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Abstract The increasing volume and value of data is an important enabler for data science.
In this study, we consider the event data, i.e. information on things that happen in organiza-
tions, machines, systems and people’s lives. Each event refers to a well-defined activity in a
certain business process execution, the resource (i.e. person or device) executing or initiat-
ing the activity, the timestamp of the event, as well as to various data elements recorded with
the event (e.g. the geo-location of an activity). Process mining aims to analyze event data,
in order to mine knowledge that can contribute to improving a business process behavior. In
particular, the focus of this study is on organizational mining, that is a sub-field of process
mining that aims at understanding the life cycle of a dynamic organizational structure (i.e.
a configuration of organization units) and the interactions among co-workers (resources)
arising from the analysis of real-world event logs. The innovative contribution of this study
is that the organizational mining goal is here achieved by combining concepts from process
mining, stream mining and social network analysis. This combination is an original con-
tribution of this study, not still explored in organizational mining field. In an assessment,
benchmark event data are explored, in order to understand how the presented solution allows
us to identify the life cycle a dynamic organizational structure.
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1 Introduction

The amount of data in our world is exploding, due to the spectacular growth of the digital
universe in only a few years (Hilbert and Lopez 2011). Data are collected about any type of
event, at any time and any place. Event data are the most important source of information
(van der Aalst 2016). They may concern “life events”, “machine events”, or both. They are
associated with the execution of a certain business process and registered in a wide variety
of data sources (i.e. databases, flat files, message logs, transaction logs, ERP systems and
document management systems). Each event refers to a specific activity (i.e. a well-defined
step in a business process). It may be recorded with additional information such as the
resource (i.e. person or device) executing or initiating the activity, the timestamp of the
event, or the data elements recorded with the event (e.g. the place where the activity is
performed).

However, the ultimate goal is not to store more events, but to turn event information into
real values (van der Aalst 2014). Process mining is an integral part of data science fueled by
the omnipresence of event data. In the last decade, it has inspired the development of a large
plethora of techniques, in order to explore event information in a meaningful way and learn
knowledge related to the behavior of people, organizations, machines and systems (van der
Aalst 2016). In these techniques, the wealth of information recorded with events is related
to several perspectives (Song et al. 2009; van der Aalst 2011; Appice and Malerba 2015),
such as the control-flow perspective (ordering of activities), the execution perspective (time
performances and frequency of activities) and the organizational perspective (organization
of resources). However, the majority of current process mining developments (see van der
Aalst (2011, 2016) for surveys) focuses mainly on control-flow discovery, while no compa-
rable effort has been made to facilitate the understanding of complex organizations arising
from the analysis of real-world event logs.

Going against the trend of process mining research, the focus of this paper is on orga-
nizational mining. It is a sub-field of process mining that analyzes event data along their
organization perspective (van der Aalst 2011). Its primary goals are: (1) identifying mean-
ingful relationships between resources and (2) deriving an interpretable model of the
organizational structure of a business process. In particular, addressing organizational struc-
ture discovery problems corresponds to identifying the organization units of a business
process and classifying resources according to the units they participate in.

Recently, the main stream of research in organizational mining has contributed to the
formulation of various event-based metrics (e.g. handover of work, subcontracting, working
together and joint activities), in order to derive meaningful relationships between resources
and represent such resources as a sociogram (social network) (van der Aalst and Song
2004). In addition, it has adopted a clustering formulation for the organizational structure
discovery problems and applied traditional clustering techniques, in order to group “simi-
lar” resources into clusters (organization units) (van der Aalst et al. 2005; Song and van der
Aalst 2008; Ferreira and Alves 2012). This means that, although a part of research in orga-
nization mining has begun to highlight that social network analysis may have many chances
to succeed as a comprehensive approach towards organizational mining (Song and van der
Aalst 2008), the organizational structure discovery is still performed without considering the
specific discovery algorithms (e.g. community detection algorithms), which may account
for the network property directly.

The network property, as is exhibited by several social networks, is the property of
containing community structures (Palla et al. 2009). In particular, social networks natu-
rally divide into groups of nodes with denser connections inside each group and fewer
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connections crossing between groups. Consequently, community detection in a social net-
work is the gathering of its nodes into groups in such a way that the nodes in each group are
densely connected inside and sparser outside.

We observe that clustering and community detection algorithms are closely related to
each other due to their nature. Both share the same objective of partitioning nodes into
groups. However, clustering algorithms group nodes into clusters according to their sim-
ilarity, while community detection algorithms are often modularity-based algorithms that
analyze the structure of the similarity matrix. Modularity (Clauset et al. 2004) is a quality
function that allows us to compare different partitions of a given network, rewarding those
partitions that are more cohesive internally than externally. Therefore, community discovery
allows us to display the whole network organization at a compact and more understandable
level, where each community can represent a functional group or an entity in the system. At
this level, community structure provides meaningful insights into the network organizational
principles (Nguyen et al. 2014). These considerations have mainly inspired this research
study, that intends to assess the viability of community discovery as a more powerful tool
than clustering in the field of organizational mining.

As an additional contribution in this study, we counterpose the discovery of overlapping
organization units to the traditional discovery of disjoint units. While all existing studies
have focused on the discovery of disjoint organization units, we have decided to determine
organizational structures that may fit resources, which may cover a different role in various
organization units simultaneously. This is the case of a software engineer who may partic-
ipate in various organization units involved in the different phases of a software life cycle,
e.g. design the program and build the system. Based upon these considerations, we point out
that a flexible model with overlapping organization units can provide interesting insights,
otherwise missed, of complex organizations, where roles may not be so strictly separated.

As a final contribution, we outdo the state-of-the-art in organizational mining, which
only considers event data provided as a static, finite dataset and is able to discover a single
organizational structure configuration from this dataset. We consider that this static view of
event data is restrictive, as it neglects the actual scenario, where new events can be contin-
uously generated from (new) running executions of a business process. On the other hand,
adopting an event stream (van Zelst et al. 2015) perspective leads to expecting resources
organized in dynamic social networks, which may change over time (new resources are
active, old resources are inactive and resources change role). This means that a new scope
is emerging in organizational mining. It moves the attention from the discovery of an orga-
nizational structure to the discovery and understanding of the life cycle of the dynamic
organization of a business process. This scope is also consistent with a recent research trend
(Greene et al. 2010; Spiliopoulou 2011; Oliveira et al. 2014; Dhouioui and Akaichi 2014) in
social network analysis, which has started to consider the problem of tracking the progress
of clusters/communities over time in a dynamic social network.

In short, this study actually advances organizational mining research, as it seminally
applies a (overlapping) community detection approach, in order to discover and understand
the dynamic organizational structure of a certain business process along the time line. This
organizational analysis of a business process promises a wide range of applications such
as resource assignment and schedule, skill management and organizational design. Proce-
durally, the presented approach operates in two phases. The online phase decomposes an
event stream into consecutive time-based windows. It analyzes events, window-by-window,
as they arrive from the stream and constructs the social network of the windowed resources.
The organizational structure of each social network is derived by resorting to a modularity-
based algorithm that discovers overlapping communities in the network. The offline phase



168 J Intell Inf Syst (2018) 50:165–193

is repeatable. It allows us to analyze the series of organizational structures (sets of (over-
lapping) communities) discovered at consecutive time windows, in order to identify the
organizational changes in any dynamic business organization . In particular, it derives the
life cycle of every organization unit (resource community) expressed as a series of sig-
nificant events (e.g. birth, death, merging, splitting, expansion and contraction) along the
time line.

The paper is organized as follows. Section 2 describes the background of this study in
the field of organizational mining. Section 3 introduces basic concepts, while Section 4
illustrates the organization discovery approach. Section 5 describes two business process
applications, the processed events, the experimental setup and discusses the relevant results.
Finally, Section 6 draws some conclusions and outlines some future work.

