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Abstract It has recently been suggested that assuming independence between labels is
not suitable for real-world multi-label classification. To account for label dependencies,
this paper proposes a supervised topic modeling algorithm, namely labelset topic model
(LsTM). Our algorithm uses two labelset layers to capture label dependencies. LsTM offers
two major advantages over existing supervised topic modeling algorithms: it is straight-
forward to interpret and it allows words to be assigned to combinations of labels, rather
than a single label. We have performed extensive experiments on several well-known multi-
label datasets. Experimental results indicate that the proposed model achieves performance
on par with and often exceeding that of state-of-the-art methods both qualitatively and
quantitatively.

Keywords Multi-label classification · Topic model · Labelset · Label dependency

1 Introduction

Traditional single-label classification involves instances annotated with a single label. How-
ever, many application domains commonly associate multiple labels to each instance.
For example, in web page categorization (Ueda and Saito 2002; Kazawa et al. 2004;
Ji et al. 2008), a web page can be assigned one or more labels; in image clas-
sification (Boutell et al. 2004; Wang et al. 2009), an image can simultaneously be
tagged with multiple labels (e.g., “elephant” and “jungle”). Other popular multi-label
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domains include music classification (Li and Ogihara 2006; Trohidis et al. 2008; Jiang
and Ras 2013), video annotation (Qi et al. 2007), and direct marketing (Zhang et al.
2006). Multi-label classification for various domains is a prominent machine learning
topic.

To the best of our knowledge, the existing methods for multi-label classifi-
cation can be grouped into two categories: discriminative approaches (Tsoumakas
and Katakis 2007; Yuret et al. 2008) and generative modeling approaches (Rubin
et al. 2012). Recently, generative modeling approaches (i.e., supervised topic mod-
els) have received increasing attention because of their two advantages (Rubin
et al. 2012): (1) predicting labels at the word-level, rather than at the document-
level; (2) modeling all of the labels simultaneously, rather than handling each label
independently.

A popular supervised topic model for multi-label classification is labeled latent Dirichlet
allocation (L-LDA) (Ramage et al. 2009), which establishes a one-to-one correspon-
dence between topics and observed labels. This model can, under certain conditions,
achieve performance on par with the state-of-the-art support vector machines (SVMs).
However, it ignores dependencies between different labels. In many applications, strong
dependencies exist between labels. For example, a “computer” article is likely to cover
“software” as well, but unlikely to cover “food” and “sport”. Another example involves
modeling the topics and authorship of documents: a particular author may focus only
on certain topics; therefore it is essential to model them in a coordinated fashion
(Ji et al. 2008).

To modify L-LDA to consider label dependencies, we develop a novel supervised topic
model for multi-label document classification: labelset topic model (LsTM). In this work,
we use the labelset concept described in Boutell et al. (2004) to capture label depen-
dencies. Let W be a multi-label corpus with a set of disjoint labels Y. The labelset is
defined as a subset of Y (i.e., any arbitrary combination of labels). In LsTM, documents
are represented by distributions over labelsets rather than individual labels. The structure
of LsTM is a four-level hierarchy that consists of a document layer, two labelset lay-
ers, and a word layer. Adjacent layers are connected. The upper labelsets are obtained
by splitting the initial set of labels Y following the intuition that each label is strongly
correlated with a few labels in Y. The lower labelsets are subsets of the upper labelsets
that exist in the training data and are used to describe the dependencies between labels
within each upper labelset. We have conducted extensive experiments on several commonly
used multi-label collections. The empirical results demonstrate that the proposed model
achieves competitive performance with state-of-the-art approaches both qualitatively and
quantitatively.

The remainder of this paper is organized as follows. We discuss related publications in
Section 2. Section 3 presents the proposed LsTM model. In Section 4, the experimental
results on several well-known multi-label collections are presented. Conclusions and future
directions are discussed in Section 5.

2 Related work

First, we formalize our notation with respect to multi-label document classification. Let
W = {(wd, yd) |d = 1, 2, · · · , D} be a multi-label corpus and Y = {1, 2, · · · , C} be the
finite set of labels, where wd and yd ⊆ Y are the word vector and the set of labels for
document d, respectively.
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2.1 Discriminative approach

Discriminative methods for multi-label learning can be further divided into two classes:
algorithm adaptation (AA) and problem transformation (PT). Here, we provide an overview
of these two types of discriminative approaches.

