
J Intell Inf Syst (2017) 48:519–551
DOI 10.1007/s10844-016-0426-3

ScLink: supervised instance matching system
for heterogeneous repositories

Khai Nguyen1,2 ·Ryutaro Ichise1,2

Received: 28 October 2015 / Revised: 31 May 2016 / Accepted: 1 August 2016 /
Published online: 18 August 2016
© Springer Science+Business Media New York 2016

Abstract Instance matching is the finding of co-referent instances that describe the same
real-world object across two different repositories. For this problem, the heterogeneity, also
known as the differences of objects’ attributes and repositories’ schema, is a challenging
issue. It creates the limitations in the accuracy of existing solutions. In order to match the
instances of heterogeneous repositories, a matching system can follow a configuration that
specifies the equivalent properties, suitable similarity metrics, and other important parame-
ters. This configuration can be created manually or automatically by learning methods. We
present ScLink, an instance matching system that can generate a configuration automati-
cally. In ScLink, we install two novel supervised learning algorithms, cLearn and minBlock.
cLearn applies an apriori-like heuristic for finding the optimal combination of matching
properties and similarity metrics. minBlock finds a blocking model, which aims at opti-
mally reducing the pairwise alignments of instances between input repositories. In addition,
ScLink introduces other techniques to take into account the scalability issue on large repos-
itories. Experimental results on standard and very large datasets find that minBlock and
cLearn are very effective and efficient. cLearn is also significantly better than existing con-
figuration learning algorithms. It drastically boosts the accuracy of ScLink and makes the
system outperform the state-of-the-arts, even when being trained using a small amount of
labeled data.

Keywords Instance matching · Blocking · Schema-independent · Supervised ·
Configuration

� Khai Nguyen
nhkhai@nii.ac.jp

Ryutaro Ichise
ichise@nii.ac.jp

1 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

2 SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama,
Kanagawa 240-0193 Japan

http://crossmark.crossref.org/dialog/?doi=10.1007/s10844-016-0426-3&domain=pdf
mailto:nhkhai@nii.ac.jp
mailto:ichise@nii.ac.jp

520 J Intell Inf Syst (2017) 48:519–551

1 Introduction

Instance matching solves the problem of detecting the different instances of the same object.
Such instances are called co-referent instances. Instance matching is an important task in
knowledge discovery and data mining, especially in data integration, data cleansing, and
linked data interlinking (Hernández and Stolfo 1995; Rahm and Do 2000; Ferrara et al.
2011). It enables the data integration system to remain the consistency and integrity when
combining different repositories. In linked data, instance matching is an essential compo-
nent for linking the co-referent instances of different repositories. This process enriches
the knowledge of linked data by connecting the independently created repositories. For its
importance, instance matching has been extensively studied (Winkler 2006; Koudas et al.
2006; Köpcke and Rahm 2010). However, the achievement of an ultimate solution is still an
open research problem.

In our work, we focus on instance matching for data in which the properties are declared.
Some examples of this form of data are relational data, XML, and linked data. Our study is
inspired by the problem of data integration in general and linked data interlinking, whose
difficulties are almost shared but also varied in accordance with the characteristics of each
problem. The first common difficulty is the heterogeneity coming from the schema and
instance level. The heterogeneity of schemas arises from the fact that different repositories
do not use the same schema, which contains the description of property (e.g., ‘name’ and
‘range’). For example, ‘abstract’ can be named as ‘comment’, ‘description’, or even by a
random code. The heterogeneity of instances results also from the inconsistent convention
and the data collection from various sources. The same attribute of an instance can be repre-
sented in different styles (e.g., measurement unit, parts of name ordering, and time format)
or even different values (e.g., New York and NY, clicker and remote control). The second
common difficulty is the data ambiguity. Different values can describe the same informa-
tion, and contradictorily, the same value can simultaneously refer to different things (e.g.,
Beverly Hills, California and Beverly Hills, Texas). The heterogeneity and ambiguity are
clearly the causes of accuracy reduction.

In our work, although linked data is not the only one focus, it is the main motivation of
scalability and heterogeneity. Those challenges on linked data are very difficult because of
its open access and large scale. Most prominent linked data repositories are constructed from
crowdsourced data, which offers a large opportunity to increase the knowledge. However, it
also makes the data be vulnerable to the inclusion of incorrect or inconsistent information.
Besides that, the heterogeneity and ambiguity of linked data repositories are much higher
than traditional databases. For example, consider the DBpedia 3.9, there are 45,858 unique
properties, 5,314,053 of only non-redirected instances,1 and more than 20,000 instances
sharing the token ‘John’ or ‘William’. Matching repositories involved with such kind of
data is very challenging in term of accuracy and scalability.

In order to perform the instance matching task, the matching configuration is used
implicitly or explicitly to specify the settings of instances comparison (Ngomo and Auer
2011; Volz et al. 2009). A typical configuration includes the equivalent property mappings,
similarity metrics, and similarity aggregation. One or many similarity metrics can be applied

1A redirected instance does not contain any information other than a URI linking to another instance that
actually contains descriptions.

J Intell Inf Syst (2017) 48:519–551 521

to a property mapping in order to consider many aspects of the given values. The similarity
aggregation combines the similarities of all property mappings into a final score, which is
used to determine the co-reference possibility.

Besides configuration-based approach, supervised instance matching can also be consid-
ered as a classification problem (Köpcke et al. 2010; Soru and Ngomo 2014). Different from
the configuration-based approach as we discussed above, this approach takes the prediction
result as the co-reference possibility. The limitation of the classification-based approach is
that the classifier may be complicated to be interpreted. Furthermore, the post-processing,
which was proved to be effective (Nguyen et al. 2012a; Ngomo et al. 2011), requires the
explicit matching scores which are not offered by a classifier.

Instance matching is a well-studied problem. The early state of instance matching is the
manually operated systems (Cruz et al. 2009; Niu et al. 2011), in which the configuration is
constructed by the human. The heterogeneity of repositories is a factor of automation limi-
tation for this approach because it blocks the portability of the constructed configuration. In
addition, since user’s experience does not guarantee to cover every data domain, the useful
property mappings, suitable similarity metrics, and the optimality of other settings are dif-
ficult to be precisely decided. Finally, the accuracy is reduced as a consequence. Matching
configuration can be effectively and automatically constructed by using learning algorithms.
Unsupervised learning is an option for a fully automatic system (Hall et al. 2008; Ngomo
and Lyko 2013; Nikolov et al. 2012; Bhattacharya and Getoor 2006). However, it is still far
from the practical usage because it delivers just a modest accuracy but suffers from very high
complexity. Contradictorily, supervised learning of configuration has the advantages in high
accuracy and low complexity. Although this approach requires some labeled instance pairs
for the learning step, a small size of training data can compensate the loss of automation.
Configuration learning has been the focus of a few systems (Nikolov et al. 2012; Ngomo and
Lyko 2012; Isele and Bizer 2013). However, those systems are not suitable for highly het-
erogeneous and large-scale datasets because they need manual interventions or are of high
complexity.

We present ScLink, a scalable and supervised instance matching system. ScLink

contains two phases: learning phase and resolution phase. In learning phase, ScLink auto-
matically generates property mappings and assigns similarity metrics to each mapping in
order to create the initial similarity functions. An optimal combination of these similar-
ity functions and also other parameters of the resolution phase are selected by a learning
algorithm.

ScLink contains three main contributions. The first one is cLearn, a heuristic-based
configuration learning algorithm. The second one is minBlock, a learning algorithm for
blocking model. Blocking is a technique used for quickly detecting the candidates of poten-
tially co-referent instances. The objective of this step is to avoid taking the comparisons
for all pairwise alignments of instances between input repositories. The third novelty is
the modified BM25 (mBM252), a novel similarity metric that is robust to the ambiguous
strings. ScLink is highly scalable because its simple architecture enables the parallel pro-
cessing for the comparisons of instances. In addition, different from previous supervised

2This similarity may be first proposed in another paper, which is being under review. Different from that
paper, in this article, we empirically analyze its effectiveness.

522 J Intell Inf Syst (2017) 48:519–551

systems, ScLink optimizes the blocking model and thus generates fewer candidates. That
is, the complexity is much reduced.

ScLink is an extensive improvement of cLink (Nguyen and Ichise 2015a). Compared to
cLink, the scalability, ambiguity, and heterogeneity are more radically solved in ScLink.
The novelties of ScLink compared to cLink include the workflow, minBlock algorithm,
and the mBM25. With the inclusion of the new elements, the experiments are more elabo-
rately conducted with more datasets. In addition, the cLearn algorithm is deeper analyzed
in this paper. In short, the main contributions of ScLink are the minBlock, cLearn, and
the mBM25.

We analyze the performance of ScLink in many aspects. We use 15 real datasets whose
sizes vary from small to very large. We evaluate in detail minBlock, cLearn, and mBM25.
We re-implement recent configuration learning algorithms (Isele and Bizer 2012, 2013;
Nikolov et al. 2012; Hu et al. 2014; Ngomo and Lyko 2012) for comparing with cLearn in
the context of using the same input of similarity functions and all other parameters. We com-
pare ScLink with the previous systems, including the supervised and the state-of-the-art
systems. Interestingly, experimental results find that our system needs only a small amount
of training data for constructing an effective configuration. It supports the applicability of
ScLink in practical instance matching problems.

The rest of the paper is organized as follows. Section 2 defines the problem of instance
matching and provides some preliminary concepts. Section 3 describes ScLink in detail.
Section 4 reports the experiments. Section 5 summarizes the related work. Section 6 reviews
our study and outlines the future work.

2 Preliminaries

The problem of instance matching is defined as follows. Given two repositories: the source
RS and the target RT . Each repository is a collection of instances and is associated with
a schema. In this paper, the schema of a repository is defined as all properties existing in
that repository. In addition, the set of attributes of an instance x described by property p

is formatted as p(x). In relational databases, an element of p(x) can be considered as a
cell value. In linked data, where the RDF statement 〈subject, predicate, object〉 is used
to describe a fact, the representation of p(x) is equivalent to predicate(subject), which
returns all related objects. Due to the heterogeneity, p(x) may be empty (e.g., missing
value), contains one, or multiple elements (e.g., different names for one thing).

The objective of instance matching is to identify the co-referent set I ∈ RS × RT . A
pair (x, y) of instances x ∈ RS and y ∈ RT belongs to I if x and y co-describe the
same object. In the supervised scenario, a subset of RS × RT is labeled and given to the
learning algorithms. When the learning process finishes, the obtained knowledge is applied
for detecting the co-references existing in the unlabeled set.

The discrimination of source and target repository enables the role assignment for the
input repositories. Most researchers consider the target as a referent repository, which is
expected to contain the instances that are co-referent with many instances of the source
repository. Therefore, the target repository contains more instances and so that it is more
heterogeneous and ambiguous. This discrimination is helpful for reducing the complexity
and improving the accuracy of the instance matching. These advantages will be further
discussed in the next section.

The evaluation of instance matching is based on three measures: recall, precision, and
F1 score. Among them, F1, which is the harmonic mean of recall and precision is more

J Intell Inf Syst (2017) 48:519–551 523

Table 1 A motivating example
Source repository RS Target repository RT

Name Class FirstName Alias Type

x1 Alice Brady Red y1 Alice Alice

x2 Jack Eve Pink y2 Eve Snow Pink

x3 Jack Sloss Pink y3 Jack Alice Black

x4 Lee, Jack Red y4 J. Lee Red

x5 Bob Dylan

RSL = {x1, x2, x3, x4}, RSU = {x5}
Co-references: (x1, y1), (x2, y2), (x4, y4)

prioritized because it reflects the conciliation of recall and precision. Considering I as the
expected co-references and D as the result of the instance matching process, the calculations
of recall and precision are as follows.

recall(I,D) = |I ∩ D|
|I | (1)

precision(I,D) = |I ∩ D|
|D| (2)

We use an example of two small repositories to illustrate the detail of ScLink. Table 1
depicts this example. In the next section, we describe the detail of ScLink and use this
example as an explanation for the main idea. In addition, for efficient reference, Table 2
lists the notations frequently used in this article.

3 ScLink

We begin with the description of the general workflow and then detail the steps.

