilient Distributed Data-set (RDD)
(Hyde 2014) etc. We believe that community like Hadoop may find many more such
technologies and bench-mark framework for unbiased evaluation of them.

Compliance with Ethical Standards

Disclosure of potential conflicts of interest The authors declare that they have no conflict of interest.

Informed Consent Not applicable.

Research involving Human Participants and/or Animals The authors declare that, in this research,
neither human participants nor animals are involved in experimentation.

References

Aouiche, K., & Darmont, J. (2009). Data mining-based materialized view and index selection in data
warehouses. Journal of Intelligent Information System, 33, 65–93.

Aouiche, K., Jouve, P., & Darmont, J. (2006). Clustering-based materialized view selection in data
warehouses. Y. Manolopoulos, J. Pokorn & T. Sellis (Eds.), Proceeding of 10th east-European con-
ference advances in database and information systems, ADBIS 2006, LNCS, (Vol. 4152, pp. 81–95).
Springer-Verlag, Berlin, Heidelberg, Thessaloniki: Hellas.

Bandyopadhyay, S., Pal, S., & Aruna, B. (2004). A simulated annealing-based multiobjective optimization
algorithm: Amosa. IEEE Transactions on Systems Man and Cybernetics Part B, 34(5), 2088–2099.

Bandyopadhyay, S., Saha, S., Maulik, U., & Deb, K. (2008). A simulated annealing-based multiobjective
optimization algorithm: Amosa. IEEE Transactions on Evolutionary Computation, 12(3), 269–283.

Das, S., & Suganthan, P.N. (2011). Differential evolution: a survey of the state-of-the-art. IEEE Transactions
on Evolutionary Computation, 15(1), 4–31.

Dean, J., & Ghemawat, S. (2004). Mapreduce: Simplified data processing on large clusters. In OSDI’04: 6th
symposium on operating system design and implementation, San Francisco, CA, December. https://www.
usenix.org/legacy/publications/library/proceedings/osdi04/tech/fullpapers/dean/dean html/index.html.

https://www.usenix.org/legacy/publications/library/proceedings/osdi04/tech/full papers/dean/dean_html/index.html
https://www.usenix.org/legacy/publications/library/proceedings/osdi04/tech/full papers/dean/dean_html/index.html

432 J Intell Inf Syst (2017) 49:407–433

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm:
Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

Deb, K., Thiele, L., Laumanns, M., & Zitzler, E. (2001). Scalable test problems for evolutionary
multi-objective optimization. Tech. rep., Institute fur Technische Informatik und Kommunikationsetze.
Switzerland: Zurich.

Derakhshan, R., Dehne, F., Korn, O., & Stantic, B. (2006). Simulated annealing for materialized view selec-
tion in data warehousing environment. In Proceedings of 24th IASTED international conference on
Database and applications (pp. 89–94). Austria: Innsbruck.

Derakhshan, R., Stantic, B., Korn, O., & Dehne, F. (2008). Parallel simulated annealing for materialized view
selection in data warehousing environments. In Proceedings of ICA3PP 2008 international conference
on algorithms and architecture 2008, LNCS (Vol. 5022, pp. 121–132). Berlin: Springer.

Foundation, T.A.S. (2014). Apache hadoop. URL http://hadoop.apache.org.
Foundation, T.A.S. (2014). Apache hive tm. URL http://hive.apache.org.
Gong, T., & Tuson, A. (2006). Differential evolution for binary encoding. In 11th online world conference

on soft computing in industrial applications (WSC11).
Goswami, R., Bhattacharyya, D., Dutta, M., & Kalita, J. (2016). Approaches and issues in view selection for

materializing in data warehouse. International Journal of Business Information Systems, 21(1), 17–47.
Goswami, R., Bhattacharyya, D.K., & Dutta, M. (2012). Selection of views for materializing in data ware-

house using mosa and amosa. In D. C. Wyld, J. Zizka & D. Nagamalai (Eds.) Advances in computer
science, engineering and applications, Proceedings of the 2nd international conference on computer
science, engineering and applications (ICCSEA 2012), Volume 1, advances in intelligent and soft
computing (Vol. 166, pp. 619–628). Berlin: Springer.

Goswami, R., Bhattacharyya, D.K., & Dutta, M. (2013). Multiobjective differential evolution algorithm using
binary encoded data in selecting views for materializing in data warehouse In B. K. Panigrahi, P. N.
Suganthan, S. Das & S. S. Dash (Eds.). Swarm, evolutionary, and memetic computing, lecture notes in
computer science (Vol. 8298, pp. 95–106). Springer.

