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Abstract Many real-world applications reveal difficulties in learning classifiers from
imbalanced data. Although several methods for improving classifiers have been introduced,
the identification of conditions for the efficient use of the particular method is still an open
research problem. It is also worth to study the nature of imbalanced data, characteristics of
the minority class distribution and their influence on classification performance. However,
current studies on imbalanced data difficulty factors have been mainly done with artificial
datasets and their conclusions are not easily applicable to the real-world problems, also
because the methods for their identification are not sufficiently developed. In our paper, we
capture difficulties of class distribution in real datasets by considering four types of minority
class examples: safe, borderline, rare and outliers. First, we confirm their occurrence in real
data by exploring multidimensional visualizations of selected datasets. Then, we introduce a
method for an identification of these types of examples, which is based on analyzing a class
distribution in a local neighbourhood of the considered example. Two ways of modeling this
neighbourhood are presented: with k-nearest examples and with kernel functions. Exper-
iments with artificial datasets show that these methods are able to re-discover simulated
types of examples. Next contributions of this paper include carrying out a comprehensive
experimental study with 26 real world imbalanced datasets, where (1) we identify new data
characteristics basing on the analysis of types of minority examples; (2) we demonstrate
that considering the results of this analysis allow to differentiate classification performance
of popular classifiers and pre-processing methods and to evaluate their areas of competence.
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Finally, we highlight directions of exploiting the results of our analysis for developing new
algorithms for learning classifiers and pre-processing methods.

Keywords Class-imbalanced data - Learning classifiers - Data difficulty factors - Local
analysis - k-nearest neighbourhood

1 Introduction

In many real life problems classifiers are faced with imbalanced data, which means that one
of the target classes contains a much smaller number of instances than the other classes.
For example, in detection of fraudulent telephone calls or credit card transactions the num-
ber of legitimate transactions is much higher than the number of fraudulent ones. A similar
situation occurs in many medical problems, where the number of patients requiring spe-
cial attention (e.g., therapy or treatment) is much smaller than the number of patients who
do not need it. Class imbalances have been also observed in many other application prob-
lems such as detection of oil spills in satellite images, analysing financial risk, predicting
technical equipment failures, managing network intrusion, text categorization and informa-
tion filtering; for some reviews see, e.g. (He and Garcia 2009; He and Ma 2013). In all
those problems the correct recognition of the minority class is of key importance. However,
class imbalance is an obstacle for learning classifiers as they are biased toward the majority
classes and tend to missclassify minority class examples.

The class imbalance problem has been receiving a growing research interest in the recent
decade and several methods have been introduced; for their reviews see, e.g., (He and
Garcia 2009; He and Ma 2013; Chawla 2005). They are usually divided into data level pre-
processing methods (that rely on transforming the original data to change the distribution
of classes, e.g. by re-sampling) and methods modifying the algorithms. Although several
specialized methods already exist, the identification of conditions for the efficient use of a
particular method is still an open research problem. In our opinion, it is related to more fun-
damental issues of better understanding the nature of the imbalanced data, key properties of
its underlying distribution and their consequences.

Note that in most of experimental evaluations, where existing or newly introduced meth-
ods are compared (as e.g (Batista et al. 2004; Garcia et al. 2007; Van Hulse et al. 2007)),
datasets are categorized with respect to the global ratio between imbalanced classes or to the
size of the minority class only. Authors usually do not consider other more complex charac-
teristics of data distributions. Nevertheless, it seems that these two factors do not sufficiently
explain differences in classification performance of the compared methods. For instance,
for some datasets even with a high imbalance ratio, the minority class can be sufficiently
recognized by many standard classifiers.

Some researchers have already shown that the global imbalanced ratio between classes
is not a problem itself and it may not be the main source of difficulties. The degrada-
tion of classification performance is linked to other factors related to data distribution,
such as decomposition of the minority class into many rare sub-concepts playing a
role of small disjuncts (Japkowicz 2001, 2003; Ting 1994; Weiss and Hirsh 2000), the
effect of too strong overlapping between the classes (Prati et al. 2004b; Garcia et al.
2007), or a presence of too many minority examples inside the majority class regions
(Napierala et al. 2010). It has been shown that when these data difficulty factors occur
together with class imbalance, they seriously hinder the recognition of the minority class
(Lopez et al. 2013; Napierala et al. 2010).
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The role of the above mentioned factors has been usually examined with special artifi-
cial datasets, where the data distribution is given a priori and the impact of each factor can
be precisely controlled. Although these studies give an insight into the important aspects of
data distribution, their conclusions might not be easy to apply in the real-world settings, as it
is not evident how to estimate the occurrence of these data factors in the real-world datasets.
Up to now, only few methods have been proposed for the real data (see their review in
Section 2). However, using them is often a non-trivial task and does not lead to clear results.
For instance, clustering algorithms, applied to look for small disjuncts (Jo and Japkowicz
2004), are difficult to parametrize. Other proposals, as e.g. (Saez et al. 2015; Denil and
Trappenberg 2011), are based on combinations of complex methods and strongly rely on a
particular classifier — thus their applicability for other learning algorithms is limited. More-
over, these method address a single data factor and do not deal with the co-occurrence of
other factors.

We claim that current studies on data difficulty factors and methods for their identifica-
tion are still not sufficiently developed. In this paper, following our earlier studies (Napierala
and Stefanowski 2012b), we hypothesize that most of the data difficulty factors can be
approximated by analysing the local characteristics of the minority examples. Depending
on it, and also inspired by earlier considerations of some pre-processing methods (Kubat
and Matwin 1997; Laurikkala 2001), we will distinguish different types of examples cre-
ating the minority class distribution: safe, bordeline, rare examples and outliers. The last
three types correspond to unsafe examples, which are more difficult to learn. Unlike many
related studies, which are focused on examining a single data factor only, we hypothesize
that in real world data a mixture of these four types of examples occurs.

In Section 4 we will show how to verify their occurrence in real world data by adapting
two visualization methods (multidimensional scaling (Cox and Cox 1994) and t-SNE (van
der Maaten and Hinton 2008)), which project multidimensional data into a two-dimensional
space. However, these methods allow us to analyze the datasets visually.

Therefore, the next aim of our study is to propose a new method for an automatic
identification of these four types of examples in the real-world datasets. Unlike the pre-
vious proposals, we want to consider a simple, intuitive method, which is more universal,
as it does not depend on a particular classifier. Thus, we propose a method based on
analysing the mutual positions of learning examples from different classes in the local
neighbourhood of minority examples. Depending on the number of majority class exam-
ples in this neighbourhood of the minority example, we will evaluate how safe or unsafe
this example is. Such a neighbourhood could be modeled in different ways. We will present
two approaches based either on k-nearest neighbours or kernels built around minority
examples.

Although our approach to model neighbourhoods is based on using known methods, we
claim that such an approach has not been considered yet. Furthermore, it can be applied to
several crucial aims for learning classifiers from imbalanced data:

1. To analyse internal characteristics of real-world datasets, often exploited in the related
experimental studies, to show their differences, which have not been discussed yet.

2. To carry out more advanced experimental studies with popular classifiers as well as
pre-processing methods. Considering observations from the analysis of data character-
istics could help in better indicating differences in their prediction performance and to
establish their areas of competence.

3. To construct new, specialized algorithms for improving classifiers learned from imbal-
anced data, which will take into account the local characteristics of the dataset.
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In this paper we will carry out a comprehensive experimental study, applying our method
to 26 real imbalanced datasets often considered in the related studies. With respect to the
above aims we will analyse the differences in proportions of the types of minority examples
in these datasets. Then, we will try to relate these data characteristics to the performance of
basic classifiers and pre-processing methods, to show which types are the most difficult and
which methods are sensitive to the particular types of examples. Our experiments should
significantly extend the most related studies (Batista et al. 2004; Van Hulse et al. 2007;
Batista et al. 2012; Lopez et al. 2013) as we take a different research perspective and perform
a more detailed analysis of difficulties in the distribution of the minority class. In particular,
it should focus the reader attention on the role of analysing the local data characteristics,
which has not be sufficiently studied yet.

Furthermore, we hope that our study will inspire a future development of more advanced
methods for studying data difficulty factors and conducting experimental studies in a more
insightful way. Finally, although it is not the main aim of this paper, we will also briefly
discuss the consequences of our study for developing new generalizations of ensembles and
pre-procesing methods.

To sum up, the main contributions of this paper will be:

e focus researchers’ attention on the local characteristics of the diversified dis-
tribution of the minority class and its influence on learning from imbalanced
datasets,
consider four types of minority examples: safe, border, rare and outlier,
propose a method for identifying these types of examples in the real-world data,
analyse the characteristics of the real-world datasets commonly used in the works
concerning class imbalance,

e carry out a comprehensive study on real-world datasets, relating the data characteristics
to the performance of classifiers and pre-processing methods.

The paper is organized as follows. The next section summarizes related works on
data difficulty factors. Motivations for considering types of minority examples are dis-
cussed in Section 3 and supported by visualizations of several datasets in Section 4.
In Section 5, the neighborhood-based method for identification of types of examples
is introduced and validated in the experiments with simulated data distributions. An
experimental analysis with real datasets in carried out in Section 6. It is followed by
a comprehensive study of basic classifiers and pre-processing methods in Section 7,
where we attempt to relate their performance to the discovered characteristics of the
diversified minority class distributions. Section 8 discusses possible options of using the
local information, in particular for ensembles. The final section draws conclusions and
highlights future research directions of applying the proposed method for imbalanced
data.

2 Related works

In this section we focus on the most related studies concerning the properties of imbal-
anced data and their consequences for learning classifiers or pre-processing methods. For
a more comprehensive review of various methods proposed to deal with class imbalance,
the reader is referred to He and Garcia (2009), He and Ma (2013), Weiss (2004), and
Chawla (2005).
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2.1 Studying data factors with artificial datasets

It has been shown that when the dataset is imbalanced, standard classifiers encounter diffi-
culties while recognizing the minority class. Nevertheless, the discussion of reasons on the
data level still goes on. Some researchers analysed the relationship between the imbalance
ratio (defined as the ratio of the minority class examples to the total number of examples
in the data) and the classification performance, showing that its high values deteriorate the
evaluation measures (see, e.g., (Grzymala-Busse et al. 2004; Japkowicz and Shah 2011;
Weiss and Provost 2003)). However, it has also been observed that in some problems charac-
terized by strong imbalance (e.g., Sick, or New Thyroid datasets from the UCI repository),
standard classifiers are capable to be sufficiently accurate. This shows that the class imbal-
ance ratio is not the only factor that impedes learning and more systematic studies have
been undertaken to examine which properties of the distribution of examples in the attribute
space are other critical factors.

