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Abstract We focus on the problem of link prediction in Knowledge Graphs, with the goal
of discovering new facts. To this purpose, Energy-Based Models for Knowledge Graphs that
embed entities and relations in continuous vector spaces have been largely used. The main
limitation in their applicability lies in the parameter learning phase, which may require a
large amount of time for converging to optimal solutions. In this article, we first propose
an unified view on different Energy-Based Embedding Models. Hence, for improving the
model training phase, we propose the adoption of adaptive learning rates. We show that,
by adopting adaptive learning rates during training, we can improve the efficiency of the
parameter learning process by an order of magnitude, while leading to more accurate link
prediction models in a significantly lower number of iterations. We extensively evaluate
the proposed learning procedure on a variety of new models: our result show a significant
improvement over state-of-the-art link prediction methods on two large Knowledge Graphs,
namely WORDNET and FREEBASE.

Keywords Energy-based embedding models · Link predictions · RDF knowledge graphs

1 Introduction

Knowledge Graphs (KGs) are graph-structured knowledge bases, where factual knowledge
is represented in the form of relationships between entities. We focus on KGs that adopt
Resource Description Framework (RDF)1 as their representation, since they constitute a

1http://www.w3.org/TR/rdf11-concepts/
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powerful instrument for search, analytics, recommendations, and data integration. Indeed,
RDF is the Web standard for expressing information about resources.

A resource (hereafter also called entity) can be anything, including documents, people,
physical objects, and abstract concepts. An RDF knowledge base (also called RDF graph as
a KG) is a set of RDF triples of the form 〈s, p, o〉, where s, p and o denote the subject, the
predicate (i.e. a relation type) and the object of the triple, respectively. Each triple 〈s, p, o〉
describes a statement, which can be interpreted as: A relationship of type p holds between
entities s and o. The following example shows a set of RDF triples2 describing the writer
William Shakespeare:3

Example 1 (RDF Fragment)

〈W. SHAKESPEARE, INFLUENCEDBY, G. CHAUCER〉
〈W. SHAKESPEARE, RELIGION, CHURCH OF ENGLAND〉
〈W. SHAKESPEARE, AUTHOR, HAMLET〉
〈HAMLET, GENRE, TRAGEDY〉
〈HAMLET, CHARACTER, OPHELIA〉

Several RDF KGs are publicly available through the Linked Open Data (LOD) cloud,
a collection of interlinked KGs such as Freebase (Bollacker et al. 2008), DBpedia (Bizer
et al. 2009) and YAGO (Mahdisoltani et al. 2015). As of April 2014, the LOD cloud is
composed of 1,091 interlinked KGs, globally describing more than 8 × 106 entities, and
188×106 relationships holding between them.4 However, KGs are often largely incomplete.
For instance, 71 % of the persons described in Freebase5 have no known place of birth and
75 % of them have no known nationality (Dong et al. 2014).

For this reason, in this work, we focus on the problem of predicting missing links in large
KGs, so as to discover new facts about a domain of interest. In the literature, this problem
is referred to as link prediction, or knowledge base completion. The aim of this work is to
provide an efficient and accurate model for predicting missing RDF triples in large RDF
KGs (in a link prediction setting), without requiring extra background knowledge.

The link prediction task is well known in Statistical Relational Learning (SRL) (Getoor
and Taskar 2007) which aims at modeling data from multi-relational domains, such as
social networks, citation networks, protein interaction networks and knowledge graphs, and
detecting missing links in such domains. Two main categories of models can be ascribed
to SRL: Probabilistic latent variable models and embedding models (also frequently called
Energy-based models). A detailed analysis of these two classes of models is reported in
Section 4.

While appearing promising in terms of link prediction results, Probabilistic latent
variable models showed limitations on scaling on large KG because of the complexity
of the probabilistic inference and learning, which is intractable in general (Koller and
Friedman 2009). Differently from them, embedding models have shown interesting ability

2This description is taken from the FREEBASE KG (Bollacker et al. 2008)
3For readability reasons, we describe entities and relations using an intuitive way of writing down triples as
text rather than using the pure RDF syntax.
4State of the LOD Cloud 2014: http://lod-cloud.net/
5Available at https://developers.google.com/freebase/data

http://lod-cloud.net/
https://developers.google.com/freebase/data
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to scale on large KG while maintaining comparative performance in terms of predictive
accuracy (Bordes and Gabrilovich 2015).

We focus specifically on a class of embedding models for KGs, named as Energy-Based
Embedding Models (EBEMs), where entities and relations are embedded in continuous vec-
tor spaces, referred to as embedding spaces. In such models, the probability of an RDF
triple to encode a true statement is expressed in terms of energy of the triple: this is an
unnormalized score that is inversely proportional to such a probability value, and is com-
puted as a function of the embedding vectors of the subject, the predicate and the object of
the triple. The reason why we focus on this class of models, such as Translating Embed-
ding (TransE) (Bordes et al. 2013) and other related ones (Bordes et al. 2011, 2014; Socher
et al. 2013), is because it has been experimentally proved that they achieve state-of-the-art
predictive accuracy results on link prediction tasks, while being able to scale to large and
Web-scale KGs (Bordes et al. 2013; Dong et al. 2014; Bordes and Gabrilovich 2015). How-
ever, a major limiting factor for EBEMs lies in the parameter learning algorithm, which may
require a long time (even days) to converge on large KGs (Chang et al. 2014).