AA-based methods modify the existing single-label classification methods to extend to
multi-label data. In Clare and King (2001), the decision tree (specifically the C4.5 algo-
rithm) is extended to multi-label cases. The simple but powerful k Nearest Neighbors (kNN)
algorithm is another popular method for handling multi-label cases (Zhang and Zhou 2007;
Brinker and Hullermeier 2007). Multi-label kNN algorithms first calculate the k nearest
neighbors, then aggregate the label sets using various schemes. SVMs and neural networks
have also been explored for multi-label learning. For example, Elisseeff (2002) proposes
an SVM-based method minimizing the ranking loss, Zhang and Zhou (2006) describes a
modification of the back-propagation approach (BP-MLL), and Zhang (2009) proposes an
extension of radial basis function networks.

PT-based methods transform a multi-label classification task into dozens of single-label
tasks. Binary relevance (BR) (Tsoumakas and Katakis 2007) is a popular PT-based method
that separately trains C binary classifiers, where each classifier corresponds to a label within
Y. Another popular PT-based method is the label powerset (LP) (Boutell et al. 2004), initially
used for multi-label image classification. LP defines each subset of Y (labelset) from the new
single-class labels in the training data and learns a binary classifier for each labelset. In con-
trast to BR, LP uses labelsets to capture label dependencies. However, it is time-consuming
for collections with many labels and suffers from severely skewed learning problems when
given few training instances. To address these problems, a modification of LP, RAndom k
labELsets (RAkLE), is proposed in Tsoumakas et al. (2011). The RAkL algorithm performs
LP over m iterations on different labelsets of size k. It can harmonize the number of exist-
ing labelsets by adjusting parameters k and m. Two other PT-based methods which consider
label dependencies include a model based on cyclic-directed graphs (Guo and Gu 2011) and
the classifier chains (CC) method (Read et al. 2011).

In addition, hierarchical classification is often linked with label dependency, where lower
the nodes in the tree implies stronger dependency level of its labels. The representative
works include (Jiang and Ras 2013; Fan et al. 2007).

2.2 Generative modeling approach

Because of the popularity of topic modeling approaches such as probabilistic latent semantic
indexing (PLSI) (Hofmann 1999) and latent Dirichlet allocation (LDA) (Blei et al. 2003), a
number of supervised topic models have been investigated for multi-label classification in
recent years.

L-LDA (Ramage et al. 2009) adapts the unsupervised LDA model to multi-label learn-
ing such that topics have a one-to-one correspondence with labels and each document d is
restricted to its set of labels yd . More recently, Kim et al. (2012) proposed a Dirichlet process
with mixed random measures (DP-MRM) to further extend L-LDA using nonparametric
methods. Although the empirical results indicate that under certain conditions L-LDA and
DP-MRM can achieve competitive performance with the state-of-the-art approaches, they
use an independent assumption among labels, which is inadequate for many real world
examples. Many publications focus on relaxing this assumption and consider label depen-
dencies by: (1) projecting labels onto some latent space, e.g., Dependency-LDA (Rubin
et al. 2012), which introduces a set of corpus-wide topic distributions over labels, and
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partially LDA (PLDA) (Ramage et al. 2011), where each label is represented by a number
of topics; (2) constructing a hierarchy of labels, e.g., TreeLaD (Nguyen et al. 2013), which
is based on a tree-structured topic hierarchy.

However, the existing supervised topic models that consider label dependencies have
two disadvantages: (1) some methods introduce an extra topic layer in addition to the
label layer, but topics can be obscure and difficult to interpret; (2) some assume that
each word corresponds to a single label; however, in multi-label settings, words may
be associated with one or more labels. In this paper, we develop a supervised multi-
label topic model that captures label dependencies. The proposed model, called LsTM,
learns the label co-occurrence relationships using the labelset concept defined in LP
(Boutell et al. 2004). In contrast to existing methods, LsTM replaces the label layer
with the labelset layers. The labelsets are observed and straightforward. Moreover, LsTM
allows a word to correspond to a combination of labels since some of the labelsets
represent distributions over words. Thus, LsTM overcomes the two aforementioned disad-
vantages of existing methods. The evaluation results demonstrate the effectiveness of LsTM
(see Section 4).