Japkowicz et al. carried out a large number of experiments with simulated data (gener-
ated over numerical attributes) studying the relationship between the fragmentation of the
class, the size of the training set and the class imbalance ratio (Japkowicz 2003; Japkowicz
and Stephen 2002; Jo and Japkowicz 2004). By manipulating with degrees of these data fac-
tors, their influence on the recognition of minority classes was analysed. Their results show
an important role of sparsity of the minority class when it is decomposed into very small
sub-groups. It is linked to the problem of small disjuncts (known from symbolic learning
(Holte et al. 1989)). However, the detection of such small disjuncts in the real world data
is not easy. Another comparative study with artificial data and various sampling methods
gave recommendation to using a special cluster-based technique which takes into account a
fragmentation of classes (Jo and Japkowicz 2004).

Other researchers studied the role of overlapping between the minority and majority
classes. In (Prati et al. 2004b), the authors used the artificial, numerical datasets where
minority and majority classes formed two spherical clusters, and considered the C4.5 clas-
sifier with respect to the AUC measure. By changing the imbalance ratio and the distance
between the clusters, they noticed that increasing class overlapping was more influential
than increasing class imbalance, leading to stronger deterioration.

A similar experiment, but concerning six classifiers compared with more evaluation mea-
sures, was carried out in (Garcia et al. 2007). For two-dimensional artificial, numerical
datasets the degrees of overlapping and imbalance ratio were systematically changed. It
was shown that increasing overlapping between the classes degraded the recognition of the
minority class more than changing the imbalance ratio. However, it affected various classi-
fiers in a different degree. In case of a very high overlapping, nearest neighbour classifier
performed the best, while support vector machine (SVM) was the worst classifier. In the
additional experiment, the authors noticed that the local imbalanced ratio inside the over-
lapping area is more influential than the global one. The same experimental setup was then
used to analyse in more detail the kNN classifier, with k changing from 1 to 15 (Garcia et al.
2008). It showed that when the overlapping increased, more local classifiers (with smaller
k) performed better on the minority class.

In Stefanowski (2013) the effect of overlapping was studied together with other factors
such as decomposition of the minority class into smaller sub-concepts. The experiments
were carried out on artificial two-dimensional datasets with more complicated non-
linear borders and the results showed that the combination of class decomposition with
overlapping makes learning very difficult.
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Finally, two other teams studied the influence of noisy examples (Anyfantis et al. 2007;
Khoshgoftaar and Van Hulse 2009). They also used special data where class noise was
introduced to real-world datasets by randomly re-labelling the learning examples. The
experimental results showed that all compared classifiers were sensitive to noise and it
affected stronger the minority class. However, some of them, as Naive Bayes and nearest
neighbour, were often more robust than other, more complex classifiers.

2.2 Studies with real datasets

Only few similar systematic studies concern real-world datasets. These are comparative
studies of several algorithms, where data are differentiated with respect to the imbalance
ratio and the data size only

Van Hulse et al. carried out a comprehensive study with 35 real-world datasets, 11 clas-
sifiers and 7 pre-processing methods in (Van Hulse et al. 2007). They grouped their datasets
into 4 categories with respect to the imbalance ratio and compared the learning algorithms
within these categories. According to the authors, random undersampling worked better than
other approaches for data with the most severe imbalance ratio (< 5%). Unlike other studies,
they claimed that simpler random re-sampling often performed better than more sophisti-
cated informed re-sampling methods. Having many experimental configurations, they also
noted that algorithms respond differently to various pre-processing methods and it depends
on the evaluation measures (e.g., G-mean or F-measure showed higher improvements than
AUC).

Yet another study concerning impact of the imbalance ratio was carried out in Batista
et al. (2012), where 7 learning algorithms were compared over 20 real-world datasets with
the AUC measure. Averaging the results for all the datasets, the authors observed that the
loss of performance started to be significant when the minority class represented 10% of the
data or less. SVM was less affected by changing the class imbalance ratio than other classi-
fiers for all except the most imbalanced distributions. Then, they analysed the performance
of two pre-processing methods, random oversampling and SMOTE, and concluded that the
pre-processing methods usually could not improve the performance by more than 30%.

In Batista et al. (2004) Batista et al. developed another wider systematic experimen-
tal study with 15 real-world UCI datasets and 10 different pre-processing methods — all
used with the C4.5 decision trees. The oversampling methods provided better AUC than
the undersampling ones. Considering data factors, the authors took into account the data
size and claimed that the pre-processing SMOTE method (Chawla et al. 2002) combined
with informed undersampling (ENN or Tomek links), led to the best results for smaller data
with few minority examples while simple random oversampling was competitive to other
methods for datasets containing a relatively high number of the minority examples.

2.3 Limitations of identification methods

To summarize the works presented in previous sections, the studies with real-world datasets
concentrate mostly on simple data factors, such as the data size and the imbalance ratio, as
they can be directly measured in the data. The authors usually do not consider several data
factors occurring together and do not study the influence of more complex factors. Studies
on such factors are usually done only with artificial data, in which the distribution of the data
is known a-priori and can be precisely controlled. These studies have clearly demonstrated
that data factors, such as overlapping or noise, have a crucial impact on the performance
of classifiers and pre-processing methods. However, their conclusions might not be easy to
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directly apply in the real-world settings, as the authors do not sufficiently discuss how to
identify the occurrence of these data factors in the real-world datasets.

The identification methods are not numerous and they are usually complex, rely on a
specific classifier or tuning their parameters is not easy. For instance, consider the decom-
position of the minority class into rare sub-concepts. Up to now researchers have mainly
applied clustering to look for sub-concepts in the data. Usually, k-means algorithm is used
either to the minority class only or independently for each class (Jo and Japkowicz 2004).
The main open question is how to identify the appropriate number of expected clusters, as
in most cases the underlying class distribution is unknown and rather complex. Attempts
to approximate overlapping are also quite rare and rely on a chosen classifier. For instance,
in (Denil and Trappenberg 2011) (paper concerning the effects of overlapping and imbal-
ance on the SVM classifier), the degree of overlapping in real-world datasets is estimated
by measuring the number of support vectors (examples) which can be removed without
deteriorating the classification accuracy. Methods for identifying unsafe or noisy examples
are also quite complex and not intuitive to parametrize. For instance, there are two special-
ized approaches based on classifier ensembles that analyse the distribution of component
classifier predictions (Khoshgoftaar and Van Hulse 2009; Saez et al. 2015). The most often
misclassified examples are treated as possible noise and iteratively removed from the learn-
ing data until a certain value of accuracy is achieved. These methods depend on a number
of parameters and a choice of a particular type of base classifier. What is more, removing
the examples can be debatable especially for the minority class.

To sum up, there is a limited number of methods for the identification of data difficulty
factors in real-world data sets and they focus on single factors only. Developing new meth-
ods, able to identify several data factors, not relying on a particular classifier and simpler
to parametrize, would have a positive impact on practical aspects of learning from imbal-
anced data. If, for example, the results presented in Garcia et al. (2007) suggest that the
performance of some classifiers is seriously downgraded when there is a very high overlap-
ping of classes, then it would be interesting to know if such strong overlapping often occurs
in real-world applications and to resign from applying a particular learning algorithm to a
dataset.

Finally, by analysing a representative collection of real-world imbalanced datasets, we
could observe what are the most common data distribution patterns. Such knowledge would
help to point out the most promising directions for the development of new methods
dedicated for class imbalance. Today state-of-the-art methods, either on data level or on
algorithmic level, concentrate mostly on compensating the effects of the global imbalance
ratio, not taking into account other, possibly more influential, data difficulty factors.

3 Distinguishing types of examples

In our study we claim that most of the above mentioned data difficulty factors can be linked
with different types of examples forming the minority class distribution.

We remark that the diverse role of examples has already been noticed in a few
pre-processing methods (Kubat and Matwin 1997; Laurikkala 2001; Han et al. 2005; Ste-
fanowski and Wilk 2008). Following (Kubat and Matwin 1997; Laurikkala 2001), the most
common distinction is between safe and unsafe examples. Safe examples, located in the
homogenous regions populated by the examples from one class only, should be easier to
learn by a classifier, while unsafe ones are considered to be more difficult and more likely
to be misclassified.
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In Kubat and Matwin (1997), unsafe examples are further discriminated between bor-
derline and noisy examples. The term borderline has been assigned to examples located
in the regions around decision boundary between classes. In our further considerations
it is referred to two kinds of examples. Firstly, these are examples located inside over-
lapping regions of minority and majority classes. Secondly, these are also examples
placed close to the complex, decision boundary between the classes, which could be mis-
classified by their neighbours from the opposite class located on the other side of the
boundary.

Noisy examples (either referring to class or attribute errors) deteriorate the perfor-
mance of standard classifiers and they are also particularly harmful for the minority class
(Anyfantis et al. 2007; Khoshgoftaar and Van Hulse 2009). In the standard approaches,
when the data is balanced, they could be specially handled inside the learning algorithm or
removed during the pre-processing (Brodley and Friedl 1999). However, in imbalanced data
more caution is advised. While single majority examples located inside the minority class
may increase its fragmentation and cause additional difficulties in learning (so they could
be processed as above), the situation is different for the single minority examples. Here, it
is necessary to distinguish outliers from possible noise as such distant minority examples
might often be a result of the insufficiently covered example space. As the minority class
can be underrepresented in the data, we claim, similarly to Kubat and Matwin (1997), that
these examples can often be outliers, representing a rare but valid subconcept of which no
other representatives could be collected for training. Therefore, they should not be removed
or re-labeled. We can also refer to studies on medical problems (Gamberger et al. 1999),
where the authors showed that the results of noise identification filters were often identified
by experts as valid outliers.