2 Background

The seminal study in organizational mining is authored by van der Aalst and Song (2004).
This study has introduced various metrics to identify relationships between resources
recorded in an event log. The proposed metrics are based on (possible) causality (e.g. han-
dover of work and subcontracting), joint executions (e.g. working together), joint activities
(e.g. how frequently two resources perform the same activity) and special event types (e.g.
reassignment metrics). Following this research direction, van der Aalst et al. (2005) have
promoted the use of sociography, in order to represent the interpersonal relationships of any
organizational structure. They have suggested that a resource sociogram (i.e. a social net-
work) can be constructed from event data. The nodes of this social network correspond to
the organizational entities. More specifically, van der Aalst (2011) have noted that often,
although not always, there is a one-to-one correspondence between the resources found in
a log of event data and the organization entities (i.e. nodes which correspond to people).
The arcs correspond to the relationships between such organization entities (or equivalently
organization resources). They may be associated with weights, which indicate the impor-
tance of the relationship between the connected entities. The higher the weight, the higher
the importance of the relationships. Once the social network is constructed, social network
metrics like centrality, closeness or betweenness can be computed, in order to characterize
the role of individual nodes/resources in a sociogram (van der Aalst and Song 2004; Song
and van der Aalst 2008).

The idea of applying sociography to organizational mining has attracted few followers
in recent years. For example, Saravanan and Rama Sree (2011) derived the social network
representation of the worker work load process in an emerald dyeing unit. They constructed
various social networks by using metrics based on handover of work, working together and
joint activities, respectively. Similarly, Sunindyo et al. (2010) constructed social networks
in the context of production automation system engineering, by looking for relationships
between machines that do similar tasks, as well as the relationships between machines
that work together to create some products. In their study, the relationships of the con-
structed social networks are based on metrics like joint activities/doing similar tasks and
joint traces/working together.

While paving the way to sociography in organizational mining, van der Aalst and Song
(2004) and van der Aalst et al. (2005), as well as Song and van der Aalst (2008) also
applied traditional clustering techniques (e.g. k-means clustering and agglomerative hier-
archical clustering), in order to group similar resources in the same cluster. Proceeding in
this research direction in the clustering field, Song et al. (2009) investigated the use of
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resource information, in order to derive the organization profile of the execution of a certain
business process. They mapped each business process execution into a vector of resource-
based features, one feature for every resource. Each resource-feature denotes the number of
times the resource participates in an event of the execution. Finally, they applied either a
clustering technique (e.g. k-means clustering, quality threshold clustering or agglomerative
hierarchical clustering) or a Self Organization Map, in order to identify groups of business
process executions sharing a similar organization. Procedurally, they measured the distance
between the organization profile of two traces by computing traditional distance measures
(e.g. Euclidean distance, Jaccard distance, Hamming distance). We note that, by remaining
under the umbrella of clustering research, it is still possible to derive a social network rep-
resentation of the business process organization with a resource connected to every other
resource. In this formulation, the importance (weight) of a relationship can be, for example,
expressed as the inverse of the distance computed between the connected resources, so that
the lower (higher) the distance, the higher (lower) the importance.

More recently, Ferreira and Alves (2012) have highlighted the importance of constructing
clusters of highly “interconnected” resources, namely communities, as an effective means to
identify the organization units of a business process. They have also observed that, depend-
ing on the metric adopted to construct the social network, the discovery of a group of densely
interconnected resources, which exhibits few connections to resources outside the group,
may take on a different meaning. For example, a joint activity-based metric leads to the dis-
covery of communities that group resources playing a similar role in the business process,
while a joint trace-based metric can promote the discovery of communities that represent
resources working together in a team. On the other hand, despite the intent of arousing
organizational mining interest in community detection research, Ferreira and Alves (2012)
still used a traditional clustering procedure, namely agglomerative hierarchical clustering,
to identify organization units of an event log. They detected similar nodes, while relegating
the use of the social network theory to a post-processing phase. In particular, from the social
network research, they adopted the idea of performing the inspection of a resource network
structure by resorting to the analysis of the so-called network modularity.

Modularity (Clauset et al. 2004) is one measure of the structure of a network. It was
designed to measure the strength of division of a network into modules (also called groups,
clusters or communities). Networks with high modularity have dense connections between
the nodes within modules, but sparse connections between nodes in different modules. Mod-
ularity has often been used in optimization methods for detecting community structure in
several kind of networks (Clauset et al. 2004). However, Ferreira and Alves (2012) con-
sidered modularity only as a way to estimate the goodness of a clustering configuration
previously discovered. They computed the modularity of the network according to the clus-
tering configuration detected at each level of the agglomerative hierarchical clustering. In
this way, they were able to output the cluster configuration that achieves the maximum
modularity.

Therefore, the current state of research is that community discovery has been indicated
as a potential organizational mining tool, but the mainstream of research is still focused on
the investigation of traditional clustering techniques in this field. In fact, organization units
are mainly discovered based on the analysis of a distance or similarity matrix overlooking
that the network data structure may lead to the application of specific community discov-
ery algorithms, which use the graph property directly (Lei and Huan 2010). To the best of
our knowledge, our preliminary work (Appice et al. 2016) is the seminal study applying a
specific community detection algorithm to the discovery of organization units, also paying
attention to aspects like discovering overlapping organization units, as well as tracking
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evolutions of organization units in dynamic scenarios. The actual intent of this research is
to foster the use of community detection as a comprehensive tool to perform organizational
mining in dynamic resource scenarios. In fact, this study does not advance research in com-
munity detection by designing novel algorithms, but defines the viability of community
detection in the context of organizational mining.

3 Basics

In this section, we introduce the basic concepts of this study, namely the event streams and
social networks.

3.1 Event stream

An event ε(Pid, a, r, t) describes something happened during the execution of a certain
business process P (van der Aalst 2011). It is characterized by a set of mandatory char-
acteristics, that is, the event corresponds to an activity a, is triggered by a resource r and
has a timestamp t , that represents date and time of occurrence. An event can be linked to a
particular execution Pid of the logged business process and is globally unique.

Focusing on the temporal dimension (van Zelst et al. 2015; Appice et al. 2016) of the
event data, events linked to (various) running executions of a specific business process can
be ordered by the timestamp independently of the execution producing them. In this way,
a continuous, unbounded event stream (see the example reported in Table 1) is populated

Table 1 A fragment of an event stream

BusinessProcessID Activity Timestamp Resource

1 Register request (R) 2010-12-30:11:02 Pete

2 Register request (R) 2010-12-30:11:32 Mike

2 Check ticket (CT) 2010-12-30:12:12 Mike

2 Check ticket (CT) 2010-12-30:12:14 Sue

2 Examine causally (EC) 2010-12-30:14:16 Pete

3 Register request (R) 2010-12-30:14:32 Pete

1 Examine thoroughly (ET) 2010-12-31:10:06 Sue

2 Check ticket (CT) 2010-12-31:15:31 Pete

2 Decide (D) 2011-01-05:11:22 Sara

1 Check ticket (CT) 2011-01-05:15:12 Mike

1 Decide (D) 2011-01-06:11:18 Sara

1 Reject request (RR) 2011-01-07:14:24 Pete

2 Pay compensation (PC) 2011-01-08:12:05 Ellen

. . . . . . . . . . . .

Each event is linked to a specific execution of a certain business process. It corresponds to an activity, has
a timestamp and is triggered by a resource. It is organized as an unbounded series of time-ordered events. It
is virtually divided into consecutive windows, which are 24 hours long, according to the time-based window
model with Δ(t) = 24h
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(Appice et al. 2016). Formally, an event stream S is an ordered, unbounded sequence of
timestamped events:

S = ε(Pid1, a1, r1, t1), ε(Pid2, a2, r2, t2), . . . , ε(Pidi, ai, ri , ti ), . . . , (1)

where events of the stream arrive sequentially, at consecutive time points (i.e. ti ≤ ti+1),
from the running executions of business process P . We observe that the running executions
feeding an event stream may change over time, since old executions can be completed, while
new executions can be started at a certain time point.