In order to overcome such a limitation, we propose a method for reducing the learning
time in EBEMs by an order of magnitude, while leading to more accurate link prediction
models. Furthermore, we employ the proposed learning method for evaluating a family of
novel EBEMs with useful properties. We experimentally tested our methods on two large
and commonly used KGs: namely WORDNET and FREEBASE, following the same evalua-
tion protocol used in (Bordes et al. 2013). Our results show a significant improvement over
the state-of-the-art embedding models.

The rest of the paper is organized as follows. In Section 2, we introduce basics on Energy-
Based Models. In Section 3 we propose: a) a framework for characterizing state-of-the-
art EBEMs, b) a family of novel energy functions with useful properties, c) a method for
improving the efficiency of the learning process in such models. In Section 4 the main
related works falling in the Probabilistic latent variable models and Embedding Models
categories are analyzed, while in Section 5 we empirically evaluate the proposed learning
methods and energy functions. In Section 6 we summarize our work and outline future
research directions.

2 Basics on energy-based models

Energy-Based Models (LeCun et al. 2006) are a versatile and flexible framework for model-
ing dependencies between variables. The key component is a scalar-valued energy function
E(·), which associates a scalar energy with a configuration of variables. The energy of a
configuration of variables is inversely proportional to the probability of such a configura-
tion. Precisely, more likely configurations correspond to lower energy values, while less
likely configurations correspond to higher energy values. Two main steps can be recognized
in energy-based models: the inference step and the learning step.

The inference step consists in finding the most likely configuration of the variables of
interest, that is the one that minimizes the energy function E(·). Given X and Y random
variables, with values in X and Y , an example of the exploitation of the inference in energy-
based models is given in the following.

Example 2 (Energy-Based Inference) Assuming that X describes the pixels of an image,
while Y describes a discrete label associated with the image (such as “car” or “tree”), let
E : X ×Y �→ R be an energy function defined on the configurations of X and Y . The most
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likely label y∗ ∈ Y for an image x ∈ X can be inferred by finding the label in Y that, given
x, minimizes the energy function E(·):

y∗ = arg min
y∈YE(x, y).

Learning in energy-based models consists in finding the most appropriate energy func-
tion within a family F = {Eθ | θ ∈ �}, indexed by parameters θ , that is in finding the
function that is actually able to associate lower energy states with likely configurations of
the variables of interests, and higher energy states to unlikely configurations of such vari-
ables. In practice, this corresponds to finding the energy function E∗

θ ∈ F that minimizes a
given loss functional L, which measures the quality of the energy function on the data D:

E∗
θ = arg min

Eθ∈FL(Eθ ,D).

A normalized probability distribution can be derived from an energy-based model.
Specifically, given an energy function E : X �→ R defined on the possible configurations
of a random variable X, it is possible to derive a corresponding probability distribution
through the Gibbs distribution:

P(X = x) = 1

Z(β)
e−βE(x)

where β is an arbitrary positive constant, and Z(β) = ∑
x̃∈X e−βE(x̃) is a normalizing

factor6 referred to as the partition function.

3 A framework for energy-based embedding models

Energy-based models can be used for modeling the uncertainty in RDF KGs, in both
statistical inference and learning tasks.

An RDF graph G can be viewed as a labeled directed multigraph, where entities are
vertices, and each RDF triple is represented by a directed edge whose label is a predicate,
and emanating from its source vertex to its object vertex. We denote with EG the set of all
entities occurring as subjects or objects in G, formally:

EG = {s | ∃〈s, p, o〉 ∈ G} ∪ {o | ∃〈s, p, o〉 ∈ G}
and we denote with RG the set of all relations appearing as predicates in G, formally:

RG = {p | ∃〈s, p, o〉 ∈ G}.
Let SG = EG × RG × EG be the space of possible triples of G, with G ⊆ SG, and let

Eθ : SG → R (with parameters θ ) be an energy function that defines an energy distribution
over the set of possible triples SG.

The inference step consists in finding the most likely configuration of the variables
of interest, i.e. the one that minimizes the energy function E(·). For instance, assume
we need to know the most likely object o∗ to appear in a triple with subject s (e.g.
W. SHAKESPEARE) and predicate p (e.g. NATIONALITY). It can be inferred by finding the
object o that minimizes the function E(·), as follows:

o∗ = arg min
o∈EG

Eθ (〈s, p, o〉).

6If X is a continuous random variable, then Z(β) = ∫
x̃∈X e−βE(x̃).
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Similar inference tasks can be performed with respect to the subject s, the predicate p, or a
subset of such variables.

Learning consists in finding an energy function E∗
θ ∈ F , within a parametric family of

energy functions F = {Eθ | θ ∈ �} indexed by parameters θ , that minimizes a given loss
functional L defined on the RDF graph G, that is:

E∗
θ = arg min

E∗
θ ∈F

L(Eθ ,G).

Since the energy value for a triple expresses a quantity that is inversely proportional to the
probability of the triple itself (see Section 2), in a link prediction setting, the energy function
E∗

θ (·) can be exploited for assessing a ranking of the so called unobserved triples, that are the
triples in SG \G. As such, triples associated with lower energy values (higher probabilities)
will be more likely to be considered for a completion of the graph G, differently from triples
associated with the higher energy values (lower probabilities).