Finally, we want to distinguish yet another type of, so-called, rare examples. These are
isolated pairs or triples of minority class examples, located in the majority class region,
which are distant from the decision boundary so they are not borderline examples, and at the
same time are not singular examples, so they are not exactly outliers. The role of these exam-
ples has been preliminary studied by us in the experiments with special artificial datasets
(Napierala et al. 2010; Stefanowski 2013), where they strongly influenced the performance
of classifiers.

To sum up, in this paper we will propose to relate the considered properties of imbalanced
data distributions to four types of minority examples: safe, borderline, rare and outlying
examples.

4 Visualization of imbalanced datasets

To verify whether these four types of minority examples can be observed in real-world
datasets, we will use the visualisation methods, which project multi-dimensional data
points into the low-dimensional space such that the structural properties of the data are
preserved. Firstly, we choose the Multidimensional Scaling (MDS) as it is one of the
most popular method for projections into new created dimensions. It performs a lin-
ear mapping of dimensions with the aim of preserving the pairwise distances between
data points in the original high dimensional data space into the projected low dimen-
sional space (Cox and Cox 1994). Moreover, we decided to confirm our analysis by
another projection method based on a different principle, which uses a non-linear map-
ping. Among such non-linear methods, t-SNE method (¢-Distributed Stochastic Neighbour
Embedding) is one of the most recent dimensionality reduction methods, which does
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not concentrate on preserving all the pairwise distances, but it puts more emphasis on
preserving local distances to keep similar examples together, rather than on preserv-
ing the exact distances between dissimilar examples (van der Maaten and Hinton 2008).
According to the experiments in van der Maaten and Hinton (2008), t-SNE is capable
of capturing much of the local structure of the high-dimensional data very well, while
also revealing the global structure such as the presence of clusters. As considered UCI
datasets have both numeric and nominal attributes, we calculate distances between the
examples using the HVDM metric (Wilson et al. 1997) — its justification is given in the
next section.

Due to space limits, we present the visualisations after the MDS projection of three
imbalanced datasets from the UCI repository, often used in the experimental studies con-
cerning class imbalance: thyroid, ecoli and cleveland (Fig. 1b, c and d). For these datasets,
the percentage of preserved variance was high enough to analyse the projected data. Look-
ing at Fig. 1b, ¢ and d, one can notice that the three datasets are of different nature. In
thyroid dataset (Fig. 1b), the classes are clearly separated (even linearly), so most of the
minority examples represent safe examples. In ecoli dataset (Fig. 1c) the classes seriously
overlap. The consistent region belonging solely to the minority class (on the very left) is
rather small. Most examples lie in a mixed region between the classes. Finally, the cleve-
land dataset (Fig. 1) has an even more complex distribution, as the minority class is very
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Fig. 1 MDS visualisation of selected imbalanced datasets
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scattered — the examples form very small groups of few examples and there are some sin-
gular observations, surrounded by the opposite class. This dataset consists mostly of rare
examples and outliers.

Figure 2 presents the results for thyroid and ecoli datasets after the t-SNE projection (run
with the default parameters). The cleveland dataset is not used in this comparison as the
implentation of t-SNE method does not handle nominal attributes. It can be observed that
the dimensions to which the datasets were projected are different, e.g. for ecoli, the t-SNE
visualisation is rotated. Also, the mutual positions of examples differ — the three clusters in
the t-SNE projection of ecoli dataset are better separated than in the MDS method (which
is consistent with the assumptions of t-SNE), and in the thyroid dataset the minority class
forms several clusters instead of one. However, for both datasets the principle observations
of distribution characteristics remain the same: in the thyroid dataset the classes can be
easily separated, while in the ecoli dataset, in one of the clusters the examples from both
classes strongly overlap.

5 Identifying types of examples
5.1 Motivations

In previous sections we distinguished four types of examples. The visualisation methods can
help to inspect the distribution of examples in some real-world datasets and could confirm
the occurrence of these types of minority examples. However, the applicability of these
methods is limited. First, they are not applicable to very large datasets, as visualisations of
thousands of points would be difficult to read. Secondly, the projection may need more than
two dimensions. For instance, we were unable to visualize the imbalanced dataset hepatitis,
as MDS with two dimensions preserved only 25% of variance in the dataset. Therefore,
there is still a need for more flexible methods, which can identify types of examples in a
quantitative way.

We would like to propose a universal method, which evaluates the occurrence of all
four types of examples defined in Section 3 at once. We want to keep the method simple
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Fig. 2 T-SNE visualisation of selected imbalanced datasets
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and intuitive to the user. Furthermore, we prefer the method, which is not directly related
to a particular classifier, but relies on the natural distributions in the data. As described
in Section 2, no such method has been proposed yet in the literature. These expectations
and the way of defining types of examples in Section 3 lead our interests to analysing
the mutual positions of the learning examples in the attribute space. This could allow us
to assess the type of example by studying class labels of the other examples in its local
neighborhood.

We think that analysing a local” distribution of examples may be better suited for
this task than “global” approaches, especially when the minority class is considered, as
this class is often decomposed into smaller subconcepts with difficult, nonlinear bor-
ders between the classes (see results of visualizations in Section 4). What is more
important, similar approaches to such local” analysis have already been used in some
pre-processing methods dedicated for class imbalance (such as OSS (Kubat and Matwin
1997), NCR (Laurikkala 2001), SMOTE (Chawla et al. 2002) or SPIDER (Stefanowski
and Wilk 2008)). Furthermore, local neighborhoods are also a basis for some den-
sity cluster algorithms, as e.g. DBSCAN (Ester et al. 1996), that are well suited for
detecting difficult concept shapes as well as for discriminating them from noise or
outliers.

The neighborhood of the example could be modeled in different ways. In this paper we
will propose two different approaches based on k-nearest neighbour and on kernel functions.

The analysis of class labels of examples in the former approach concerns a fixed
number of nearest examples (without taking into account their distances to the “seed
examples”) while in the other approach all examples within a given radius are taken
into account together with their distances. In further considerations and experiments we
will use the first approach. It results both from the previous assumption of keeping
the identification method simple and universal and inspirations from related experi-
mental studies (as e.g., (Batista et al. 2004)). However, in Section 5.3 we will also
present an approach based on kernel functions and then evaluate it experimentally in
Section 6.4.

5.2 Modeling k-neighbourhood

To identify the type of example, we analyse the class labels of their k-nearest neighbours.
Note that a proper choice of the value k and the distance function is needed for constructing
this type of neighborhood. We will come back to this problem after introducing the general
idea of our approach.

5.2.1 Labelling types of examples

For simplicity let us consider the neighbourhood of a fixed size k = 5 and the HVDM
metric (Heterogenous Value Difference Metric) (Wilson et al. 1997) to calculate the distance
between the examples (we will then justify these choices for further experiments). With k =
5, the proportion of neighbours from the same class against neighbours from the opposite
class can range from 5:0 (all neighbours are from the same class as the analysed example) to
0:5 (all neighbours belong to the opposite class). Depending on this proportion, we propose
to assign the labels to the minority examples, representing the four distinguished types, in
the following way:

@ Springer



574 J Intell Inf Syst (2016) 46:563-597

— 5:0o0r4:1 - an example is labelled as a safe example (further denoted as S).

— 3:2 or 2:3 — a borderline example (denoted as B). The examples with the proportion
3:2 are correctly classified by its neighbours, so they might still be safe. However,
the number of neighbours from both classes is approximately the same, so we assume
that this example could be located too close to the decision boundary between the
classes.

— 1:4 — labelled as a rare example (denoted as R), only if its neighbour from the
same class has the proportion of neighbours either 0:5 or 1:4 (additionally, in
case of 1:4, it must point to the analysed example). Otherwise there are some
other examples from the same class in the proximity (although not in the imme-
diate surrounding of k = 5), which suggests that it could be rather a borderline
example B.

—  0:5 - an example is labelled as an outlier and denoted as O.

This kind of labeling examples based on analysing proportions of class labels can be
extended for higher values of k. For instance, types of examples with k = 7 will be fol-
lowing: proportions of the neighbours 7:0 or 6:1 or 5:2 — a safe example; 4:3 or 3:4 — a
borderline example; 2:5 or 1:6 — a rare example; 0:7 — an outlier. For higher values of k we
propose to adapt thresholds defined for the kernel approach (see Section 5.3).

5.2.2 Neighbourhood parametrization

An important issue is choosing an appropriate k value. In general, different values may
be considered. Values smaller than 5, e.g. k = 1 and k = 3, may poorly distinguish
the nature of examples, especially if we want to assign them to four types. Too high val-
ues, on the other hand, would be inconsistent with our assumption of the locality of the
method (see the discussion in Section 5.1 why the locality is important for analysing com-
plex minority class distributions in imbalanced data). To verify more precisely whether the
parameter k could strongly influence the results of labelling minority examples, we will
carry out an additional sensitivity analysis in Section 6. Revealing earlier these results,
they will show that proportions of identified types of examples are quite stable while
changing k values. Yet another issue concerns possible tuning of the size of the neighbour-
hood for each dataset individually. For instance, in case of constructing the standard kNN
classifier for balanced data it could be done with respect to the data cardinality, see e.g.
(Goldstein 1972). However, we think that for imbalanced datasets, complex data factors are
more influential than the minority class cardinality only, so the locality of the neighbour-
hood may be important regardless of the dataset size. For these reasons, we have decided
to stay with k = 5. It has also been inspired by earlier experiments with the related
pre-processing methods for class imbalance (see e.g. typical options for running SMOTE
(Chawla et al. 2002)).

As the distance measure we have decided to choose the HVDM metric (Wilson et al.
1997), as it provides more appropriate handling of a mixture of numerical and qualitative
attributes. It belongs to special heterogeneous distance functions which aggregate normal-
ized distance functions for numerical attributes with 0-1 functions for qualitative ones
(Wilson et al. 1997). Instead of a simple value matching (used, e.g., in HOEM or Gower
(Wilson et al. 1997)), HVDM makes use of the class information to compute attribute
value conditional probabilities by means of the Stanfil and Valtz value difference metric for
nominal attributes (Stanfill and Waltz 1986). For numeric attributes, it uses a normalized
Euclidean distance.
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We will not experimentally test other functions as according to the literature review,
HVDM performs better than many other heterogeneous functions — see, e.g., the compara-
tive study (Lumijarvi et al. 2004; McCane and Albert 2008).

