
J Intell Inf Syst (2016) 46:21–59
DOI 10.1007/s10844-014-0350-3

An approach to structure determination and estimation
of hierarchical Archimedean Copulas and its application
to Bayesian classification

Jan Górecki · Marius Hofert · Martin Holeňa

Received: 2 June 2014 / Revised: 1 December 2014 / Accepted: 2 December 2014/
Published online: 14 January 2015
© Springer Science+Business Media New York 2015

Abstract Copulas are distribution functions with standard uniform univariate marginals.
Copulas are widely used for studying dependence among continuously distributed random
variables, with applications in finance and quantitative risk management; see, e.g., the pric-
ing of collateralized debt obligations (Hofert and Scherer, Quantitative Finance, 11(5),
775–787, 2011). The ability to model complex dependence structures among variables has
recently become increasingly popular in the realm of statistics, one example being data
mining (e.g., cluster analysis, evolutionary algorithms or classification). The present work
considers an estimator for both the structure and the parameters of hierarchical Archimedean
copulas. Such copulas have recently become popular alternatives to the widely used Gaus-
sian copulas. The proposed estimator is based on a pairwise inversion of Kendall’s tau
estimator recently considered in the literature but can be based on other estimators as well,
such as likelihood-based. A simple algorithm implementing the proposed estimator is pro-
vided. Its performance is investigated in several experiments including a comparison to
other available estimators. The results show that the proposed estimator can be a suitable

The work of Jan Górecki was funded by the project SGS/21/2014 - Advanced methods for knowledge
discovery from data and their application in expert systems, Czech Republic. The work of Martin
Holeňa was funded by the Czech Science Foundation (GA ČR) grant 13-17187S.

J. Górecki (�)
Department of Informatics, SBA in Karviná, Silesian University in Opava, Karviná, Czech Republic
e-mail: gorecki@opf.slu.cz

M. Hofert
Department of Statistics and Actuarial Science, University of Waterloo, 200 University Avenue West,
Waterloo, ON, Canada
e-mail: marius.hofert@uwaterloo.ca

M. Holeňa
Institute of Computer Science, Academy of Sciences of the Czech Republic, Praha, Czech Republic
e-mail: martin@cs.cas.cz

mailto:gorecki@opf.slu.cz
mailto:marius.hofert@uwaterloo.ca
mailto:martin@cs.cas.cz

22 J Intell Inf Syst (2016) 46:21–59

alternative in the terms of goodness-of-fit and computational efficiency. Additionally, an
application of the estimator to copula-based Bayesian classification is presented. A set of
new Archimedean and hierarchical Archimedean copula-based Bayesian classifiers is com-
pared with other commonly known classifiers in terms of accuracy on several well-known
datasets. The results show that the hierarchical Archimedean copula-based Bayesian classi-
fiers are, despite their limited applicability for high-dimensional data due to expensive time
consumption, similar to highly-accurate classifiers like support vector machines or ensem-
ble methods on low-dimensional data in terms of accuracy while keeping the produced
models rather comprehensible.

Keywords Copula · Hierarchical archimedean copula · Copula estimation · Structure
determination · Kendall’s tau · Bayesian classification

1 Introduction

Studying relationships among random variables is a crucial task in the field of knowledge
discovery and data mining (KDDM). Having a dataset collected, the relationships among
the observed variables can be studied by means of an appropriate measure of stochastic
dependence. Under the assumption that the marginal distributions of the variables are con-
tinuous, Sklar’s Theorem (Sklar 1959) can be used to decompose the joint multivariate
distribution in two parts, the univariate marginal distributions and the unique dependence
structure, i.e., the copula of the joint distribution. Thus, studying dependence among contin-
uously distributed random variables can be restricted without loss of generality to studying
the underlying copula.

Despite the fact that a large part of the success of copulas is attributed to finance,
copulas are increasingly adopted also in KDDM, where their ability to capture complex
dependence structures among variables is used. Applications of copulas can be found in
water-resources and hydro-climatic analysis (Genest and Favre 2007; Kao et al. 2009;
Kao and Govindaraju 2008; Kuhn et al. 2007; Maity and Kumar 2008), gene analysis
(Lascio and Giannerini 2012; Yuan et al. 2008), cluster analysis (Cuvelier and Noirhomme-
Fraitur 2005; Kojadinovic 2010; Rey and Roth 2012) or in evolutionary algorithms,
in particular estimation of distribution algorithms (González-Fernández and Soto 2012;
Wang et al. 2012). For an illustrative example, we refer to Kao et al. (2009), which
describes an application of copulas to detecting weather anomalies in a climate change
dataset.

For certain types of applications, hierarchical Archimedean copulas (HACs) are a fre-
quently used alternative to Gaussian copulas due to several desirable properties, e.g., HACs
are not restricted to radial symmetry; HACs are expressible in a closed form; they are able
to model asymmetric distributions with tail dependence; and HACs are able to model com-
plex relationships while keeping the number of parameters comparably small; see Hofert
(2011) and Hofert and Scherer (2011). The last point is important from a data mining point
of view because models with a small number of parameters are more easily understandable.
Denoting the data dimension by d , on the one hand, if using Gaussian copulas, the num-
ber of parameters grows quadratically in d and the obtained models can quickly become
challenging from a computational point of view. On the other hand, if using Archimedean

J Intell Inf Syst (2016) 46:21–59 23

copulas (ACs), the obtained models contain only one parameter (provided an AC is based
on a one-parametric generator), which is rarely feasible in real-world applications. In this
context, HACs are often a good trade-off between these two extremes and provide relatively
simple and flexible dependency models.

