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Abstract Being able to correctly model semantic relatedness between texts, and conse-
quently the concepts represented by these texts, has become an important part of many
intelligent information retrieval and knowledge processing systems. The need for such
systems is especially evident within the biomedical domain, where the sheer amount of sci-
entific publishing contributes to an information overflow. In this paper we present a novel
method to approximate semantic relatedness in domain-focused settings. The approach is
an extension to a well-known ESA (Explicit Semantic Analysis) method. Our extension
successfully leverages the semantics of a domain-specific document corpus. We present the
evaluation of the proposed method on a set of reference datasets, that are a de facto refer-
ence standard for the task of approximating biomedical semantic relatedness. The proposed
method is evaluated in comparison with other state-of-the-art methods, as well as the base-
lines established with the original ESA method. The results of the experiments suggest that
the proposed method combines the semantics of a general and domain-specific corpora to
provide significant improvements over the original method.

Keywords Semantic relatedness · Biomedicine · Distributional linguistics · Semantic
similarity · ESA · Text analytics

1 Introduction

Approximating semantic relatedness is an important part of various text and knowledge
processing tasks. Semantic relatedness is a metric that can be assigned to a pair of labels
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in order to represent the strength of the relationship of the concepts described by those
labels. The automated calculation of the metric is the building block for numerous semanti-
cally enhanced data processing techniques such as: word sense disambiguation (Agirre and
Rigau 1996) (used for matching word contexts to the best word senses), text summarization
(Barzilay and Elhadad 1997) (used for evaluating cohesion of the lexical chains) and infor-
mation retrieval (Rada et al. 1989) (incorporated in the query-document ranking method).
Similar applications of relatedness and similarity (which is a narrower concept) metrics
within the scope of Life Sciences include entity–entity relationship extraction (Guo et al.
2006; Mathur and Dinakarpandian 2012), semantic search (Sahay and Ram 2011) and
redundancy detection in clinical records (Zhang et al. 2011). An overview of applying
semantic similarity to the problem of comparing gene products is discussed by Pesquita
et al. (2009). In Pesaranghader et al. (2014) the authors evaluate the application of a
relatedness measure as an approximation of semantic similarity in the biomedical domain.

The problem of most state-of-the-art methods used in the biomedical domain for cal-
culating semantic relatedness is their dependence on highly detailed, structured knowledge
resources, which are usually tailored to a specific problem or perspective. This depen-
dency makes these methods poorly adaptable to many usage scenarios that do not fit into
this predefined mold. On the other hand, the domain knowledge in the biomedical domain
is becoming more and more accessible, but mostly in its unstructured form — as texts
in large document collections, which makes its use more challenging for automated pro-
cessing. Overcoming these challenges and harnessing the non-explicit knowledge of the
biomedical literature is a step towards adaptable and robust semantic relatedness approxi-
mation methods, and consequently, better intelligent systems for accessing and processing
the information ‘hidden’ in these corpora.

The ultimate goal of a relatedness measure is to assign a numerical approximation of
the relatedness strength to a given pair of input texts (or simply: inputs). In this paper we
present a distributional semantic relatedness measure, DomESA (Domain-focused Explicit
Semantic Analysis), in which input texts are represented by vectors of concepts, i.e. a dis-
tribution of relevance of the given input over a concept space of an encyclopedia-style
resource (i.e. Wikipedia). The relatedness approximation is calculated by comparing these
distribution vectors. The measure presented here is an extension of a popular state-of-the-
art relatedness measure – explicit semantic relatedness (ESA) (Gabrilovich and Markovitch
2007). The distinguishing feature of our approach is that the representation vectors are
derived from two sets of vectors: one, which represents texts of a domain-oriented cor-
pus (i.e. Medline), and a second one, which models the semantic relevance between the
documents of the domain-oriented corpus and the concepts of the encyclopedic resource.
In this way, the final representation vectors, established over the space of concepts of a
general domain resource, are obtained through a distributional representation of the input
derived from the domain-oriented corpus. This makes the method less dependent on the
presence of specific vocabulary within encyclopedic definitions (which are the general
domain resource), thus bridging the semantic gap between the intended use (represented by
biomedicine-related reference datasets) and the general-domain resource.

DomESA is our key contribution presented in this paper, we also include its detailed eval-
uation alongside state-of-the-art methods on the reference datasets, as well as an extended
discussion of the results obtained in the experimental evaluation.

The paper is organized as follows. In the next section we discuss the related body of
work. In Section 3 we introduce the basic concepts and the overview of the processing flow
of the original ESA method. Section 4 presents DomESA. We also discuss the design dif-
ferences between DomESA and other related methods. In the following section we outline
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our experimental setup. Later in the same section we present the results of the experimental
evaluation and discuss them. Finally, in the last section the conclusions are presented, and
we also outline the possible research lines originating from the work presented in this paper.

2 Related work

There have been numerous efforts made towards a successful replication of human judg-
ment in the assessment of similarity and relatedness between pairs of words or concepts. A
relatively recent and up-to-date survey is presented by Zhang et al. (2012). The method we
present in this paper can be seen as Wikipedia-based, but in reality it treats Wikipedia as a
document corpus, so we would rather classify it as a distributional or corpus-based method.