5.3 Kernel based local neighbourhood

Notice that an alternative approach to fixing the number of neighbours is to fix the local area
around the example and to estimate the number of neighbours and their class labels within
it. It gives rise to kernel approaches (Bishop 2006).

In such an approach, a kernel function is used to determine which neighbours should
be taken into account. Moreover, due to the form of the function, different weights (prob-
abilities) could be assigned to the neighbours, based on their distance from the analysed
minority example x. In preliminary experiments (Napierala 2013) we have considered sev-
eral functions and have decided to apply the commonly used Epanechnikov function (see
its definition in (Bishop 2006) and its illustration in Fig. 3), which gives more weight to the
neighbours closer to the example x. Let us mention here that we have also experimentally
tested other functions, such as Gaussian, triangular or uniform functions, but they did not
influence the results too much.

We propose to set the width of the Epanechnikov function (which determines the max-
imum distance up to which the examples are treated as neighbours) for each dataset
separately. It is equal to the average distance to the 5" neighbour of each minority example
in the dataset, to keep the average number of analysed neighbours comparable to the one
used in our £ neighbourhood method.

Given the definition of the kernel function we estimate a weighted sum of all minority
neighbours, where weights depend on the distance from the analysed example. Comparing
it to the weighted sum for the majority class neighbours we can estimate the probability that
the analysed example x could belong to the minority class p(Cypin|x). To assess the type of
a minority example, we need to discretize the range of this value into four subintervals. We
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Fig. 3 Epanechnikov kernel function
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propose to use the thresholds which could lead to the analogous labelling as in the previous
method based on the proportions in k nearest neighbours.

Note that for k = 5 the proportion of neighbours 3:2 (in case of which we treat an exam-
ple as borderline) is equivalent to the distribution estimation p(C,in|x) = % = 0.6, while
proportion 4:1 (safe example) is equivalent to the distribution estimation 0.8. Interpolating
between these values, we can say that our method labels the example as safe if its distri-
bution is greater than 0.7. Following this schema, we propose to use the following rules: if
1 > p(Cpinlx) > 0.7 then label x as safe; if 0.7 > p(Cjinlx) > 0.3 then label x as bor-
derline; if 0.3 > p(Cpinlx) > 0.1 then label x as rare; if 0.1 > p(Cypin|x) > 0O then label x
as outlier.

These rules are also applicable for establishing the proportions of examples in our stan-
dard k-nearest-neighbour method given in Section 5.2.1, for numbers of neighbours higher
than k=5.

5.4 Validation of the method with artificial data

The presented k neighbourhood method is based on a simple analysis of a fixed num-
ber of k neighbours. To check whether the assigned labels can precisely reflect the known
distribution of examples, we verify it with the artificial datasets.

Inspired by a good experience with such data in (Napierala et al. 2010; Stefanowski
2013), we generated a number of such datasets, containing 800 examples described by
2 numerical attributes. The minority class forms elliptical subconcepts, surrounded by
uniformly distributed majority class examples. The datasets are characterized by various
imbalance ratios (from 1:5 to 1:9) and a different number of the minority class sub-concepts
(from 1 to 5). In these datasets we changed the percentage of safe, borderline, rare and out-
lying minority examples. Table 1 presents the description of several analysed datasets and
the labelling results.

The first three datasets are disturbed in the same way (60% of borderline examples and
20% of rare examples), but differ in the number of sub-concepts. One of them (with 5 sub-
concepts) is plotted in Fig. 1a. Proportions of the identified labels show that our labelling
method can correctly reconstruct the percentage of safe, borderline and rare examples,
regardless of the number of sub-concepts. The other three datasets contain 10% of out-
liers and differ according to the imbalance ratio. Here, the labels also correctly reflect the
percentage of outliers regardless of the changing imbalance ratio. However, although the
classes in these datasets are not overlapped, a considerable number of examples is labelled

Table 1 Labelling of artificial datasets

Dataset Description Identified Label

Imbalance  Sub- concepts  Borderline  Rare  Outlier  Safe Borderline  Rare Outlier
Ratio [%] [%] [%] [%] [%] [%] [%]

1:5 1 60 20 0 17.04  60.74 2148 0.74
1:5 3 60 20 0 18.52  57.78 2370 0.00
1:5 5 60 20 0 1778  64.44 17.78  0.00
1:5 5 0 0 10 64.44 2593 0.00 9.63
1:7 5 0 0 10 54.00  36.00 0.00 10.00
1:9 5 0 0 10 52.00  36.00 2.00 10.00
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as borderline. Let us recall that by these examples we understand also the examples lying
close to the borderline between the classes, even when there is no overlapping. The examples
close to the border between the classes can contain in their neighbourhood some examples
from the opposite class, so our labelling method will also assign them to the “borderline”
category.

6 Experimental study — analysing real-world datasets
6.1 Experimental setup

The main aim of this part of experiments is to analyse the distribution of minority class
examples in real world imbalanced datasets. Our hypothesis is that depending on this
distribution, imbalanced datasets can constitute a different degree of difficulty.

First, we will check whether the studied datasets could be grouped into different cate-
gories according to the type of examples which prevail in the minority class. Then, in the
next section we study the performance of popular classifiers as well as of pre-processing
methods in each group of datasets separately.

The characteristics of 26 analysed imbalanced datasets is presented in Table 2. We have
chosen the datasets which have been often studied in the most related experimental stud-
ies. They represent different sizes, imbalance ratios, domains and have both continuous and
nominal attributes. Most of them come from the UCI repository.! Four datasets are retro-
spective medical datasets which were used in the earlier works of Stefanowski et al. on class
imbalance.? In datasets with more than one majority class, they are aggregated into one
class to have only binary problems, which is also typically done in the literature.

For the second part of experiments (Section 7), the classification performance will be
evaluated by measures appropriate for class imbalance, i.e. Sensitivity (TPR — true posi-
tive rate, Recall or accuracy of the minority class), G-mean and F-measure. The G-mean
aggregates Sensitivity of the minority class with its Specificity (for a binary classifi-
cation specificity is also an accuracy of the majority class) and evaluates the balance
between them. F-measure aggregates Precision with Recall - Sensitivity of the minority
class. For their definition and justification see, e.g., (He and Garcia 2009; He and Ma
2013; Japkowicz and Shah 2011). We do not use the AUC (an area under ROC curve)
measure, because most of the classifiers compared in our study give deterministic predic-
tions while AUC reflects much better the performance of probabilistic or scoring classifiers
(Japkowicz and Shah 2011). To estimate the selected measures, we use a stratified 10-fold
cross validation repeated 5 times to reduce the variance of results.

To examine the importance of differences between the methods, we will apply a non-
parametric ranked Friedman test ((Demsar 2006; Japkowicz and Shah 2011)), which
globally compares the performance of several methods on multiple data sets with a null
hypothesis saying that all methods perform equally. We also carry out a post-hoc analysis (a
Nemenyi test (Japkowicz and Shah 2011)) of differences between the average ranks of clas-
sifiers. In both tests we will use a confidence level o = 0.05. In some cases, where it could

Thttp://www.ics.uci.edu/mlearn/MLRepository.html

2We are grateful to prof. W. Michalowski and the MET Research Group from the University of Ottawa
for abdominal-pain and scrotal-pain datasets; and to prof. K. Slowinski from Poznan University of Medical
Science for hsv and acl datasets.
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Table 2 Characteristics of the datasets

Dataset No of examples Imbalance ratio [%] No of attributes (numeric) Minority class name
breast-w 699 34.47 9(9) malignant
abdominal-pain 723 27.94 13 (0) positive
acl 140 28.57 6(4) 1
new-thyroid 215 16.28 5(5) hyper
vehicle 846 23.52 18 (18) van
nursery 12960 2.53 8(0) very-recom
satimage 4435 9.35 36(36) 4

car 1728 3.99 6 (0) good
scrotal-pain 201 29.35 13 (0) positive
credit-g 1000 30 20 (7) bad

ecoli 336 10.42 7(7) imU
hepatitis 155 20.65 19 (6) die
ionosphere 351 35.89 34 (34) bad
haberman 306 26.47 33) died

cme 1473 22.61 9(2) 1-term
breast-cancer 286 29.72 9 (0) rec-events
cleveland 303 11.55 13 (6) positive
glass 214 7.94 9(9) v-float
hsv 122 11.48 11(9) 4.0
abalone 4177 8.02 8(7) 0-4 16-29
postoperative 90 26.66 8 (0) S
seismic-bumps 2584 6.57 18(14) 1
solar-flare 1066 4.03 12 (0) F
transfusion 748 23.8 44 yes

yeast 1484 3.44 8(8) ME2
balance-scale 625 7.84 4(4) B

be interesting to compare more precisely the differences in performance of a given pair
of classifiers, we will additionally refer to the Wilcoxon paired test. Unlike the Friedman
test, which is based on rankings of many classifiers, the Wilcoxon test focuses on values of
differences in performance of two classifiers (Demsar 2006; Japkowicz and Shah 2011).

6.2 Analysing types of minority examples

In this experiment we used k-neighbourhood method (with & = 5) to identify (label) types
of the minority class examples in all the datasets. The results are presented in Table 3.3 To
facilitate the analysis, we have sorted the datasets from the “easiest” to the "most difficult”
(in terms of presence of unsafe examples in the data distribution).

3We abbreviate names of example types with their first capital letter.
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Table 3 Labelling of datasets with respect to minority class examples and k-neighbourhood

Dataset S [%] B [%] R [%] O [%]
breast-w 91.29 7.88 0.00 0.83
abdominal-pain 59.90 22.28 8.90 7.92
acl 67.50 30.00 0.00 2.50
new-thyroid 68.57 31.43 0.00 0.00
vehicle 74.37 24.62 0.00 1.01
nursery 82.00 17.00 1.00 0.00
satimage u7.47 39.76 4.58 8.19
car 47.83 39.13 8.70 435
scrotal-pain 38.98 45.76| 10.17 5.08
ionosphere 44.44 30.95 11.90 12.70
credit-g 9.33 63.67] 10.33 16.67
ecoli 28.57 54.29 2.86 14.29
hepatitis 15.63 62.50) 6.25 15.63
haberman 4.94 61.73 18.52 14.81
breast-cancer 24.71 25.88 32.94 16.47
cme 17.72 44.44 18.32 19.52
cleveland 0.00 31.43 17.14 51.43
glass 0.00 35.29 35.29 29.41
hsv 0.00 0.00 28.57 71.43
abalone 8.36 20.60 20.60, 50.45
postoperative 0.00 41.67 29.17 29.17
seismic-bumps 3.52 29.41 16.47 50.58
solar-flare 0.00 48.84 11.63 39.53
transfusion 18.54 47.19 11.24 23.03
yeast 5.88 47.06 7.84 39.22
balance-scale 0.00 0.00 8.16 91.84

The first observation is that most of the datasets contain minority examples of all four
types. Moreover, a majority of datasets contains rather a small number of safe examples —
only in the top six datasets (from breast-w to nursery) safe minority examples prevail and
there are almost no rare or outlying examples. Some datasets, on the other hand, do not
contain any safe examples — such as cleveland, glass, hsv, solar-flare or balance scale.