On this point, it is important to note that Open World Assumption holds in RDF, which
means that when a triple is missing in G, this does not have to be interpreted as that the
corresponding statement is false (like for the case of the Closed World Assumption typically
made in database settings), but rather that its truth value is missing/unknown, since it cannot
be observed in the KG. We will refer to all triples in G as visible triples, and to all triples in
SG \ G as unobserved triples, which might encode true statements.

Within energy-based models, we particularly focus on Energy-Based Embedding Mod-
els (EBEMs) which are a specific class of models where each entity x ∈ EG is mapped
to a unique low-dimensional continuous vector ex ∈ R

k , that is referred to as the embed-
ding vector of x, and each predicate p ∈ RG corresponds to an operation in the embedding
vector space. As already pointed out in Section 1, the reason for such a choice is that
EBEMs, such as Translating Embedding (TransE) (Bordes et al. 2013) and related models
(Bordes et al. 2011, 2014; Socher et al. 2013), achieve state-of-the-art results in link predic-
tion tasks, while being able to scale on very large (Web-scale) Knowledge Graphs (Bordes
and Gabrilovich 2014).

In the following sections:

(a) We present a unified general framework for formalizing EBEMs for KGs and we show
that EBEMs proposed in the literature so far can be characterized with respect to their
energy function. Additionally, we propose novel formulations of the energy functions
with useful properties (see Section 3.1).

(b) We then focus on the EBEM learning phase, by proposing a method for improving the
efficiency of the parameters learning step (see Section 3.2).

3.1 Energy function characterization and new energy functions

The energy function Eθ : SG → R considered in the state-of-the art EBEMs for KG can be
defined by using two types of parameters:

– Shared Parameters: used for computing the energy of all triples in the space of the
possible triples SG of G.

– Embedding Parameters: used for computing the energy of triples containing a specific
entity or relation x ∈ EG ∪ RG. We denote such parameters by adding a subscript
with the name of the entity or relation they are associated with. For instance, in the
Translating Embeddings model, es denotes the embedding vector representing a subject
s, and ep denotes the translation vector representing a predicate p.
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Both shared parameters and embedding parameters are learned from data. In particular,
EBEMs for KGs associate each entity x ∈ EG with a k-dimensional embedding vector
ex ∈ R

k , and each relation p ∈ RG with a set of embedding parameters Sp. Table 1
summarizes the energy functions that have been used by the state-of-the-art EBEMs for
link prediction in KGs, and highlights the distinction between the two different kinds of
parameters reported above. Please note that, in the table, the subscript for the parameters
stand for the entity/predicate to which they refer to, e.g. the subscript p is added to the
parameters associated with a particular predicate p.

The energy functions can be seen as sharing a common structure: given a RDF triple
〈s, p, o〉, its energy E(〈s, p, o〉) is computed by the following two-step process, also
depicted in Fig. 1:

1. The embedding vectors es , eo ∈ R
k respectively of the subject s and the object o of the

triple, and the embedding parameters Sp associated with the predicate p of the triple
are used to obtain two new vectors e′

s , e
′
o ∈ R

k′
by means of two model-dependent

functions fs(·) and fo(·):
e′
s = fs(es , Sp), e′

o = fo(eo, Sp).

2. The energy of a triple 〈s, p, o〉 is computed by a model-dependent function g(·), with
g : Rk′ ×R

k′ �→ R, applied to the vectors e′
s , e

′
o ∈ R

k′
resulting from the previous step:

E(〈s, p, o〉) = g(e′
s , e

′
o) = g(fs(es ,Sp), fo(eo,Sp)). (1)

Please note that here, the proposed unifying framework is intended for describing
EBEMs for KG: the choice for the functions fs(·), fo(·) and g(·) is model-dependent, and
different models might correspond to different choices of such functions. As an example,
in the following we show how the energy function adopted by the Translating Embeddings
model (TransE) (Bordes et al. 2013), a state of the art EBEM for performing link predic-
tion in KG, can be expressed by the use of the formalization presented above. TransE is
particularly interesting: while its number of parameters grows linearly with the number of
entities and relations in the KG, it yields state-of-the-art link prediction results on WORD-
NET and FREEBASE KGs (see the empirical comparison with other link prediction methods
in Section 5.1).

Example 3 (Energy Function in TransE) In the formulation for the energy function of
TransE (Bordes et al. 2013) (see also Table 1), each entity x ∈ EG in an RDF graph G

corresponds to a k-dimensional embedding vector ex ∈ R
k , while each predicate p ∈ RG

corresponds to a translation operation, represented by a k-dimensional vector ep ∈ R
k , in

Fig. 1 Structure of the energy function in Energy-Based Embedding Models for KGs: es , Sp and eo are the
embedding parameters of s, p and o
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the embedding vector space. As from Table 1, the energy function can be formulated by
using the L1 or the L2 distance of the (translated) subject and object embedding vectors. In
the case of L1 formulation, the energy of an RDF triple 〈s, p, o〉 is given by the L1 distance
of (es + ep), corresponding to es translated by ep , and eo:

E(〈s, p, o〉) = ‖ (
es + ep

) − eo‖1.

This corresponds to the following choice of the functions fs(·), fo(·) and g(·):
fs(es , {ep}) = es + ep, fo(eo, {ep}) = eo, g(e′

s , e
′
o) =‖ e′

s − e′
o ‖1 .