The idea of leveraging the distributional hypothesis, that words with similar contexts will
have similar meanings (‘you shall know a word by the company it keeps’ (Firth, 1957)),
has been explored thoroughly in the field of distributional semantics research. Techniques
vary from basic word co-occurrence matrices, where a vector associated with a given word
is created by counting the words that appear in its immediate context (determined by a win-
dow of a certain size), to latent semantic indexing (Dumais 2004). More recently, dense
word representations derived through machine learning techniques, e.g. word2vec methods
(Mikolov et al. 2013), have gained popularity. In Virginia and Nguyen (2015) the authors
propose modeling the semantics of the corpus documents with a Tolerance Rough Set Model
(TRSM), an approach, in which the co-occurence data is used to approximate the seman-
tically extended representations of the documents. The label of ‘distributional semantics’
covers an extremely wide scope of methods and models that share the feature conveyed in
the label itself — semantics being modeled as a distribution over a large set of features
derived from a large body of linguistic evidence (i.e. a large corpus of documents).

Our method extends ESA (Gabrilovich and Markovitch 2007) with an additional com-
putational step. Numerous extensions of ESA have already been proposed, many of which
combine the original approach with the Wikipedia-specific features, through the concept-
to-concept feature/similarity matrices, e.g. Scholl et al. (2010), Polajnar et al. (2013), and
Haralambous and Klyuev (2013). Some of those extensions, e.g. NESA (Asooja et al. 2015)
(Non - Orthogonal ESA), also provide variants that are generic enough to be used with
any document collection. The main difference is that in our approach we postulate using a
combination of corpora to reduce the semantic gap (and consequently increase the perfor-
mance), while these extensions are intended to increase the method’s performance through
a more sophisticated use of the properties of a single knowledge source.

There are Wikipedia-based methods for approximating semantic relatedness other than
ESA, such as WikiRelate (Strube and Ponzetto 2006). It is worth noting however, that in
the case of algorithms, which by default rely on Wikipedia-specific features (such as link
structure), incorporating semantics of an unstructured domain-focused corpus is a much
more difficult task.

In this paper, we present a direct evaluation of the proposed extension, i.e. the method
is evaluated against reference datasets, which capture scores assigned manually to the pairs
of textual inputs by human annotators. We rely on a collection of reference datasets that
has become a standard in the evaluation of biomedical semantic relatedness (Pedersen et al.
2007; Pakhomov et al. 2010, 2011).

There is also a significant number of papers that weight in on the application of estab-
lished methods within biomedical settings. In Muneeb et al. (2015) the authors explore the
performance of the aforementioned word2vec and GloVe (Pennington et al. 2014) methods
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with models trained on a large biomedical corpus. In a recent paper the authors, Sajadi
et al. (2015), present an original hybrid node ranking based method, based on Wikipedia
structure, applied in biomedical settings. Furthermore, they provide an extensive evalua-
tion of their method in comparison with other state-of-the-art methods, which constitutes an
important reference perspective.

In our previous paper (Rybiński and Aldana-Montes 2016), apart from presenting tESA,
an extension of the ESA method that works well with the corpus of scientific documents,
we analyzed the direct adaptability of the ESA approach to the problem of biomedical
relatedness approximation.

Finally, there is a large group of methods for the approximation of biomedical seman-
tic relatedness, which rely, to different extent, on the use of structured domain specific
resources. E.g. in Pedersen et al. (2007) and Liu et al. (2012) the authors propose extract-
ing concept representations from the documents of a large biomedical corpus, in a process,
which is guided by a structured knowledge resource. The method relies on ‘scanning’ the
corpus for words co-occuring with words associated with specific concepts of the knowl-
edge source. In Sánchez and Batet (2011) the authors showcase the performance of a wide
spectrum of ontology-based Information Content (IC) methods, which use SNOMED CT
as the knowledge resource. SNOMED CT is the largest medical vocabulary collection,
with over 400K systematically organized concepts with their lexical representations and
additional information. The IC measures presented by Sánchez and Batet (2011) use the
ontological structure of SNOMED (positions of concepts in the ontology, distance between
them, number of sub-concepts, etc.) to compute a semantic score between a pair of con-
cepts. In Martinez-Gil (2016) the author proposes a fuzzy logic-based method for combining
scores achieved by the ontology based-methods. Our method, although dependent on a spe-
cific corpus, does not rely on high-level KB representations of the domain, which makes it
more flexible and easier to adapt to non-standard use cases.

3 Preliminaries

3.1 Basic concepts

A system for approximating semantic relatedness can be represented very simply as a black-
box, which takes two input texts (words, phrases, paragraphs, etc.) and produces a single
output – a relatedness score, which corresponds to the relatedness between the inputs. This
basic idea is illustrated in Fig. 1.