An event stream, like any data stream, is unbounded in length. It is impractical to query
all the data of a stream. A window model approach is a stream approach commonly used
to query open-ended data. Instead of computing an answer over the whole data stream, the
query (or operator) is computed, maybe several times, over a finite window of events. Coher-
ently with the considerations formulated by Gaber et al. (2005), computing a new answer
as a new event window is collected can allow us to represent the recent organization of a
business process by adapting naturally this representation to a possible change in occurring
events over time.

Several window models (e.g. time-based and count-based windows, sliding windows,
landmark windows and titled windows) are defined in the literature. We consider the
time-based window model (Gaber et al. 2005), which decomposes an event stream into con-
secutive (non overlapping) windows of a fixed temporal size (see the example reported in
Table 1). When a window is completed, it is queried. The answer is stored in a synopsis
structure for the mining phase, while the windowed events are discarded. The synopsis is
constructed in a way which is friendly to the needs of the particular problem being solved
by the mining phase (in this case the organizational structure discovery). In this study the
synopsis used to store the queried data window is a graph structure representing resources
as a social network (see details in Section 3.2).

Formally, let Δ(T ) be the window temporal size of the model, then a time-based window
model decomposes a stream S into non overlapping windows:

S(Δ(T )) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

t → t + Δ(T ),

t + Δ(T ) → t + 2Δ(T ),

. . . ,

t + (j − 1)Δ(T ) → t + jΔ(T ),

. . .

(2)

so that every window t + (j − 1)Δ(T ) → t + jΔ(T ) selects stream events
ε(Pidi , ai , ti , ri) ∈ S , acquired at each time point ti ∈ [t + (j − 1)Δ(T ), t + jΔ(T )[.

3.2 Social network

The query operator is a resource social network constructor transforming an event window
into a resource social network synopsis. The resource social network is a graph (N ,A).
Node set N is a set of nodes, where each node represents a resource triggering one or more
events in the event window. Arc set A ⊆ N × N × �+ is a set of arcs, where each arc
expresses a relationship between connected resources. Every relationship is associated with
a real-valued positive weight that expresses the importance of the relationship: the higher
the weight, the more important the relationship (arc).
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Fig. 1 The activity profile of Pete, Mike and Sue (Fig. 1a) and their social network (Fig. 1b). These resources
are active in the data window [2010-12-30:0:00, 2010-12-30:24:00] of the stream reported in Table 1. The
social network extracted from this data window contains three nodes associated with Pete, Mike and Sue,
as well as weighted arcs connecting these resources. The weight associated with every arc is the Pearson
correlation coefficient computed between the activity profiles of the edged nodes

Procedurally, we compute a metric based on the joint activities, in order to determine
interesting relationships between resources.1The selected metric focuses on the activities
that every resource performs. As described by Song and van der Aalst (2008), we assume
that resources doing similar things are more closely connected (and then have the same role)
than resources doing completely different tasks (i.e. covering different roles in the business
process). In particular, each resource is associated with an activity profile, that is, a vector
of attributes, where every attribute represents a distinct activity. This profile describes how
frequently a resource performs every specific activity (Song et al. 2009) during the window
time. An example of activity profiles is reported in Fig. 1a.

For each pair of resources, the joint activity degree is measured over this pair of
resources. If this degree is significant, an arc connects these resources in the social network,
while the joint activity degree is the weight assigned to the arc. We apply Pearson’s correla-
tion coefficient to quantify this degree/weight.2 It is computed as the covariance of the two
resources divided by the product of their standard deviations. For each pair of resources ri
and rj , we compute Pearson’s correlation coefficient between the activity profiles associated
with ri and rj , respectively. Formally,

w(ri, rj ) =
∑

A

ri(A)rj (A) − nrirj

√∑

A

ri(A)2 − nri
2
√∑

A

rj (A)2 − nrj
2
, (3)

where A denotes an activity associated with the compared resource profiles, ri(A) (rj (A))
is the number of times A is performed by ri (rj ) in the data window, ri (rj ) is the average

ri = 1
n

∑

A

ri(A)

(

rj = 1
n

∑

A

rj (A)

)

and n is the number of activities in the resource profile.

The computation of Pearson’s correlation coefficient is motivated here by various con-
siderations. This coefficient is invariant to both scale and location change. It ranges from -1
to 1. A value of 1 implies that a linear equation describes the relationship between compared
variables perfectly, with all data points lying on a line for which one variable increases as

1Alternative metrics, e.g. handover of work or subcontracting (Song and van der Aalst 2008), can be equally
considered to determine relationships between resources, without changing the general contribution of the
theory described in this study.
2Song and van der Aalst (2008) describe the use of several distance/similarity measures (e.g. Minkowski
distance, Hamming distance, Pearson’s correlation coefficient), in order to quantify the “weight” associated
with the arcs of a resource social network.
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the other increases. A value of -1 implies that all data points lie on a line for which one vari-
able decreases as the other increases. A value of 0 implies that there is no linear correlation
between the variables. Therefore, only positive values of Pearson’s correlation coefficient
indicate that activity profiles of compared resources tend to be simultaneously greater than,
or simultaneously less than their respective means. Accounting for this interpretation, Song
and van der Aalst (2008) observed that if Pearson’s correlation coefficient is used to assign a
weight to the relationship between the resources performing the joint activities, it is natural
to remove negative arcs from the social network they are associated with. We highlight that,
in their study, Song and van der Aalst (2008) also illustrated business process applications
where Pearson’s correlation coefficient worked well in combination with the joint activ-
ity metric, when both are used to identify clusters of resources doing similar tasks. Based
upon the considerations formulated in Song and van der Aalst (2008), we decide to rank
potential resource relationships according to Pearson’s correlation coefficient of the joint
activities associated with arcs. Only arcs associated with the top p ranked positive Pearson’s
correlation coefficient values are finally added to the social network synopsis.

An example of a social network synopsis whose relationships are defined with the joint
activity metric and assigned to weights computed by Pearson’s correlation coefficient is
reported in Fig. 1b.

4 Organizational mining: a community detection approach

We describe an organizational mining process which operates in two phases.
The online phase (see Fig. 2) consumes events as they arrive from the event stream.

It analyzes buffered events, window-by-window, in order to construct the social network
of the recorded resources. The social network is loaded in a graph data synopsis (see the
description in Section 3). For each data window, (overlapping) communities are detected in
the social network as a model of the current organizational structure of the business pro-
cess. A community detection algorithm is applied, in order to group cohesive resources into
communities; each community describes a specific organization unit that has more connec-
tions inside the unit than outside. In this context, overlapping communities are discovered,
in order to represent resources that may also simultaneously play various roles in the orga-
nizational structure of a business process. The organizational model (set of (overlapping)
communities) discovered from the data window is permanently stored and available for the
off-line analysis; windowed events are definitely discarded.

The off-line phase (see Fig. 3) is repeatable. It resorts to the model proposed by Greene
et al. (2010), in order to describe the evolution of a dynamic organizational structure as it is
discovered across the time line. In particular, it follows the life cycle of every organization
unit (resource community); every life cycle is characterized by a series of significant events.
These events include birth, death, merging, splitting, expansion and contraction of dynamic
units.

The on-line organization unit discovery, as well as the off-line organization unit lifecycle
analysis are described in Sections 4.1 and 4.2, respectively.