Several unsupervised topic models considering topic dependencies have been investi-
gated during the past decade. The correlated topic model (CTM) (Blei and Lafferty 2007)
algorithm represents topic correlation using the logistic normal distribution as prior. Sev-
eral models, such as the pachinko allocation model (PAM) (Li and McCallum 2006) and
hierarchical Dirichlet processes (HDP) (Teh et al. 2006), include an extra layer for topic cor-
relation. Since these models are unsupervised, they are not directly applicable to multi-label
classification. Furthermore, in contrast to LsTM, none of them allow a word to correspond
to a combination of topics.

3 Proposed model

This section presents the LsTM approach and introduces the model training and testing
procedures.

3.1 Labelset topic model

The traditional L-LDA model has no mechanism to capture label dependencies. Intu-
itively, some word tokens may simultaneously correspond to several dependent labels. For
example, the word “code” may correspond to both a “computer” and “software” label. L-
LDA assigns each word token to a single label. This constraint can degrade classification
performance.

To address this problem, we extend L-LDA to develop LsTM, a novel supervised topic
model. Our algorithm uses labelsets to form new class labels denoting combinations of
labels. Since the labelsets group dependent labels, they can help capture label interde-
pendencies. We organize LsTM as a four-level hierarchy that consists of a document
layer, two labelset layers, and a word layer, where the adjacent layers are connected. We
form two labelset layers to both filter and reduce the number of labelsets. We call the
labelsets at the upper layer super-labelsets, and the ones at the lower layer sub-labelsets.
The super-labelsets are subsets of the finite set of labels Y. They are used to form clus-
ters of K different labels under the assumption that each label is strongly correlated with
a few others. The subsets of the super-labelsets that exist in the training data are defined
as sub-labelsets (i.e., the co-occurrence combinations of labels). The sub-labelsets layer
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connects directly to the words layer and represents the label dependencies within each
super-labelset.

Let M be the number of K-sized super-labelsets A(g), and S be the total number of
sub-labelsets A(l). Each super-labelset A(g)

m corresponds to an lm-dimension multinomial
distribution φ

(l)
m over its own sub-labelsets, drawn from the Dirichlet prior η. To allow

supervised learning with respect to labelsets, each document d is described only by the
super-labelsets included in yd , and these super-labelsets are represented only by their
sub-labelsets included in yd . For simplicity, we use the term “yd -related” to denote the
corresponding super-labelsets and sub-labelsets for document d. For example, suppose
that corpus W has five labels (numbered 1 to 5) three super-labelsets, A(g)

1 = {1, 2, 3},
A(g)

2 = {2, 3, 4}, and A(g)

3 = {3, 4, 5}, and eight sub-labelsets, A(l)
1 = {1}, A(l)

2 = {2},
A(l)

3 = {3}, A(l)
4 = {4}, A(l)

5 = {5}, A(l)
6 = {1, 2}, A(l)

7 = {2, 4}, and A(l)
8 = {3, 5}. A doc-

ument d with yd = {1, 2}, would be restricted to A(g)

1 and A(g)

2 ; A(g)

1 would be constrained

to A(l)
1 , A(l)

2 and A(l)
6 ; A(g)

2 would be constrained to A(l)
2 . Thus, for document d, A(g)

1 and

A(g)

2 are the yd -related super-labelsets (i.e., y
(g)
d =

{
A(g)

1 , A(g)

2

}
); A(l)

1 , A(l)
2 and A(l)

6 are

the yd -related sub-labelsets for A(g)

1 (i.e., y
(l)
d,1 =

{
A(l)

1 , A(l)
2 , A(l)

6

}
); A(l)

2 is the yd -related

sub-labelset for A(l)
2 (i.e., y

(l)
d,2 =

{
A(l)

2

}
).