3.1 Overview

The general workflow of ScLink is depicted in Fig. 1. The instance matching process con-
sists of two phases: learning and resolution. The learning phase contains four steps: property

Fig. 1 The general architecture of ScLink

524 J Intell Inf Syst (2017) 48:519–551

Table 2 List of frequently used notations

Notation Meaning Notation Meaning

R repository CL labeled candidates

RS source repository CU unlabeled candidates

RT target repository RSL part of RS for generating CL

schema(R) schema of repository R RSU part of RS for generating CU

x, y, z, t instance Bdef default blocking model

p property Bopt optimal blocking model

v = p(x) attribute value of x at property p sim similarity function

w string token E preprocessing function

alignment, similarity function generation, blocking, and configuration learning. The resolu-
tion phase contains four steps: blocking, similarity aggregation, and filtering. ScLink takes
two repositories RS and RT as the input. RS is also separated into two parts: RSL and RSU .

In learning phase, first, the property alignment generates the property mappings using an
overlap measure over the values described by all instances of RS and RT . According to the
type of each mapping, the similarity function generation assigns the similarity metrics and
produces the initial similarity functions. Each function computes one atomic score reflecting
an aspect of the similarities between two instances. In parallel, in blocking step, minBlock

algorithm finds an optimal blocking model using the generated property mappings. The
learned model is used to create the labeled candidates set CL and unlabeled candidates
CU , where CL ∈ RSL × RT and CU ∈ RSU × RT . In this step, an annotation process is
conducted to create the training data for minBlock as well as cLearn. Together with the
initial similarity functions, the labeled candidates CL are input into configuration learning,
in which cLearn is executed. cLearn finds the optimal configuration, which contains the
specification of further steps, including similarity aggregation and filtering.

In resolution phase, the optimal configuration is used to detect the co-references from
unlabeled candidates. For each candidate, the similarity aggregation executes the learned
similarity functions and combine the results into one final matching score. Finally, filter-
ing step produces the co-references for unlabeled candidates by applying a constraint that
considers the matching score of all candidates.

The main sub-problems of our work are the property alignment, minBlock, and cLearn.
The objective of property alignment is finding the property mappings that are useful for
matching instances, given the schema of the repositories. The minBlock algorithm finds
the effective blocking functions for generating fewer candidates but reserving high recall.
cLearn mainly searches for an optimal combination of similarity functions and similarity
aggregator. All of them are at very high complexity because the goal is to find the optimal
solution in a large collection of possible answers. The search space for those problems is
at least 2n − 1, where n is the |schema(RS)| × |schema(RT)|, the number of blocking
functions, and similarity functions, with respective to above sub-problems. For cLearn, the
algorithm also finds the optimal similarity aggregator. Hence, the search space is m times
larger, where m is the number of possible aggregators.

Most parts of the above workflow are shared between many configuration-based super-
vised instance matching systems (Hu et al. 2014; Ngomo et al. 2011; Isele and Bizer 2012,
2013). Considering a complete system, one originality of ScLink is that it also applies
the learning for blocking step to create the optimal model, which can generate compact

J Intell Inf Syst (2017) 48:519–551 525

candidate sets. Other systems use all property mappings for this step and thus, ignore the
quality judgment for the input information because those mappings are not guaranteed to be
correct. In other words, using all of them may produce many unnecessary candidates and
add more limitations to scalability.

3.2 Property alignment

The mission of property alignment is to find the property mappings that are expected to
describe the same attributes. For solving this, ScLink first selects the property candidates
from schema(RS) and then aligns them to the appropriate properties in schema(RT), where
schema(RS) and schema(RT) are all properties of RS and RT , respectively.

3.2.1 Select property candidates from source repository

ScLink does not take all properties of the source repository into comparison. Instead, only
the properties that satisfy the requirements of diversity and frequency are considered. These
measures are modified from the discriminability and coverage, which are designed in Song
and Heflin (2011). The diversity (div) of a property p reflects how many unique values
are described by p. Meanwhile, the frequency (f rq) of p expresses how many instances
contain p. These measures are calculated by (3) and (4), respectively.

div(p, RS) = | ⋃x∈RS
p(x)|

∑
x∈RS

|p(x)| (3)

f rq(p, RS) = |{x|x ∈ RS, p(x) �= ∅}|
|RS | (4)

We separate the properties by their type before performing the selection. This mechanism
enables the user to set a quota for each type of property, in order to increase the inclusion of
useful properties from various types. We discriminate the properties into four types: string,
number, date, and URI. For each type, ScLink limits the search space into only properties
whose diversity satisfies a threshold tdiv . Then, a property is considered as a candidate if it
is among the top Kf rq most frequent properties.

3.2.2 Align properties between source and target repository

Each selected property from source repository is aligned with the properties having the same
type of the target. Each alignment also is called a mapping. The confidence of a mapping
[pS, pT] is measured by counting the sharing values of pS and pT . Concretely, it is defined
as follows:

conf ([pS, pT]) = |VpS
∩ VpT

|
|VpS

|
Vpk

=
⋃

x∈Rk

⋃

v∈pk(x)

E(v) (5)

where E is a preprocessing function. Table 3 is the detail of E. According to this table, E is
designed for working with various data types. Among the mappings related to one property
of the source repository, we select the mappings that belong to the top Kconf most confident
ones. In technical aspect, a very small threshold is applied to the confidences to skip the
slightly relevant mappings. We fix this value to 0.01.

526 J Intell Inf Syst (2017) 48:519–551

Table 3 Value preprocessing
Data type Returned values of E

string unique set of tokens with stopword removal

number rounded value with three decimal digits

date original value

URI original value

As an illustration, consider the example in Table 1, the f rq(Name, RS) and
div(Name, RS) are both 1.0 because it appears in all instances and all values are differ-
ent. However, f rq(Class, RS) and div(Class, RS) are 4/5 and 2/2, respectively. Suppose
that tdiv = 0.5 and Kf rq = 2, then both Class and Name are selected for the first step.
In the second step, the confidence of the mappings is listed in Table 4. Let Kconf = 2, all
mappings whose confidence is higher than zero are selected as the final result.

Kf rq , tdiv , and Kconf can be chosen based on the number of retrieved property mappings.
For each data type, the maximum quantity of mappings is Kf rq × Kconf and additionally
depends on tdiv . More property mappings cause higher complexity for the later learn-
ing algorithms but may compensate more accurate result. In order words, setting these
parameters is a heuristic for balancing the accuracy and complexity.

The diversity and frequency are computed only for properties of the source repository,
instead of both repositories. This strategy originates from the assumption that the target is
a reference repository (Section 2). The target property pT is required to cover many values
described by the source property pS . Therefore, it is sufficient to measure the confidence
directly without applying the property selection for the target repository.

ScLink generates the initial property mappings by observing the values described by the
properties. That is, the creation of mappings is independent with the schema description.
Therefore, ScLink is classified as a schema-independent system. In other words, the het-
erogeneity of schema is solved. However, this is just half of the solution because the quality
of property mappings are not validated. The refinement is done by configuration learning
step.

Some systems also applied similar techniques to find the property mappings (Nguyen
et al. 2012a; Araujo et al. 2015). However, the prior property selection from source
repository was not investigated although the computation of the confidence for all pair-
wise mappings between schema(RS) and schema(RT) is impractical on large datasets.
In addition, other systems use Jaccard index to measure the confidence, by replacing the
denominator of (5) by |VpS

∪ VpT
|. Quantifying such value is expensive because all ele-

ments of VpT
must be retrieved. For large reference repository, querying VpT

is not trivial.
For example, assume that the property label exists in almost all instances, Vlabel are at
very large size and the executions of preprocessing function E also increase consequently.
Our strategy remains correct because we rank the mappings by each property of the source
repository independently.

Table 4 Example: confidence of
property mappings FirstName Alias Type

Name 3/7 2/7 0

Class 0 0 2/2

J Intell Inf Syst (2017) 48:519–551 527

All property mappings are used for similarity function generation and the mappings of
string properties are used in blocking step. In the next two sections, we describe the detail
of those steps.

3.3 Similarity function generation

The task of this step is to assign the suitable similarity metrics to the property mappings.
The result of one assignment is a similarity function. This step creates only the prototype
of similarity functions. The execution of them is conducted by the similarity aggregation
step, which is described in Section 3.6. We denote a similarity function as simmetric

mapping . The
formal definition of a similarity function is given in (6).

simmetric[pS,pT](x, y) = max
vx∈pS(x),vy∈pT (y)

metric(vx, vy) (6)

where max operator is used to return only the similarity of the most similar values
described by pS and pT , because pS(x) or pT (y) may contain multiple facts. For example,
given name(x) = {‘Sony’, ‘Sony Corporation’} and label(y) = {‘Sony Global’}. Then,
simJaro[name,label](x, y) compares the pairwise values of name(x) and label(y) using Jaro
similarity and returns the maximum value.

ScLink assigns only the similarity metrics that are suitable for the type of the interested
property mapping. We discriminate 4 types of mappings, including string, number, date, and
URI. The list of similarity metrics for those types is reported in Table 5. According to this
table, exact matching is used for comparing URI and date. The similarity of values of URI

and date is considered as 0 or 1 because it is suitable for the real data (e.g., homepage, birth
date, and release date). Although the variation of time is useful in temporal instance match-
ing (Christen and Gayler 2013), the focus of ScLink is the general context. For number , the
inverse difference (7) is used to calculate how much close two numbers a and b are. Exact
matching can also be used for this data type. However, inverse difference is more flexible
when the repositories contain slightly different values (e.g., geographic coordinate).

invDiff (a, b) = 1

1 + |a − b| (7)

We apply Levenshtein metric for short strings comparison because it is effective for
this kind of data (Levenshtein 1966). For long strings, we install the well-known TF-IDF
Cosine and introduce the novel modified BM25 metrics. These metrics take the tokens (w)
of the given strings into the computation, together with their normalized term frequency

Table 5 Similarity metrics by data type

Data type Similarity metrics

string Levenshtein (for short string), TF-IDF Cosine, modified BM25

number inverse difference

date exact matching

URI exact matching

528 J Intell Inf Syst (2017) 48:519–551

(T F) and the inverse document frequency (IDF). Equations (8) and (9) are the customized
calculations of those weights, for adapting with the instance matching scenario.

T F(w, x, R) =

∑

p∈schema(R)

|V(w, p, x)|

max
t∈R

∑

p∈schema(R)

|V(w, p, t)| (8)

IDF(w,R) = log

|R| − ∑

p∈schema(R)

|{x|x ∈ R,V(w, p, x) �= ∅}|
∑

p∈schema(R)

|{x|x ∈ R,V(w, p, x) �= ∅}| (9)

where

V(w, p, x) = {v|v ∈ p(x),w ∈ E(v)}
By including (8) and (9), the TF-IDF Cosine and the modified BM25 similarities of

two token lists a and b belonging to pS(x) and pT (y) are calculated as in (8) and (9),
respectively.

cosine(a, b) =
∑

w∈a∩b

T FIDF(w, x, RS) × T FIDF(w, y,RT)

√ ∑

w∈a

T FIDF(w, x,RS) × ∑

w∈b

T FIDF(w, y, RT)

T FIDF(w, x,R) = T F(w, x, R) × IDF(w,R) (10)

mBM25(a, b) = |a ∩ b|
|a ∪ b| ×

∑

w∈a∩b

tWeight (w, x, y) × tEdit (w, a, b) (11)

where

tWeight (w, x, y) = IDF(w,RS) × IDF(w,RT) × T F(w, y, RT) × k1

T F(w, y, RT) + k2

tEdit (w, a, b) = invDiff (pos(w, a) − pos(w0, a), pos(w, b) − pos(w0, b))

The TF-IDF Cosine is popularly used for its advantages in weighting the tokens. However,
it is sensitive to ambiguity because it ignores the tokens order, an important information.
Using a similarity metric with a robust disambiguation capability is very important. We
introduce the modified BM25 as a more effective metric, which also considers this useful
aspect. The first factor, |a∩b|

|a∪b| , is the Jaccard coefficient of a and b. The second factor is the
sum of the token weighting tWeight and the order inverse difference tEdit . The function
pos returns the position of a token in its parent string. The variable w0 denotes the first
shared token between a and b. The combination of Jaccard coefficient, tWeight , and tEdit

is effective because we can simultaneously penalize the less overlapped strings, include the
token weight, and consider the token order. tWeight modifies the original BM25 weighting
scheme (Robertson et al. 1994), which is originally designed for Information Retrieval.
tWeight eliminates the target document length in BM25 and introducing the IDF(w,RS).
k1 and k2 are fixed equivalently to the defaults of BM25, which are 2.2 and 0.3, respectively.
In our experiment, the modified BM25 shows its considerable effectiveness against the TF-
IDF Cosine on highly ambiguous datasets.