4.1 On-line organization unit discovery

In the online phase, we resort to the Louvain algorithm (Blondel et al. 2008), in order to
perform the community detection (i.e. organization unit discovery) in the constructed social
network. This algorithm is a greedy optimization that attempts to optimize the modularity
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Fig. 2 Online organizational mining: resources grouped in the same community are in the same color

of a partition of the network. Blondel et al. (2008) have proved that the Louvain algorithm
achieves a modularity comparable to pre-existing algorithms, typically in less time, so that it
is suitable for studying large networks. This founds the common opinion that considers the
Louvain algorithm an efficient and easy-to-implement algorithm to identify communities in
large networks. In addition, this algorithm reveals a hierarchy of communities at different

Fig. 3 Offline organizational mining: resources grouped in the same community are in the same color
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scales, without requiring us to pre-specify the number of communities. We observe that, as
for hierarchical agglomeration clustering (Ward 1963), this hierarchical perspective, where
communities with different sizes are organized in a tree, can provide valuable information.
In particular, it allows us to control the level of detail at which we intend to understand
the working principle of an organization: the higher levels of the hierarchy describe global
organizations, while the local levels describe local organizations. However, the Louvain
algorithm, in its original formulation, cannot discover overlapping communities. To avoid
this pitfall, we apply the Louvain algorithm to the linear network that can be constructed
from the social network. The linear network is constructed by following the theory for-
mulated by Evans and Lambiotte (2010) and representing the arcs of the social network
as nodes of the linear network. Disjoint communities discovered in the linear network are
finally mapped into overlapping communities of the original social network.3 The three
phases of this discovery process, i.e. the linear network construction, the Louvain discovery
of communities in the linear network and the transformation of every linear community into
a resource community, are described in the following.

4.1.1 Linear network

Let R = (N ,A) be a resource social network, so that N is the node set (i.e. set of
resources) and A is the arc set (i.e. set of weighted relationships between resources). A
linear network L = (NL,AL) can be constructed from R = (N ,A), so that NL is the
linear node set (i.e. set of linear nodes) and AL is the linear arc set (i.e. set of weighted lin-
ear relationships between linear nodes). Procedurally, for every arc (u, v, w) ∈ A (where
u and v are resources connected by a relationship, while w is the weight associated with
this relationship), a linear node 〈uv〉 ∈ NL is constructed in correspondence with (u, v,w).
Similarly, for every pair of arcs (ui, vi , wi), (uj , vj , wj ) ∈ A, which share one vertex
denoted as x (i.e. x = ui = uj or x = ui = vj or x = vi = uj or x = vi = vj ), a linear arc
(〈uivi〉, 〈ujvj 〉, w) ∈ AL is constructed to express the relationship between linear nodes
〈uivi〉 and 〈ujvj 〉 ∈ NL. Linear weight w is defined as follows:

w = wi

deg(x) − wj

, (4)

where deg(x) is the sum of weights associated with arcs of A incoming to /outcoming from
shared node x. An example of a linear network associated with a social network is reported
in Fig. 4a–c.

4.1.2 Louvain discovery in a linear network

The algorithm inputs the linear network L = (NL,AL) and finds node partitioning that
tries to maximize the modularity of nodes NL based on arcs AL. A definition of the mod-
ularity measure calculated to evaluate the quality of a node partitioning is reported below.

3The idea of discovering overlapping communities by processing the linear network associated with a social
network is mainly based on the considerations reported in Evans and Lambiotte (2010), which can be easily
applied to the setting in this study. In fact, although resources may also belong to various organization units
simultaneously, the arcs between them represent, in this formulation, a single type of interaction. This makes
it reasonable to discover disjoint communities when the focus is on networks representing these interactions
in the nodes. On the other hand, transforming detected linear communities into resource communities would
naturally represent overlaps.
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Fig. 4 An example of how a resource social network (see Fig. 4a) is transformed into the linear network (see
Fig. 4b) and an example of how the linear weights are computed in the linear network Fig. 4c)

The discovery is divided into two phases repeated iteratively (Blondel et al. 2008). In the
first phase, a different community is initially assigned to each node. Then, for each node i,
the algorithm considers every neighbor j of i, in order to evaluate the gain of modularity
(details are reported below) that would take place by transferring i from its community into
the community of j . The node i is transferred into the community for which this maximum
positive gain can be achieved. If no positive gain is possible, i stays in its original commu-
nity. This evaluation is applied by processing, repeatedly and sequentially, all linear nodes
until no further modularity improvement can be achieved. The first phase stops when a local
maximum of the modularity is attained and no individual transfer can further increase the
modularity. In the second phase, a new meta-network is built. Its meta-nodes represent the
communities discovered during the first phase. Meta-arcs between these new meta-nodes
are given by the sum of the weight of the arcs between linear nodes in the corresponding
two communities. The arcs between the nodes of the same community lead to self-loops for
this community in the new network. Once the second phase is completed, the first phase
of the algorithm is reapplied to the resulting meta-network, in order to iterate the discov-
ery process, until there are no more changes in discovered communities and/or maximum
modularity is attained.

Computing modularity The modularity of a community partitioning is measured by
computing the Reichardt-Bornholdt measure (Reichardt and Bornholdt 2006). This mea-
sure is considered since it allows us to tune the number and size of communities by
resorting to a resolution parameter γ . Higher values of γ foster the discovery of a larger
number of communities of smaller size and vice-versa (Reichardt and Bornholdt 2006).
Let CL = {

C1
L, C2

L, . . . , Cl
L
}

be a community partitioning of the node set NL, so that:
(1)

⋃

Ck
L∈CL

Ck
L = CL and (2) for all Ch

L, Ck
L ∈ CL (h 	= k), Ch

L ∩ Ck
L = �. The

Reichardt-Bornholdt measure RB is formulated as follows:

RB(CL) = 1

2m

∑

i,j∈NL

[(

Aij − γ
degin(i)degout (j)

2m

)

δ
(
Ci
L, C

j
L

)]

, (5)

where Ci
L and C

j
L denote communities, which group nodes i and j , respectively; Aij =

wij if arc (i, j, wij ) ∈ AL exists, 0 otherwise; m is the sum of defined weights
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(

i.e. m = ∑

(i,j,wij )∈AL
wij

)

; γ is the resolution parameter; degin(i) and degout (j) are the

sum of weights incoming to/outcoming from i and j , respectively; δ
(
Ci
L, C

j
L

)
is the Kro-

necker function, so that δ
(
Ci
L, C

j
L

)
= 1, if i and j are grouped in the same community

(
i.e. Ci

L = C
j
L

)
, 0 otherwise.

Moving the focus from arcs to communities, Formula 5 can be rewritten as follows (see
details in Appendix A):

RB(CL) =
∑

Ch
L∈CL

(
ehh − γ ain

h aout
h

)
, (6)

where ehh = 1
2m

∑

i,j∈NL
Aij δ

(
Ci
L, Ch

L
)
δ
(
C

j
L, Ch

L

)
describes the arcs falling in a commu-

nity Ch
L with respect to the entire set of arcs, while ain

h = 1
2m

∑

i∈NL
deg(i)inδ

(
Ci
L, Ch

L
)

and aout
h = 1

2m

∑

j∈NL

deg(j)out δ
(
C

j
L, Ch

L

)
describe the arcs incoming to/outcoming from

nodes falling in Ch
L with respect to the entire set of arcs.

Based upon this arc-centered formulation of RB, Aynaud et al. (2013) showed that the
gain of modularity when a node x is moved from the old community Cold

L to the new com-
munity Cnew

L (i.e. the difference between the network modularity with the community set
produced after the re-assignment of x and the modularity before this re-assignment) can be
easily computed as follows:

Δ(RB)
(
x, Cold

L , Cnew
L

)
=

= 1

2m

∑

n∈Cnew
L

[Anx + Axn] − 1

2m

∑

n∈Cold
L −{x}

[Anx + Axn]

− 1

2m

∑

n∈Cnew
L

[
degin(n)degout (x) + degin(x)degout (n)

2m

]

+ 1

2m

∑

n∈Cold
L −{x}

[
degin(n)degout (x) + degin(x)degout (n)

2m

]

.