Besides proposing a general framework for expressing an energy function to be used
by EBEMs, we also investigate whether the choice of other affine transformations for the
functions fs(·) and fo(·), such as scaling, or composition of translation and scaling, leads
to more accurate models than those generated by TransE (using the energy function reported
in Table 1), while still having a number of parameters that scales linearly in the number of
entities and relations in the KG. Specifically, we investigate the choices for the following
fs(·) and fo(·) functions:

Translation: f (ex, {ep}) = ex + ep,

Scaling: f (ex, {ep}) = ex 
 ep,

Scaling ◦ Translation: f (ex, {ep,1, ep,2}) = (ex 
 ep,1) + ep,2,

where ◦ denotes the composition operation between functions, and 
 denotes the Hadamard
product, also referred to as element-wise product. The results of such a study are reported
and discussed in Section 5.1.

In addition, we also evaluate the effect of enforcing the embedding vector of all entities
to lie on the Euclidean unit (k − 1)-sphere, that is S

k−1 = {x ∈ R
k | ‖x‖2 = 1}. This is

motivated by the fact that, in TransE (Bordes et al. 2013) and related-models, the L2 norm
of all entity embedding vectors is enforced to be 1: hence, we take into account the effect
of normalizing the results of the functions fs(·) and fo(·), so that the resulting projections
also lie on the Euclidean unit sphere (together with all entity embedding vectors).

In the next section, we discuss the learning step of EBEMs, which consists in finding
the most appropriate energy function to be used during the inference step (see Section 2),
and propose a method for improving both the efficiency of the learning process and the
predictive accuracy of the learned model.

3.2 Learning the parameters of the energy function

As discussed in Section 2, learning in EBEMs for KGs corresponds to finding an energy
function E∗

θ , within a family of functions F = {Eθ | θ ∈ �} indexed by parameters θ , that
minimizes a given loss functional L measuring the compatibility of an energy function with
respect to the RDF graph G:

E∗
θ = arg min

Eθ∈FL(Eθ ,G). (2)

In the following, the definition for the loss functional L is given. In agreement with the
formalization presented in Section 3.1, a key point for learning the (best) energy function in
EBEMs consists in learning the shared and embedding parameters to be used for computing
the energy function. As for (Bordes et al. 2011, 2013, 2014), shared and embedding param-
eters are learned by using a corruption process Q(x̃ | x) that, given a RDF triple x ∈ G,



J Intell Inf Syst (2016) 47:91–109 99

produces a corrupted RDF triple x̃, uniformly sampled from the set of corrupted triples Cx .
Formally, given an RDF triple 〈s, p, o〉 from G, the set of corrupted triples for it is given by

C〈s,p,o〉 = {〈s̃, p, o〉 | s̃ ∈ EG} ∪ {〈s, p, õ〉 | õ ∈ EG}
that is the set obtained by replacing either the subject or the object of the triple with another
entity from the set of entities EG.

The corruption process is applied to positive training RDF triples in order to generate
negative examples that are actually missing in a KG. By corrupting the subject and the
object of triples in the KG, the Local Closed World Assumption (LCWA) (Dong et al. 2014)
is implicitly followed. In the LCWA, the idea is to consider the knowledge about a spe-
cific property p (e.g. NATIONALITY) of a resource s (e.g. W. SHAKESPEARE) to be locally
complete if a value for p is already specified for the resource s. For instance, knowing that
the triple 〈W. SHAKESPEARE, NATIONALITY, ENGLISH〉 is true (because observed in the
KG), allows to assume that 〈W. SHAKESPEARE, NATIONALITY, AMERICAN〉 - i.e. a triple
obtained by corrupting the object - is very likely to be false.

Since the final goal is to learn an energy function which associates lowest energy val-
ues (highest score) with observed triples, and highest energy values (lowest score) with
unobserved triples, the corruption process Q(x̃ | x) is used for defining the following
margin-based stochastic ranking criterion over the triples in G:

L(Eθ ,G) =
∑

x∈G

∑

x̃∼Q(x̃|x)

[
γ + Eθ(x) − Eθ(x̃)

]
+ , (3)

where [x]+ = max{0, x}, γ > 0 is a hyperparameter referred to as margin, and the embed-
ding vector of each entity is enforced to have an unitary norm, i.e. ∀x ∈ EG :‖ex‖= 1.
Actually, the loss functional in (3) enforces the energy of observed triples to be lower
than the score of unobserved triples: the unitary norm constraints in the optimization prob-
lem prevent the training process to trivially solve it by increasing the entity embedding
norms (Bordes et al. 2013).

The minimization problem in (2) can be solved by using projected Stochastic Gradient
Descent (SGD) in mini-batch mode, as also proposed in (Bordes et al. 2011, 2013, 2014)
and summarized in Alg. 1. The training algorithm works as follows: given an RDF graph G,
at each iteration, it samples a batch of triples from G. Similarly to (Bordes et al. 2013), each
batch is obtained by first randomly permuting all triples in G, then partitioning them into nb

batches of similar size, and iterating over them. A single pass over all triples in G is called
an epoch. For each triple in the batch, the algorithm generates a corrupted triple by means
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of the corruption process Q(x̃ | x): this leads to a set T of observed and corrupted pairs
of triples. Hence, the observed/corrupted triple pairs in T are used to evaluate the gradient
of the loss functional L in (3) with respect to the current model parameters θ . Finally, θ is
updated in the steepest descent direction of the loss functional L by a fixed learning rate η.
This procedure is repeated until convergence (in (Bordes et al. 2013) the learning procedure
was limited to 1000 epochs).