J Intell Inf Syst (2017) 48:519–551 529

We illustrate two motivating example of mBM25. We simplify the examples by consid-
ering that the weight of all tokens is same and thus tWeight is skip in the calculation. The
first example is the necessity of tEdit . Suppose we need to compare ‘Tokyo (Prefecture
of Japan)’(1) to ‘Tokyo Prefecture’(2), and ‘Tokyo, Japan’(3). The task is to discriminate
that (1) and (2) refer to the same entity (Tokyo Metropolis) but (1) and (3) do not because
(3) refer to the special wards of Tokyo. If we use only Jaccard measure, it fails to dis-
criminate the cases, because it gives 2/4 for the two pairs. However, tEdit for these
pairs in turn is invDiff (0, 0)T okyo + invDiff (1, 1)P ref ecture and invDiff (0, 0)T okyo +
invDiff (3, 1)Japan. Because the former is higher, the task is successfully done. The second
example is the necessity of Jaccard measure. We compare ‘Tokyo University’(4) to ‘Univer-
sity of Tokyo’(5) and ‘The Tokyo Metropolitan University’(6). We have tEdit (4, 5) = 5/4
and tEdit (4, 6) = 3/2. Therefore, tEdit fails to realize that (4) is closer to (5) than (6).
However, because Jaccard(4, 5) = 2/3 and Jaccard(4, 6) = 2/4, the respective final results
are 10/12 and 6/8, which satisfy the expectation.

The TF-IDF Cosine and modified BM25 metrics compare the token using exact match-
ing. Since we focus on real data, which infrequently contains token distortion, exact
matching is effective. In addition, ScLink is implemented with a flexible mechanism that
is ready for the injection of new similarity metrics when needed.

3.4 Blocking

The input of this step includes the string property mappings, RSL, RSU and RT . In this step,
the labeled candidate set CL and unlabeled set CU are generated. A candidate is defined as
a pair of instances and is expected to be the actual co-reference. This step is very impor-
tant because it reduces the number of pairwise alignments between RS and RT . Therefore,
together with the retention of many actual co-references, another mission of this step is to
generate the candidate sets with compact sizes.

For each property mapping, we define a blocking function, which receives the input of
instances pairs C and returns the pairs that satisfy the blocking mechanism. The input, for
example, can be RS × RT or just a subset of this Cartesian product. A blocking function
is a combination of two elements: property mappings and blocking mechanism. Blocking
mechanism can be a simple exact matching or the advanced soundex and edit-distance. In
ScLink, the blocking mechanism is to qualify a pair if the instances share the first token
in the values described by the properties of interest. Using multiple blocking functions
increases the recall but has more possibility to generate incorrect candidates. Therefore,
selecting an optimal set of blocking function is very important.

The procedure of blocking step is as follows. First, we create a default blocking model
Bdef , which is the set of all blocking functions generated from all input property mappings.
The result of applying a blocking model is the union of the results of each member. Then,
a candidates set CL0 is generated as the result of Bdef (RSL × RT), where RSL is a portion
of RS . CL0 is passed through an annotation process in which positive or negative label is
assigned for each candidate. The annotation can be solved by the achievements of other
studies. For instance, combining automatic matching algorithms and crowd-sourcing-based
technology (Demartini et al. 2013; Vesdapunt et al. 2014). After that, minBlock algorithm
learns an optimal blocking model Bopt from CL0 and Bdef . Finally, Bopt is used to create
CL and CU , where CL = Bopt (CL0) and CU = Bopt (RSU × RT).

An optimal blocking model generates compact candidate sets with ignoring minimal
actual co-references. For the learning of such model, we propose minBlock. minBlock

considers all input blocking functions as baseline and tries to remain the actual co-references

530 J Intell Inf Syst (2017) 48:519–551

that can be generated by the baseline. Meanwhile, it tries to reduce the unexpected candi-
dates. The pseudo code of minBlock is written in Algorithm 1. In this pseudo code, C+

L0
is the positive candidates and recall is calculated by (1). The idea of minBlock is sim-
ple. First, the variable minRec is assigned with a value estimated from the recall of using
all blocking function (Bdef) (line 2). minRec is the lower bound for the optimal blocking
model. By default, tloss is set to 1.0 for the zero loss expectation. After that, in each main
iteration controlled by line 3, minBlock removes the blocking function that generates the
highest number of candidates but satisfies minRec. This selection is reflected by line 8. The
algorithm stops when there is no blocking function for removal (line 12).

Consider the example in Table 1, from the property alignment, we have 3 prop-
erty mappings: [Name, FirstName], [Name, Alias], and [Class, Type]. Let f1, f2, and
f3 in turn are the blocking function defined for those mappings with the same block-
ing strategy, to match the first token. The co-references (x1, y1), (x2, y2), and (x4, y4)

are given to minBlock as C+
L0. By applying f1, f2 and f3 on RSL × RT , we get

the respective candidates: {(x1, y1), (x2, y3), (x3, y3)}, {(x1, y1), (x1, y3), (x4, y4)}, and
{(x1, y4), (x2, y2), (x3, y2), (x4, y4)}. The result of applying the initial Bdef = {f1, f2, f3}
is the union of the above candidate sets and it covers all the expected co-references.
Therefore, with tloss = 1.0, the final blocking model is required to produce all the three
co-references (i.e., minRec = 1.0). In the first iteration controlled by line 3, the removal
of each function in Bdef is considered. Without f3, the candidate (x2, y2) is not produced,
while without f1 or f2, all co-references are still retrieved. f1 produces two unneces-
sary candidates ((x2, y3), (x3, y3)) while f2 produces only one ((x1, y3)). Therefore, f1 is
removed and Bopt becomes {f2, f3}. In the next iteration, because the removal of either f2
or f3 violates minRec, the algorithm stops.

The complexity of minBlock is acceptable. The worst case happens when the if
statement in line 8 is always hold. In that case, the complexity of minBlock is the

quadratic O
(

n(n+1)
2

)
, where n is the size of Bdef . This complexity indicates a moderate

computational effort.
The learning of blocking model is also investigated by many studies (Bilenko et al. 2006;

Dalvi et al. 2013; Kejriwal and Miranker 2013). Among them, most similar to minBlock is
optimal hashing (Dalvi et al. 2013), which also tries to reduce the size of the candidate set

J Intell Inf Syst (2017) 48:519–551 531

while reserving the recall. However, the problem definition of this hashing model is very
different from ours and therefore the solution is varied.

The definition of blocking function enables the modification of blocking mechanism.
That is, one or multiple blocking mechanisms can be used for each property mapping. How-
ever, ScLink currently uses a simple token-based strategy (Papadakis et al. 2013) as the only
mechanism. The advantage of this strategy is to retain the highest number of the expected
co-references, compared to that of many other systems (Nguyen et al. 2012a; Mendes and
Jakob 2011; Volz et al. 2009; Isele et al. 2011), which use token weighting. Although
weighting approach generates less number of candidates, it is accompanied by a consider-
able drop in recall. The token-based comparison is used in many blocking strategies (e.g.,
attribute clustering, n-grams, and suffix array). The most recent benchmark is reported in
Papadakis et al. (2016).

3.5 Configuration learning

The labeled candidates set CL is separated into two sets, the training set T rain and val-
idation set V al. Using T rain, V al, initial similarity functions Isim (Section 3.3), and
similarity aggregators Iagg (Section 3.6), this step learns the optimal configuration Copt

that is most suitable for the input repositories. A configuration specifies the combination
of similarity functions Fsim, the similarity aggregator Agg, the parameters σsim associated
with each similarity function sim, and the parameter δ of the filtering step (Section 3.7).
The mission of this step is to automatically assign the optimal value to all elements of
Copt .

We use cLearn, a heuristic search method to optimize the combination of the similarity
functions and the similarity aggregator. The pseudo code of cLearn is given in Algorithm 2.
In this pseudo code, we use dot (‘.’) notation to represent the member access operator. The
detail of the functions and parameters used in Algorithm 2 is as follows.

– Ktop is used to adjust the maximum number of selected similarity functions. A higher
value of Ktop offers more opportunity for the optimal configuration but also may
increase the complexity because it may add more iterations controlled by line 12. In
cLearn, we assign Ktop = 16 by default. We use such a high value of Ktop so that pos-
sibly cLearn does not miss the optimal configuration. In addition, in our experiment,
using Ktop = 16 is sufficient to find a good configuration in an acceptable time on a
desktop computer.

– Init creates a configuration by assigning Agg, Fsim, and δ with given values.
– Match produces the co-references from a collection of candidates given a configura-

tion. This step calls the similarity aggregator (Section 3.6) and filtering (Section 3.7).
The similarity aggregator computes the matching score of candidates and the filtering
produces the co-references.

– FindT hreshold assigns a value to δ, a parameter of co-reference filter. This func-
tion first selects the top |T rain+| candidates with the highest matching score, where
|T rain+| is the number of the actual co-references in T rain. Then, it assigns the lowest
score of the correctly detected co-reference to δ.

– Evaluate computes the performance of instance matching by comparing the generated
results with the labeled data. In this function, the F1 score is used as the default perfor-
mance metric. It is the harmonic mean of recall and precision, as calculated by (1)
and (2).

532 J Intell Inf Syst (2017) 48:519–551

cLearn begins with checking each similarity function (line 4 to 10) and select the best
Ktop performed ones (line 11). The selected functions are stored using candidate variable.
After that, cLearn finds the optimal combination among the Ktop functions using Apriori
approach (Agrawal et al. 1994) (line 12 to 23). In the first iteration of line 12, candidate

contains the groups of single similarity function. The size of those groups increases along
with the iteration, as the result of combining different groups. Line 16 reflects such combi-
nation by taking the union of g.c.Fsim and h.c.Fsim. The heuristic used in this algorithm is
the direct enhancement assumption. According to line 21, the performance of using a com-
bination must not be less than that of the combined groups. This heuristic is reasonable as
a list of similarity functions that reduces the performance has little possibility of generating
a further list with improvement. The qualified combinations are carried to the next iteration
by updating candidate variable (line 23). The algorithm stops when a new combination of
similarity functions is not made (candidate is empty).

The validation set V al is used to increase the generality of the final configuration Copt .
Each iteration controlled by line 2 finds an optimal configuration with one similarity aggre-
gator A. In other words, there are |Iagg| configurations in Cagg . For selecting the most
optimal one from Cagg , instead of just picking the configuration having the best perfor-
mance on T rain, V al is recommended. In case the labeled data is too small to be separated
into training and validation sets, a cross-validation is reasonable.

J Intell Inf Syst (2017) 48:519–551 533

We illustrate the main idea of cLearn, which is to select the optimal combination of
similarity functions (line 12 to 23). From the example given in Table 6, the result of prop-
erty alignment, and minBlock, we get 3 property mappings [Name, FirstName], [Name,
Alias], [Class, Type] and 6 candidates produced by Bopt = {f2, f3}. In order to simplify the
illustration, we assign only Jaccard measure to the mappings and thus we get 3 respective
similarity functions to the above mappings sim1, sim2 and sim3. Considering the average
as the similarity aggregator, the results of applying all combinations are listed in Table 6. We
skip the stable filtering and set the matching threshold to 0.25. That is, if a value in Table 6
satisfies 0.25, the respective candidate becomes a detected coreference. Assume that at the
first iteration of line 12 to 23 candidate is {sim1, sim2, sim3}. In this iteration, the combi-
nations of two functions are considered. According to Table 6, only the combination of sim1
and sim3 violates the constraint of line 21 because the performance (F1) is lower than using
sim1. Therefore, candidate is changed to {{sim1, sim2}, {sim2, sim3}} and advanced to
the next iteration. In the second iteration, the combination {sim1, sim2, sim3} is checked.
Because it is not better than {sim1, sim2}, candidate becomes empty and the algorithm
stops. Finally, the optimal combination is {sim1, sim2}. In this example, all combinations
are visited. In our experiment, the checked combinations are much smaller than all possible
cases.