(7)

An intuitive interpretation Formula 7 is that the modularity gain can be measured by:

1. adding up the weight of every arc that connects x and a node n ∈ Cnew
L ;

2. subtracting the weight of every arc that connects x and a node n ∈ Cold
L − {x};

3. subtracting the product between the degree incoming to /outcoming from node x and
the degree outcoming from / incoming to any node n ∈ Cnew

L ;
4. adding up the product between the degree incoming to /outcoming from node x and the

degree outcoming from / incoming to any node n ∈ Cold
L − {x}.
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We observe that this optimization has been based upon the consideration that all the
arcs, which are outside Cold

L and Cnew
L , do not contribute to changing the modularity of the

community-based network partitioning, hence they can be omitted from the calculation. As
proved by Aynaud et al. (2013), determining the modularity gain in this way allows us to
diminish the computation burden when evaluating community re-assignments.

4.1.3 From linear communities to resource communities

Finally, every linear community Ci
L ∈ CL (see Fig. 5a) is one-to-one associated with a

resource community Ci ∈ C (see Fig. 5b). This set of resource communities represents the
instantaneous model of the organizational structure of the business process described at the
window time. Formally, Ci groups every resource node that contributes to the definition of
a linear node belonging to Ci

L, that is:

Ci =
⎛

⎜
⎝

⋃

〈uv〉∈Ci
L

u

⎞

⎟
⎠ ∪

⎛

⎜
⎝

⋃

〈uv〉∈Ci
L

v

⎞

⎟
⎠ . (8)

The degree function degree : N × C → [0, 1] is computed, in order to quantify the
membership degree according to which a resource node is part of a resource community
(organization unit). Let NL(u) be the set of linear nodes, which are associated with resource
node u ∈ N , that is,

NL(u) ⊆ NL =
⋃

i∈NL∧(i=〈u,v〉∨i=〈v,u〉)
i, (9)

CL(u) be the sequence of linear communities, which are associated with every linear node
of NL(u), that is:

CL(u) = 〈CL(i1), CL(i2), . . . , CL(ih)〉 with ij ∈ NL(u), (10)

Fig. 5 Overlapping resource community discovery: disjoint linear communities discovered by the Louvain
algorithm in the linear network (see Fig. 5a) are mapped into overlapping resource communities (see Fig. 5b).
The resource node c of the social network is part of the yellow community with degree 0.75, while it is part
of the green community with degree 0.25
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where CL(i) denotes the linear community that groups linear node i. For each resource
community Ci , the degree according to which u is part of Ci is measured as follows:

degree(u, Ci) =
{ |{Cj

L∈CL(u)|Cj

L=Ci
L}|

|{CL(u)}| if Ci
L ∈ CL(u)

0 otherwise
, (11)

where Ci
L denotes the linear community one-to-one associated with Ci .

4.2 Off-line organization life cycle discovery

In the off-line phase, we track the life cycle of a dynamic organizational structure after its
series of instantaneous organization units has been discovered from the business events,
buffered into consecutive time windows. This life cycle is represented as a time line, whose
consecutive time points are associated with the on-line processed consecutive time windows.
Considering that the organization units are here modeled as overlapping resource commu-
nities, the time line of a life cycle is formally expressed as a sequence of instantaneous
communities, ordered by time, with one instantaneous community for each window-
stamped time point. In particular, the evolution of a dynamic resource community along the
time line is encoded in a sequence of predefined evolution events (Greene et al. 2010) (see
Fig. 6), described as follows:

– A birth describes a new resource community observed at time t with no corresponding
community in the set of instantaneous communities detected in the past time t − 1. A
new life cycle is created with the time line starting at this birth time.

– A death describes the dissolution of a resource community that does not appear
for several consecutive time points. The time line of this community ends when it
disappears.

– A merge occurs when two or more distinct resource communities observed at time
t − 1 can be similar to a single community at time t . A branch is added to connect the
single communities at time t −1 to the merged community created at time t . The single
communities subsequently share the same time line.

– A split occurs when a single resource community present at time t − 1 can be similar
to two or more distinct resource communities at time t . A branching occurs from the
starting community to the split ones, with the creation of an additional resource com-
munity that shares the time line up to time t − 1, but has a distinct time line from time
t onwards.

Fig. 6 The life cycles of dynamic organization units (resource communities) of a business process as they
are detected along the time line. Frontier communities are drawn with a dotted line
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– A continuation of a resource community occurs when its composition is (near-)stable
at time t .

– An expansion of a resource community occurs when its cardinality grows at time t .
– A contraction of a resource community occurs when its cardinality decreases at time t .

We resort to the algorithm proposed by Greene et al. (2010),4 in order to discover the
evolution events described above and use them to construct the life cycle of the dynamic
organzational structure. The discovery is based on the analysis of the degree of similar-
ity between the pairs of resource communities discovered at consecutive time points. The
algorithm inputs a time series T = C1, C2, . . . , Ct , . . . , Cn, where each instantaneous organ-
zational structure Ct is a set of overlapping resource communities extracted at a specific
time window and timestamped with t in T . The output is the life cycle of this organization
time series. This is modeled as a time-step organization network (Greene et al. 2010). The
nodes of this network, organized by their timestamp, correspond to the instantaneous com-
munities discovered at consecutive time points. In particular, step t represents a snapshot of
the nodes timestamped at time t . The inter-step arcs of this network link nodes/communities
at successive steps by representing evolution events (see Fig. 6). Every inter-step link path
(time line path) describes the life cycle of a dynamic organization unit starting from its
birth. The most recent community in a time line path denotes its frontier community. The
algorithm operates in two phases (see Algorithm 1):

1. The initialization phase considers t = 1. It processes the organizational structure C1
and adds every resource community C ∈ C1 both to step 1 of the node set of the time-
step organization network D (line 2, Algorithm 1) and to the frontier set F (line 3,
Algorithm 1).

2. The mining phase, that is iterated for each time point t (t = 2, 3, . . . , n), discovers the
evolution events at time t (lines 6-9, Algorithm 1), adds a new step t in D (line 10,
Algorithm 1), updates F (line 11, Algorithm 1). Let Et be the set of evolution events,
which describe how the community set Ct evolves with respect to the frontier set F ,
then step t of D is grown with nodes associated with communities of Ct and inter-
step arcs associated with events of Et . F is updated, in order to store the most recent
communities of the time line paths in current D.

4The life cycle discovery algorithm is independent of the algorithm used on-line, in order to discover
instantaneous organizational structures of the business process under analysis.
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In particular, the detection of evolution events and their transformation into inter-step
arcs of D is based on the analysis of similarities between each instantaneous community
C ∈ Ct and each frontier community CF ∈ F (community matching analysis). The Jaccard
coefficient is computed as a similarity measure so that jaccard(C1, C2) = |C1∩C2||C1∪C2| . The
compared communities are similar if and only if their Jaccard coefficient exceeds a user-
defined threshold σ . In the described algorithm, the computed similarities are explored in
three steps.

1. First, we consider every C ∈ Ct . If there is no frontier CF ∈ F , so that
jaccard(C,CF ) ≥ σ , then a birth event has happened. C becomes a new node at step
t of D. A new time line path would start in this node. If there is one and only one fron-
tier CF ∈ F so that jaccard(C, CF ) ≥ σ , this indicates the continuation from CF to
C. If there are two or more frontiers CF1 , . . . , CFk

∈ F so that jaccard(C,CFi
) ≥ σ

(i = 1, 2, . . . , k), then a merge event has happened. The new merged community is
linked to the time lines of the frontier communities contributing to the merge.