Gupta, H., Harinarayan, V., Rajaraman, A., & Ullman, J. (1997). Index selection for olap. In Proceedings
of the 13th international conference on data engineering, ICDE’97 (pp. 208–219). Washington: IEEE
Computer Society.

Gupta, H., & Mumick, I. (1999). Selection of views to materialize under a maintenance cost constraint In C.
Beeri & P. Bruneman (Eds.) Proceedings of international conference on database theory, ICDT 1999,
LNCS (Vol. 1540, pp. 453–470). Heidelberg: Springer.

Gupta, H., & Mumick, S. (2005). Selection of views to materialize in a data warehouse. IEEE Transactions
on Knowledge and Data Engineering, 17(1), 24–43.

Hagleitner, G. (2014). Cost-based optimization in hive. URL https://cwiki.apache.org/confluence/display/
Hive/Cost-based+optimization+in+Hive.

Harinarayan, V., Rajaraman, A., & Ullman, J. (1996). Implementing data cubes efficiently. In Proceedings
of ACM SIGMOD international conference on management of data (pp. 205–216). Montreal: ACM
SIGMOD.

Hyde, J. (2014). Discardable in-memory, materialized query for hadoop. URL http://hadoopsummit.org/
san-jose/schedule.

Inc., H. (2014). Hortonworks data platform. URL http://hortonworks.com/hdp/.
Iorio, A.W., & Li, X. (2006). Incorporating directional information within a differential evolution algo-

rithm for multi-objective optimization. In Proceedings of the 8th annual conference on genetic and
evolutionary computation (pp. 691–698). ACM.

Kukkonen, S., & Lampinen, J. (2005). Gde3: The third evolution step of generalized differential evolution.
In The 2005 IEEE congress on evolutionary computation, 2005 (Vol. 1, pp. 443–450). IEEE.

Lahman, S. (2014). Baseball archive. URL http://seanlahman.com/files/database/lahman591-csv.zip.
Lawrence, M. (2006). Multiobjective genetic algorithms for materialized view selection in olap data ware-

houses. In Proceedings of the 8th annual conference on genetic and evolutionary computation (pp. 699–
706). ACM.

Lee, M., & Hammer, J. (2001). Speeding up materialized view selection in data warehouses using
a randomized algorithm. International Journal of Cooperative Information System, 10, 327–
353.

Loureiro, J., & Belo, O. (2006). An evolutionary approach to the selection and allocation of distributed cubes.
In Proceedings of database engineering and applications symposium IDEAS-06 (pp. 243–248). Delhi:
IEEE.

Madavan, N.K. (2002). Multiobjective optimization using a pareto differential evolution approach. In Pro-
ceedings of the 2002 congress on evolutionary computation, 2002. CEC’02 (Vol. 2, pp. 1145–1150).
IEEE.

http://hadoop.apache.org
http://hive.apache.org
https://cwiki.apache.org/confluence/display/Hive/Cost-based+optimization+in+Hive
https://cwiki.apache.org/confluence/display/Hive/Cost-based+optimization+in+Hive
http://hadoopsummit.org/san-jose/schedule
http://hadoopsummit.org/san-jose/schedule
http://hortonworks.com/hdp/
http://seanlahman.com/files/database/lahman591-csv.zip

J Intell Inf Syst (2017) 49:407–433 433

Nadeua, T., & Teorey, T. (2002). Achieving scalability in olap materialized view selection. In Proceedings
of ACM 5th international workshop on data warehousing and OLAP, DOLAP-02 (pp. 28–34). McLean:
ACM.

Qingzhou, Z., Xia, S., & Ziqiang,W. (2009). An efficient ma-based materialized views selection algorithm. In
Proceedings of the 2009 IITA international conference on control, automation and systems engineering
(pp. 315–318). China: Zhangjiajie.

Radcliffe, N.J. (1991). Equivalenc class analysis of genetic algorithms. Complex Systems pp. 183–205.
Radcliffe, N.J. (1991). Forma analysis and random respectful recombination. In Proceedings of the

international conference on genetic algorithms - ICGA 1991 (pp. 222–229). San Marco: Morgan
Kaufmann.

Roy, T., & Fielding Laguna Beach, C. (1999). Certificate of incorporation of the apache software foundation.
URL http://www.apache.org/foundation/records/certificate.html.

Schott, J.R. (1995). Fault tolerent design using single and multi-criteria genetic algorithms. Ph.d. disserta-
tion.

Serna-Encinas, M.T., & Hoya-Montano, J.A. (2007). Algorithm for selection of materialized views: based
on a costs model. In Proceedings of 8th international conference on current trends in computer science
(pp. 18–24). Morella, Maxico. doi:10.1109/ENC.2007.38.