Fig. 1 Black box view of a relatedness approximation system
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Throughout the processing flow we use Tf-Idf (term frequency - inverse document fre-
quency) weighted vectors as a basic tool to represent texts. Texts within the black box are
either input texts or the documents of the background corpus (or corpora). We denote the
input texts with single letters s and t , while s and t denote their Tf-Idf weighted vectors. An
i-th document of a corpus is denoted as dMed

i or dWiki
i (depending on the corpus it belongs

to). Overline is used to denote the corresponding Tf-Idf vectors: d
Med

i and d
Wiki

i . To com-
pare vectors we use cosine similarity, which is denoted cosine(a, b) for the example vectors
a and b:

cosine(a, b) =

n∑

i=1
aibi

√
n∑

i=1
a2
i

√
n∑

i=1
b2
i

, (1)

where ai and bi denote the i-th elements of the n-length vectors.
As suggested, we contemplate the use of two corpora. The general domain corpus is a

collection of Wikipedia articles, while the biomedical corpus is a collection of abstracts of
biomedical scientific publications – Medline. The original ESA can be set up with either
one of the two, while the extended method combines the use of both corpora.

In our experimental evaluation we used the 2015 snapshot of the Medline corpus, which
makes our results directly comparable with those obtained by Rybiński and Aldana-Montes
(2016). The collection contains more than 14M abstracts. As for the Wikipedia corpus, we
used a snapshot from December 2015, which contains over 3.8M English language articles.

We use standard Apache Lucene1 mechanisms for pre-processing of texts prior to the
Tf-Idf vectors computations. Texts are transformed to lowercase and stopwords (words that
occur very commonly, but provide little or no semantic information, e.g. the, of, at and a)
are eliminated. Numbers are also eliminated and non-alphanumeric characters (e.g. ‘-’) are
normalized. In the case of the titles, we also disregard words that appear in less than 3
different documents of the respective corpora.

3.2 ESA

In ESA set up with an N document corpus (e.g. Wikipedia), the processing for a pair of
inputs s and t is as follows:

1 Creation of concept vectors cs,Wiki , ct,Wiki for each of the inputs.
2 Calculation of the relatedness score as cosine(cs,Wiki , ct,Wiki).

Concept vectors are vectors of N elements, where the i-th element for the vector
calculated for an input t, c

t,Wiki
i , is calculated as follows:

c
t,Wiki
i = cosine(t, d

Wiki

i ) (2)

As mentioned, the corpora can be used interchangeably, although the original method
described by Gabrilovich and Markovitch (2007) was set up with the Wikipedia corpus.

For practical reasons it is enough to consider a certain number of top valued elements
within each concept vector (e.g. 10000), with the rest of elements set to 0.

1http://lucene.apache.org/core/

http://lucene.apache.org/core/
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4 DomESA - domain-oriented biomedical extension of ESA

4.1 Presentation of the method

Here, we explain the processing of DomESA, the novel ESA extension. First, we define the
matrix K. Each column of K corresponds to a document from the domain-oriented corpus,
i.e. Medline. The rows of the matrix correspond to the documents of the general domain
corpus, i.e. Wikipedia. Th element at the (i,j) position of the matrix, Kij is defined as a
cosine similarity between the i-th document of Wikipedia and j-th document of Medline:

Kij = cosine(d
Wiki

i , d
Med

j ) (3)

Note, we also introduce a limit on non-zero values per column. Specifically, we only
consider top k values per column.2 As a result of this cutoff we only deal with a trun-
cated matrix, which is much more convenient resource-wise. In addition, it accounts for less
noise being ‘introduced’ into the final representations of input texts. The processing flow of
DomESA can be summarized as follows:

1 Creation of concept vectors cs,Med , ct,Med for each of the inputs.
2 Calculation of DomESA vectors ms , mt ; for the input t , mt is calculated as follows:

mt = Kct,Med (4)

3 Calculation of the relatedness score as cosine(ms,mt ).

This formulation leads us to the formula for the i-th position of the vector mt , which
corresponds to the i-th document in Wikipedia corpus (i.e. to the i-th concept, represented
by this article). The value, denoted by mt

i , is given by:

mt
i =

N∑

j=1

cosine(t, d
Med

j ) × Kij , (5)

where N denotes the size of the Wikipedia corpus.
A cutoff is also applied to the concept vectors obtained in step 1, similarly as it is done in

our implementation of the original ESA method. Both the original ESA and DomESA are
represented graphically in Fig. 2.

The intuitive explanation of DomESA’s processing is as follows. In the ESA model the
input is represented with a superposition of ’one-hot’ document vectors with each vec-
tor multiplied with the document-input relevance score (which is 0 if the input does not
have common tokens with the document). DomESA does the same, but each document
is represented differently – instead of using the ‘one-hot’ representation, each document
from the domain-focused corpus is represented with a ‘k-hot’ vector of the most relevant
Wikipedia entries. Consequently, each Medline document, ‘activated’ by the input, ‘acti-
vates’ k Wikipedia articles. As a result, DomESA does not require the inputs to appear
strictly within the same documents of Medline corpus – it is enough that they eventually
‘activate’ the same Wikipedia articles.