2. Then, we consider every CF ∈ F . If there are two or more resource community
C1, . . . , Ck ∈ Ct so that jaccard(Ci, CF ) ≥ σ (i = 1, 2, . . . , k), then a split event
has happened. Every new split community is connected to the time line of the frontier
community that has initiated the split.

3. Finally, we consider every pair (C, CF ) ∈ Ct × F , so that jaccard(C,CF ) ≥ σ , if
cardinality(C−CF )

cardinality(C)
> θ , then an expansion event has happened; if cardinality(CF−C)

cardinality(CF )
>

θ , then a contraction event is manifested. The expansion/contraction threshold θ is a
user-defined parameter.

An example of evolution events tracked according to the procedure described above is
reported in Example 1.

Example 1 (Evolution event discovery) Let us consider frontier set F composed of frontier
communities CF1 = {a, b, c}, CF2 = {d, e, f } and CF3 = {h, i, l} and organizational
structure C composed of communities C1 = {a, b, c, d, e, f }, C2 = {h, i}, C3 = {i, l, m}
and C4 = {m, o}. Jaccard similarities between F and C are reported in the following:
⎛

⎜
⎜
⎝

C1 = {a, b, c, d, e, f } C2 = {h, i} C3 = {i, l, m} C4 = {m, o}
CF1 = {a, b, c} 3

6 = 0.5 0 0 0
CF2 = {d, e, f } 3

6 = 0.5 0 0 0
CF3 = {h, i, l} 0 2

3 = 0.66 2
4 = 0.5 0

⎞

⎟
⎟
⎠ .

Let us explore Jaccard similarities with σ = 0.5 and θ = 0.5. We discover the following
events:

1. A birth event on C4 = {m, o}, as there is no frontier community CF ∈ F so that
jaccard(C4, CF ) ≥ σ .

2. A continuation event on C2 = {h, i}, as there is only frontier community CF3 = {h, i, l}
so that jaccard(C2, CF3) ≥ σ .

3. A continuation event on C3 = {i, l, m}, as there is only frontier community CF3 =
{h, i, l} so that jaccard(C3, CF3) ≥ σ .

4. A merge event on C1 = {a, b, c, d, e, f }, as there are frontier communities
CF1 = {a, b, c} and CF2 = {d, e, f } so that jaccard(C1, CF1) ≥ σ and
jaccard(C1, CF2) ≥ σ .

5. a split event on C2 = {h, i} and C3 = {i, l, m}, as there is frontier community CF3 =
{h, i, l} so that jaccard(C2, CF3) ≥ σ and jaccard(C3, CF3) ≥ σ .
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6. An expansion event on C3 = {i, l, m}, as there is a continuation from CF3 to C3 and
cardinality(C3−CF3

)

cardinality(C)
= 2

3 > θ .

5 Applications

We consider event streams produced in two benchmark process mining applicative scenar-
ios. Our goal is to assess the viability of performing the organizational inspection of the
involved business processes by applying the described comprehensive approach, compris-
ing social network analysis and stream data mining. In particular, we evaluate the accuracy
of the instantaneous organizational structure discovery in the on-line processing phase, as
well as assess the significance of the organizational life cycle discovery performed in the
off-line inspection phase.

5.1 Business process scenario

The first business process scenario is taken from a Dutch Academic Hospital and provided in
the Business Processing Intelligence Challenge 2011 (BPI 2011).5 The log contains 150.291
events from January 1, 2005 to April 15, 2008 in 1143 traces. It tracks the organizational
behavior of 42 resources (e.g. Emergency room, Cardiovascular clinics, Nursing ward and
Recovery room / high care). Each trace is a patient of a Gynaecology department. It indi-
cates how the patient goes through different (maybe overlapping) phases, where a phase
consists of the combination Diagnosis and Treatment. The second business process scenario
is taken from a Dutch Financial Institute and provided in the Business Processing Intelli-
gence Challenge 2012 (BPI 2012).6 The log contains 262.200 events from October 01, 2011
to March 3, 2012 and 69 resources, in 13.087 traces. It tracks the organizational behavior
of 63 resources identified by a 5-digit code (e.g. 10821, 10629, 10609 and 11289). The
business process is an application process for a personal loan or overdraft within a global
financing organization.

In both scenarios, event streams are processed with the time-based window model having
Δ(T ) = 120 days for BPI 2011 and Δ(T ) = 15 days for BPI 2012, respectively. These
window sizes have been decided based upon the common duration of a business process
execution in both scenarios. We drop out time windows, where no event has been produced.
Resource social networks are constructed with the top p = 75 % ranked positive Pearson
correlation values (see details in Section 3.2). The structure (number of nodes, number of
arcs and average degree) of the series of social networks, constructed in both scenarios, is
described in Table 2.

5.2 Organizational structure discovery

We start the analysis of the organizational structures discovered through the organizational
structure discovery phase (see Section 4.1) by comparing the overlapping community dis-
covery to the baseline disjoint community discovery. This baseline is defined by applying
the Louvain algorithm to the resource social network directly (i.e. without resorting to the

5http://www.win.tue.nl/bpi/2011/challenge
6http://www.win.tue.nl/bpi/2012/challenge

http://www.win.tue.nl/bpi/2011/challenge
http://www.win.tue.nl/bpi/2012/challenge
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Table 2 Resource social networks (BPI 2011 and BPI 2012): number of nodes (N), number of arcs (A) and
average node degree (deg)

BPI 2011 BPI 2012

Time horizon N A deg Time horizon N A deg

2005/01/01-2005/05/01 22 13 1.18 2011/10/01-2011/10/16 46 455 19.78

2005/05/01-2005/08/29 19 8 0.84 2011/10/16-2011/10/30 44 408 18.55

2005/08/29-2005/12/27 27 24 1.78 2011/10/30-2011/11/14 50 516 20.64

2005/12/27-2006/04/26 29 23 1.59 2011/11/14-2011/11/29 52 556 21.38

2006/04/26-2006/08/24 28 21 1.50 2011/11/29-2011/12/14 50 531 21.24

2006/08/24-2006/12/22 29 16 1.10 2011/12/14-2011/12/29 49 550 22.45

2006/12/22-2007/04/21 27 20 1.48 2011/12/29-2012/01/13 47 543 23.11

2007/04/21-2007/08/19 27 24 1.78 2012/01/13-2012/01/28 47 567 24.13

2007/08/19-2007/12/17 27 24 1.78 2012/01/28-2012/02/12 44 487 22.14

2007/12/17-2008/04/15 19 9 0.95 2012/02/12-2012/02/27 47 579 24.64

2012/02/27-2012/03/13 46 586 25.48

2012/03/13-2012/03/29 22 97 8.82

linear network transformation of the network). The compared organizational structures are
discovered by varying resolution parameter γ of the Reichardt-Bornholdt measure among
0.5, 1, 1.5 and 2. We proceed in this study by comparing the organizational structures dis-
covered by resorting to the community detection approach presented in this paper, to the
structures discovered by resorting to the clustering approach introduced by Song and van
der Aalst (2008).