Smith, J.R., Li, C.S., & Jhingran, A. (2004). A wavelet framework for adapting data cube views for olap.
IEEE Transactions on Knowledge and Data Engineering, 16(5), 552–565.

Smith, K.I., Everson, R.M., Fieldsend, J.E., Murphy, C., & Misra, R. (2008). Dominance-based multiobjec-
tive simulated annealing. IEEE Transactions on Evolutionary Computation, 12(3), 323–283.

Sokal, R., & Michener, C. (1958). A statistical method for evaluating systematic relationships. University of
Kansas Science Bulletin, 38, 1409–1438.

Song, X., & Gao, L. (2010). An ant colony based algorithm for optimal selection of materialized view. In
2010 international conference on intelligent computing and integrated systems (ICISS) (pp. 534–536).
IEEE.

Srinivas, N., & Deb, K. (1995). A fast and elitist multiobjective genetic algorithm: Nsga-ii. Evolutionary
Computing, 2(3), 221–248.

Storn, R., & Price, K. (1997). Differential evolution- a simple and efficient heuristic for global optimization
over continuous spaces. Journal of Global Optimization, 11, 341–359.

Sun, X., &Wang, Z. (2009). An efficient materialized views selection algorithm based on pso. In Proceedings
of international workshop on intelligent systems and applications 2009 (pp. 1–4). China: Wuhan.

Tusar, T., & Filipic, B. (2007). Differential evolution versus genetic algorithms in multiobjective optimiza-
tion. In Proceedings of the 4th international conference on evolutionary multi-criterion optimization,
LNCS, (Vol. 4403, pp. 257–271). Springer-Verlag.

White, T. (2012). Hadoop: The Definitive Guide, 3 edn. O’Reilly, O’Reilly Media, Inc., 1005 Gravenstein
Highway North, sebastopol, CA 95472.

Xue, F., Sanderson, A.C., & Graves, R.J. (2003). Pareto-based multi-objective differential evolution. In The
2003 congress on evolutionary computation, 2003. CEC’03 (Vol. 2, pp. 862–869). IEEE.

Yang, J., Karlapalem, K., & Li, Q. (1997). Algorithm for materialized view design in data warehousing
environment. In Proceedings of VLDB 1997 (pp. 136–145). Greece: Athens.

Zhang, C., & Yang, J. (1999). Genetic algorithm for materialized view selection in data warehouse environ-
ments. In M. Mohania & A. M. Tjoa (Eds.) Proceedings of data warehousing and knowledge discovery,
1st international conference, DaWak 1999, LNCS (Vol. 1676, pp. 116–125).

Zhang, C., Yao, X., & Yang, J. (2001). An evolutionary approach to materialized views selection in a
data warehouse environment. IEEE Transactions on Systems and Cybernetics Part C: Applications and
Reviews, 31(3), 282–294.

http://www.apache.org/foundation/records/certificate.html
http://dx.doi.org/10.1109/ENC.2007.38

	Materialized view selection using evolutionary algorithm for speeding up big data query processing
	Abstract
	Introduction
	Views, materialized views and materialized queries in Big-Data management technologies
	Materialized view selection for big data management framework
	Existing approaches
	Our approach on materialized view selection for big data warehousing
	Organization of this paper

	The problem of selecting views for materializing in big data management framework
	The cost model and problem definition of view selection for materializing in HDFS big data management
	Query processing cost
	Materialized view maintenance cost
	Number of views to be materialized and storage space requirements
	The materialized view selection problem

	Materialized view selection in big data management by DFS: A multi-objective optimization problem
	Simple problem representation
	Scalability
	Well defined objectives

	Genetic algorithms and differential evolution algorithms in solving multi-objective optimization problem
	Multi-objective differential evolution algorithm and NSGA-II for materialized view selection in HDFS based data warehouse
	Multi-objective DE with binary encoded solution representation (MODE-BE) for materialized view selection
	Promoting diversity and controlling the size of solution population
	Complexity

	Implementing NSGA-II for materialized view selection in big data management by DFS
	Complexity of NSGA-II for materialized view selection in HDFS

	Experimentation and discussion
	Experimental setup
	Parameters used
	Results and discussion

	Comparative analysis of state-of-the-art techniques with respect to quality of solutions
	Comparison measures used and obtained values
	Convergence measure
	Purity
	Spacing and Minimal Spacing

	Observations

	Conclusion and perspectives
	Compliance with Ethical Standards
	Disclosure of potential conflicts of interest
	Informed Consent
	Research involving Human Participants and/or Animals
	References