The main drawback of SGD is that it requires an initial, careful tuning of the learning
rate η, that is also used across all parameters, without adapting to the characteristics of each
parameter. However, if some entities are infrequent, the corresponding embedding vectors
will tend to be updated less frequently during the learning process, and will require a longer
time to be properly learned. For such a reason, the task of learning the model parameters in
EBEMs by using SGD may require even days to terminate (Chang et al. 2014).

In order overcome such a limitation, we propose the adoption of adaptive per-parameter
learning rates as a solution for reducing the learning time in EBEMs. The underlying idea
consists in associating smaller learning rates to parameters updated more often (such as
the embedding vectors of entities appearing more frequently) and larger learning rates to
parameters updated less often. Specifically, while the SGD algorithm in Alg. 1 uses a global,
fixed learning rate η, we propose relying on methods that estimate the optimal learning
rate for each parameter while still being tractable for learning large models. In particular,
we consider the following criteria for selecting the optimal learning rates: the Momentum
method (Rumelhart et al. 1986), AdaGrad (Duchi et al. 2011) and AdaDelta (Zeiler 2012).
Each of these methods can be implemented in Alg. 1, by replacing the update to model
parameters on line 6 as specified in the following.

Momentum method The basic idea of this method is accelerating the progress along
dimensions where the sign of the gradient does not change, while slowing the progress along
dimensions where the sign of the gradient continues to change. This is done by keeping
track of previous parameter updates with an exponential decay. The update step on line 6 of
Alg. 1, in the Momentum method is given by:

�t ← ρ�t−1 − ηgt ,

where ρ is a hyperparameter controlling the decay of previous parameter updates.

AdaGrad The underlying idea in this method is that per parameter learning rates should
grow with the inverse of gradient magnitudes: large gradients should have smaller learning
rates, while small gradients should have larger learning rates, so that the progress along each
dimension evens out over time. The update step on line 6 of Alg. 1, in AdaGrad is given by:

�t ← − η
√∑t

j=1 g2
j

gt ,

where η is a global scaling hyperparameter. AdaGrad has been used on large scale learning
tasks in a distributed environment (Dean et al. 2012).

AdaDelta This method uses an exponentially decaying average of squared gradients E[g2]
and squared updates E[�2], controlled by a decay term ρ, to give more importance to more
recent gradients and updates. The update step on line 6 of Alg. 1, in AdaDelta is given by:

�t ← −RMS[�]t−1

RMS[g]t gt ,
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where E[x]t = ρE[x]t−1 + (1 − ρ)xt calculates the exponentially decaying average,
RMS[x]t =

√
E[x2]t + ε, and ε is an offset hyperparameter.

All these methods leverage each parameter’s previous gradients for adaptively selecting
the optimal learning rate. The additional space complexity provided by each of these meth-
ods is an additional accumulator for each parameter, containing its gradient history. We did
not experience any sensible difference in runtimes in comparison with plain SGD.

4 Related works

In this section we survey the most representative related works in the categories of Prob-
abilistic latent variable models and Embedding Models, by jointly highlighting their main
peculiarities and drawbacks.

Probabilistic latent variable models Models in this class explain relations between enti-
ties by associating each entity to a set of intrinsic latent attributes. The term latent refers
to the fact that the attributes are not directly observable in the data. Specifically, this class
of models conditions the probability distribution of the relations between two entities on
the latent attributes of such entities, and all relations are considered conditionally inde-
pendent given the latent attributes. Similarly to Hidden Markov Models (Xu et al. 2006;
Koller and Friedman 2009), this allows the information to propagate through the network
of interconnected latent variables.

An early model in this family is the Stochastic Block Model (SB) (Wang and Wong 1987),
which associates a latent class variable with each entity. In Fig. 2 (see left side), a simple
SB for a social network is depicted. Here, each user u ∈ U is associated with a latent class
variable Zu which conditions both its attributes Au, and its relations Ri with other users.
The Infinite (Hidden) Relational Model (Kemp et al. 2006; Xu et al. 2006) extends the SB
by using Bayesian nonparametrics, so to automatically infer the optimal number of latent
classes. The Infinite Hidden Semantic Model (Rettinger et al. 2009) further extends such
model, to make use of constraints expressed in First Order Logic during the learning pro-
cess, while the Mixed Membership Stochastic Block Model (Airoldi et al. 2008) extends
the SB to allow entities to have mixed cluster-memberships. More recent works associate a
set of latent features with each entity, instead of a single latent class. The Nonparametric
Latent Feature Relational Model (Miller et al. 2009) is a latent feature model, which relies
on Bayesian nonparametrics to automatically infer the optimal number of latent features

Fig. 2 Left – A simple SB for a social network: each user u ∈ U is associated with a latent class variable
Zu which conditions both its attributes Au, and its relations with other users. Right – An example of EBEM:
the k-dimensional embedding vector eu ∈ R

k of an entity u (e.g. an user in a social network) is used for
computing the energy of all RDF triples in which u appears in
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during learning. Other approaches, such as (De Raedt et al. 2015), focus on the problem
of inducing probabilistic logic programs. While showing interesting results in terms of pre-
dictive accuracy, a detailed analysis on the scalability issue, with particular reference to
real-world large KGs is missing.