5.2.1 Evaluation metrics

Following the mainstream of research in social network analysis, a modularity metric is
used, in order to measure the quality of every organizational structure discovered by the
community detection approach. This metric allows us to quantify the ability of putting
highly interconnected resources in the same community (organization unit), while putting
separate resources in distinct communities. Taking into account that, in this study, the
organization structures are primarily discovered in the form of “overlapping” resource com-
munity structures, the extended modularity metric (Shen et al. 2009) is considered. This
metric is formulated as follows:

E(C) = 1

2m

∑

i,j∈N

1

OiOj

[(

Aij − degin(i)degout (j)

2m

)

δ(Ci , Cj )

]

, (12)

where C is the organizational structure (i.e. resource community set) ; Oi (Oj ) is the num-
ber of communities to which i (j ) belongs, Aij = wij if arc (i, j, wij ) exists in the resource
social network, 0 otherwise; m is the sum of weights on the entire network, while degin(i)

(degout (j)) is the sum of weights incoming to /outcoming from i (j ); δ(Ci , Cj ) = 1 if i and
j are grouped in the same community, 0 otherwise. This modularity metric equals 0 when
all the resources belong to the same organization unit (community). The higher the met-
ric, the more significant the community structure of the discovered organization. As already
observed by Shen et al. (2009), the extended modularity reduces to Reichardt-Bornholdt
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measure RB of modularity (see Formula 5) when RB is formulated with γ = 1 and both
RB and E are computed with each node/resource belonging to only one community (i.e. dis-
joint communities are discovered). We also observe that extended modularity E allows us to
measure the modularity of both disjoint and overlapping organizational structures in a simi-
lar fashion, directly on the resource social network. In this way, we can reasonably compare
the disjoint and overlapping organizations, which can be extracted from the same resource
network, even though the approach proposed in this study discovers the overlapping orga-
nizational structure by computing the Reichardt-Bornholdt measure on the linearization of
the resource social networks.

The extended modularity is analyzed in combination with structural metrics such as the
number of organization units, in order to evaluate the granularity of the discovered organiza-
tional structures, as well as the number of resources grouped in several units simultaneously,
in order to evaluate the overlapping degree of these structures. We also consider the learning
time spent completing the discovery process.

Finally, as the community detection approach is compared to the clustering approach,
we also consider the Silhouetted index (Rousseeuw 1987). This metric is generally adopted
in machine learning, in order to evaluate clustering algorithms. It measures the ability of
detecting clusters (organization units) with similar (interconnected) resources (high cohe-
sion) compared to other clusters (separation). It ranges between -1 and 1. The higher the
Silhouette index, the more appropriate the community/cluster configuration.

5.2.2 Disjoint community detection vs Overlapping community detection

The extended modularity of the organization structures, discovered at the consecutive time
windows of the streaming time, is reported in Fig. 7a (disjoint organization units) and
b (overlapping organization units) for BPI 2011, and in Fig. 7e (disjoint organization
units) and f (overlapping organization units) for BPI 2012. The number of organization
units discovered per structure is reported in Fig. 7c (disjoint organization units) and d

Fig. 7 Organizational structure analysis: modularity and number of (disjoint and overlapping) organization
units (Y axis) with respect to time window (X axis). The organizational structure discovery is performed by
varying the resolution parameter γ of the Reichardt-Bornholdt measure between 0.5, 1, 1.5 and 2
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Fig. 8 Organizational structure analysis: modularity and number of organization units (Y axis) with respect
to time window (X axis). The disjoint organization units (normal line - D) are compared to the overlapping
organization units (dotted line - O). Both are discovered with γ = 0.5

(overlapping organization units) for BPI 2011 and in Fig. 7g (disjoint organization units)
and h (overlapping organization units) for BPI 2012.

The inspection of the evolution trend exhibited by these metrics confirms that the pre-
sented approach is actually able to control the granularity of the discovered organizational
structure by resorting to the resolution parameter γ . In general, the lower the resolution
value (γ = 0.5 and 1.0), the lower the number of discovered units and the higher the mod-
ularity of the derived organizational structure. This behavior, that is generally exhibited by
both the overlapping and disjoint discovery approach, confirms the ability to control the res-
olution power of an organizational structure model by computing the Reichardt-Bornholdt
measure in combination with the hierarchical Louvain learning during the community
detection phase.

Additional considerations regard the pairwise analysis of the disjoint and overlapping
organizational structures constructed with γ = 0.5. Their metrics are compared in Fig. 8a
(modularity) and c (number of units) for BPI 2011 and in Fig. 8b (modularity) and d (number
of units) for BPI 2012. Normal lines represent disjoint communities, while dotted lines
represent overlapping communities. We observe that, in both business process scenarios,
the discovery of overlapping communities (dotted line) increases the number of detected
organization units, while decreasing the modularity of the final organizational structure.
The finer granularity is caused by the higher degree of overlap that produces the lower
modularity of the structure as an extra-outcome.7

Studying more closely the interpretation of these results, we note that, although the dis-
covery of overlapping organization units can only be obtained at the cost of a reasonable loss
of the modularity, it may crucially contribute to improving the comprehension of the struc-
tural and functional properties of organizational structures, which do not necessarily involve
a strict separation of their organization units. For example, let us analyze the organization
units in which “Radiotherapy” (BPI 2011) is involved from January 1, 2005 to May 1, 2005.
In the disjoint organizational structure, “Radiotherapy” is part of a single organization unit
composed of:

– “Internal Specialisms clinic “,“Anesthesiology clinic”, “Obstetrics and Gynaecology
clinic” and “ Radiotherapy”.

In the overlapping organizational structure, “Radiotherapy” is part of three distinct units
(which probably have different missions in the Gynecology department), that is:

7Similar behavior can be observed by performing this pairwise comparison for the overlapping and disjoint
organization structures discovered with γ = 0.5, 1, 1.5 and 2.
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– “Emergency room”, “Internal Specialisms clinic”, “Obstetrics and Gynecology clinic”
and “Radiotherapy” (that involves“Radiotherapy” with degree 0.25);

– “Emergency room”, “Internal Specialisms clinic”, “Radiotherapy” and “Recovery
room / high care” (that involves“Radiotherapy” with degree 0.5);

– “Anesthesiology clinic”, “Cardiovascular clinic”, “Radiotherapy” and “Recovery
room / high care” (that involves“Radiotherapy” with degree 0.25).

We observe that the overlapping structure is able to fit the presence of interesting
interconnections between “Radiotherapy” and “Emergency room”, “Radiotherapy” and
“Cardiovascular clinic”, as well as “Radiotherapy” and “Recovery room / high care”. This
knowledge is completely missing in the disjoint organizational structure, since the strength
of the interconnection between “Emergency room”, “Cardiovascular clinic” and “Recovery
room / high care” is so weak that it prevents their grouping in a single organization unit.
On the other hand, the discovery of three different units around “Radiotherapy” outlines
three different Radiotherapy missions in the Gynecology department. These missions cor-
respond to different resource structures, which probably have different functions, although
all include “Radiotherapy”.

Proceeding in this quality inspection, we analyze the number of resources grouped in var-
ious organization units simultaneously by varying the resolution parameter γ . This metric is
reported in Fig. 9a for BPI 2011 and Fig. 9b for BPI 2012. We note that the higher number
of organization units (i.e. the higher resolution parameter γ ) is always associated with the
improved capability of detecting small specific units, at a higher level of resolution. This
reveals multifaceted resources which are able to cover several roles in various units, simul-
taneously. On the other hand, the intensity of the overlapping phenomenon is stronger in
BPI 2012 (see Fig. 9b) than in BPI 2011 (see Fig. 9a). This reveals that the hospital business
process shows a stricter separation of roles than the financial business process.

Finally, we investigate the efficiency of the discovery process. The learning time (in mil-
liseconds), spent by the overlapping community detection approach with γ varying between
0.5, 1, 1.5 and 2.0, is reported in Fig. 10a for BPI 2011 and Fig. 10b for BPI 2012. The
learning time (in milliseconds), spent discovering disjoint and overlapping communities
with γ = 0.5 is reported in Fig. 10c for BPI 2011 and Fig. 10d for BPI 2012. We note that

Fig. 9 Organizational structure analysis: number of nodes (N - blue bar) vs number of overlapping nodes
(ON ). The overlapping organizational structure discovery is performed by varying the resolution parameter
γ of the Reichardt-Bornholdt measure between 0.5 (red bar), 1 (green bar), 1.5 (purple bar) and 2 (cyan bar)



J Intell Inf Syst (2018) 50:165–193 187

Fig. 10 Organizational structure analysis: learning time (in milliseconds, Y axis) with respect to time win-
dow (X axis).The overlapping organizational structure discovery is performed by varying the resolution
parameter γ of the Reichardt-Bornholdt measure between 0.5, 1, 1.5 and 2 (see Fig. 10a and b). The over-
lapping discovery is compared to the disjoint discovery for γ = 0.5 (see Fig. 10c and d). The learning time
is collected on Intel(R) Core(TM) i7-4720HQ CPU @ 2.60GHz 16.0GB RAM running Windows 8.1

this learning time depends on the number of processed resources, as well as the number of
discovered organization units, but it is (near-)stable with respect to the resolution param-
eter γ . On the other hand, we note that the discovery of overlapping organization units is
time-consuming, although the learning time effort is, in general, small.