2We have evaluated the algorithm with the values of k between 1 and 15 and the method seems to work
well within this range. In the evaluation presented here we only discuss results for k = 1 and k = 10 for
illustrational purposes.
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Fig. 2 Diagram presents the overview of processing of DomESA and ESA. We denote the size of Wikipedia
corpus with N, while M denotes the size of Medline corpus

DomESA has been implemented in Java, with the corpus Tf-Idf vector space models
implemented with Apache Lucene. The creation of the matrix K had been executed offline
with the same technology with traditional Java multi-threading.

4.2 Design differences between DomESA and other corpus-based methods

On a conceptual level the processing in DomESA is similar to the processing in ESA, except
that DomESA uses an additional computational step. NESA and XESA, both extensions
of ESA, also use document-document similarity matrices in the calculations. Nonetheless,
both of these methods use a matrix of similarities computed for a single document corpus,
so the domain adaptation is not being contemplated. Furthermore, the similarity matrix of
NESA and XESA is used to overcome the supposed orthogonality of Wikipedia articles.
DomESA on the other hand, uses a highly non-orthogonal corpus (Medline), so it can be
reasonably expected that the orthogonality of Wikipedia should be less of a problem.

DomESA (and other ESA extensions for that matter) provides a flexibility advantage
over approaches that rely on context window word counts (Pedersen et al. 2007; Liu et al.
2012), because new representations can be created without having to actually ‘scan’ through
all the documents that contain the input terms, so the cost of creating the representation
vectors is much lower. It is worth noting though, that on a conceptual level our method is
designed to accomplish a goal similar to that of Liu et al. (2012). In Liu et al. (2012), the
authors use second order co-occurence vectors to compare their inputs. In other words, to
compare two inputs, they actually compare the words that are related to the contexts, in
which those inputs appear. In DomESA we employ a similar principle, i.e. we compare
inputs by comparing the Wikipedia articles related to the Medline articles that the inputs
appear in.

Word embeddings (i.e. word2vec) have the advantage of using dense representation
vectors of a relatively low dimension (typically around 200), which makes these methods
computationally appealing. However, the use of machine learning to pre-train the model
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hinders the flexibility of these methods to a certain degree. For example, switching from
unigram to bigram inputs requires either re-training the entire model or using some kind of
composition strategy involving unigram vectors (addition, multiplication), while ESA and
similar methods can be adapted relatively easily or need no adaptation at all, depending on
the actual implementation.

tESA is computationally similar to DomESA, but the conceptual difference is evident
and, as a result, the semantics of the distributional representations are different in these
two methods. Both methods obtain their output vectors by multiplying the ESA-style con-
cept vectors with a matrix. In the case of DomESA this is a matrix of Medline-Wikipedia
document similarity, while tESA uses a matrix of Medline document titles. This means
that the tESA vectors are expressed over the title vocabulary of a biomedical corpus,
while DomESA vectors are still concept vectors (over Wikipedia concept space), although
obtained indirectly.

5 Experiments and results

5.1 Experimental setup

As mentioned, the proposed method is evaluated directly on the reference datasets. The
summary of the reference datasets is presented in Table 1. Each of the datasets contains
pairs of inputs with an associated human-assigned relatedness score. The relatedness scores
included in the datasets were calculated as an average between answers supplied by certain
number of human annotators.

The task of the system is to replicate the average scores assigned by the human anno-
tators. The quality of this replication is measured as a pair of correlation scores between
the system assigned scores and average human scores - with Spearman’s rank correlation
and Pearson’s correlation coefficients. Most studies only use Spearman’s rank correlation,
as, given a dataset, the problem can be seen as a ranking creation – ranking pairs of con-
cepts from the least related to the most related. Notwithstanding, we believe that using both
coefficients is justifiable, because: (a) there are some studies that use Pearson’s correlation
coefficient (e.g. Muneeb et al. 2015; Martinez-Gil 2016); (b) using both correlations does
provide a fuller perspective of the data.

We present the scores obtained with DomESA alongside with those obtained by relevant
state-of-the-art methods, i.e. word2vec’s CBOW and tESA. The evaluation is completed
with two important sets of baseline scores, obtained with the original ESA method. One set

Table 1 Summary of the features of the reference datasets

Dataset No. of pairs No. of items Focus Annotators Reference

umnsrsSim 566 375 Similarity Med. residents Pakhomov et al. (2010)

umnsrsRel 587 397 Relatedness Med. residents Pakhomov et al. (2010)

mayo101 101 191 Relatedness Med. coders Pakhomov et al. (2011)

mayo29c 29 56 Relatedness Med. coders Pedersen et al. (2007)

mayo29ph 29 56 Relatedness Physicians Pedersen et al. (2007)

The features are: number of evaluated input pairs, number of distinct individual inputs, area of focus, profile
of the annotators and literature reference
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is calculated for the ESA method set up with Wikipedia, the second one is calculated with
the ESA method set up with the Medline corpus.