Datasets from satimage to ionosphere consist of safe and borderline minority class exam-
ples in quite comparable proportions and they do not have many rare or outlying examples.
One could suspect that in these datasets a complicated border between the classes or some
overlapping occurs.

Then, we can distinguish a group of datasets where borderline examples dominate in
the distribution of the minority class — these are datsets from credit-g to haberman. A high
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number of borderline examples may suggest that there is a strong overlapping between the
classes in these datasets.

Several datasets contain many rare minority class examples. Although they are not that
numerous as borderline or safe examples, they can constitute even 20-30 % of the minority
class. Datasets from haberman to postoperative have about 20 % or more of rare examples.
Other datasets contain less than 10 % of these examples.

Finally, many datasets contain a relatively high number of outlier examples — datasets
from cmc to balance-scale contain more than 20 % of these examples. Sometimes the
outlying examples constitute more than a half of the whole minority class (see cleve-
land, hsv, balance-scale). This observation confirms the discussion in Section 3, in which
we claimed that outlier minority examples cannot be treated entirely as noise. Finally,
it is interesting to observe that for many datasets rare and outlying examples appear
together.

Note that the results of this analysis are consistent with the observations of the MDS
visualisations. The three datasets visualised in Fig. 1 b,c and d also show that new-thyroid
contains mostly safe examples, ecoli has a lot of borderline examples, while cleveland
constitutes mostly of rare and outlying examples.

We do not show such k neighbourhood analysis for the majority classes. However, we
can summarize it by a contrary observation — nearly all datasets contain mainly safe majority
examples (often over 90 %, e.g. yeast — 98.5 %, ecoli — 91.7 %) and sometimes a limited
number of borderline examples (e.g. balance-scale — 84.5 % safe and 15.6 % borderline
examples). What is even more important, nearly all datasets do not contain any majority
outliers and at most 2 % of rare examples.

6.3 Studying influence of other neighbourhoods

Although the results of our proposed labelling method concur with the MDS and t-SNE
visualisations, we would like to verify in more detail if the results presented in Table 3
are not related to the used identification method and its parametrization rather than to the
distribution of the analysed datasets.

First, we will study the influence of increasing £ value on the results of labelling types
of the minority class examples. In order to assign the examples to the four types for higher
k values, new thresholds have to be established. We have defined them in the same way as
for the kernel method in Section 5.3.

We have analysed again the same 26 datasets. Due to space limits, we show only graph-
ical summaries for selected datasets, see Fig. 4a b, ¢, d, e ,f, g, and h. Each graph presents
structured bars corresponding to different values of the neighbourhood size. We consider
k =5, ..., 17. Each bar is stratified into 4 parts representing the percentage of the given
type of example. By estimating how the share of each type of example varies between the
bars, we can analyse the sensitivity of our method to the size of the neighbourhood.

We do not expect that the precise numbers (percentages of examples types) will be
exactly the same for all considered & values. It is more interesting to check whether the dis-
tribution of the minority example types varies a lot depending on k. Looking at Fig. 4a, b,
¢, d, e, f, g, and h, one can notice that for most of the datasets, the differences in percent-
age of examples assigned to a given type (visible in parts of bars) are rather small (around
5-10%). For a few datasets we can sometimes observe a bit higher differences, as in hep-
atitis dataset with k = 7 (changes between safe and borderline categories — see Fig. 4d) or
cleveland dataset (changes between rare and outlier categories — see Fig. 4h). Despite these
shifts between particular categories (occurring only in few datasets among all studied ones),
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Fig. 4 Distribution of types of examples depending on the size of neighbourhood k. X-axis — k. Y-axis —

percentage of types of minority examples. Legend on chart 4a applies to all other charts

we observe that the general trends of type distributions are quite stable for all the datasets.
Therefore, we can conclude that the results of our labelling method do not depend too much
on the k parametrization.
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6.4 Using kernel analysis

One could also ask whether analysing the local neighbourhood based on fixed k does not
influence negatively the results, as the datasets might have different densities in differ-
ent regions. Therefore, we compare the results of this method with an alternative kernel
approach, described in Section 5.3, where different numbers of neighbours could appear
inside the given width of the kernal function. Recall also that in this approach widths of
kernel functions are also tuned individually for each dataset.

We remark that using this method, we have observed that some examples do not have
any neighbours closer than width. In this case we assume that we do not have enough infor-
mation about these examples and do not take them into account in our analysis. In practice,
such examples constituted no more than few percents of the dataset. Only in the ionosphere
dataset, there were more such examples, so the results for this dataset should be treated with
caution. The labelling of examples based on the kernel approach is presented in Table 4.

Comparing the results in Tables 3 and 4, we can observe that using the kernel method
does not change the results more than by 5-10% for most of the datasets. Only in

Table 4 Labelling of datasets — the kernel density method

Dataset S [%] B [%] R [%] O [%]
breast-w 90.9 5.8 0.0 34
abdominal-pain 62.0 21.9 53 10.7
acl 72.2 222 0.0 5.6
new-thyroid 62.5 37.5 0.0 0.0
vehicle 77.4 18.9 0.0 3.7
nursery 93.3 6.7 0.0 0.0
satimage 56.7 30.2 2.3 10.7
car 47.8 43.5 8.7 0.0
scrotal-pain 244 53.3 11.1 11.1
ionosphere 12.9 62.9 1.4 22.9
credit-g 13.9 63.3 6.4 16.3
ecoli 25.8 61.3 32 9.7
hepatitis 13.6 63.6 9.1 13.6
haberman 15.1 56.2 16.4 12.3
breast-cancer 18.8 46.3 33.8 1.3
cmc 17.2 443 104 28.2
cleveland 6.7 30.0 13.3 50.0
glass 6.7 40.0 26.7 26.7
hsv 0.0 0.0 16.7 83.3
abalone 7.8 23.7 114 57.1
postoperative 0.0 65.2 30.4 43
seismic-bumps 6.4 20.0 8.6 65.0
solar-flare 7.1 45.2 7.1 40.5
transfusion 15.1 57.8 9.6 17.5
yeast 15.2 37.0 22 45.7
balance-scale 0.0 0.0 0.0 100.0
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three datasets the differences are more visible. In postoperative dataset, 24 % of examples
changed its label from borderline to outlier. However, it should be remembered that it is
a very small dataset, and this difference refers in fact to only 5 minority examples. Then
in breast-cancer dataset, the kernel approach labelled more examples as outliers and less
as borderline. Finally, there are also differences for the ionosphere dataset (there are shifts
between safe and borderline examples and between rare and outlier examples). Let us recall
that in this dataset nearly 40 % of examples remained unlabelled by the kernel method which
might have influenced the results. Finally, let us mention that we have also tested other ker-
nel functions, such as Gaussian, triangular or uniform functions; we have also tested other
kernel widths (calculated as the average distances to the 3" d 7th and 9'h neighbour), but it
did not influence too much the results.

To sum up, these experimental results and the sensitivity analysis presented in the previ-
ous section we noted that the general categories of considered datasets are the same. Both
approaches, although based on different principles, have discovered the similar proportions
of the type categories characterizing the minority class distributions.

We can also say that the simpler method based on analysing the neighbourhood of fixed
size 5 is sufficient to analyse the distribution of a dataset and we will use its results to study
the performance of learning algorithms in the following sections.

7 Experimental study of learning abilities with respect to types
of examples

7.1 Comparing base classifiers

Having shown that the analysed imbalanced datasets differ in their distribution of minor-
ity examples, the aim of the next experiment is to verify whether the identified categories
of data constitute a different degree of difficulty for the learning algorithms, and whether
different classifiers reveal different sensitivity to the particular types of examples.

In this experiment we focus on studying basic classifiers only, as for complex classifiers,
e.g. ensembles, there are more elements which could be influenced by data characteristics
(see e.g. (Blaszczynski et al. 2013; Galar et al. 2012)). We have decided to compare six
learning algorithms, which have been often considered in related works and which represent
different learning strategies. They are: tree learning by C4.5, rule induction with PART and
RIPPER algorithms, k-nearest neighbour (kNN), neural network based on radial functions
(RBF) and support vector machine (SVM).* C4.5 (J48) and PART are run without pruning
as it should be better for recognizing the minority class (Prati et al. 2004a; Lopez et al.
2013). In RIPPER (JRIP) the default parameters are used. kNN is used with k = 1 and
k = 3, following the suggestion in (Garcia et al. 2008) that for difficult imbalanced datasets
more local classifiers (with smaller k) perform better on the minority class. Standard values
of parameters for RBF and SVM have failed to recognize the minority class. For RBF we
have scanned several configurations trying to get the best values of sensitivity measures on
all 26 datasets. As a result, we changed a number of clusters to 5 and minimum standard
deviation to 0.1. Similar scanning of parameters has been done for the SVM classifier —

4The WEKA implementations are used. We use J48 version of C4.5, SMO version of SVM and JRIP version
of RIPPER.

@ Springer



584 J Intell Inf Syst (2016) 46:563-597

which leads to choosing the RBF kernel, complexity C = 50 and gamma parameter 1.0. We
will come back to the issue of SVM parametrisation at the end of this section.