We analyze the complexity by the number of the configurations that cLearn has to check.
In total the complexity is O(|Ginp| × (|Fdef | + f (while))), where f (while) is the com-
plexity of the while block from line 12 to line 23. The complexity of this block depends on
Ktop , and the probability of the if statement. Let pi be the probability of the hold cases for
the if statement in the ith iteration of the while block. The complexity of the ith iteration is
f (whilei) = pi−1 × (Ktop

i+1

)
, where the iteration is counted from 1 and p0 = 1.0. That is, the

size of candidate may increase for the first few iterations (if Ktop > 3) and then decrease.
In the worst case, if p is equal to 1.0 for all iterations, the result will be the union of Ktop

similarity functions. Otherwise, lower value of p makes the algorithm finish faster.
cLearn works under the principle of the well-known Apriori algorithm, where each

similarity function is considered as an item as in Apriori. cLearn begins with the con-
sideration of each single similarity function and then checks their combinations. Since the
goals of Apriori and our learning task are different, we customize the acceptance mecha-
nism when checking a new combination of similarity functions. While in Apriori algorithm,
the condition is uniformly fixed for all cases, we adaptively change the criterion for each
combination, which is the heuristic discussed above.

Table 6 Example: cLearn algorithm

(x1, y1) (x1, y3) (x1, y4) (x2, y2) (x3, y2) (x4, y4) F1

sim1 0.5 0 0 0.5 0 0 0.80

sim2 0.5 0.5 0 0 0 0.5 0.67

sim3 0 0 1 1 1 1 0.57

sim1, sim2 0.5 0.25 0 0.25 0 0.25 0.86

sim1, sim3 0.25 0 0.5 0.75 0.5 0.5 0.75

sim2, sim3 0.25 0.25 0.5 0.5 0.5 0.75 0.67

sim1, sim2, sim3 0.33 0.17 0.33 0.5 0.33 0.5 0.75

534 J Intell Inf Syst (2017) 48:519–551

The global optimum of configuration can be found using exhaustive search. However,
such method is extremely expensive in term of computational cost and thus has not been
used. Some systems try to use genetic search to solve the issue of complexity (Nikolov
et al. 2012; Ngomo and Lyko 2012; Isele and Bizer 2013) but this algorithm is still time-
consuming because it is based on random convergence. In addition, the genetic algorithm
has many free parameters. cLearn uses a reasonable heuristic to reduce the complexity and
minimize the parameters.

Most studies consider the supervised instance matching problem as the discovery of
property mappings, instead of identifying them by annotation. The reason is the correct
mappings in semantic aspect are different from the useful mappings for instance matching.
For example, air transportation companies frequently share their ICAO (i.e. unique abbrevi-
ation name) and stock symbol; or full name can be matched with first name and last name,
instead of only the same amount of information. Besides taking this issue into account,
ScLink also combines the similarity metric and the mappings for directly optimizing the
similarity functions. The motivation of this mechanism is that each metric offers different
advantages on different properties with the association of particular repositories.

3.6 Similarity aggregation

This step computes the final matching score for each candidate using the similarity functions
Fsim and their parameter δsim specified by a configuration. The computation of the matching
score mScore(x, y) for two instances x and y is defined as follows:

mScoreFsim
(x, y) = 1

valid(UFsim
(x, y))

∑

v∈UFsim
(x,y)

vk × weight (y)

UFsim
(x, y) = {sim(x, y)|sim(x, y) ≥ σsim, sim ∈ Fsim} (12)

where k ∈ {1, 2}, valid is a counting function, weight is a function weighting the target
instance y, and σsim is the parameter for each similarity function sim, which is determined
automatically by cLearn (at line 8). k controls the transformation for each similarity v.
When k = 1, mScore function acts as a first order aggregation. When k = 2, we have
a quadratic aggregation. There are two variations of valid , which return the number of
elements in UFsim

(x, y) and 1.0 always. The difference between these variations is that
the latter penalizes the pair (x, y) having similarities sim(x, y) < σsim while the former
does not. For weight function, ScLink also provides two options. For non-weighting,
weight (y) simply returns 1.0. For weighting, the function returns:

weight (y) = logmaxt∈RT
size(t) size(y) (13)

where size(y) counts the number of RDF triples existing in y. By using (13), we assume
that the instances containing more triples are more prioritized. The logarithmic scale is
used to reduce the weight of instances whose size is particularly large. This weighting
method is effective when the target repository is very ambiguous, such as large repositories.
In addition, ScLink provides a restriction mechanism to enable or disable σsim. When
disabling, all σsim parameters are set to zero instead of the learned values.

In total, there are 16 combinations of weight , valid , k, and restriction. Consequently,
there are 16 different aggregators supported by ScLink. All of them are used to initialize
Iagg in cLearn and let the algorithm select the most optimal one.

J Intell Inf Syst (2017) 48:519–551 535

3.7 Filtering

This step produces the final co-references. A candidate’s co-referent possibility is not
directly concluded from its matching score. Instead of that, the matching scores of all related
candidates are considered. We reuse the principle of stable marriage problem (Gale and
Shapley 1962), which was evaluated to be effective on instance matching (Nguyen et al.
2012a; Ngomo et al. 2011). A candidate (x, y) (where x ∈ RS and y ∈ RT) is eventually
co-referent if mScore(x, y) satisfies the following conditional statement:

mScore(x, y) ≥ max

(

max
z∈RS

mScore(z, y), max
t∈RT

mScore(x, t)

)

(14)

In this step, ScLink also uses a cut-off threshold δ to eliminate the incorrect candidates
but satisfying (14). δ is assigned automatically by the learning algorithm cLearn. Only
candidates whose scores satisfy the above condition statement and threshold δ are selected
for the final results.

The basic idea of the filtering step is to rank each candidate in the local set of candidates
sharing its source or target instance. It guarantees that for very ambiguous repositories, a
highly similar pair (x, y) is not necessary to be co-referent if there exist other pairs (x, z)

with higher similarity.
Above we have described the details of ScLink. Next, we report some implementation

notes of ScLink.

3.8 Implementation notes

Since the processings of all steps are parallelizable, it is feasible to apply paralleling tech-
niques to enhance the speed of the system. Although many advanced frameworks are
available and are used by other systems (Urbani et al. 2010; Volz et al. 2009; Ngomo
and Auer 2011; Hogan et al. 2012), we currently implement ScLink with the basic multi-
threading technique, because we are also interested in memory efficiency and cost saving.
Concretely, we combine multi-threading with each step of the system workflow. We exper-
imented with very large datasets on a resource-limited computer in order to confirm the
scalability of the system.

ScLink is installed as part of ScSLINT (Nguyen and Ichise 2015b), an efficient
framework for instance matching. In ScSLINT, input repositories are indexed using the
well-known inverted index structured for pairs of 〈p, p(x)〉 and 〈p(x), x〉. Therefore, the
property alignment and blocking are enhanced at the maximum processing speed. The
complexity of indexing is very small and linear to the number of instances in the repository.

4 Experiment

In order to elaborately evaluate ScLink, we conduct 5 experiments:

– Experiment 1 evaluates the performance of blocking step.
– Experiment 2 evaluates the performance cLearn.
– Experiment 3 analyzes the similarity metrics and similarity aggregators.
– Experiment 4 reports the runtime of ScLink.
– Experiment 5 compares ScLink with other systems.

536 J Intell Inf Syst (2017) 48:519–551

All experiments are conducted on a desktop computer equipped with one Intel core i7
4770K CPU and 16GB memory. The results of these experiments are reported in Section 4.3
to 4.7. Next, we describe the datasets and the mutual settings of all experiments.

4.1 Datasets

We use in total 15 datasets collected from the instance matching problem on relational
databases and linked data. The summary of the datasets is given in Table 7. In this table,
|Rk|, Pk , and f actk are the number of instances, properties and total facts (i.e., the
attributes) existing in the repository k (k ∈ {S, T }), respectively. |I | is the number of actual
coreferences. The scale of a dataset is measured by the pairwise comparisons between the
repositories. Following that, the average scale is 64.6 × 109 and the largest is 0.4 × 1012,
which are sufficient to see the scalability of ScLink.

The first 3 datasets (D1-D3) cover the bibliography and e-commerce domains and are
collected from the instance matching problem on relational databases. These datasets have
a small number of instances as well as simple schemas. The next 5 datasets (D4-D8) belong
to medicine and disease domains. Among them, the first 3 datasets have medium size while
the other 2 are larger. The last 7 datasets (D9-15) belong to people (peo), location (loc),
and organization (org) domains and have very large size. Particularly, the datasets related to
Freebase are at a huge size. The largest one contains nearly 402 × 109 pairwise instances
between the source and the target repositories. The schemas of most linked datasets are very
heterogeneous. Considering DBpedia, 45,858 different properties are used to describe the
instances. In Freebase, such quantity is even more than 50 times larger. For the last 9 datasets
(D7-D15), together with many instances, the huge number of facts increase the ambiguity
and complexity. Especially, the last 7 datasets (D9-D15) are realized as very challenging
for their scalability, heterogeneity, and ambiguity. We use the dump of NYTimes 2014/02,
DBpedia 3.7 English, Freebase 2013/09/03, and Geonames 2014/02. There are a few slight

Table 7 Summary of used datasets

ID Name |RS | |RT | PS PT f actS f actT |I |

D1 DBLP-ACM 2,616 2,294 4 4 10,464 9,162 2,224

D2 ABT-Buy 1,081 1,092 3 4 2,580 3,419 1,097

D3 Amazon-GoogleProducts 1,363 3,226 4 4 5,337 9,719 1,300

D4 Sider-Drugbank 2,670 19,689 10 118 96,269 507,495 1,142

D5 Sider-Diseasome 2,670 8,149 10 18 96,269 69,544 344

D6 Sider-DailyMed 2,670 10,002 10 27 96,269 131,064 3,225

D7 Sider-DBpedia 2,670 4,183,461 10 45,858 96,269 232,957,729 1,449

D8 Dailymed-DBpedia 10,002 4,183,461 27 45,858 131,064 232,957,729 2,454

D9 NYTimes.loc-Geonames 3,840 8,514,201 22 14 42,302 112,643,369 1,729

D10 NYTimes.loc-DBpedia 3,840 4,183,461 22 45,858 42,998 232,957,729 1,917

D11 NYTimes.org-DBpedia 6,045 4,183,461 22 45,858 54,404 232,957,729 1,922

D12 NYTimes.peo-DBpedia 9,958 4,183,461 22 45,858 103,341 232,957,729 4,964

D13 NYTimes.loc-Freebase 3,840 40,358,162 22 2,455,627 43,037 912,845,965 1,920

D14 NYTimes.org-Freebase 6,045 40,358,162 22 2,455,627 59,111 912,845,965 3,001

D15 NYTimes.peo-Freebase 9,958 40,358,162 22 2,455,627 103,496 912,845,965 4,979

J Intell Inf Syst (2017) 48:519–551 537

inconsistencies between the provided ground-truth and the downloaded dump data, because
of the difference in the release dates. Therefore, we have to manually exclude in total 130
(only 0.298 %) source instances which are related to such inconsistencies. In additional, the
three repositories NYTimes, DBLP, and ACM do not contain co-referent instances within
themselves, while the other repositories do.

The above datasets are selected because they are real datasets with the variety of domains
and sizes. Although there are some newer datasets, they are either small, artificial, or focus
on the benchmarks with some special targets (e.g., reasoning-based, string distortion, lan-
guage variation). Therefore, we do not use such datasets. Morever, many systems have been
recently tested on those datasets (Soru and Ngomo 2014; Köpcke et al. 2010; Euzenat et al.
2011). That enables the comparisons between ScLink and others systems.

Although the source repository of the tested datasets is much smaller than the target,
ScLink will also work for large source repository because the methods used in ScLink

is not limited to the small source repositories. Furthermore, because the target repository
is considered as a reference, if the source repository is too huge, it is possible to reduce
the scale by partitioning it into smaller parts sharing some characteristics (e.g., schema and
class). Analyses on very large source repository and partition methods are beyond the scope
of this paper.