Comparing the results obtained with different methods effectively involves comparing
the correlations those methods generate w.r.t. the model answers. We evaluate the statistical
significance of correlation comparisons. Specifically we construct a 0,95 confidence level
confidence intervals (CI) for dependent overlapping correlations (as for a pair of methods,
both of them produce their correlation against the same reference dataset). If we consider
two correlations result A rA and result B rB , our null hypothesis can be formulated as
rA − rB = 0. Therefore, if for a given triple of correlations (result A-to-model, result B-
to-model, result A-to-result B), the constructed confidence interval does not include 0, the
test allows us to refute, under the assumed confidence level, the null hypothesis of the two
correlations being equal. This methodology (Zou 2007) is one of few options applicable for
testing the comparisons between dependent overlapping correlations.3

The results presented in the following section were obtained for concept vectors with a
limit of 10000 values; the matrix K was truncated at 10 values per column. The parameter
values were calibrated experimentally, nonetheless the experience gained from the calibra-
tion process seems to indicate that neither of the methods is especially sensitive to the values
of those parameters (i.e. a relatively small change in parameters will only have little, or no,
effect on the method’s performance).

5.2 Results and discussion

In Table 2 we have included pair-by-pair results of DomESA, together with the ‘model’
scores generated by medical coders. This set of results can be seen as an example of how
the evaluation has been performed. Specifically, it corresponds to a single set of correlation
pairs presented in the overview of the results in Tables 3 and 4.

Tables 3 and 4 present the overview of the results obtained in the experimental evalua-
tion, with the tables corresponding to Spearman’s rank correlation and Pearson’s correlation,
respectively. The best respective values within our evaluation are highlighted in bold,
whereas the correlation scores, which, to our knowledge, surpass other correlations reported
in the literature, are marked with a ’G’.

The results presented in Tables 3 and 4 are also shown in Figs. 3 and 4, which correspond
to Spearmans’s and Pearson’s correlation scores, respectively.

The tests of statistical significance of the results presented in Tables 3 and 4 are shown
in Tables 5 and 6, which correspond to Spearman’s and Pearson’s correlation coefficients,
respectively. Correlation comparisons, which are considered statistically significant under
the assumed confidence level are denoted with ‘↑’ if DomESA’s correlation score is higher
than the given baseline score, or with ‘↓’, if DomESA’s correlation is lower. Correlation
comparisons that are considered to be statistically insignificant are denoted by ‘-’.

The method proposed in this paper, DomESA, clearly surpasses both of the ESA
baselines. Importantly, the evaluation results of ESA (Medline) are on par with other state-
of-the-art methods, yet DomESA provides a substantial improvement. It is worth noting,
that the superior results are achieved even though: (1) DomESA has its representation vec-
tors expressed over the same collection of Wikipedia concepts as ESA (Wiki); (2) DomESA
does not use resources any more domain-specific than the Medline corpus, which is also

3See https://seriousstats.wordpress.com/2012/02/05/comparing-correlations/ for discussion and code.

https://seriousstats.wordpress.com/2012/02/05/comparing-correlations/
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Table 2 Pair-by-pair list of human and DomESA generated scores for the mayo29c reference dataset; the
output of DomESA accounts for correlation scores of 0.84 (Spearman’s correlation coefficient) and 0.863
(Pearson’s correlation coefficient)

Input 1 Input 2 Model score DomESA score

Renal failure Kidney failure 4 0.89

Abortion Miscarriage 3.3 0.35

Heart Myocardium 3 0.52

Stroke Infarct 2.8 0.26

Delusion Schizophrenia 2.2 0.36

Calcification Stenosis 2 0.43

Tumor metastasis Adenocarcinoma 1.8 0.43

Congestive heart failure Pulmonary edema 1.4 0.4

Pulmonary fibrosis Malignant tumor of lung 1.4 0.08

Diarrhea Stomach cramps 1.3 0.12

Mitral stenosis Atrial fibrillation 1.3 0.18

Brain tumor Intracranial hemorrhage 1.3 0.1

Antibiotic Allergy 1.2 0.02

Pulmonary embolus Myocardial infarction 1.2 0.07

Carpal tunnel syndrome Osteoarthritis 1.1 0.05

Rheumatoid arthritis Lupus 1.1 0.27

Acne Syringe 1 0.01

Diabetes mellitus Hypertension 1 0.08

Cortisone Total knee replacement 1 0.03

Cholangiocarcinoma Colonoscopy 1 0.06

Lymphoid hyperplasia Laryngeal cancer 1 0.12

Appendicitis Osteoporosis 1 0.01

Depression Cellulitis 1 0.01

Hyperlipidemia Tumor metastasis 1 0.01

Multiple sclerosis Psychosis 1 0.05

Peptic ulcer disease Myopia 1 0

Rectal polyp Aorta 1 0.01

Varicose vein Entire knee meniscus 1 0.01

Xerostomia Alcoholic cirrhosis 1 0.02

used by ESA (Medline). This indicates that the improvement of the results is related to the
use of the matrix K.