LsTM is depicted using graphical model notation in Fig. 1. Step 1 draws the multi-
nomial distribution φ

(l)
m over sub-labelsets for each super-labelset A(g)

m , from Dirichlet
prior η. Step 2 draws the multinomial distribution φ

(w)
s over words for each sub-labelset

A(l)
s , from Dirichlet prior β. Step 3 is the word generation process as follows: For each

document d with yd , generate the multinomial distribution θd over its yd -related super-
labelsets, from Dirichlet prior α, and repeat the following process Nd times for Nd

words: first sample a yd -related super-labelset z
(g)
d,n from distribution θd ; then sample

a yd -related sub-labelset z
(l)
d,n from distribution φ

(l)

z
(g)
d,n

; finally sample a word wd,n from

distribution φ
(w)

z
(l)
d,n

.

Fig. 1 Graphical models for LsTM
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The generative process of LsTM is summarized as:

1. For each super-labelset A(g)
m

a. Choose φ
(l)
m ∼ Dirichlet (η)

2. For each sub-labelset A(l)
s

a. Choose φ
(w)
s ∼ Dirichlet (β)

3. For each document d with yd

a. Choose a distribution over yd -related super-labelsets θd ∼ Dirichlet (α)

b. For each of the Nd words wd,n

i. Choose a yd -related super-labelset z
(g)
d,n ∼ Multinomial (θd)

ii. Choose a yd -related sub-labelset z
(l)
d,n ∼ Multinomial

(
φ

(l)

z
(g)
d,n

)

iii. Choose a word wd,n ∼ Multinomial

(
φ

(w)

z
(l)
d,n

)

Note that this model allows each word token to be assigned either a single label or a
combination of labels (e.g., A(l)

1 = {1} or A(l)
6 = {1, 2} in the aforementioned example).

Hence, LsTM represents the label dependencies at the word-level.

3.2 Model training

During training time, we randomly initialize M different K-sized super-labelsets. Because
the labels in the training data are observed, the sub-labelsets are also known. Thereby train-
ing LsTM only requires estimating: (1) the M lm-dimensional multinomial distributions φ(l)

of the super-labelsets over sub-labelsets; (2) the S V-dimensional multinomial distributions
φ(w) of the sub-labelsets over words.

Because the posterior distribution of hidden variables is computationally intractable, we
perform approximate estimation using Gibbs sampling (Griffiths and Steyvers 2004), a
Markov chain Monte Carlo (MCMC) algorithm. To use this sampling in LsTM, we sequen-
tially update the latent assignments z

(g)
d,n and z

(l)
d,n for all words in the training data. The

update rule of Gibbs sampling is given as follows:

P
(
z
(g)
d,n = m, z

(l)
d,n = s|W, z

(g)
d,−n, z

(l)
d,−n, α, η, β

)

∝ N
m/d
−n + α

Nd−n +
∣∣∣y(g)

d

∣∣∣ α
× N

s/m
−n + η

Nm−n + lmη
× N

w/s
−n + β

Ns−n + Vβ
(1)

where Nm/d and Nd are the number of times that super-labelset m has occurred in document
d and the total number of words in document d, respectively; Ns/m and Nm are the number
of times that sub-labelset s has assigned to super-labelset m and the total number of sub-
labelsets tagged with super-labelset m, respectively; Nw/s and Ns are the number of times
that the position n’s corresponding word w has been assigned to sub-labelset s and the total
number of words under sub-labelset s, respectively. The subscript “-n” denotes a quantity
except for the token in position n.
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With the above samples, the model parameters φ(l) and φ(w) can be computed as follows:

φ(l)
m,s = Ns/m + η

Nm + lmη
(2)

φ(w)
s,w = Nw/s + β

Ns + Vβ
(3)

3.3 Inference for test documents

During testing (when the labels of documents are unobserved), each document may sample
from any of the M super-labelsets, and each super-labelset A(g)

m can sample from any of its
lm sub-labelsets.