The main limitation of probabilistic latent variable models lies in the complexity of prob-
abilistic inference and learning, which is intractable in general (Koller and Friedman 2009).
As a consequence, these models do not result to be fully appropriate for modeling large KGs.

Embedding models Similarly to probabilistic latent feature models, in Embedding Mod-
els each entity in the KG is represented by means of a continuous k-dimensional embedding
vector ex ∈ R

k , encoding its intrinsic latent features within the KG. Nevertheless, mod-
els in this class do not necessarily rely on probabilistic inference for learning the optimal
embedding vectors and this allows avoiding the issues related to the proper normalization
of probability distributions, that may lead to intractable problems.

In RESCAL (Nickel et al. 2011), the problem of learning the embedding vector repre-
sentations of all entities and predicates is cast as a tensor factorization problem: by relying
on a bilinear model, and by using a squared reconstruction loss, an efficient learning algo-
rithm, based on regularized Alternating Least Squares, is proposed. However, the number
of parameters grows super-linearly with the number of predicates in the KG: for such a rea-
son, RESCAL can hardly scale to highly-relational KGs (Jenatton et al. 2012). In EBEMs (
depicted on the right side of Fig. 2), the energy of each RDF triple 〈s, p, o〉 is defined as a
function of the embedding vectors es and eo, associated with the subject s and the object o

of the triple (as already detailed in Section 3). The major limitation in EBEMs is the learn-
ing time, i.e. the time required for learning the parameters of the energy function. Several
options have been proposed for the choice of both the energy function and the loss functional
for learning the embedding vectors representation (Bordes et al. 2011, 2013, 2014; Jenatton
et al. 2012; Socher et al. 2013). These methods have been used to achieve state-of-the-art
link prediction results while scaling on large KGs.

We outperform such methods both in terms of efficiency ( by reducing the learning time
by an order of magnitude) and effectiveness (by obtaining a more accurate model) - as
shown by the empirical evaluations provided in Section 5.

5 Empirical evaluation

In this section, we present the empirical evaluation for our proposed solution. Particularly,
we aim at answering the following questions:

Q1: Can adaptive learning rates, as proposed in Section 3.2, be used for improving the
efficiency of parameters learning with respect to the current state-of-the-art EBEMs?

Q2: Do the energy functions proposed in Section 3.1 lead to more accurate link prediction
models for KG completion?

In Section 5.1, we answer Q1 by empirically evaluating the efficiency of the proposed
learning procedure and the accuracy of the learned models. In Section 5.2, we answer Q2
by evaluating the accuracy of models using the proposed energy functions in link prediction
tasks.

In the following, we describe the KGs used for the evaluation, jointly with the adopted
metrics.
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Knowledge graphs As KGs, WORDNET (Miller 1995) and FREEBASE (FB15K)
(Bollacker et al. 2008) have been adopted:

– WORDNET is a lexical ontology for the English language. It is composed of over
151×103 triples, describing 40943 entities and their relations by means of 18 predicate
names.

– FREEBASE (FB15K) is a large collaborative knowledge base that is composed of over
592 × 103 triples, describing 14951 entities and their relations by means of 1345
predicate names.

As for the experiments, for comparison purpose, we use the very same training, vali-
dation and test sets adopted in Bordes et al. (2013). Specifically, as regards WORDNET,
given the whole KG, 5000 triples were used for validation and 5000 were used for testing.
As regards FB15K, 50000 triples were used for validation while 59071 were used for test-
ing (the interested reader may refer to Bordes et al. (2013) for more informations about the
creation of such datasets).

Evaluation metrics As for Bordes et al. (2013), the following metrics have been used:

– averaged rank (denoted as MEAN RANK)
– proportion of ranks not larger than 10 (denoted as HITS@10).

They have been computed as follows. For each test triple 〈s, p, o〉, the object o is replaced
by each entity õ ∈ EG in G thus generating a corrupted triple 〈s, p, õ〉. The energy val-
ues of corrupted triples are computed by the model, and successively sorted in ascending
order. The rank of the correct triple is finally stored. Similarly, this procedure is repeated by
corrupting the subject s of each test triple 〈s, p, o〉. Aggregated over all test triples, this pro-
cedure leads to the two metrics: the averaged rank (denoted as MEAN RANK) that measures
the average position of the true test triple in the ranking, and the proportion of ranks not
larger than 10 (denoted as HITS@10) that measures the number of times the true test triple
is ranked among the most likely 10 triples. This setting is referred to as the RAW setting.

Please note that, if a generated corrupted triple already exists in the KG, ranking it before
the original triple 〈s, p, o〉 is not wrong. For such a reason, an alternative setting, referred to
as FILTERED setting (abbreviated with FILT.) is also considered. In this setting, corrupted
triples that exist in either training, validation or test set are removed, before computing the
rank of each triple.

In both RAW and FILTERED settings, it would be desirable to have lower MEAN RANK

and higher HITS@10.