Table 3 Spearman’s correlation results obtained for different reference datasets

umnsrsSim umnsrsRel mayo101 mayo29c mayo29ph

ESA (Wiki) 0.501 0.501 0.549 0.722 0.822

ESA (Medline) 0.621 0.608 0.547 0.734 0.835

tESA (Medline titles) 0.639 0.649 (G) 0.549 0.687 0.783

Word2vec CBOW 0.529 0.454 0.416 0.757 0.757

DomESA 0.691 (G) 0.63 0.708 (G) 0.84 0.881 (G)
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Table 4 Pearson’s correlation results obtained for different reference datasets

umnsrsSim umnsrsRel mayo101 mayo29c mayo29ph

ESA (Wiki) 0.342 0.282 0.429 0.709 0.757

ESA (Medline) 0.274 0.228 0.361 0.749 0.711

tESA (Medline titles) 0.391 0.381 0.36 0.796 0.79

Word2vec CBOW 0.57 0.473 0.454 0.744 0.805

DomESA 0.581 (G) 0.508 (G) 0.682 (G) 0.863 0.889

Fig. 3 Spearman’s rank correlation results obtained for different reference datasets

Fig. 4 Pearson’s correlation results obtained for different reference datasets
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Table 5 Statistical significance test for comparisons of Spearman’s correlations

umnsrsSim umnsrsRel mayo101 mayo29c mayo29ph

ESA (Wiki) ↑ ↑ ↑ ↑ –

ESA (Medline) ↑ – – – –

tESA (Medline titles) ↑ – ↑ ↑ –

Word2vec CBOW ↑ ↑ ↑ ↑ –

The intuition behind this can be explained in several ways. Most importantly, however,
we feel that the difference between DomESA and the original method is that the original
ESA’s notion of relatedness depends on the actual co-occurence of given input texts within
specific documents (from either of the corpora ESA is configured with). On the other hand,
DomESA leans towards the notion of related input texts appearing in a similar contexts
(not necessarily within the same documents), because in the end it is the context (Medline
papers) that ‘triggers’ the Wikipedia-based representation.

As we have remarked, in a certain sense, the idea behind DomESA is similar to the
one presented in NESA and XESA, only here the orthogonality of Wikipedia articles is
being addressed with a Medline-Wikipedia similarity matrix, rather than with Wikipedia-
Wikipedia or Medline-Medline similarity matrices. Additionally, the combined use of the
two corpora in DomESA adds the domain focus, while the representations of the input are
expressed over the space of Wikipedia concepts, just like in the original method.

The statistical significance tests confirm that DomESA provides better results than any
other method in the evaluation presented here. W.r.t. the rank correlation, DomESA does
significantly outperform each of the other methods on at least one reference dataset, with-
out performing significantly worse than any method on any of the datasets. The same is true
regarding the statistical testing of the Pearson’s correlation comparisons. Notably, the meth-
ods that provide results close to those of DomESA (in terms of statistical significance) w.r.t.
one of the correlation coefficients, perform significantly worse w.r.t. the other correlation
coefficient (e.g. ESA setup with Medline corpus).

It is interesting to consider the statistical significance tests of DomESA comparisons
with ESA setup with Medline corpus w.r.t. the rank correlation. It turns out, that although
DomESA does outperform the ESA baseline on all datasets, only one of the performance
margins can be considered significant. This is especially interesting, given that some of
these margins are wider than in the case of other methods, e.g. tESA performs better than
ESA on the mayo101 reference dataset, but it is the tESA-DomESA comparison that turns
out to be statistically significant, rather than the ESA-DomESA comparison. This points to
a low correlation between the scores assigned by ESA (Medline) and DomESA. In simple
terms, it means that each of these methods ‘gets right’ other parts of the reference dataset
(at least partially).

Table 6 Statistical significance test for comparisons of Pearson’s correlations

umnsrsSim umnsrsRel mayo101 mayo29c mayo29ph

ESA (Wiki) ↑ ↑ ↑ ↑ ↑
ESA (Medline) ↑ ↑ ↑ ↑ ↑
tESA (Medline titles) ↑ ↑ ↑ – ↑
Word2vec CBOW – – ↑ – –
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When it comes to comparing DomESA and the original Wikipedia-based ESA it is worth
noting, that the domain focus of DomESA, combined with the fact that the method ‘assigns’
Wikipedia concepts to contexts rather than words, translates into specific properties of the
distributional representations used in the method. Firstly, it accounts for fuller semantic rep-
resentations of those input texts that are less likely to appear within the less domain-specific
Wikipedia corpus. Secondly, the contexts are less ambiguous, so the representations are
‘channeled’ towards the domain-related articles of Wikipedia. For example, a DomESA’s
processing of an input ‘support stockings’ is much more likely (than the one of the origi-
nal ESA) to generate a representation related to clotting disorders and their treatment rather
than to the garment in general. The impact of DomESA’s processing can be illustrated with
a specific case of the K matrix truncated at k = 1, which means that each Medline abstract
corresponds to one Wikipedia article. This variant of DomESA can be called ‘minimal’,
as it will result in the most compact representation vectors (i.e. with the least number of
non-zero elements per vector). The direct comparison is presented in Table 7.

It can be observed, that the performance of DomESA in terms of Spearman’s rank
correlations is barely affected by the change to the parameter k. DomESA produced rep-
resentations with more non-zero elements, which accounts for DomESA’s greater ability
in assigning input texts to Wikipedia contexts (as the method does not require the texts to
appear within Wikipedia articles). The difference in the quality in the results (higher corre-
lations), accounts for DomESA providing more accurate representations, even if their size
is comparable to those of ESA (which accounts for similar speed of calculations, once the
representations are created).