4.2 Experimental settings

There are 3 parameters in ScLink: tdiv , Kf re, Kconf . We are interested in using the same
parameters for all datasets and test cases in order to evaluate the sensitivity of ScLink to
parameters. We find that the selection of these parameters is not difficult. We first fix the
Kf re, Kconf into 4 for all property types. That is, at most 64 property mappings (4 types ×
4 properties from RS × 4 properties from RT) will be generated. In order to see the ability
to select good similarity functions, a considerable amount of property mappings should be
given to cLearn. 64 property mappings are comparatively many because it is at least 2.4
times larger than the number of properties of each source repository. By fixing Kf re like
above, we gradually reduce tdiv from 1.0 until at least one string property is selected from
each source repository. tdiv = 0.5 satisfies this expectation and we use this value uniformly
for all experiments. We observe that varying tdiv in the range 0.2 to 0.7 does not change
the generated mappings on all datasets excepts the last 7 datasets, which are related to
NYTimes. For NYTimes repository, using tdiv higher than 0.5 does not return any property
of string type.

For training data separation, we follow the workflow of ScLink (Fig. 1). We split the
source repository into two parts RSL and RSU . Part RSL is used to generate the labeled
candidates CL and RSU is used to generate unlabeled candidates CU . The ratio of RSL and
RSU is varied between experiments (e.g., cross-validation or percentage split). After that,
CL is separated into two sets with the ratio 80 %:20 %. These set are used to generate two
labeled candidates set, the training set T rain (from 80 %) and validation set V al (from
20 %), which are used by cLearn. In the rest of this section, we denote x % labeled data as
using x % instances of source repository as RSL.

The split of RSL and RSU is based on the ground-truth data, the set I of actual co-
references. Each element of I is a pair of one source and one target instances. Given the
expected split ratio r , we randomly separate I into two sets IL and IU with the ratio

|IL|
|IL|+|IU | = r . The source instances of IL and IU are put in RSL and RSU . Up to this point,
RSL ∪ RSU may not be equal to RS because the I is not necessary to cover all instances of
RS . Those uncovered instances are split with the same ratio r and additionally put to RSL

538 J Intell Inf Syst (2017) 48:519–551

and RSU . Finally, we get RSL ∪ RSU ≡ RS and maintenance the ratio r between RSL and
RSU the ratio r for instances that exist (and thus also do not exist) in I . CL and CU are
generated from RSL and RSU , respectively. Following this manner, it is simple to assign the
label to CL, CU , and the detected co-references. The final accuracy (e.g., recall, precision,
and F1) in our experiment is measured by comparing the detected co-references for RSU

with |IU |.
An important note is that for experiments with percentage split, in order to reduce the

random noise, we always repeat 10 times running for each dataset and report the average
results.

4.3 Experiment 1: blocking

In this experiment, we compare the recall and number of candidates when using and not
using minBlock. First, we report the results of not using this algorithm. That is, all property
mappings and all instances of RS are used for blocking step. In other words, we measure
the number of candidates (size) and the recall (rec) for C0 = Bdef (RS × RT). Table 8
reports those results for all datasets. In this table, size is the number of generated candidates
and rec stands for recall. The high rec values in this table reflect the effectiveness of using
token-based blocking, especially using only the first token. The most difficult dataset is
D3, on which the recall is 0.865 and is particularly lower than other datasets. However,
it is acceptable because the most recently equivalent result on this dataset is only 0.835
(Kejriwal and Miranker 2015), by using the advanced tri-gram attribute clustering (Ngomo
et al. 2011). The number of generated candidates is very small compared to all possible
pairwise instances between RS and RT . For all 15 datasets, the total pairwise instances are
0.97 × 1012 and the number of generated candidates is 1.38 × 109. That is, about 99.9 %
unnecessary candidates are removed. However, compared to the actual co-references, the
generated candidates are generally still at a much larger size.

The objective of minBlock is to remain the recall and reduce the unexpected candidates.
Therefore, we evaluate the effectiveness of minBlock by taking the ratios of those values
between after and before using minBlock. The procedure of this experiment is as follows.

– Given two splits RSL and RSU , we first generate the results of not using minBlock,
CL0 = Bdef (RSL × RT) and CU0 = Bdef (RSU × RT). CL0 is used for minBlock to
generate the optimal blocking model Bopt .

– After that, we generate the result of using minBlock by taking CL = Bopt (RSL × RT)

and CU = Bopt (RSU × RT).

Table 8 Result of blocking using all property mappings

ID size rec ID size rec ID size rec

D1 342,837 0.9933 D6 5,013 0.9939 D11 61,702,166 0.9880

D2 61,756 0.9262 D7 482,605 0.9538 D12 46,942,099 0.9970

D3 70,550 0.8654 D8 1,034,653 0.9780 D13 222,686,571 0.9875

D4 5,771 0.9721 D9 32,161,659 0.9676 D14 357,377,464 0.9770

D5 4,258 0.9535 D10 38,201,823 0.9718 D15 620,076,154 0.9912

J Intell Inf Syst (2017) 48:519–551 539

– Finally, we calculate the two ratios: size reduction rate rSize = 1 − |CL|+|CU |
|CL0|+|CU0| (larger

is better) and recall reduction rate rRec = 1 − |R∩CU |
|R∩CU0| (smaller is better).

We measure the change of size for both labeled set (CL) and unlabeled set (CU) because
they are used for cLearn and resolution phase. However, we only measure the change of
recall for unlabeled set because the recall of labeled set is identical to the original set CL0,
as tloss is used as 1.0, the default value. Note that, when we divide RS into different training
split, the recall and the size of CL0 and CU0 are probabilistically similar to those of the
parent set C0 (reported in Table 8).

First, we use 5 folds cross-validation so that all instances are in turn used for training
as well as testing. For this test, the recall reduction rRec is equal to 0.0 for most datasets,
except D7 and D12. For D7 and D12, only on 1 random fold (out of 5 folds), 1 expected
candidate is ignored. However, the size reduction rSize is varied between datasets. There-
fore, we report the detail in Table 9. According to this table, the reduction of size is low on
small datasets but very high on large datasets, when unexpected candidates are frequently
available. For D9 to D15, in total, compared to not using minBlock a considerable number
of 1.26 × 109 candidates are discarded. These results confirm the effectiveness and impor-
tance of minBlock, for enhancing the scalability of ScLink. By limiting the candidates, the
complexity of cLearn and resolution phase is much reduced.

4.3.1 Effect of size of training data

For a supervised system, the size of training data is very important. Therefore, we also
evaluate minBlock with different small amounts of training data. We vary the ratio labeled
data from 1 % to 15 % and analyze the trend of rRec and rSize.

Generally, on most datasets, rRec reduces with the increase of labeled data. In other
words, the more labeled data is given, the more optimal blocking model is learned. The
coefficient of variation for rRec values when changing the amount of labeled data is under
1.0 for all datasets except D15. Particularly, for D6 and D9, rRec is always equal to zero
whatever amount of labeled data is given. Consider the average of all datasets, rRec quickly
reduces from 0.0089 to 0.0035, when labeled data is increased from 1 % to 8 %. After this
point, the change of rRec is not considerable as only 0.001 unit is reduced for the range 8 %
to 15 %. The slight variation of rRec between different settings of annotation effort and the
early saturated value show that minBlock can learn the optimal blocking model by using a
small amount of labeled data.

The reduction of rRec is accompanied with the drop in rSize. However, the reduction
of rSize is not considerable and gradually slow down with the increase of labeled data. In

Table 9 Cross validation result with minBlock

ID size rSize rRec ID size rSize rRec ID size rSize rRec

D1 341,446 0.0041 0 D6 5,013 0.0000 0 D11 4,280,108 0.9306 0

D2 61,756 0.0000 0.0010 D7 471,953 0.0221 0 D12 19,548,179 0.5836 0

D3 70,550 0.0000 0 D8 951,135 0.0807 0.0008 D13 9,386,067 0.9579 0

D4 5,362 0.0709 0 D9 3,713,019 0.8845 0 D14 19,353,423 0.9458 0

D5 4,227 0.0073 0 D10 2,006,056 0.9475 0 D15 61,029,275 0.9016 0

540 J Intell Inf Syst (2017) 48:519–551

average of all datasets, rSize drops from 0.53 to 0.43 when 1 % and 15 % labeled data is
given. This value is almost not different with that of using 5 folds cross-validation, whose
average rSize is 0.422. In addition, the coefficient of variation of every dataset is under 1.0.
For above facts, the reduction of rSize is within an acceptable range even we try to reduce
rRec by giving more labeled data to minBlock.

4.4 Experiment 2: performance of learning algorithms

In order to evaluate the effectiveness of our proposed learning algorithm, we compare the
result of ScLink when using cLearn and when replacing it by other algorithms. We com-
pare with top rank selection (naive), information gain based selection (gain), and genetic
algorithm (genetic). The mechanisms of these algorithms are as follow.

– naive selects the Ktop similarity functions that obtain highest F1.
– gain re-implements the idea of ADL (Hu et al. 2014), which selects the most discrim-

inative property mappings by independently measuring the information gain of each
property.

– genetic follows the idea of EAGLE (Ngomo and Lyko 2012), Knofuss (Nikolov et al.
2012), GenLink (Isele and Bizer 2012), and ActiveGenLink (Isele and Bizer 2013),
which use genetic algorithm to learn the matching configuration. We use binary array
representation for the combination of similarity functions. We choose the exponential
ranking for fitness selection, 0.7 for single point crossover probability, 0.1 for single
point mutation probability, and 50 for the population size. We limit the maximum iter-
ation to 1000 and also use early stop mechanism, which terminates the algorithm when
F1 is saturated.

In order to implement other algorithms, we replace the lines from 3 to 23 of Algorithm
2 with the new algorithms. In other words, the mechanism of determining σsim, δ, and Agg

remains the same of all algorithms. The reimplementation of other algorithms offers elabo-
rate comparisons. It enables using the same input of similarity functions and the mechanism
of determining other settings. More important, other algorithms are installed in the systems
that are not scalable enough and thus cannot work with large datasets like D7 to D15.

Table 10 reports the average F1 score on each dataset of the tested algorithms when
using 5 folds cross-validation. According to this table, the proposed algorithm consistently
outperforms gain and naive. For genetic, cLearn is better than this algorithm on 9 out
of 15 datasets. Although the harmonic means of cLearn and genetic look closed, when
considering each fold separately, so that there are 75 tests (i.e. for 15 datasets and 5 folds),
paired t-test finds that the improvement made by cLearn is significant (p = 0.0223). The
similar results are also recorded for comparing cLearn with naive (p<0.0001) and gain

(p<0.0001).
Naive and gain are the fastest algorithms because they check each similarity func-

tion independently and do not consider the combinations. For cLearn, since we fixed the
Ktop into 16, in theory, the maximum number of configurations is 216 for the worst case,
if cLearn exhaustively checks all combinations of similarity functions. However, in fact,
with the effect of the heuristic, cLearn stops after checking averagely 177 configurations.
Meanwhile, genetic needs to check 316 configurations in average. That is, the proposed
heuristic reduces almost 44 % the configurations while remaining the high accuracy, com-
pared to genetic. In summary, it is concludable that cLearn is more reliable and faster than
other tested algorithms.

J Intell Inf Syst (2017) 48:519–551 541

Table 10 F1 scores of ScLink

when using cLearn and other
algorithms

cLearn genetic gain naive

D1 0.9626 0.9656 0.9585 0.9585

D2 0.6918 0.6824 0.6214 0.6241

D3 0.6102 0.6133 0.5619 0.5700

D4 0.9486 0.9376 0.9019 0.9096

D5 0.8536 0.8535 0.7470 0.7342

D6 0.8630 0.7798 0.6710 0.6713

D7 0.6591 0.6645 0.4302 0.6397

D8 0.7316 0.7301 0.7236 0.7266

D9 0.9121 0.9115 0.8626 0.8596

D10 0.9222 0.9042 0.9175 0.9126

D11 0.9244 0.9294 0.8695 0.9169

D12 0.9749 0.9748 0.9365 0.9675

D13 0.9164 0.9171 0.8756 0.8741

D14 0.9330 0.9330 0.9020 0.9269

D15 0.9461 0.9467 0.9123 0.9159

H.mean 0.8380 0.8310 0.7541 0.7900Bold number indicates the best
result on the respective dataset

4.4.1 Effect of size of training data

Similar to Experiment 1, we also analyze the trend of F1 score when varying the size of
labeled data. Small amounts of labeled data are given to cLearn, from 1 to 15 %. For each
dataset, we conduct the random split 10 times and take the average result, which is depicted
in Fig. 2. From this figure, the harmonic mean of F1 score quickly increases when labeled
data is varied from 1 % (0.7272) to 4 % (0.8078). After that, it increases with a lower
acceleration. At the setting of 13 %, ScLink reaches the value 0.8329, which is slightly
better than using genetic with 80 % labeled data (Table 10). On most datasets, F1 score is

Fig. 2 Performance of ScLink with different amount of labeled data

542 J Intell Inf Syst (2017) 48:519–551

near saturated at 5 % labeled data, except for D3, D5, D6, and D8. For D8, since F1 clearly
increases at 15 %, we extend the experiment for this dataset and observe that the change
slows down after 19 %. As 5 % training data is the goal of almost supervised systems,
ScLink expresses its capability by satisfying this expectation for most tested datasets.