5.1 Evaluation of adaptive learning rates

In order to reply to question Q1, that is, for assessing whether Momentum, AdaGrad
and AdaDelta are more efficient than SGD in minimizing the loss functional in (3), we
empirically evaluated these methods on the task of learning the parameters in TransE on
WORDNET and FREEBASE (FB15K) KGs, using the optimal settings described in Bordes
et al. (2013) that is:

– k = 20, γ = 2, d = L1 for WORDNET

– k = 50, γ = 1, d = L1 for FB15K.

Following the empirical comparison of optimization methods in Schaul et al. (2014),
we compared SGD, Momentum, AdaGrad and AdaDelta using an extensive grid of
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hyperparameters. Specifically, given Gη = {10−6, 10−5, . . . , 101}, Gρ = {1 − 10−4, 1 −
10−3, . . . , 1 − 10−1, 0.5} and Gε = {10−6, 10−3}, the grids of hyperparameters for each of
the optimization methods were defined as follows:

– SGD and AdaGrad: rate η ∈ Gη.
– Momentum: rate η ∈ Gη, decay rate ρ ∈ Gρ .
– AdaDelta: decay rate ρ ∈ Gρ , offset ε ∈ Gε .

For each possible combination of optimization method and hyperparameter values, we per-
formed an evaluation consisting in 10 learning tasks, each time using a different random
seed for initializing the model parameters in TransE. The same 10 random seeds were used
for each of the evaluation tasks.

Figure 3 shows the behavior of the loss function for each of the optimization methods, for
the best hyperparameter settings after 100 epochs, over the training set. It is immediate to
see that, for both WORDNET and FB15K, AdaGrad (with η = 0.1) and AdaDelta (with (1−
ρ) = 10−3 and ε = 106) provide sensibly lower values of the loss functional L than SGD
and Momentum, even after a low number of iterations (< 10 epochs), and that AdaGrad and

Fig. 3 Average loss across 10 TransE parameters learning tasks on WORDNET (top) and FREEBASE FB15K

(bottom) knowledge graphs, using the optimal settings in Bordes et al. (2013). For each of the optimization
methods, the hyperparameters settings that after 100 epochs achieve the lowest average loss are reported
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AdaDelta, in their optimal hyperparameter settings, provide very similar loss values. Since
AdaGrad has only one hyperparameter η and a lower complexity (it only requires one per
parameter accumulator and a rescaling operation at each iteration) than AdaDelta, we select
AdaGrad (with η = 0.1) as the optimization method of choice. Specifically, as a successive
step, we needed to assess whether AdaGrad (with η = 0.1) leads to more accurate models,
i.e. with lower MEAN RANK and higher HITS@10, than SGD. For the purpose, we trained
TransE by using AdaGrad (with η = 0.1) for 100 epochs on a link prediction task on
WORDNET and FB15K, under the same evaluation setting used in Bordes et al. (2013).
Hyperparameters were selected according to the performance on the validation set using the
same grid of hyperparameters adopted in Bordes et al. (2013). Specifically, we chose the
margin γ ∈ {1, 2, 10}, the embedding vector dimension k ∈ {20, 50}, and the dissimilarity
d ∈ {L1, L2}. Table 2 shows the results obtained by TransE trained using AdaGrad (with
η = 0.1) for 100 epochs, in comparison with state-of-the-art results as reported in (Bordes
et al. 2013).

From Table 2 can be noted that, despite of the sensibly lower number of training epochs
(100, compared to 1000 used for training TransE with SGD, as reported by (Bordes et al.
2013)), TransE trained using AdaGrad provides more accurate link prediction models (i.e.
lower MEAN RANK and higher HITS@10 values) than every other model in the compar-
ison. A possible explanation for this phenomenon is the following. AdaGrad uses each
parameter’s previous gradients for rescaling its learning rate: for such a reason, entities and
predicates occurring less (resp. more) frequently will be associated with an higher (resp.
lower) learning rate. As a result, the learning process for each parameter evens out over
time, and all embedding parameters are learned at the same pace.

The results showed in this section largely prove that our solution is able to give a positive
answer to Q1. Specifically, besides of experimentally proving that the adaptive learning
rates proposed in Section 3.2 are able to improve the efficiency of parameters learning with
respect to the current state-of-the-art EBEMs, we have also proved that the final learned
model is able to outperform current state-of-the-art models in terms of MEAN RANK and
HITS@10.

Table 2 Link Prediction Results: Test performance of several state-of-the-art Link Prediction methods on
the WORDNET and FREEBASE (FB15K) KGs

Knowledge Graph WORDNET FREEBASE (FB15K)

Metric MEAN RANK HITS@10 (%) MEAN RANK HITS@10 (%)

RAW FILT. RAW FILT. RAW FILT. RAW FILT.

Unstructured (Bordes et al. 2014) 315 304 35.3 38.2 1074 979 4.5 6.3

RESCAL (Nickel et al. 2011) 1180 1163 37.2 52.8 828 683 28.4 44.1

SE (Bordes et al. 2011) 1011 985 68.5 80.5 273 162 28.8 39.8

SME linear (Bordes et al. 2014) 545 533 65.1 74.1 274 154 30.7 40.8

SME bilinear (Bordes et al. 2014) 526 509 54.7 61.3 284 158 31.3 41.3

LFM (Jenatton et al. 2012) 469 456 71.4 81.6 283 164 26.0 33.1

TransE (Bordes et al. 2013) 263 251 75.4 89.2 243 125 34.9 47.1

TransE (AdaGrad) 169 158 80.5 93.5 189 73 44.0 60.1

Results show the MEAN RANK (the lower, the better) and HITS@10 (the higher, the better) for both the
RAW and the FILTERED settings (Bordes et al. 2013)
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5.2 Evaluation of the proposed energy functions

In this section, we evaluate the energy functions proposed in Section 3.1 in the definition
of an EBEM, with the final goal of replying to question Q2, that is to assess whether the
proposed energy functions lead to more accurate link prediction models for KGs completion
than models at the state-of-the-art.