7.1.1 Analysing classifiers with general evaluation measures

In the first step of experiments, we compare the performance of classifiers on all the 26
imbalanced datasets. Again we can present the details of selected experiments only due to
page limits. Table 5 presents the Sensitivity measure. The datasets are sorted in the same way
as in Table 3 — from the simple to the more complex distributions. Relating the results to the
labelling of the datasets presented in Table 3, we can observe how with the increasing dif-
ficulty of the dataset distribution, the performance of all classifiers decreases. For datasets
where safe minority examples prevail (breast-w — nursery), all classifiers learn the minor-
ity class quite well — they recognize 70-90% of the minority examples. Only on nursery
dataset, kNN classifier works worse. In datasets with more borderline examples (satimage —
haberman), the classifiers usually recognize 40-60% of the minority class. When many rare
and/or outlying example are observed (haberman — balance-scale), the sensitivity measure

Table S Sensitivity [%] of compared classifiers

Dataset INN 3NN J48 JRIP PART RBF SVM
breast-w 935 96.3 90.1 95.9 94.7 95.4 90.8
abdominal-pain 76.4 78.5 69.8 72.5 72.6 75.0 71.8
acl 72.0 78.5 85.5 84.5 80.0 84.0 82.5
new-thyroid 96.3 90.2 92.2 86.7 933 99.5 89.8
vehicle 89.1 87.9 87.0 89.0 88.3 88.0 95.2
nursery 41.1 41.1 89.7 68.0 99.4 76.2 97.2
satimage 71.4 67.2 52.8 50.3 55.6 37.8 62.1
car 3.1 3.1 71.7 47.0 90.0 49.6 88.2
scrotal-pain 58.4 58.7 553 534 63.4 62.5 65.9
ionosphere 69.4 65.5 82.7 84.4 84.0 94.2 89.0
credit-g 50.3 39.9 46.5 37.6 47.7 43.6 522
ecoli 522 50.8 58.0 59.7 42.0 54.7 58.5
hepatitis 44.0 37.0 432 31.2 45.7 60.7 515
haberman 30.1 26.9 41.0 34.0 334 18.3 1.3
breast-cancer 40.4 27.6 38.7 324 41.1 40.8 45.3
cmc 37.6 338 39.2 30.0 37.7 12.1 5.2
cleveland 20.3 12.5 23.7 6.3 25.2 9.5 9.0
glass 30.0 16.0 30.0 7.0 34.0 25.0 0.0
hsv 0.0 0.0 0.0 0.0 2.0 1.0 0.0
abalone 20.5 16.5 30.4 29.7 18.8 12.3 0.2
postoperative 4.3 0.0 4.7 0.0 10.3 13.7 7.0
seismic-bumps 16.5 9.3 9.3 2.4 9.1 0.0 0.9
solar-flare 9.1 8.2 20.9 37 18.7 10.2 15.7
transfusion 31.9 343 413 39.7 429 329 22
yeast 38.1 26.2 30.9 36.7 26.7 15.1 0.0
balance-scale 0.0 0.4 0.0 0.0 0.0 0.8 0.0
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Classifier | Avg. rank Classifier | Avg. rank Classifier | Avg. rank
PART 5.0 SVM 4.7 PART 5.5
J48 4.3 PART 4.5 J48 5.3
RBF 4.2 RBF 4.4 1NN 4.3
1NN 4.1 1NN 3.9 RBF 3.7
SVM 3.8 JRIP 3.9 3NN 3.3
JRIP 3.5 J48 3.6 JRIP 3.3
3NN 3.2 3NN 3.0 SVM 2.5
(a) All datasets (b) Safe and border (c) Rare and outlying
datasets datasets

Fig. 5 Rankings of classifiers depending on the dataset characteristics (based on Sensitivity)

varies between 0% and 40%. Finally, for the datasets with a lot of outlying examples (e.g.
cleveland, hsv, balance-scale), it is impossible to recognize more than 30 % of the minor-
ity examples (for some data even no examples are correctly classified). As for the majority
class, we observed that all the classifiers could recognize this class in a similar degree,
reaching 80—100% on the accuracy of this class for all the datasets.

The second observation is that different classifiers reveal different sensitivity to the
particular category of data (with respect to types of minority examples). To examine the
importance of such differences we apply the Friedman test (see Section 6.1). It uses ranks
of all classifiers on each of the datasets. We applied the interpretation “the higher rank,
the better classifier”. First, we compare how the classifiers perform on average on all
datasets, not taking into account the types of examples. The null hypothesis, saying that
all the classifiers perform equally, is rejected (p < 0.035). The ranking of classifiers
according to their average ranks is presented in Fig. 5a. The best classifiers are PART and
J48, while SVM, JRIP and 3NN perform the worst. The critical difference (CD) accord-
ing to the Nemenyi test is 1.76 — so we cannot say that differences between the best
performing classifiers are significant, however the first best classifiers are better than the
last ones.

In our opinion, averaging over the datasets of different characteristics (with respect to
minority class distribution) might hide the interesting characteristics of the learning meth-
ods. Our aim is rather to analyse the influence of types of examples on the performance of
classifiers. To carry out such analysis, we have decided to divide the collection of datasets
into two groups. In the first group we place the datasets with many safe and borderline
examples, and only a small number of outlier or rare examples — these are datasets from
breast-w to haberman. In the second group we put the datasets where many rare and/or out-
lying examples were observed — these are datasets from haberman to balance-scale.® If we
consider only the datasets from the first group, the ranking of best performing classifiers
changes (although the differences between average ranks are smaller than before) — see
ranking in Fig. 5b. SVM becomes the best classifier.

In the second group of datasets, according to Friedman test we can also reject the null
hypothesis (p < 0.001) and CD=1.92. For these datasets, we observe an opposite behaviour
(Fig. 5¢). PART and J48 perform the best. INN also becomes one of the best classifiers.
RBF becomes much worse and SVM fails at these datasets. It is also reflected by the results
of the Wilcoxon test, which we use as a supplementary test to analyse more precisely the

SLet us note that we initially wanted to divide the datasets into four groups, one for each type of minority
examples. However, the number of datasets in each group would be too small to be able to draw meaningful
conclusions.
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differences between the selected pairs of classifiers. The results of this test showed that,
e.g., PART or J48 were better than RBF with p < 0.005. If we look solely on the most
difficult datasets with a lot of outlying examples (e.g. cleveland, abalone, glass, yeast) in
Table 5, J48, PART or INN can classify a few examples while SVM usually cannot rec-
ognize the minority class at all. The results on G-mean and F-measure have demonstrated
quite similar trends. On safe and borderline datasets, on both measures SVM and RBF
are the best classifiers, while on rare and outlier datasets PART and J48 dominate other
methods.

The results of RBF and SVM classifiers need an additional comment. It is important to
remember that these two classifiers are particularly sensitive to the configuration of param-
eters. As we did not want to favor any of the classifiers, in our experimental setup they were
used with one configuration for all the datasets (similarly to other compared classifiers),
which was on average the best on the whole collection of datasets. A similar approach was
taken, e.g., in the experimental setup in (Van Hulse et al. 2007). In total, more than one
hundred combinations of parameters were tested. However, tuning the parameters for each
group of datasets separately (e.g. selecting another configuration for datasets with mostly
safe and borderline examples and another one for those with a lot of rare and outlying
examples) or even for each dataset separately, might improve the performance of these clas-
sifiers, especially on the rare and outlying examples. We have done a preliminary study in
this topic. When we performed tuning for a whole group of rare and outlying datasets, we
could not identify a single configuration which would improve all the datasets. When we
optimized the parameters for each dataset separately, for some datasets with rare and outly-
ing examples the results of SVM and RBF could be improved. However, there were only a
few configurations among a hundred of combinations tested which yielded an improvement.
Therefore, although the results of some rare and outlying datasets presented in Table 5 could
be higher if a more fine-grained tuning was performed, the general conclusion remains the
same: the SVM and RBF classifiers are very sensitive to the rare and outlying minority
examples.

7.1.2 Classifier differences with respect to types of testing examples

Note that examples of different types often occur together inside the same dataset. So, one
can ask a question which types of examples actually contribute to the “global sensitivity”
and which types are the most difficult. For instance, yeast dataset was included in the second
group of datasets as it contains a lot of outlying examples (O) and almost no safe examples,
but still many of its examples are of borderline type (B); see Table 3. As a result, ’global
sensitivity” in yeast may rely more on the recognition of B than of O examples. As our
labelling method enables to identify a type of each testing example, we record the “local
accuracy” for each type of testing examples separately. In Table 6 we present the results
for two classifiers — PART and 1NN — which represent different learning strategies and
achieve a high ”global sensitivity”, especially for more difficult datasets. When analysing
these results, one should keep in mind that the minority class is small, and partitioning the
testing examples with respect to their types makes the representation of each type even more
sparse. Thus, we do not present the results for too small datasets (less than 300 examples) to
ensure that there are enough representatives in each category. Also, as some datasets do not
have any examples of a particular type or their number is too small (e.g. cleveland, vehicle)
—in Table 6 we left the corresponding cells empty.

The results in Table 6 confirm the previous observations. Safe examples are easy to
recognize for both classifiers (except for car dataset where 1NN cannot recognize the
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Table 6 Local accuracies for labelled testing examples [%]

INN PART
Dataset S B R o S B R (6]
abalone 81.4 453 22.5 2.1 74.3 27.8 12.4 104
abdominal-pain 99.5 74.5 5.7 0.0 91.7 69.5 17.1 8.8
balance-scale 0.0 0.0 0.0 0.0
breast-w 97.3 58.7 97.5 72.0
car 55 1.5 0.0 0.0 91.5 91.1 100 46.7
cleveland 35.0 8.9 20.0 45.0 222 16.7
cmc 81.0 359 26.3 18.2 63.1 375 34.9 19.1
credit-g 72.9 539 42.1 39.2 65.7 533 40.5 32.0
ecoli 100.0 494 0.0 84.0 329 12.0
haberman 100.0 435 18.1 0.0 90.0 48.2 20.6 5.0
ionosphere 96.4 69.7 49.5 0.0 98.6 92.1 67.6 375
nursery 48.7 7.5 99.6 98.6
satimage 96.1 66.1 36.3 0.0 76.2 46.4 229 19.4
seismic-bumps 83.3 26.3 20.4 6.0 26.7 22.5 8.3 33
solar-flare 16.3 14.0 0.0 27.5 32.0 2.4
transfusion 80.6 419 124 0.0 86.1 64.5 21.2 1.6
vehicle 97.6 71.8 93.1 74.1
yeast 100.0 62.2 52.0 0.0 733 50.0 20.0 2.0

minority class at all and seismic-bumps dataset which is more difficult for PART). Border-
line examples are more difficult, but still a large number of them can be correctly learnt.
Rare examples are usually recognized within the range of 10-30%. Outlier examples are
extremely difficult for these and also all other classifiers. Only for cmc, credit-g and cleve-
land datasets both classifiers can recognize some of them, while for other datasets these
examples are mostly neglected.