4.5 Experiment 3: similarity aggregators and similarity metrics

In order to know which similarity aggregators and similarity metrics are effective, as well as
the diversity of learned configurations, we conduct some statistics on the configurations pro-
duced by cLearn. We reuse the results of cross-validation in Experiment 2 for this analysis.
As a result, there are 300 similarity aggregators and 2,419 similarity functions.

For similarity aggregator, considering each individual setting independently (e.g., k = 1
vs. k = 2 and weighting vs. non-weighting), the following settings are most frequently
selected: k = 2 (64 %), enabled restriction (79 %), valid = |UFsim(x, y)| (54 %), and
weighting (77 %). Among them, weighting is very effective on the large datasets from D9
to D15 as it is always selected for all tests related to these datasets. All settings except valid

show the dominant proportions in the learned configurations. However, the dominance is
not strong enough to confirm a universal effectiveness of each setting. For example, 21 % of
cases requires another setting for restriction. The combination of above settings is also the
most frequent aggregator. However, its share is only 24 % out of the 300 ones. This result
implies that it is difficult to manually connect the dots between the datasets and the optimal
similarity aggregator.

For similarity metrics, all string-related metrics show a relative balance as the similar
proportions of Levenshtein (25 %), TFIDF-cosine (32 %), and mBM25 (28 %). In addition,
rDiff is very important for the subsets related to location domain as it is always selected
on D9, D10, and D13, for the distance estimation of geographic coordinates.

An interesting finding is observed on D10. When the size of training data is 80 %, only
longitude, one of two important geographic properties, is selected. While both longitude and
latitude are considered as important for D9, D13, and even in human thinking, the learning
algorithm returns a different recommendation. This example, together with the variety of
similarity aggregators and similarity metrics as reported above, shows that for a particular
input, it is difficult for a user to define a perfect matching configuration like an automatic
system can do.

For the evaluation of mBM25, we compare the result of ScLink when using and not
using this metric. 5 folds cross-validation is also used for this test. The result is reported in
Table 11. According to this table, by including mBM25, ScSLINT improves the results
for most datasets. Especially, for datasets from D10 to D14, which are among the large and

Table 11 F1 scores of using (use) and not using (not use) mBM25 in ScLink

ID use not use ID use not use ID use not use ID use not use

D1 0.9626 0.9553 D5 0.8536 0.8536 D9 0.9121 0.9179 D13 0.9164 0.8819

D2 0.6918 0.6729 D6 0.8630 0.8733 D10 0.9222 0.8835 D14 0.9330 0.9087

D3 0.6102 0.5720 D7 0.6591 0.6506 D11 0.9244 0.9000 D15 0.9461 0.9468

D4 0.9486 0.9283 D8 0.7316 0.7341 D12 0.9749 0.9651 H.mean 0.8380 0.8227

Bold number indicates the best result on the respective dataset

J Intell Inf Syst (2017) 48:519–551 543

highly ambiguous datasets, using mBM25 is clearly better. For D6, D8, D9, and D15, using
mBM25 drops the performance but very slightly. For these datasets, the token order is not
important because the learned similarity functions are almost constructed for short string
properties and the strings that are described by such properties frequently contain only one
token. In summary, mBM25 shows its effectiveness against TF-IDF Cosine, especially for
large and ambiguous datasets.

4.6 Experiment 4: runtime

Efficiency is an important factor of instance matching systems. Therefore, we evaluate the
runtime of ScLink on tested datasets. Five percent labeled data is used for this experiment.
For small datasets from D1 to D6, ScLink takes only 2.68 seconds in average to complete
all the steps. Especially for D2 and D5, the runtime is under 1.0 second. The longest runtime
is also small, 8.1 seconds, measured on D1. For larger datasets, the runtime ranges from
38.6 seconds (D7) to 9.28 minutes (D15) and the average is 3.34 minutes. We are interested
in comparing the runtime of ScLink and other systems. However, the runtime of other
systems on medium to large datasets (D7 to D15) are unfortunately not available. However,
the speed of ScLink is truly impressive as it is fast on D9 to D15, which are the scalability
barriers for most existing systems.

In order to see the proportion of each step, we plot the detailed runtime of the medium
and large datasets in Fig. 3. According to this figure, the consumed time of property align-
ment depends on target repository. In overall, for medium datasets like D7, D8, and D9, this
step occupies the largest portion in the total runtime. For larger datasets, cLearn and sim-
ilarity aggregation share the dominant parts. In average, from D9 to D15, these steps cost
37.2 % and 41.2 %, respectively. Meanwhile, minBlock algorithm is very efficient. It takes
only 9.5 % of the runtime in average but delivers very important benefit. Without using
minBlock, about 11.5 times longer runtime would be required for similarity aggregation
step, as the reduction rate of candidates is about 91.3 % (Experiment 1). For example, com-
pare to the base framework ScSLINT (Nguyen and Ichise 2015b), the total runtime for
D15 is 36 minutes because the number of candidates is more than 10 times larger (Nguyen

Fig. 3 Detailed runtime of ScLink with 5 % labeled data

544 J Intell Inf Syst (2017) 48:519–551

and Ichise 2015b). In summary, ScLink is very fast for large datasets and the consumed
time of learning algorithms is also acceptable for the supervised scenario.

4.7 Experiment 5: comparison to other systems

We compare the performance of ScLink with a series of recent and state-of-the-art systems,
including unsupervised, supervised, and non-learning-based ones. The availability of their
result is also a criterion of selection. Since each system was tested on different datasets
due to the support of data format and/or scalability, we separate the comparison into three
groups: D1 to D3, D4 to D8, and D9 to D15.

4.7.1 D1 to D3

These datasets enable the comparison between ScLink and other instance matching sys-
tem for relation databases. We compare ScLink with the state-of-the-art FEBRL (Christen
2008c) and MARLIN (Bilenko and Mooney 2003), and the most recent work in Kejriwal
and Miranker (2015), which we temporarily call semiBoost. These systems are all classifier-
based. FEBRL and MARLIN use SVM to learn the classification model. semiBoost uses
AdaBoost in conjunction with semi-supervised learning.

The reported results of these systems are for different settings of labeled data. For semi-
Boost, 2 % is used. For FEBRL and MARLIN, 22 %, 46 %, and 38 % are used for D1, D2,
and D3, respectively. Therefore, for each comparison, we give the same amount of labeled
data to ScLink. Table 12 reports the results of ScLink and these systems.

4.7.2 D4 to D8

For these datasets, we compare ScLink with ObjectCoref (Hu et al. 2011) and the work in
Rong et al. (2012), which we temporarily call rdBoost. ObjectCoref is a semi-supervised
system that learns discriminative property mappings. rdBoost uses AdaBoost to train a com-
mittee of random forest classifiers. In addition, we include the results of RiMOM (Li et al.
2009) and PARIS (Suchanek et al. 2011) as two state-of-the-arts among automatic systems.
RiMOM combines multiple matching strategies in order to obtain the optimal resolution
result. PARIS automatically generates co-references of instances, properties, values, and
classes by combining similarity and probability propagation.

rdBoost uses 5 % candidates for training and ObjectCoref uses 2.3 %, 11.6 % and 1.2 %
for D1, D2, and D3, respectively. Note that for ObjectCoref, only the results on D1, D2, and
D3 are reported. Table 13 reports the comparison on these datasets.

Table 12 F1 scores of ScLink

and other systems on D1 to D3 Training data System D1 D2 D3 H. mean

2 % ScLink 0.9395 0.6434 0.5718 0.6869

semiBoost 0.9342 0.3913 0.3627 0.4700

Variable ScLink 0.968 0.713 0.612 0.7371

FEBRL 0.976 0.713 0.601 0.7333

MARLIN 0.974 0.708 0.599 0.7302Bold number indicates the best
result on the respective dataset

J Intell Inf Syst (2017) 48:519–551 545

Table 13 F1 scores of ScLink and other systems on D4 to D8

Training data System D4 D5 D6 D7 D8 H.mean

5 % ScLink 0.927 0.824 0.776 0.802 0.6354 0.781

rdBoost 0.903 0.794 0.733 0.641 0.375 0.628

Variable ScLink 0.897 0.821 0.774 0.827

ObjectCoref 0.464 0.743 0.708 0.611

Reference systems

RiMOM 0.504 0.458 0.629 0.576 0.267 0.445

PARIS 0.649 0.108 0.149 0.502 0.219 0.208

Bold number indicates the best result on the respective dataset

4.7.3 D9 to D15

Many systems have reported the experiments on these 7 datasets. Unfortunately, in some of
those experiments, the repositories are simplified in various manners and thus the challenge
of ambiguity and scalability are much reduced. For example, instead of inputting the whole
target repository, only the class (location, organization, or people) related the domain of
source repository (NYTimes) is used by ADL (Hu et al. 2014); or only instances residing
in actual co-reference are used by ADL (Hu et al. 2014), Knofuss (Nikolov et al. 2012),
ActiveGenLink (Isele and Bizer 2013), and SLINT+ (Nguyen et al. 2012a). As using such
simple datasets, it is not difficult to obtain the perfect results using a simple method, as
reported in by SLINT+ (Nguyen et al. 2012a).

We report here the comparisons with Zhishi.Links (Niu et al. 2011), AgreementMaker
(Cruz et al. 2011), and SERIMI (Araujo et al. 2011), which are tested on full datasets though
they are not learning-based systems. In addition, because the periods of data retrieval are
different, the repositories used for ScLink and other systems may be slightly different. For
all those reasons, the comparisons are made for reference purpose. In order to minimize
the difference of input knowledge, we feed only 5 % labeled data into the learning algo-
rithms. Five percent is also used popularly as an expectation for the size of labeled data.
Table 14 reports this comparison. The results of other systems are collected from Euzenat
et al. (2011).

Table 14 F1 scores of ScLink

and other systems on D9 to D15 ScLink Zhishi.Links AgreementMaker SERIMI

D9 0.87 0.91 0.85 0.80

D10 0.90 0.92 0.69 0.68

D11 0.91 0.91 0.74 0.88

D12 0.97 0.97 0.88 0.94

D13 0.88 0.88 0.85 0.91

D14 0.93 0.87 0.80 0.91

D15 0.94 0.93 0.96 0.92

H.mean 0.913 0.912 0.816 0.853Bold number indicates the best
result on the respective dataset

546 J Intell Inf Syst (2017) 48:519–551

4.7.4 Discussion

In overall, ScLink expresses an impressive performance as it is better than other systems
in many cases. Compared to state-of-the-art supervised systems on relational databases,
ScLink is competitive to FEBRL and MARLIN. Compared to recent resolution systems
for linked data, ScLink is far better than semiBoost, rdBoost, and ObjectCoref. Especially
for D2 and D3, D7 and D8, which seem to be difficult for semiBoost and rdBoost because
of the presences of co-references inside the source or target repository. ScLink clearly
outperforms AgreementMaker and SERIMI, and is competitive to Zhishi.Links. Note that
Zhishi.Links is specially customized for these datasets as this system applies 19 unification
rules for matching difficult strings that frequently appear in this dataset (e.g., Co and Com-
pany, Manhattan and NYC). Therefore, considering the importance of generality, as well as
the better results of ScLink in term of overall harmonic mean, ScLink reveals its strengths
against Zhishi.Links. Comparing learning-based and non-learning-based systems, ScLink,
rdboost, and ObjectCoref are much better than RiMOM and PARIS. This fact confirms the
necessity of learning-based systems for improving the effectiveness.