We estimate the test documents one by one. Given the optimal distributions φ(l) and φ(w)

obtained in the training procedure, the Gibbs sampling equation for a test document d’ is:

P
(
z
(g)

d ′,n = m, z
(l)

d ′,n = s|d ′, z(g)
−n, z

(l)
−n, α, φ(l), φ(w)

)

∝ N
m/d ′
−n + α

Nd ′
−n + Mα

× φ(l)
m,s × φ(w)

s,w (4)

where z
(g)

d ′,n and z
(l)

d ′,n are super-labelset and sub-labelset assignments for the nth word in

document d’, respectively; Nm/d ′
and Nd ′

are the number of times that super-labelset m has
occurred and the number of words in document d’, respectively.

With the sample results, the posterior distribution θd ′ over super-labelsets for document
d’ can be estimated as:

θd ′,m = Nm/d ′ + α

Nd ′ + Mα
(5)

For prediction, the final C-dimensional labels proportion ϕd ′ of the test document d’ is
calculated as follows:

ϕd ′,c =
m=1,···M∑

c∈A(g)
m

s=1,···lm∑

c∈A(l)
m,s

1∣∣∣A(l)
m,s

∣∣∣
θd ′,mφ

(l)
m,id(m,s) (6)

where id(m, s) is the identifier of the s-th sub-labelset in super-labelset A(g)
m .

3.4 Comparison with related algorithms

Here, we compare LsTM with several related algorithms.

3.4.1 Related discriminative approaches

The LP (Boutell et al. 2004) and RAkLE (Tsoumakas et al. 2011) approaches also use
labelsets to capture label dependencies. In particular, RAkLE performs the same process as
LsTM to generate the two levels of labelsets. However these two discriminative approaches
consider the labelsets at the document-level. When training the binary classifier for each
labelset, all the words of the positive samples are assigned to this labelset. In contrast, LsTM
applies the labelsets at the word-level. This provides more flexibility because labelsets can
be assigned to each word instead of each document.
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3.4.2 Related generative modeling approaches

To predict multi-label corpora, supervised topic models such as L-LDA (Ramage et al. 2009)
and Dependency-LDA (Rubin et al. 2012) connects observed labels and words using the
label-word distributions. The state-of-the-art Dependency-LDA introduces an unobserved
topic layer beyond the label layer to represent label dependencies. In our work, LsTM
incorporates the label supervision capturing label dependencies simultaneously when form-
ing the labelset-word distributions. Furthermore, it introduces a new kind of labelset (i.e.,
super-labelset) to cluster several strongly correlated labels together. In contrast to existing
algorithms, the two labelset levels are observed and easily interpreted and the words can be
assigned to a combination of labels.

4 Experiments

In this section, we evaluate LsTM qualitatively and quantitatively.

4.1 Experimental setting

4.1.1 Collections

The experiments were performed on six commonly used multi-label collections,1 including
two Yahoo! subdirectory datasets (i.e., Arts and Health), enron, rcv1subset1, bibtex and a
random subset of bookmarks. These collections contain dozens or hundreds of labels, and
they are all skewed in various degrees. Table 1 summarizes some basic statistics, such as
the number of documents, number of unique words and labels, cardinality (i.e., the average
number of labels per document) and MaxL/MinL (i.e., the maximum/minimum number of
documents for each label).

4.1.2 Metric

In the experiments, we used two popular performance metrics: Micro-F1 and Macro-F1. For
both of them, the larger value implies better performance.

The F1 metric is the harmonic mean of Precision and Recall. Given the number of true
positives (TP), false positives (FP) and false negatives (FN), the F1 metric is given:

F1 = 2 × T P

2 × T P + FP + FN

According to descriptions in Tsoumakas et al. (2011), Micro-F1 and Macro-F1 are the
micro-averaged and macro-averaged versions with respect to the F1 metric, respectively.
They are used to measure the binary prediction performance across labels. Let T Pc, FPc

and FNc be the number of true positives, false positives and false negatives after binary
evaluations for a label c. We can compute Micro-F1 and Macro-F1 metrics as follows:

Micro−F1 = 2 × ∑C
c=1 T Pc

2 × ∑C
c=1 T Pc + ∑C

c=1 FPc + ∑C
c=1 FNc

1http://mlkd.csd.auth.gr/multilabel.html

http://mlkd.csd.auth.gr/multilabel.html
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Table 1 Statistics of the selected collections, where “Card” is the shortening of cardinality