It is also worth noting, that the representations of DomESA are actually compatible with
those of ESA, as the semantics of the input texts are being expressed over the same set of
concepts (even if the weight distribution is less noisy or more accurate). This also means
that DomESA can benefit from some of the same extensions as the original method, such
as NESA (Asooja et al. 2015), XESA (Scholl et al. 2010), CL-ESA (Potthast et al. 2008).

When compared to other methods based on vectors extracted directly from Medline
(tESA, ESA), DomESA performs slightly better on most datasets in terms of rank correla-
tion (with the exception of the umnsrsRel dataset, for which it provides a second best score),
and notably better in terms of linear correlation with human judgment.

Our method also provides better results than the CBOW model trained on a very simi-
lar corpus. Although the CBOW model is not an ideal word2vec model for the relatedness
approximation problem, our experiment provides a perspective that enables us to compare
our results with those obtained by Muneeb et al. (2015), as our results for the CBOW model
seem comparable. Our method provides better results, in all of the reference datasets, than
any of the methods reported by Muneeb et al. (2015) (word2vec models and GloVe are eval-
uated). Unfortunately the authors do not mention the rank correlations obtained with their

Table 7 Direct comparison of ESA and ’minimal’ DomESA (with only one related wiki article per Medline
abstract); the comparison involves correlations (Spearman’s and Pearson’s respectively) and average number
of non-zero elements of the vectors

umnsrsSim umnsrsRel mayo101 mayo29c mayo29ph

ESA – correlations 0.501, 0.342 0.501, 0.282 0.549, 0.429 0.722, 0.709 0.822, 0.757

ESA – vector size 656.67 617.19 1040.86 1368.51 1368.51

DomESA – correlations 0.679, 0.468 0.649, 0.411 0.697, 0.589 0.875, 0.827 0.89, 0.807

DomESA – vector size 759.9 737.3 1448.26 1376.4 1376.4
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word2vec and GloVe models, but we believe that their results and our CBOW experiment
provide enough grounds for a comparison. Obviously, the main disadvantage of DomESA
when compared to the word2vec methods is that it operates on vectors of much higher
dimensionality and with more non-zero elements, which makes it slower in comparing vec-
tors (i.e. the calculation of cosine similarity is faster on dense and low dimensional vectors,
that word2vec operates on).

To the best of our knowledge DomESA provides the highest correlations (both rank and
linear) of all the methods reported in the literature in the largest three datasets (umnsrsRel,
umsrsSim and mayo101), with the exception of the slightly better ranking performance
of tESA in the umnsrsRel dataset. In a very recent evaluation presented by Sajadi et al.
(2015), all of the evaluated methods display the relatedness scores below those established
by DomESA.

The performance of DomESA in terms of Spearman’s correlation is second to none of
the other state-of-the-art methods, which shows the quality of the rankings provided by our
method. However, its performance in terms of the Pearson’s correlation scores is also well
worth considering. DomESA obtained the highest linear correlations with human judgment
among all the evaluated methods, notably improving upon the performance of the original
ESA and its derivative (tESA). All things considered, we believe that this is mostly due to
the fact that DomESA’s processing incorporates a kind of ‘smoothing’ into its representa-
tion of semantics, by relying on ‘fuzzy’ notions of concepts and their similarity, rather than
almost binary features (like co-occurrence in a highly weighted document of the corpus).
This results in DomESA being less likely to produce outlier results, when compared to other
ESA-based methods, which seems to explain this difference in performance. The goal of
the processing of CBOW (and other word embedding methods for that matter) is conceptu-
ally similar to that of DomESA, as the model ‘learns’ to express words over a set number
of dimensions taking into account their contexts. DomESA uses a different computational
approach to do a similar thing, i.e. express input texts, given their contexts, over a set of
dimensions determined by the Wikipedia corpus. DomESA does not reduce the number of
dimensions as CBOW does, but we believe that the similarity of the methods described
above explains why Pearson’s correlations obtained with the CBOW model surpass those
of the original ESA and tESA. DomESA on the other hand, still outperforms CBOW in
terms of Pearson’s correlations, but we believe that the reason for this is twofold: (i) as
stated above, DomESA also incorporates some form of semantic smoothing (so CBOW
does not have an advantage here); (ii) DomESA’s relatedness approximation is generally
more accurate, as the Spearman’s rank correlations seem to suggest.

As mentioned above, once the representation vectors are calculated, DomESA’s represen-
tations yield computational efficiency similar to that of the ESA’s representations, as their
size (in terms of non-zero elements) is comparable and the relatedness calculation is essen-
tially the same (cosine similarity between vector representations). However, the creation of
the representation vectors in DomESA involves an additional cost of the matrix multipli-
cation step. Also, the process of calculating the matrix K is costly, as it involves N × M

document-to-document similarity calculations. Nonetheless, both processes (creation of the
representations and matrix calculations) are easily parallelizable and in many usage scenar-
ios they can be treated as a one-time cost. Consequently, DomESA can be expected to scale
up well w.r.t. the corpus size – an eventual increase in size can be dealt with seamlessly,
with additional computational resources.