5 Related work

Instance matching is an extensively studied problem. The literature of instance matching
includes candidate generation methods, matching frameworks, and full solutions ranging
from automatic to learning-based systems. In this section, we briefly summarize some
representatives of each group.

Since candidate generation is a crucial step of most matching systems, the research on
this sub-problem is attractive and is considered as an independent topic. Considering the
complexity, token-based blocking (Papadakis et al. 2013) is the most basic approach as it
is the fastest one. The token-based approach is also the most effective in term of recall. In
most real cases, generating candidate by a comparison on the tokens is acceptable although
in a few cases (e.g., availability of spelling errors), character-based is safer. The representa-
tives of more advanced methods include sorted neighborhood (Hernández and Stolfo 1995),
canopy clustering (McCallum et al. 2000), collective blocking (Isele et al. 2011; Nguyen
et al. 2012a), and learning-based algorithms (Dalvi et al. 2013; Kejriwal and Miranker 2013;
Papadakis et al. 2014). Sorted neighborhood arranges the instances into an order of lexico-
graphic feature estimated from the value of instances. After that, the instances closing to the
others within a fixed-size window are grouped into one block. Canopy clustering randomly
selects a center and the instances that have an acceptable distance to the center is put into its
cluster. Collective blocking takes multiple types of property mappings for generating candi-
dates. Because this approach uses a multitude of information, it delivers high accuracy but
also comes with it high complexity. Learning-based algorithms are can generate the most
optimal candidate set. However, existing algorithms are complex and not suitable for large
repositories. An important technique in blocking is to eliminate the instance groups with
very large size (Papadakis et al. 2011). These cases frequently contain instances sharing the
stopwords. In ScLink, the preprocessing step manages the solution for this issue (Table 3).

MOMA (Thor and Rahm 2007), FEBRL (Christen 2008c), SILK (Volz et al. 2009), and
LIMES (Ngomo and Auer 2011) are among the famous instance matching frameworks.
These frameworks allow the user to manually input the matching configuration. Among
them, SILK and LIMES support matching of linked data repositories and are considered

J Intell Inf Syst (2017) 48:519–551 547

as scalable frameworks, according to the reported experiments. SILK and LIMES also pro-
vide the integration of map-reduce technology. SILK and LIMES are the base framework
for many recent instance matching algorithms. Most recently, ScSLINT is presented as a
memory and time efficient framework, which is significantly faster than LIMES (Nguyen
and Ichise 2015b). ScLink is also implemented as a part of this framework. Also focus on
efficient instance matching, Kirsten et al. parallelized the instance comparisons on differ-
ent blocks, together with memory caching technique (Kirsten et al. 2010). Similar to above
framework, AgreementMaker (Cruz et al. 2009, 2011) and Zhishi.Links (Niu et al. 2011) are
manual instance matching systems. These systems offer the mechanism to include domain
knowledge, which is helpful for improving the accuracy.

Remarkable automatic systems include SERIMI (Araujo et al. 2015), SLINT+ (Nguyen
et al. 2012a), KD2R (Pernelle et al. 2013), RiMOM(Li et al. 2009), and PARIS (Suchanek
et al. 2011). SERIMI and SLINT+ automatically detect the property mappings using pure
statistical methods and apply these mappings for comparing instances. The limitation of this
approach is that mappings contain incorrect alignments and reduce the final accuracy. The
scalable architecture of SLINT+ enables the introduction of its efficient version. ScLink

is implemented on that scalable version of SLINT+. KD2R uses the nearly functional
properties for matching instances. Such property is effective in discriminating ambiguous
instances. However, this method is limited to only repositories having the same schema.
RiMOM and PARIS are among the state-of-the-art systems although their mechanisms are
totally different. RiMOM dynamically combines multiple comparison strategies in match-
ing instances. PARIS simultaneously matches the instances, classes, properties, and values
using probability propagation. Also based on probabilistic theory, but ZenCrowd (Demartini
et al. 2013) is proposed as a crowd-sourcing based system. ZenCrowd ranks the candidates
in each block and asks humans for the low ranked ones. In addition, collective instance
matching (Dong et al. 2005; Bhattacharya and Getoor 2004; Locoro et al. 2014) is well-
studied in graph-based data, such as the collaboration domain of relational database or
linked data generally. The basic idea is that the similarity of one node affects those of the
others using a propagation mechanism. PARIS can be classified into this approach as well.

Recent achievements of instance matching also include incremental and progressive
instance matching. Whang et al. focused on the evolution of data and the matching rules
(Whang and Garcia-Molina 2014). Stating that re-running the matching process when the
input change is costly, the authors proposed algorithms to such incremental matching set-
ting. In parallel independent work, Altowim et al. propose a progressive algorithm to rank
the block by the predictive number of co-references (Altowim et al. 2014). The blocks are
then processed in a programmatic order instead of random as in previous matching settings.
This approach is useful if a system has to return an expected number of co-references within
a limited time.

Most closed to our work are RAVEN (Ngomo et al. 2011), EAGLE (Ngomo and Lyko
2012), ActiveGenLink (Isele and Bizer 2013; Nikolov et al. 2012), and EUCLID (Ngomo
and Lyko 2013). These systems also focus on learning of matching configuration. EAGLE,
ActiveGenLink, and Knofuss apply the genetic algorithm to search for an optimal configu-
ration while RAVEN and EUCLID use deterministic methods. RAVEN and ActiveGenLink
also apply active learning for reducing the number of training examples. In addition, by
focusing on a very similar problem, ADL (Hu et al. 2014) learns for discriminative property
mappings that are expected to best separate the co-referent and non-co-referent cases. The
limitation of ADL is that this system considers each mapping independently, and therefore
cannot evaluate the quality of their combination.

548 J Intell Inf Syst (2017) 48:519–551

Machine learning methods are widely studied as a solution for instance matching, by con-
sidering the matching of two instances as a classification problem. Many machine learning
algorithms have been used, including CRF (Hall et al. 2008), latent Dirichlet (Bhattacharya
and Getoor 2006), Neural network (Li and Clifton 2000), SVM (Christen 2008a), rule-
based (Sheila et al. 2002), and decision tree (Nguyen et al. 2012b; Rong et al. 2012). A
recent comparison between machine learning classifiers is reported in (Soru and Ngomo
2014). MARLIN (Bilenko and Mooney 2003) and the work in (Sarawagi and Bhamidipaty
2002) investigate committee-based active learning methods for training example selection.
Together with active learning, transfer learning (Rong et al. 2012) and semi-supervised
learning (Kejriwal and Miranker 2015; Hu et al. 2011) are alternative options for the com-
pensation of the automation loss in supervised approach. Most machine learning algorithms
try to maximize the margin between co-referent and non-co-referent cases. However, since
most of them are probability-based, a conjunction of the classifier and post-processing
(e.g. the filtering step of ScLink) is difficult, as well as classifier’s interpretation, which is
helpful for scaling up the resolution phase.

6 Conclusion

In this paper, we presented a supervised instance matching system named ScLink. We
describe our solutions for the issue of heterogeneity, ambiguity, and scalability. We install
in ScLink a novel learning algorithms for configuration and blocking model. We also use
a robust string similarity metric. We reported the detail analyses and experiments for eval-
uating our proposed system. The experimental results confirm that ScLink meets practical
demands in instance matching for real and large data. ScLink consistently outperforms
other systems of the same objectives, including the state-of-the-arts. The heuristic search
algorithm used in ScLink is also significantly better than many advanced methods of con-
figuration learning. Together with effectiveness, ScLink is also more efficient in both time
and memory consumption. The source code of ScLink is available at the project page:
http://ri-www.nii.ac.jp/ScSLINT/.

A common shortage of all supervised systems is the availability of training data. Active
learning is a promising strategy to reduce the annotation effort. In order to apply active
learning, a study on effective training example selection is necessary because querying
informative examples from a large pool of candidates is not a trivial problem. Although
active learning has been studied by many researchers, such complexity issue was not con-
vincingly solved (Christen 2008b; Sarawagi and Bhamidipaty 2002; Isele and Bizer 2013).
Another alternative is transfer learning. As many existing co-references are retrievable
nowadays, especially on the Web of linked data, the configuration constructed for two
particular repositories can be shared to resolve the co-references between similar repos-
itories (e.g., domain, schema, provider). Transfer learning is preliminarily evaluated that
to work with instance matching problem (Rong et al. 2012). However, the issue of identi-
fying exactly the equivalent properties between the trained repositories and the unknown
repositories having different schema remains unsolved.

For the improvement of ScLink particularly, besides the above possibilities, ScLink

can benefit from technical enhancement of similarity metric in term of processing speed
(Mishra et al. 2013; Soru and Ngomo 2013). ScLink is not sensitive to its parameters,

http://ri-www.nii.ac.jp/ScSLINT/

J Intell Inf Syst (2017) 48:519–551 549

however, reducing the free parameters can perfectly satisfy the automation mission. In addi-
tion, an analysis on very large source repositories and partitioning methods may support the
applicability of ScLink.

References

Agrawal, R., Srikant, R., et al. (1994). Fast algorithms for mining association rules. In Proceedings of the
20th international conference on very large data bases, (Vol. 1215 pp. 487–499).

Altowim, Y., Kalashnikov, D.V., & Mehrotra, S. (2014). Progressive approach to relational entity resolution.
Proceedings of the VLDB Endowment, 7, 999–1010.

Araujo, S., De Vries, A., & Schwabe, D. (2011). SERIMI Results for OAEI 2011. In Proceedings of the 6th
workshop on ontology matching (pp. 212–219).

Araujo, S., Tran, D.T., de Vries, A., & Schwabe, D. (2015). SERIMI: Class-Based matching for instance
matching across heterogeneous datasets. IEEE Transactions on Knowledge and Data Engineering,
27(5), 1397–1440.

Bhattacharya, I., & Getoor, L. (2004). Iterative record linkage for cleaning and integration. In Proceedings of
the 9th SIGMOD workshop on research numbers in data mining and knowledge discovery (pp. 11–18):
ACM.

Bhattacharya, I., & Getoor, L. (2006). A latent dirichlet model for unsupervised entity resolution. In
Proceedings of the 6th SIAM international conference on data mining (pp. 47–58): SIAM.

Bilenko, M., & Mooney, R.J. (2003). Adaptive duplicate detection using learnable string similarity measures.
In Proceedings of the SIGKDD conference on knowledge discovery and data mining (pp. 39–48): ACM.

Bilenko, M., Kamath, B., & Mooney, R.J. (2006). Adaptive blocking: Learning to scale up record linkage.
In Proceedings of the 6th international conference on data mining (pp. 87–96).

Christen, P. (2008a). Automatic record linkage using seeded nearest neighbour and support vector machine
classification. In Proceedings of the 14th SIGKDD international conference on knowledge discovery
and data mining (pp. 151–159): ACM.

Christen, P. (2008b). Automatic training example selection for scalable unsupervised record linkage. In
Proceedings of the 12th pacific-asia conference on advances in knowledge discovery and data mining
(pp. 511–518): Springer.

Christen, P. (2008c). Febrl: a freely available record linkage system with a graphical user interface. In
Proceedings of the 2nd australasian workshop on health data and knowledge management, (Vol. 80
pp. 17–25).

Christen, P., & Gayler, R.W. (2013). Adaptive temporal entity resolution on dynamic databases. In Pro-
ceedings of the 17th pacific-asia conference on advances in knowledge discovery and data mining
(pp. 558–569): Springer.

Cruz, I.F., Antonelli, F.P., & Stroe, C. (2009). AgreementMaker: Efficient matching for large real-world
schemas and ontologies. In Proceedings of the VLDB endowment, (Vol. 2 pp. 1586–1589).

Cruz, I.F., Stroe, C., Caimi, F., Fabiani, A., Pesquita, C., Couto, F.M., & Palmonari, M. (2011). Using
agreementMaker to align ontologies for OAEI 2011. In Proceedings of the 6th workshop on ontology
matching (pp. 114–121).

Dalvi, N., Rastogi, V., Dasgupta, A., Das Sarma, A., & Sarlós, T. (2013). Optimal hashing schemes for entity
matching. In Proceedings of the 22nd international conference on world wide web (pp. 295–306).

Demartini, G., Difallah, D.E., & Cudré-Mauroux, P. (2013). Large-scale linked data integration using
probabilistic reasoning and crowdsourcing. The VLDB Journal, 22(5), 665–687.