7.2 Comparing pre-processing methods

The pre-processing methods, which transform the distribution of examples between the
classes, are popular approaches for improving standard classifiers. They are based on dif-
ferent principles, and in general they either clean (undersample) the majority class or
oversample the minority class. For their review, see e.g. (Batista et al. 2004; He and Garcia
2009; He and Ma 2013). Some conclusions of the most related experimental comparative
studies, as e.g. (Batista et al. 2004; Stefanowski and Wilk 2008) indicate that there is no
single best pre-processing method. For instance, informed over-sampling, like SMOTE,
has been reported to perform better for some dataset, while under-sampling is superior for
others. However, there are no clear explanations of these differences. Therefore, we have
decided to carry out the next experiment, where we want to compare the performance of
the popular pre-processing methods, depending on the type of minority examples in the
dataset.

We consider 4 different pre-processing methods: Random Oversampling, SMOTE
(Chawla et al. 2002), NCR (Laurikkala 2001) and SPIDER (Stefanowski and Wilk 2008).
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Random oversampling aims to balance the class distribution by random replication of
minority examples. SMOTE is a best known representative of informed oversampling. Its
main idea is to generate new synthetic minority examples by interpolating between k near-
est neighbours of the minority example. We use it with k = 5 and the oversampling
ratio aimed to balance the distribution between the classes (the configuration suggested,
e.g., in (Van Hulse et al. 2007) and many other studies). NCR (Neighbour Cleaning Rule)
(Laurikkala 2001), on the other hand, represents an undersampling technique. It applies the
Edited Nearest Neighbour Rule to identify and remove noisy and borderline examples from
the majority classes. SPIDER (Stefanowski and Wilk 2008) is a hybrid approach which
combines oversampling of the minority class with undersampling of the majority class in
the difficult regions, while leaving safe regions for both classes unchanged. We run it with
k = 5 to preserve consistency with SMOTE. All the methods use the HVDM distance
measure.

We compare the pre-processing methods for four best previously identified classifiers
— PART, J48, RBF and INN classifier. We resigned from the SVM classifier as it was the
worst on rare and outlier datasets and it was difficult to parametrize for all datasets. We also
did not analyse the JRIP and 3NN classifiers. Due to the page limits detailed results will be
presented only for PART, while other classifiers will be discussed in the main text if their
results differ from the PART’s results.

7.2.1 Studying general evaluation measures

First, we compare the pre-processing methods on all 26 datasets, not taking into account
their differentiation with respect to data difficulty category. The Sensitivity on each dataset
is presented in Table 7.% The null hypothesis in the Friedman test is rejected. The order
of pre-processing methods is given in Table 6a . The critical difference CD in post-hoc
test is 1.19. When all the datasets are concerned, a cleaning method (NCR) is followed by
SPIDER method, which is followed by oversampling SMOTE, however the differences are
statistically insignificant. On the other hand, all informed methods perform significantly
better than Random Oversampling (RO) and all pre-processing methods are better than no
pre-processing.

If we split the datasets into two groups, as it has been done in the experiments described
in the previous section, the order of methods is slightly changed (and in both groups the null
hypothesis in the Friedman test is rejected with p close to 0.0001). The critical difference
(CD = 1.63) again allows us to differentiate only between informed methods and random
oversampling with no processing, however, we can still observe some trends. For datasets
where safe and borderline examples prevail (see ranks in Fig. 6b), the NCR cleaning method
performs the best. SPIDER, which also performs some cleaning, is the second in this order
of averaged ranks.

For datasets with a lot of rare and outlier examples, on the other hand, the ranking
(Fig. 6¢) shows that the oversampling method SMOTE and hybrid method SPIDER are at
the first positions of the ranking and they practically equal to each other (CD = 1.69). More-
over, Random Oversampling becomes closer in the ranking to informed methods on these
data. When we look only on the datasets with a lot of outliers in Table 7 (e.g., hsv, abalone,
yeast), the advantage of SMOTE is even more visible.

6Random oversampling is denoted as RO, SPIDER — SP, SMOTE — SM, no pre-processing — None.
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Table 7 Sensitivity for PART and pre-processing [%]

Dataset None RO NCR SM SP
breast-w 94.2 92.5 96.3 96.3 96.3
abdominal-pain 72.6 76.0 86.1 73.8 85.0
acl 80.0 83.5 91.0 86.5 87.5
new-thyroid 933 90.2 86.3 94.0 91.0
vehicle 88.3 90.6 92.6 92.4 91.4
nursery 99.4 96.7 100.0 99.1 100.0
satimage 55.1 58.8 69.7 64.1 63.6
car 90.0 75.6 92.6 88.3 91.2
scrotal-pain 63.4 66.6 74.9 69.7 72.1
ionosphere 84.0 84.0 86.8 88.9 85.0
credit-g 47.7 47.5 69.7 533 60.6
ecoli 42.0 55.0 71.2 74.0 72.8
hepatitis 45.7 57.3 63.3 54.8 56.7
haberman 334 55.3 59.7 68.3 70.3
breast-cancer 41.1 43.7 67.9 443 55.9
cme 37.7 48.5 59.8 49.7 559
cleveland 25.2 16.7 422 28.8 24.5
glass 34.0 33.0 56.0 46.0 43.0
hsv 2.0 9.0 7.0 15.0 10.0
abalone 18.8 38.2 31.1 52.8 50.2
postoperative 10.3 21.7 423 17.0 36.0
seismic-bumps 10.6 13.5 18.2 24.7 21.8
solar-flare 18.7 35.6 45.5 339 46.1
transfusion 429 59.1 50.3 72.4 70.3
yeast 26.7 333 30.3 479 37.2
balance-scale 0.0 69.5 0.0 22.0 12.0

Considering F-measure and G-mean, the results are similar, with NCR becoming more
comparable or better than SMOTE in case of datasets with rare and outlying examples,
which might suggest that SMOTE’s increased performance on the minority class comes at
a too high cost of the majority class recognition. This is consistent with some studies based
on artificial datasets (Maciejewski and Stefanowski 2011; Batista et al. 2004).

Rankings of pre-processing methods used with J48 are the same. For INN, SMOTE is
often a better classifier. For RBF we observed a different behaviour of Random Oversam-
pling, which seems to work better than for the former classifiers. With respect to Sensitivity,
it is particularly good for the datasets with rare and outlying examples.

7.2.2 Performance of pre-processing methods with respect to the types of testing
examples

Again, to get a more precise insight into classification results, we analyse the local accu-

racies for each type of testing examples separately. Tables 8, 10 present the values of
accuracies for pre-processing with PART. As already mentioned in Section 7.1, some
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Pre-process | Avg. rank Pre-process | Avg. rank Pre-process | Avg. rank
NCR 3.9 NCR 4.3 SMOTE 3.9
SPIDER 3.8 SPIDER 3.8 SPIDER 3.8
SMOTE 3.6 SMOTE 3.4 NCR 3.4
RO 2.2 RO 1.9 RO 2.5
None 1.5 None 1.6 None 1.3
(a) All datasets (b) Safe and border datasets (C) Rare and outlying
datasets

Fig. 6 Rankings of pre-processing methods used with PART, depending on the dataset characteristics (based
on sensitivity)

datasets contain too few examples of a given type to provide reliable results. Therefore, in
Tables 8, 10 we present only the datasets which have a sufficient number of examples of a
given type.

When comparing the results of all methods to the use of PART without pre-processing
(None column in Tables 8, 10), PART without pre-processing can recognize about 40-60%
of the borderline examples (except for ionosphere and car, where PART performs better),
10-20% of rare examples (Table 9) and usually not more than 10% of outlying examples
(Table 10). The pre-processing methods can increase the results on each type of minority
examples by 10-30%.

If one considers borderline testing examples in the datasets given in Table 8, Friedman
test rejects the null hypothesis and gives the ranking where NCR method is the first. Aver-
age ranks for PART are presented in Fig. 7a. However, one should be more careful with
interpteting them as according to post-hoc test their differences are not significant. J48 and
INN produce the similar order. For the RBF classifier and borderline testing examples,
Random Oversampling is ordered before SMOTE.

The results for PART on rare testing examples are given in Table 9. Depending on the
classifier, SMOTE or SPIDER are the first methods in the ranking. Ranking for PART is
presented in Fig.7b — SPIDER is on the first position ex aequo with NCR. Again RBF works
a bit better with Random Oversampling.

For outlier testing examples (in the datasets presented in Table 10), SMOTE, followed
by SPIDER, perform the best for all the classifiers. Ranking for PART is given in Fig. 7c.
J48 and 1NN produce the same order with slightly different values. For RBF, Oversampling
becomes the second best method after SMOTE.

Table 8 PART and pre-processing: local accuracies recorded on borderline testing examples [%]

Dataset None RO NCR SM SP

ionosphere 92.1 92.1 95.2 93.3 92.7
car 91.1 69.6 92.6 89.6 86.7
scrotal-pain 64.0 69.6 74.4 68.8 77.6
satimage 46.4 46.2 57.8 59.1 56.7
credit-g 53.3 54.1 76.9 58.8 67.9
ecoli 329 60.0 78.8 90.6 80.0
hepatitis 65.7 80.0 82.9 80.0 80.0
haberman 48.2 69.4 73.5 85.3 86.5
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Table 9 PART and pre-processing: local accuracies recorded on rare testing examples [%]

Dataset None RO NCR SM SP

haberman 20.6 49.0 48.4 62.6 64.5
cmc 349 404 56.1 414 45.1
breast-cancer 26.7 28.7 59.3 35.3 44.7
cleveland 22.2 22.2 333 22.2 22.2
glass 25.0 25.0 45.0 37.5 35.0
hsv 0.0 30.0 0.0 20.0 20.0
abalone 124 37.1 26.5 52.1 48.8
postoperative 8.0 18.0 42.0 6.0 32.0
seismic-bumps 8.3 15.7 22.2 243 24.3

8 Using neighbourhood analysis for developing new algorithms

Previous experimental sections have shown the usefulness of the presented identification
method to point out differences in classification performance of learning algorithms and
pre-processing methods.