It is important to note, that the model proposed here does not fix the problem of corpus
dependency of the original method. DomESA provides grounds for relatedness computa-
tions for domain-based inputs, so, for example, general domain inputs will be most likely
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out of the semantic scope of the Medline corpus, which will consequently lead to poor repre-
sentation vectors. The interoperablility with the original ESA (Wikipedia-based) provides a
basis for a workaround solution for comparing domain-focused and general domain inputs,
but the problem of deciding which method to use for representing each input is to be solved.
More generally, DomESA (and ESA as well) will tend to generate poor representations for
inputs that are poorly represented within the domain-focused corpus (e.g. poorly described
or newly discovered diseases). It is worth noting, however, that the same can be said of any
class of methods, which depend on the semantic coverage of the background knowledge
resource – the capacity of the method to leverage the information will naturally be limited
by the lack of the information.

Furthermore, our initial experience with DomESA applied to the problem of ontology
alignment (Rybiński et al. 2016) seems to point to another issue inherited from ESA. Specif-
ically, it can be observed that the method works well for the basic job of comparing ‘short’
inputs, which consist of 1-2 words/tokens, but tends to generate false positives for longer
inputs (especially if they share common relatively ‘high IDF’ words of relatively low seman-
tic value, e.g. ‘recessive’ or ‘autosomal recessive’ in the context of comparing labels of
genetic disorders). We believe that this issue may be solved by: (a) involving more infor-
mation in the relatedness approximation (we have used labels only; synonyms, definitions
and ontological neighborhood could also be used to compare concepts), (b) reconsidering
the compositional aspect of the method, (c) a combination of approaches (a) and (b).

Approach (a) is quite straightforward – using more information to create the representa-
tion vector will result in a statistically better representation, less dependent on the presence
of a single common token. Nonetheless, the approach (a) (and consequently (c)) is not a
general solution, as it depends on the availability of the additional information, which may
be present (or not) in the context of an ontology alignment problem.

A potential solution obtained with an approach (b) is far more appealing in terms of
improving the method itself. In the experiments presented here, the concept vectors (the
vectors that link the input directly with the documents of the corpus) are created ‘at once’
for the entire input, i.e. a single Tf-Idf vector representing the input is created and we cal-
culate the cosine similarity of this vector with all the Tf-Idf document vectors of the corpus.
It is important to note, that many alternative compositional strategies exist, from simple
ones (e.g. obtaining representations of individual words and adding them), to more complex
approaches, e.g. Kusner et al. (2015). In the latter work, the authors describe an approach
for calculating document distances from word embeddings. Their approach accounts not
only for similarities (relatedness) between the matching elements (tokens), but also for
dissimilarities between the non-matching ones, so it could be a good fit for improving
DomESA’s performance with longer texts. We plan to study the applicability of the approach
to DomESA in near future.

6 Conclusions

In this paper we have introduced DomESA, a novel extension to the ESA method, designed
for domain-oriented use. The method uses a domain-focused background corpus, in addition
to Wikipedia articles, to generate higher-quality semantic representations of the input texts.
The approach provides semantic relatedness approximation results superior to the original
method on all of the benchmarks, which shows its validity.

Our results also indicate that an additional improvement of the results is achieved through
the introduction of a ‘fuzzier’ notion of relatedness. In DomESA two inputs can be related



330 J Intell Inf Syst (2017) 49:315–331

due to them appearing in similar contexts, while in the original method they would have
to actually co-occur within the same documents. Both this, and the domain focus, are
introduced to the DomESA representation vectors in a single computational step.

Moreover, our method, despite the fact that it uses a domain-focused corpus, produces
representation vectors expressed over the space of Wikipedia concepts, just like the origi-
nal ESA set up with Wikipedia. This means, that many of the extensions proposed for the
original method can also be applied to DomESA. Those include usage of Wikipedia’s multi-
language structure, hyperlinks, classifications and other Wikipedia-specific features. Some
of those extensions could be explored in the context of domain-focused semantic relatedness
in our future work.

Apart from the impact of known ESA extensions on DomESA’s performance, there are
two other interesting lines of future research related to the method presented in this work.
Firstly, we would like to study DomESA’s applicability to the problem of ontology align-
ment and the improvements it may bring to the process, thus expanding our earlier work
(Rybiński et al. 2016). Preliminary results show that DomESA’s forte lies in discovering
original correspondences between the ontological concepts. In our future work we would
like to build on this quality. Secondly, we would like to study the compositional aspect of
the method presented here, with the research question of translating DomESA’s good per-
formance on datasets consisting of pairs of single words or short phrases, to pairs of longer
biomedical texts. Both these lines of research converge, at a certain point, on the problem
of ontology alignment, in which concepts can often be represented by far more complex
structures than short labels.
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Rybiński, M., del Mar Roldán-Garcıa, M., Garcıa-Nieto, J., & Aldana-Montes, J.F. (2016). Dismatch results
for OAEI. In OM. http://disi.unitn.it/∼pavel/om2016/papers/oaei16 paper5.pdf.

Sahay, S., & Ram, A. (2011). Socio-semantic health information access. In AAAI spring symposium: AI and
health communication, AAAI.
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