Dong, X., Halevy, A., & Madhavan, J. (2005). Reference reconciliation in complex information spaces. In
Proceedings of the 24th SIGMOD international conference on management of data (pp. 85–96): ACM.

Euzenat, J., Ferrara, A., van Hague, W.R., Hollink, L., Meilicke, C., Nikolov, A., Scharffe, F., Shvaiko,
P., Stuckenschmidt, H., Sváb-Zamazal, O., & dos Santos, C.T. (2011). Final results of the ontology
alignment evaluation initiative 2011. In Proceedings of the 6th workshop on ontology matching (pp. 85–
113).

Ferrara, A., Nikolov, A., & Scharffe, F. (2011). Data linking for the semantic web. Semantic Web and
Information System, 7(3), 46–76.

Gale, D., & Shapley, L.S. (1962). College admissions and the stability of marriage. American Mathematical
Monthly, 96(1), 9–15.

550 J Intell Inf Syst (2017) 48:519–551

Hall, R., Sutton, C., & McCallum, A. (2008). Unsupervised deduplication using cross-field dependencies. In
Proceedings of the 14th SIGKDD conference on knowledge discovery and data mining (pp. 310–317):
ACM.

Hernández, M.A., & Stolfo, S.J. (1995). The merge/purge problem for large databases. ACM SIGMOD
Record, 24, 127–138.

Hogan, A., Zimmermann, A., Umbrich, J., Polleres, A., & Decker, S. (2012). Scalable and distributed meth-
ods for entity matching, consolidation and disambiguation over linked data corpora. Web Semantics:
Science, Services and Agents on the World Wide Web, 10, 76–110.

Hu, W., Chen, J., & Qu, Y. (2011). A self-training approach for resolving object coreference on the semantic
web. In Proceedings of the 20th international conference on world wide web (pp. 87–96).

Hu, W., Yang, R., & Qu, Y. (2014). Automatically generating data linkages using class-based discriminative
properties. Data & Knowledge Engineering, 91, 34–51.

Isele, R., & Bizer, C. (2012). Learning expressive linkage rules using genetic programming. The VLDB
Journal, 5(11), 1638–1649.

Isele, R., & Bizer, C. (2013). Active learning of expressive linkage rules using genetic programming. Web
Semantics: Science, Services and Agents on the World Wide Web, 23, 2–15.

Isele, R., Jentzsch, A., & Bizer, C. (2011). Efficient multidimensional blocking for link discovery without
losing recall. In Proceedings of the 14th SIGMOD workshop on the web and databases.

Kejriwal, M., & Miranker, D.P. (2013). An unsupervised algorithm for learning blocking schemes. In
Proceedings of the 13th international conference on data mining (pp. 340–349): IEEE.

Kejriwal, M., & Miranker, D.P. (2015). Semi-supervised instance matching using boosted classifiers. In
Proceedings of the 12th extended semantic web conference. LNCS, (Vol. 9088 pp. 388–402): Springer.

Kirsten, T., Kolb, L., Hartung, M., Groß, A., Köpcke, H., & Rahm, E. (2010). Data partitioning for parallel
entity matching. Proceedings of the VLDB Endowment, 3.

Köpcke, H., & Rahm, E. (2010). Frameworks for entity matching: a comparison. Data & Knowledge
Engineering, 69(2), 197–210.

Köpcke, H., Thor, A., & Rahm, E. (2010). Evaluation of entity resolution approaches on real-world match
problems. In Proceedings of the VLDB endowment, (Vol. 3 pp. 484–493): VLDB Endowment.

Koudas, N., Sarawagi, S., & Srivastava, D. (2006). Record linkage: similarity measures and algorithms.
In Proceedings of the 25th SIGMOD international conference on management of data (pp. 802–803):
ACM.

Levenshtein, V.I. (1966). Binary codes capable of correcting deletions, insertions, and reversals. In Soviet
physics doklady, (Vol. 10 pp. 707–710).

Li, J., Tang, J., Li, Y., & Luo, Q. (2009). RiMOM: a dynamic multistrategy ontology alignment framework.
IEEE Transactions on Knowledge and Data Engineering, 21(8), 1218–1232.

Li, W.S., & Clifton, C. (2000). SEMINT: A tool for identifying attribute correspondences in heterogeneous
databases using neural networks. Data Knowledge and Engineering, 33, 49–84.

Locoro, A., David, J., & Euzenat, J. (2014). Context-based matching: design of a flexible framework and
experiment. Journal on Data Semantics, 3(1), 25–46.

McCallum, A., Nigam, K., & Ungar, L.H. (2000). Efficient clustering of high-dimensional data sets with
application to reference matching. In Proceedings of the 6th SIGKDD conference on knowledge
discovery and data mining (pp. 169–178): ACM.

Mendes, P.N., & Jakob, M. (2011). Garcı́a-silva, A., Bizer, C.: Dbpedia spotlight: shedding light on the web
of documents. In Proceedings of the 7th international conference on semantic systems (pp. 1–8): ACM.

Mishra, S., Gandhi, T., Arora, A., & Bhattacharya, A. (2013). Efficient edit distance based string similarity
search using deletion neighborhoods. In Proceedings of the 16th joint EDBT/ICDT workshops on string
similarity (pp. 375–383): ACM.

Ngomo, A.C.N., & Auer, S. (2011). LIMES: A time-efficient approach for large-scale link discovery on
the web of data. In Proceedings of the 22nd international joint conference on artificial intelligence
(pp. 2312–2317).

Ngomo, A.C.N., & Lyko, K. (2012). EAGLE: Efficient Active learning of link specifications using genetic
programming. In Proceedings of the 9th extended semantic web conference. LNCS, (Vol. 7295 pp. 149–
163): Springer.

Ngomo, A.C.N., & Lyko, K. (2013). Unsupervised learning of link specifications: Deterministic vs. non-
deterministic. In Proceedings of the 8th workshop on ontology matching (pp. 25–36).

Ngomo, A.C.N., Lehmann, J., Auer, S., & Höffner, K. (2011). RAVEN - active learning of link specifications.
In Proceedings of the 6th workshop on ontology matching (pp. 25–36).

Nguyen, K., & Ichise, R. (2015a). Heuristic-based configuration learning for linked data instance matching.
In Proceedings of the 5th joint international semantic technology conference. LNCS, (Vol. 9544 pp. 56–
72): Springer.

J Intell Inf Syst (2017) 48:519–551 551

Nguyen, K., & Ichise, R. (2015b). ScSLINT: Time and memory efficient interlinking framework for linked
data. In Proceedings of the 14th international semantic web conference posters and demonstrations
track.

Nguyen, K., Ichise, R., & Le, B. (2012a). Interlinking linked data sources using a domain-independent sys-
tem. In Proceedings of the 2nd joint international semantic technology. LNCS, (Vol. 7774 pp. 113–128):
Springer.

Nguyen, K., Ichise, R., & Le, H.B. (2012b). Learning approach for domain-independent linked data instance
matching. In Proceedings of the SIGKDD 2nd workshop on mining data semantics (pp. 7–15): ACM.

Nikolov, A., d’Aquin, M., & Motta, E. (2012). Unsupervised learning of link discovery configuration. In
Proceedings of the 9th extended semantic web conference. LNCS, (Vol. 7295 pp. 119–133): Springer.

Niu, X., Rong, S., Zhang, Y., & Wang, H. (2011). Zhishi.links results for OAEI 2011. In Proceedings of the
6th workshop on ontology matching (pp. 220–227).

Papadakis, G., Ioannou, E., Niederée, C., & Fankhauser, P. (2011). Efficient entity resolution for large het-
erogeneous information spaces. In Proceedings of the 4th international conference on web search and
data mining (pp. 535–544): ACM.

Papadakis, G., Ioannou, E., Palpanas, T., Niederée, C., & Nejdl, W. (2013). A blocking framework for entity
resolution in highly heterogeneous information spaces. IEEE Transactions on Knowledge and Data
Engineering, 25(12), 2665–2682.

Papadakis, G., Papastefanatos, G., & Koutrika, G. (2014). Supervised meta-blocking. In Proceedings of the
VLDB endowment, (Vol. 7 pp. 1929–1940): VLDB Endowment.

Papadakis, G., Svirsky, J., Gal, A., & Palpanas, T. (2016). Comparative analysis of approximate blocking
techniques for entity resolution. Proceedings of the VLDB Endowment, 9.

Pernelle, N., Saı̈s, F., & Symeonidou, D. (2013). An automatic key discovery approach for data linking. Web
Semantics: Science, Services and Agents on the World Wide Web, 23, 16–30.

Rahm, E., & Do, H.H. (2000). Data cleaning: problems and current approaches. IEEE Data Engineering
Bulletin, 23(4), 3–13.

Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M.M., & Gatford, M. (1994). Okapi at TREC-3.
In Proceedings of the 3rd text retrieval conference (pp. 109–123).

Rong, S., Niu, X., Xiang, W.E., Wang, H., Yang, Q., & Yu, Y. (2012). A machine learning approach for
instance matching based on similarity metrics. In Proceedings of the 11th international semantic web
conference. LNCS, (Vol. 7649 pp. 460–475): Springer.

Sarawagi, S., & Bhamidipaty, A. (2002). Interactive deduplication using active learning. In Proceedings of
the 8th SIGKDD conference on knowledge discovery and data mining (pp. 269–278). New York, USA:
ACM.

Sheila, T., Knoblock, C., & Minton, S. (2002). Learning domain-independent string transformation weights
for high accuracy object identification. In Proceedings of the 8th SIGKDD conference on knowledge
discovery and data mining (pp. 350–359): ACM.

Song, D., & Heflin, J. (2011). Automatically generating data linkages using a domain-independent candidate
selection approach. In Proceedings of the 10th international semantic web conference. LNCS, (Vol. 7031
pp. 649–664): Springer.

Soru, T., & Ngomo, A.C.N. (2013). Rapid execution of weighted edit distances. In Proceedings of the 8th
workshop on ontology matching (pp. 1–12).

Soru, T., & Ngomo, A.C.N. (2014). A comparison of supervised learning classifiers for link discovery. In
Proceedings of the 10th international conference on semantic systems (pp. 41–44): ACM.

Suchanek, F.M., Abiteboul, S., & Senellart, P. (2011). PARIS: probabilistic alignment of relations, instances,
and schema. The VLDB Journal, 5(3), 157–168.

Thor, A., & Rahm, E. (2007). MOMA-a mapping-based object matching system. In Proceedings of the 3rd
biennial conference on innovative data systems research (pp. 247–258).

Urbani, J., Kotoulas, S., Maassen, J., Van Harmelen, F., & Bal, H. (2010). OWL Reasoning with webpie: cal-
culating the closure of 100 billion triples. In Proceedings of the 7th european semantic web conference.
LNCS, (Vol. 5554 pp. 213–227): Springer.

Vesdapunt, N., Bellare, K., & Dalvi, N. (2014). Crowdsourcing algorithms for entity resolution. In
Proceedings of the VLDB endowment, (Vol. 7 pp. 1071–1082): VLDB Endowment.

Volz, J., Bizer, C., Gaedke, M., & Kobilarov, G. (2009). Discovering and maintaining links on the web of
data. In Proceedings of the 8th international semantic web conference. LNCS, (Vol. 5823 pp. 650–665):
Springer.

Whang, S.E., & Garcia-Molina, H. (2014). Incremental entity resolution on rules and data. The VLDB
Journal, 23, 77–102.

Winkler, W.E. (2006). Overview of record linkage and current research directions. Tech. rep., Bureau of the
Cencus.

	Supervised instance matching system for heterogeneous repositories
	Abstract
	Introduction
	Preliminaries
	ScLink
	Overview
	Property alignment
	Select property candidates from source repository
	Align properties between source and target repository

	Similarity function generation
	Blocking
	Configuration learning
	Similarity aggregation
	Filtering
	Implementation notes

	Experiment
	Datasets
	Experimental settings
	Experiment 1: blocking
	Effect of size of training data

	Experiment 2: performance of learning algorithms
	Effect of size of training data

	Experiment 3: similarity aggregators and similarity metrics
	Experiment 4: runtime
	Experiment 5: comparison to other systems
	D1 to D3
	D4 to D8
	D9 to D15
	Discussion

	Related work
	Conclusion
	References