As from (1), the energy function of an EBEM can be rewritten as:

E(〈s, p, o〉) = g(fs(es ,Sp), fo(eo,Sp))

where es and eo denote the embedding vectors of the subject s and the object o of the
triple, and Sp denotes the set of embedding parameters associated with the predicate p.
In Section 3.1 we proposed alternative choices for functions fs(·) and fo(·), that allow
defining models whose number of parameters grows linearly with the number of entities
and relations in the KG. Specifically, we proposed using translation, scaling, composition,
and projection on the Euclidean unit sphere n(x) = x/‖x‖. For each of the considered
choices, we trained the corresponding EBEM on WORDNET and FB15K. Hyperparameters
were selected on the basis of the model performance on the validation set: we selected the
embedding vector dimension k ∈ {20, 50, 100}, the margin γ ∈ {2, 5, 10}, and the g(·)
function g(x, y) ∈ {‖x − y‖1, ‖x − y‖2,−xT y}, corresponding to the L1 and L2 distances,
and the negative dot product. Following the results from Section 5.1, model parameters were
learned using AdaGrad (with η = 0.1) for 100 training epochs.

Table 3 shows the test results obtained with different choices of fs(·) and fo(·) function.
Note that we used the notation ep,1 and ep,2 for referring to two distinct predicate embed-
ding vectors, one used in the formulation of fs(·) and the other in fo(·), for avoiding name
clashing. For the purposes of comparison, Table 3 also shows the results obtained, on the
same link prediction tasks, by TransE (as reported in Bordes et al. (2013)) that is the best
performing model in the literature.

From the table, it is interesting to note that, especially for highly multi-relational KGs
such as FREEBASE (FB15K), simpler models for fs(·) and fo(·) provide better results than
their more complex variants. A possible explanation is that many predicates in FB15K only
occur in a limited number of triples (only 736 predicates out of 1345 occur in more than 20
triples) and in cases like this more expressive models are less likely to generalize correctly
than simpler models. Given fo(eo, {ep}) = eo, the best performing models, in terms of
HITS@10, are:

– fs(es , {ep}) = es+ep, representing the predicate-dependent translation of the subject’s
embedding vector

– fs(es , {ep}) = es 
 ep, representing the predicate-dependent scaling.

This indicates that, despite the very different geometric interpretations, relying on simpler
models improves link prediction results, especially in highly-relational KGs. This is proba-
bly due to the fact that, especially for the case of real-world KGs (which, by nature, tend to
be very sparse), simpler models tend to generalize better and are less prone to over-fitting
than more complex models. This characteristic can be very advantageous in real-world sce-
narios: relying on simpler models such as TransE (where the number of parameters scales
linearly with the number of entities and predicates) can sensibly improve the training time,
making learning from large and Web-scale KGs feasible.
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Table 3 Link Prediction Results: Test performances of several EBEMs (on different choices of the fs(·) and
fo(·) functions) in comparison with TransE (Bordes et al. 2013) on WORDNET and FREEBASE (FB15K)

Results show the MEAN RANK (the lower, the better) and HITS@10 (the higher, the better) in the RAW and
FILTERED settings

We can conclude that, constraining the expressiveness of the models while using adaptive
learning rates, yields a significant improvement over state-of-the-art methods discussed in
(Bordes et al. 2013).

Source code and datasets for reproducing the experiments presented in this paper are
available on-line. 7

6 Conclusions and future works

We focused on Energy-Based Embedding Models, a novel class of link prediction models
for knowledge graph completion where each entity in the graph is represented by a continu-
ous embedding vector. Models in this class, like the Translating Embedding model (Bordes
et al. 2013), have been used to achieve performance that is comparable with the main
state-of-the-art methods while scaling on very large knowledge graphs.

In this work, we proposed: (i) a general framework for describing state-of-the-art Energy-
Based Embedding Models, (ii) a family of novel energy functions, with useful properties,

7https://github.com/pminervini/ebemkg/

https://github.com/pminervini/ebemkg/
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(iii) a method for improving the efficiency of the learning process by an order of magnitude,
while leading to more accurate link prediction models.

We empirically evaluated the adoption of the proposed adaptive learning rates in the con-
text of Energy-Based Embedding Models by showing that they provide more accurate link
prediction models while reducing the learning time by an order of magnitude in comparison
with state-of-the-art learning algorithms. We also empirically evaluated the newly proposed
energy functions (with a number of parameters) that scales linearly with the number of enti-
ties and relations in the knowledge graph. Our results showed a significant improvement
over state-of-the-art link prediction methods on the very same considered large KGs, which
are WORDNET and FREEBASE.

For the future we plan to investigate on the formalization of Energy-Based Embed-
ding Models that are able to take into account the available background knowledge. Other
research directions include dynamically controlling the complexity of learned models, and
further optimizing the learning process.
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