In this section we additionally briefly show yet another perspective of exploiting our
proposal. We claim that the results of the analysis of neighbourhood could be also useful
for developing new learning algorithms specialized for class imbalance.

First, recall that partly similar ideas of exploiting the class distribution among nearest
neighbours of the minority examples have been already incorporated in two generaliza-
tions of the informed pre-processing method SMOTE (Maciejewski and Stefanowski 2011).
Some researchers have noticed that minority examples could be oversampled in a differ-
ent way depending on their role. In Borderline SMOTE (Han et al. 2005) authors identify
minority examples incorrectly re-classified by its neighbours and use only these examples
as seeds for oversampling. Maciejewski and Stefanowski have recently introduced Local
Neighbourhood extension of SMOTE (Maciejewski and Stefanowski 2011) which uses the
local analysis of neighbours of the seed minority example and its reference neighbour to

Table 10 PART and pre-processing: local accuracies recorded on outlier testing examples [%]

Dataset None RO NCR SM SP

cmc 19.1 24.0 28.0 255 30.2
cleveland 16.7 11.1 37.8 21.1 10.0
glass 28.0 16.0 48.0 52.0 32.0
hsv 4.0 4.0 12.0 16.0 8.0

abalone 104 27.7 16.6 41.5 39.1
postoperative 5.7 5.7 28.6 22.9 14.3
seismic-bumps 33 4.4 7.7 10.2 10.2
solar-flare 24 16.5 12.9 12.9 27.1
transfusion 1.6 229 4.9 453 49.4
yeast 2.0 7.0 9.0 26.0 13.0
balance-scale 0.0 57.8 0.0 27.6 18.7
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Pre-process | Avg. rank Pre-process | Avg. rank Pre-process | Avg. rank
NCR 4.3 SPIDER 3.8 SMOTE 4.0
SPIDER 3.6 NCR 3.7 SPIDER 3.7
SMOTE 3.6 SMOTE 3.2 NCR 3.4
RO 1.9 RO 2.8 RO 2.4
None 1.6 None 1.4 None 1.4

(a) Border testing examples (b) Rare testing examples (C) Outlying testing examples

Fig.7 Rankings of pre-processing methods used with PART, depending on the dataset characteristics (based
on accuracies on testing examples of a given type)

restrict the range of the line between them where new examples are generated. Experimental
results are encouraging.

These methods are just first proposals and we believe that other, better pre-processing
techniques could be still developed using the inspirations coming from our study. Sev-
eral problems for informed pre-processing methods (also for SPIDER or NCR) remain
still open. For instance, identified types of examples could be used to select the minor-
ity examples for over-sampling, e.g. one could over-sample more unsafe examples, as
according to our experiments these examples are more difficult to learn. Another applica-
tion could concern tuning the oversampling ratio in SMOTE or SPIDER. Currently one
global value is used for all examples. In our opinion, it would be more profitable to
tune this ratio dynamically depending on the local data characteristics and on the vary-
ing density of examples. Evaluating types of examples could be exploited in such dynamic
approaches.

It would be also promising to integrate the information about the local neighbourhood
inside the learning phase of the algorithms. For instance, in our recent paper on a new rule
induction algorithm BRACID (Napierala and Stefanowski 2012a) we modify the general-
ization of rule candidates depending on the type of minority examples. Incorporating it has
improved classification predictions.

Finally, we hypothesize that our results could be particularly useful for constructing the
ensembles for imbalanced data. Most of current proposals are generalizations of known
techniques as bagging, boosting or random forests. Many of them employ pre-processing
methods before learning component classifiers. In particular, it concerns the generalizations
of bagging (see their review in Galar et al. (2012)). However, in case of balancing boot-
straps (see e.g. the Roughly Balanced Bagging (Hido and Kashima 2008)), all examples
are treated as equally important and sampled with the same probabilities. We think that
drawing minority examples chould depend on the difficulty of the example, e.g. using the
neighbourhood analysis as discussed in our paper. The first research on such a new type of
bagging ensemble, called Nearest Neighborhood Bagging, which modifies sampling minor-
ity examples has been just started in Blaszczynski and Stefanowski (2015). The results of
its experimental evaluation are promising. We hope that more advanced proposals could be
still developed.

9 Conclusions
Our paper intends to increase a research interest on data difficulty factors that may deterio-

rate classifiers learnt from imbalanced data. Although most of the current research on class
imbalance concerns the development of new algorithms, we claim that it is still worth to
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study the nature of imbalanced data, characteristics of the minority class distribution and its
influence on classification performance. The main objectives of our study have been:

— to show that characteristics of the minority class distribution can be captured by
considering different types of examples creating the minority class,

—  to distinguish safe and unsafe examples — borderline, rare and outliers,

— to propose the method for their identification in real-world data.

Considering these four types of examples is a novel proposal concerning data difficulty
factors. In particular, we pay more attention to rare examples and outliers. Other con-
tribution concerns focusing the interest on the local characteristics of the minority class
distributions (Napierala and Stefanowski 2012b). Following it, we have introduced an iden-
tification method based on the analysis of class labels of examples belonging to the local
neighbourhood of learning examples. We have shown two ways of constructing such neigh-
bourhood: either with k-nearest examples or with kernel functions. In both cases, finding
the number of majority class examples in the neighbourhood of the given minority example
allows us to identify a type of this example.

We have experimentally shown that both these methods lead to similar results. Moreover,
the experimental sensitivity analysis has shown that changing the main parameter k has not
influenced too much the results. In the first part of experiments, the results of applying this
method have been successfully validated on the artificial datasets. Moreover, the results on
the real-world datasets have been confirmed (where it was possible) by the visualisation
methods, based on the MDS and t-SNE projections of the multidimensional dataset into two
dimensions.

Although the proposed method is simple and adapts known methodological elements,
such a formulation has not been considered yet in the literature on imbalanced data. What
is more important, its further experimental evaluation on a large collection of real datasets
with several learning algorithms, led us to many interesting observations which have not
been discussed yet in the earlier related works. Below we summarize the most interesting
conclusions:

— Imbalanced datasets usually contain all types of minority examples, but in different
proportions. Most of the datasets do not contain too many safe examples but they are
rather characterized by unsafe distributions of the minority class. On the other hand,
majority classes contain mainly safe examples.

— An interesting finding is that outlier examples can constitute an important part of the
minority class — in some datasets they even prevail in the minority class. We think that
one should be cautious in treating them as noise and applying noise-handling meth-
ods such as relabelling or removing these examples from the learning set. In general,
distinguishing between noise and outliers in the minority class is an important, but chal-
lenging issue, which requires future research. Secondly, rare examples also occur in
many datasets.

— The global imbalance ratio and the size of the data are not as influential as the above
example types. Using simply the imbalance ratio to differentiate the datasets as done in
(Van Hulse et al. 2007; Batista et al. 2012), or size of data as in Batista et al. (2004),
is not sufficient to explain the differences in the classification performance accord-
ing to our experiments. For instance, datasets with a high imbalance ratio, e.g. car or
nursery (2-3%), are easier to learn than transfusion (23%). Similarly, large datasets are
often more difficult than the small ones — compare, e.g., the results of abalone (over
4000 examples) with acl (less than 150 examples). Analysing the types of examples
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provides information more relevant to the classification performance. Our observa-
tions are consistent with some earlier works on artificial datasets. In Garcia et al.
(2007), Jo and Japkowicz (2004), and Napierala et al. (2010) it has also been shown
that the imbalance ratio is not the main source of difficulty. However, these earlier
works did not consider so many data factors and did not attempt to analyse real-world
datasets.

—  Collecting the information about local characteristics of the minority class and distin-
guishing between safe, borderline, rare and outlier examples is useful to differentiate
the performance of basic classifiers. In general, our experiments show that safe datasets
are easy to learn for all the classifiers. Datasets with a lot of borderline examples are
more difficult, however the RBF and SVM classifiers work quite well on these datasets.
Rare and especially outlier examples are extremely difficult to recognize. PART, J48
and sometimes 1NN may classify some of them but at a very low level. SVM and RBF
are very sensitive to these types of data.

—  Similarly, taking into account the information on types of minority examples is use-
ful to analyse differences between popular pre-processing methods. We have observed
that they can improve the recognition of the minority class examples by 10-30%.
NCR (representative of informed undersampling) is better for safe and borderline
examples, while SMOTE and SPIDER (informed oversampling and hybrid approach)
are more accurate on rare examples. SMOTE seems to be slightly more effective
for recognizing outliers. All the informed sampling methods are significantly better
than simple Random Oversampling for kNN, tree- and rule-based classifiers. Ran-
dom Oversampling sometimes performs better when RBF is used instead of the above
classifiers.

—  Our results confirm some of the results of the related works conducted on artificial
datasets. For instance, similarly to Garcia et al. (2008) we have observed that for
datasets with more difficult distributions (i.e. with many rare and outlier examples), a
more local kNN (1NN) performs better compared to 3NN. Our results confirm also the
hypothesis from Khoshgoftaar and Van Hulse (2009), in which 1NN performed better
than SVM on difficult distributions (here with a lot of outliers). Concerning the results
of pre-processing methods, we have also observed that they usually improve the recog-
nition of the minority class by no more that 30%, which is consistent with the results
presented in (Batista et al. 2012). Finally, the observation that informed re-sampling
is better than simple random re-sampling follows the conclusions from Batista et al.
(2004) and Chawla et al. (2002). Van Hulse et al. in (Van Hulse et al. 2007) gave a
bit contradictory recommendations in favour of simple random oversampling. How-
ever, their analysis is mainly based on averaging over datasets having quite different
characteristics.

To sum up, according to our best knowledge such an experimental study of analysing
so many data difficulty factors occurring together in the real-world datasets has not been
carried out before. Moreover, we hope that our analysis of the common data distribution
patterns carried out on many imbalanced datasets can contribute to the further development
of new learning algorithms as well as pre-processing methods dedicated for class imbalance.
Although it is not the main aim of our paper, we have briefly highlighted such research
directions in the previous section.
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