5.2.3 Community detection vs clustering

We complete this investigation by focusing on the social network perspective adopted in this
study and comparing the performances of both the community detection-based approach,
described in this paper, and the clustering-based approach, illustrated in the seminal research
of Song and van der Aalst (2008). Since this clustering-based approach is defined, in order
to discover disjoint resource clusters, we compare here disjoint clusters with disjoint com-
munities. For this comparative analysis, we construct the activity profile of the resources
by considering the entire event log without any window-based decomposition of the logged
events. Coherently with the theory reported in Section 3.2, we compute Pearson’s corre-
lation coefficient to measure the joint activities performed by every couple of resources.
As reported in Song and van der Aalst (2008), the agglomerative hierarchical clustering
algorithm is adopted for the clustering phase.

To evaluate the quality of the discovered organization structures (sets of communities
and/or clusters), we consider again the extended modularity metric (see Formula 12), as the
modularity is a metric generally adopted to evaluate community detection algorithms. In addition,
we consider the Silhouette index (Rousseeuw 1987), which is generally adopted to evaluate
clustering algorithms. For each business process scenario, we select the clustering configu-
ration having the number of detected clusters equal to the number of detected communities.

The results are reported in Table 3. These results contribute to validating our intuition
that a community detection approach can outperform a clustering approach when both are
used to mine the organizational structure that fits the organizational behavior of a business
process. In fact, in both scenarios, the discovered community set exhibits higher modularity,
as well as higher appropriateness than the discovered cluster set.

5.2.4 Learned lessons

We note that this empirical study contributes to assessing the actual viability of our idea
of applying a community detection approach in the context of organizational mining. To
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Table 3 Community detection (γ = 0.5) vs Clustering: Extended modularity and Silhouette index. The best
results are in bold

Scenario n. units Community model Clustering model

modularity Silhouette index modularity Silhouette index

BPI 2011 18 0.676 0.279 0.616 0.271

BPI 2012 4 0.123 0.714 0.122 0.669

highlight the advantages and limits of the proposed solution, we briefly summarize the
learned lessons:

1. The study confirms that a community-based organizational structure generally exhibits
a higher modularity and better appropriateness than its cluster-based counterpart (see
the results in Section 5.2.2). This is an empirical confirmation of how this study takes
a step forward from the seminal work of Song and van der Aalst (2008).

2. The study allows us to conclude that a limitation of the presented approach is that
the discovery of overlapping organizational units can only be obtained at the cost of
a reasonable loss of the modularity. However, the discovery that a resource may also
participate in various units simultaneously can be an effective means to model appro-
priately various complex organizations, which do not admit such a strict distinction
of roles. In particular, our qualitative analysis reveals that an organizational structure
comprising overlapping units is a more flexible organization model. It is able to reveal
which resources pursue “different” missions simultaneously, as well as to derive a
structural characterization of resources involved in each mission. This kind of knowl-
edge may be missed with the discovery of disjoint organization units (see the results in
Section 5.2.3).

Fig. 11 Organization life cycle analysis: number of evolution events grouped per event type (continuation,
contraction, expansion, merge, split, birth and death). A bar group represents each event type; one bar for
each time window. The overlapping organizational structure discovery is made with γ = 0.5. The community
matching is performed with a similarity threshold σ = 0.75 and a contraction/expansion threshold θ = 0.35
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3. The analysis of the set-up of the specific algorithm, used to discover communities,
shows that its resolution parameter can be decided based on specific application-
requirements (e.g. number of units and modularity of the structure). In general, the
higher the parameter, the higher the number of units and the lower the modularity (see
the results in Section 5.2.2).

5.3 Organizational life cycle discovery

We analyze the performance of the organizational life cycle discovery phase (see
Section 4.2) along the type of detected evolution events. We consider the instantaneous
overlapping organization structures discovered with γ = 0.5. The evolution events are
discovered with similarity threshold σ = 0.75 and contraction/expansion threshold θ =
0.35.

The number of continuations, expansions, contractions, splits, merges, births and deaths
detected by processing every instantaneous organizational structure along the time line is

Fig. 12 A fragment of organizational life cycles discovered for both BPI 2011 (Fig. 12a) and BPI 2012
(Fig. 12b). Resources belonging to overlapping communities are highlighted with a circle
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reported in Fig. 11a for BPI 2011 and Fig. 11b for BPI 2012. We note that the majority
of detected life cycles starts at the beginning of the stream (a high number of birth events
is detected at the first time window). A high number of continuation events is detected
at each processed instantaneous organizational structure. This means that the time life of
an organization unit typically continues over time in both these business processes. This
pattern suggests that a resource often covers a specific role uninterruptedly over time. This
consideration is also confirmed by the low number of both contractions and splits detected at
consecutive time points. On the other hand, there are cases of merges revealing the presence
of organization units whose roles evidently converge at a particular time.

To complete this analysis, we analyze fragments of discovered community life cycles,
discovered for both BPI 2011 (see Fig. 12a) and BPI 2012 (see Fig. 12b). They allow us to
track the evolutions (birth, split, merge, and so on) of the organizational units discovered
by analyzing the events produced by the executions of the two business processes consid-
ered in this study. We note that, in both scenarios, several resources participate in different
organizational structures simultaneously. This phenomenon is appropriately captured by the
discovery of overlapping communities.

6 Conclusion

Process mining aims to exploit event information, in order to learn knowledge related to
the behavior of people, organizations, machines and systems. Organizational mining is a
sub-field of process mining that focuses on the organization information of event data by
learning more about people, machines, organizational roles, work distribution and work
patterns.

In this study, we follow the research direction initiated by van der Aalst and Song (2004)
and Song and van der Aalst (2008), so we still consider social network analysis as a basic
approach to organizational mining. However, we take a step forward in this direction, as
we propose combining stream data mining and social network analysis, in order to derive a
comprehensive approach to perform organizational mining in a dynamic resource scenario.
In particular, we consider a stream model to represent events produced by business exe-
cutions. We use a time-based window model to decompose event streams into consecutive
windows, while formalizing a community detection approach to discover and understand
the dynamic organizational structure of the logged business process. The discovery phase is
defined, in order to mine overlapping, dynamic organization units, to quantify the degree of
membership of a resource to several organization units and to understand the evolution (life
cycle) of an organizational structure along the time line.

We investigate the viability of the described approach by considering event streams
produced in two benchmark process mining applicative scenarios. This investigation con-
tributes to understanding prominent organizational patterns in both business processes. We
note that these patterns promise a wide range of applications such as resource assignment
and schedule, skill management and organizational design.

As future work, we plan to investigate the performance of the proposed approach in the
analysis of resource-intensive business process executions. In addition, we intend to inves-
tigate alternative community detection algorithms in this process mining scenario. Finally,
we are interested in the study of algorithms, which perform incrementally the discovery of
the dynamic organization structures, by integrating the event evolution discovery phase into
the community discovery phase.
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Appendix A

Let us start from the formulation of Reichardt-Bornholdt measure RB(CL) =
1
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reported in Formula 6.
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