Dataset D V C Card MaxL MinL

Arts 7484 23416 26 1.6 1838 1

Health 9205 30605 32 1.6 4703 1

enron 1694 1001 53 3.4 913 1

rcv1subset1 6000 47236 101 2.9 882 1

bibtex 7395 1836 159 2.4 1024 51

bookmarks 10000 2150 208 2.0 565 19

Macro−F1 = 1

C

∑C

c=1

2 × T Pc

2 × T Pc + FPc + FNc

4.2 Text modeling

We qualitatively evaluated LsTM with respect to its text modeling performance. Table 2
shows some examples of the top 10 frequent words for single labels and label combinations
across the bookmarks dataset. Intuitively, words listed for each label combination are highly
associated with each individual label in the set.

4.3 Classification performance

This section exhibits the quantitative results for multi-label classification. For each dataset,
we randomly selected 33 % of the documents as the training data and used the remaining
documents as the test data. We repeat this process 10 times to obtain 10 training/test splits.

4.3.1 Evaluation of LsTM

We conduct a number of experiments to investigate the parameters of LsTM, including
the Dirichlet priors α, η, and β, the size of the super-labelsets K, the number of super-
labelsets M, and the settings of the Gibbs sampler. The evaluation results indicate that LsTM
is relatively sensitive to parameters M and K over different datasets. Thus, we report the
results with respect to these two significant parameters. In the experiments presented in this
paper the remaining parameters are set as follows: α = 50/C, η = 1, and β = 0.01. To train
the model, we ran 10 independent MCMC chains, and used the end samples of the MCMC
chains after a burn-in of 500 iterations. We averaged the 10 selected samples to estimate the

Table 2 The top ten frequent words over single labels and their combinations across bookmarks dataset

Label The most frequent words

ajax ajax; javascript; browser; web; css; internet; document; html; open; project

software software; download; support; home; version; fax; free; source; site; open

ajax&software software; source; ajax; version; offer; project; document; open; money; web

publications vote; understand; offer; format; improve; zur; die; mix; language; side

research information; research; home; contact; search; based; page; web; related; data

publications&research research; information; journal; data; language; improve; viewer; truth; page; web
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Fig. 2 Micro-F1 scores of LsTM with respect to parameter K

distributions φ(l) and φ(w) according to Eqs. (2) and (3). During the testing phase, we ran
5 independent MCMC chains with 200 iterations for each unseen document. We allowed a
burn-in of 150 iterations and a lag of 10 iterations between samples for each MCMC chain.
We averaged the resulting 25 samples to predict the test documents according to Eq. (6).

We fixed M = 5C/3 and used the Micro-F1 metric to evaluate the parameter K with
different values (from value 2 to 8). As shown in Fig. 2, we observe that the effect on
performance varies between the different datasets. The three datasets that contain a smaller
number of labels C (i.e., Arts, Health, and enron) achieve very steady Micro-F1 scores.
However, the performance for the other datasets with a relatively larger number of labels C
decreases as K increases. In practice, a larger K leads to more sub-labelsets, yet many of
these are very rare, especially for datasets with larger C. Moreover, we observe that higher
scores are achieved when K is similar to the cardinality of each dataset. This setting can
keep the number of rare sub-labelsets under control. In practice, this is an effective guide to
set parameter K.

Fig. 3 Micro-F1 scores of LsTM with respect to parameter M
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Table 3 Fix M = 5C/3, so the value of S with respect to different K across Arts and bookmarks

Dataset 3 4 5 6 7 8

Arts 101 197 238 349 463 504

bookmarks 404 581 781 1028 1270 1622

We fixed K = 3 and again used the Micro-F1 metric to study the influence of parameter
M. The experimental results are shown in Fig. 3. We observe that the Micro-F1 scores for all
of the datasets increased as the number of super-labelset M increased. We contend that this is
because a low M value can generate few sub-labelsets, losing many frequent co-occurrence
labelsets in the training data. We also observe that in most cases the performance stabilized
when M ∈ [C, 2C].

We acknowledge that we need to balance between conflicting recommendations when
combining these two parameters. On one hand, we suggest a smaller K to obtain a smaller
S; on the other hand we suggest a larger M to obtain a larger S. In fact, we hope to obtain
more frequently occurring sub-labelsets while reducing the number of rare sub-labelsets.
With the same random initial seed, some examples of the total number of sub-labelsets S
with respect to different K and M values are shown in Tables 3 and 4. As K increases,
the value of S becomes unmanageably large since plenty of rare sub-labelsets exist. With
small M values, the value of S approaches the number of labels C, leading to a loss of some
important sub-labelsets.

In practice, we recommend setting parameters K and M as follows: (1) K equal to the
ceiling of the cardinality; (2) M between C and 2C.

4.3.2 Comparison with other methods

In this section we study the performance of LsTM for multi-label classification. We set K
to the ceiling of the cardinality of each dataset (e.g., value 2 for Arts and value 4 for enron),
and set M to 5C/3 as discussed above. The other parameters are the same as in the parameter
experiments in Section 4.3.1.

We selected several existing approaches as the performance baselines: an AA-based dis-
criminative approach, i.e., MLkNN (Zhang and Zhou 2007); two PT-based discriminative
algorithms without and with label dependency considerations, i.e., SVMs (Lewis et al. 2004)
and RAkLE (Tsoumakas et al. 2011); and two supervised topic models without and with
label dependency considerations, i.e., L-LDA (Ramage et al. 2009) and Dependency-LDA
(Rubin et al. 2012). For the three discriminative approaches, the documents were encoded
using the normalized TF-IDF representation. The settings of all of these baseline methods
were as follows:

– MLkNN is a multi-label version of kNN. As suggested in Zhang and Zhou (2007), the
number of neighbors was set to 10 and the smoothing factor was set to 1.

– For SVMs, we used the well-known LibSVM tool,2 and tuned the parameters using a
linear search over the set

{
10i |i = −5, −4, · · · , 4, 5

}
.

2http://www.csie.ntu.edu.tw/∼cjlin/libsvm/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Table 4 Fix K =3, so the value of S with respect to different M acorss Arts and bookmarks

Dataset C/3 2C/3 C 4C/3 5C/3 2C

Arts 47 55 83 94 101 113

bookmarks 283 305 358 373 404 452

– For RAkLE, we used publicly available code in the Mulan tool (Tsoumakas et al.
2011), a library designed for multi-label learning. As recommended in Tsoumakas et al.
(2011), the size of the labelsets was set to 3 and the number of labelsets was set to 2C,
and the C4.5 decision tree was used as the base level algorithm.

– We implemented an in-house code for L-LDA. Following reported experience, the
document-label Dirichlet prior was set to 50/C and the label-word Dirichlet prior was
set to 0.01.

– We implemented an in-house implementation (using the fast inference scheme) for
Dependency-LDA. All of the parameters were set and tuned according to the sugges-
tions in Rubin et al. (2012).

Tables 5 and 6 exhibit the mean and standard deviation of the Micro-F1 and Macro-F1
metrics for all of the algorithms. For Micro-F1, different datasets show significantly differ-
ent results. We observe that the datasets with fewer labels always show better performance
than the datasets with more labels (e.g., Arts, Health and enron are about 40 %∼60 %, but
rcv1subset1, bibtex and bookmarks are only about 20 %∼30 %). Among the three datasets
with few labels, Health achieves the highest Micro-F1 level of 60 % since it contains many
categories that are both dominant and characteristic .The enron dataset has mostly higher
scores than the Arts dataset and we believe this is because enron has a cleaner vocabulary.
Among the three datasets with more labels, the balanced dataset bibtex (the gap between its
MaxL and MinL is relatively small) performs better than the other two. Macro-F1 focuses
on the performance of each label, so its variation among different datasets is much smaller
than Micro-F1. The datasets with both fewer labels and lower cardinality values, i.e., Arts
and Health, achieve 20 %∼30 %. The balanced dataset bibtex also achieves a relatively high
level of 22 %∼25 %.

Compared with the other algorithms, we observe that LsTM almost always achieves
the best performance across these distinct datasets. These results indicate the robustness of
LsTM. We provide more detailed comparisons below.

We begin by comparing LsTM with the three discriminative approaches (i.e., MLkNN,
SVMs, and RAkLE). LsTM is unquestionably better than MLkNN across all six datasets for

Table 5 Experiment results in terms of Micro-F1 measurement

Dataset LsTM MLkNN SVMs RAkLE L-LDA Dep-LDA

Arts .448±.007 .046±.009 .395±.008 .376±.012 .378±.014 .401±.009

Health .632±.009 .361±.016 .621±.011 .617±.017 .586±.026 .614±.008

enron .506±.013 .263±.028 .433±.015 .467±.011 .403±.022 .442±.025

rcv1subset1 .274±.003 .174±.009 .245±.002 .237±.005 .212±.011 .246±.004

bibtex .378±.008 .188±.013 .371±.009 .379±.008 .358±.011 .369±.009

bookmarks .228±.007 .159±.027 .202±.006 .199±.013 .189±.014 .192±.009

The bold values mean the best performance
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Table 6 Experiment results in terms of Macro-F1 measurement

Dataset LsTM MLkNN SVMs RAkLE L-LDA Dep-LDA

Arts .302±.008 .017±.003 .211±.008 .214±.011 .254±.009 .258±.007

Health .285±.006 .065±.005 .263±.007 .253±.015 .247±.019 .269±.006

enron .124±.005 .041±.003 .116±.007 .124±.008 .092±.013 .113±.009

rcv1subset1 .141±.013 .084±.007 .138±.009 .139±.006 .127±.015 .129±.012

bibtex .265±.006 .047±.004 .241±.005 .241±.012 .222±.006 .243±.005

bookmarks .136±.005 .024±.002 .072±.003 .061±.003 .092±.009 .109±.007

The bold values mean the best performance

both Micro-F1 and Macro-F1. This is because the simpler MLkNN algorithm is unsuited
for these high-dimensional text document collections. Compared with the two state-of-the-
art SVMs and RAkLE, LsTM achieves better performance for almost everything except
the Micro-F1 score for the bibtex dataset. With respect to Macro-F1, LsTM clearly out-
performs the others for the Arts, Health, and bookmarks datasets. We believe that this is
due to the relatively low cardinality values of these three datasets. In this case, it is easy to
assign preferable labelsets to word tokens during model training. It is interesting to observe
that SVMs slightly outperform RAkLE despite ignoring label dependencies. This is mainly
because the SVMs perform the additional parameter searching processes.

We now compare LsTM with the two supervised topic models (i.e., L-LDA and
Dependency-LDA). Overall, LsTM outperforms the two models across all six datasets for
both Micro-F1 and Macro-F1 metrics. Compared with L-LDA, LsTM achieves a 2 %∼10 %
improvement in terms of Micro-F1, and a 2 %∼5 % improvement in terms of Macro-F1.
The main difference between L-LDA and LsTM lies in allowing word tokens to be assigned
to labelsets. Our empirical results show that LsTM successfully incorporates label depen-
dency knowledge into L-LDA using labelsets. Compared with Dependency-LDA, LsTM
improves the performance by 1 %∼5 % on both F1 measures. For Micro-F1, LsTM also
performs particularly well with datasets with lower cardinality values (i.e., Arts, Health
and bookmarks). This further underscores that assigning preferable labelsets to word tokens
significantly boosts the final classification performance. Overall, based on our evaluation
results, we conclude that our method to capture the label dependencies is more effective
than using Dependency-LDA.

5 Conclusion

In this paper, we relax the label independence assumption for multi-label document clas-
sification. To achieve this, we propose an extension of L-LDA, namely LsTM, which uses
the concept of labelsets described in Boutell et al. (2004) to capture label dependencies.
LsTM uses two observed labelset layers: the super-labelset and the sub-labelset. The super-
labelsets group several related labels and the sub-labelsets assign combinations of these
labels to each word. Compared with existing supervised topic modeling algorithms, LsTM
is more straightforward and effective. We perform empirical evaluations on six well-known
multi-label collections. Experimental results indicate that LsTM achieves competitive per-
formance with both the state-of-the-art discriminative approaches and the supervised topic
models.
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In the future, we will focus on adaptively determining the two significant parameters
(i.e., K and M). Another potential research direction is to apply LsTM to large-scale
multi-label data.
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