Despite the popularity of HACs, feasible techniques for their parameter and structure
estimation are addressed only in few papers. Most of them assume a given hierarchical
structure, which is motivated by applications in economics, e.g., (Savu and Trede 2008;
2010). On the contrary, in Segers and Uyttendaele (2014), only structure determination of a
HAC is addressed. We are aware of only one paper (Okhrin et al. 2013a) that addresses both
structure determination and parameter estimation via a multi-stage procedure. That paper
mainly focuses on the estimation of the parameters using the maximum-likelihood (ML)
technique and briefly mentions the inversion of Kendall’s tau as an alternative. For structure
determination, six approaches are presented. Two of them are based on the inversion of
Kendall’s tau, one on the Chen test statistic (Chen et al. 2004) and the remaining three
approaches on the ML technique. All but one approach lead to biased estimators, which can
be seen from the results of the reported study. The unbiased estimator, denoted by θRML,
which shows the best goodness-of-fit (measured by Kullback-Leibler divergence) in the
study, is simply the maximum likelihood estimator based on initial values computed from
one of the biased estimators. Due to this construction, θRML often does not approximate the
true parameters well when the structure determined by the biased estimator is not the true
structure. The number of such cases rapidly increases in large dimensions, as we show later
in Section 4.

In the present work, we propose a new estimator for both the structure and the param-
eters of HACs. On the one hand, this estimator is also a multi-stage procedure where the
structure and the parameters are estimated in a bottom-up manner. On the other hand, it
is based on the fact that a HAC can be uniquely recovered from all its bivariate margins
and thus allows to estimate the copula parameters just from the parameters of the bivariate
marginal copulas. Assuming the true copula is a HAC, our estimator approximates the true
copula closer (measured by a selected goodness-of-fit statistic) than the previously men-
tioned methods. Moreover, the ratio of structures properly determined using our estimator is
higher compared with the estimators mentioned above. Finally, avoiding a time-consuming
computation of initial values, we also gain computational efficiency. The experiments based
on simulated data in Section 4 show that our approach outperforms the above-mentioned
methods with respect to goodness-of-fit, the properly determined structures ratio and also
the consumed run-time.

In addition, we consider Bayesian classifiers that are based on Gaussian copulas, ACs and
HACs. When fitting those classifiers, efficient estimation methods for a given copula class
are needed. In the Gaussian and Archimedean case, such estimation methods are known,
whereas for HACs, we can now apply our proposed estimator. We compare it with other
copula-based Bayesian classifiers, as well as with other types of commonly used classifiers.

The paper is structured as follows. The following section summarizes some needed
theoretical concepts concerning ACs and HACs. Section 3 presents the new estimation
approach for HACs, and Section 4 describes the experiments based on simulated data.
Section 5 presents a copula-based approach to Bayesian classification and includes an exper-
imental comparison of several classifiers based on real-world datasets. Section 6 concludes
this paper.

24 J Intell Inf Syst (2016) 46:21–59

2 Preliminaries

2.1 Copulas

Definition 1 For every d ≥ 2, a d-dimensional copula (shortly, d-copula) is a d-variate
distribution function on I

d (I = [0, 1]), whose univariate margins are uniformly distributed
on I.

Copulas establish a connection between joint distribution functions (d.f.s) and their
univariate margins, which is well-know due to Sklar’s Theorem.

Theorem 1 (Sklar’s Theorem 1959) (Sklar 1959) Let H be a d-variate d.f. with univariate
margins F1, ..., Fd . Let Aj denote the range of Fj , Aj := Fj (R), j = 1, ..., d,R :=
R ∪ {−∞,+∞}. Then there exists a copula C such for all (x1, ..., xd) ∈ R

d
,

H(x1, ..., xd) = C(F1(x1), ..., Fd(xd)). (1)

Such a C is uniquely determined on A1 × ... × Ad . Conversely, if F1, ..., Fd are univariate

d.f.s, and if C is any d-copula, then the function H : R
d → I defined by (1) is a d-

dimensional distribution function with margins F1, ..., Fd .

Through Sklar’s Theorem, one can derive for any d-variate d.f. with continuous mar-
gins its unique copula C using (1). C is given by C(u1, ..., ud) = H(F−

1 (u1), ..., F
−
d (ud)),

where F−
i , i ∈ {1, ..., d}, denotes the pseudo-inverse of Fi given by F−

i (s) = inf{t | Fi(t)

≥ s}, s ∈ I. Implicit copulas are derived in this way from popular joint d.f.s, e.g., the pop-
ular class of Gaussian copulas is derived from multivariate normal distributions. However,
using this process often results in copulas which do not have a closed form, which can be a
drawback for certain applications, e.g., if explicit probabilities and thus copula values have
to be computed.

2.2 Archimedean copulas

Due to their explicit construction, Archimedean copulas (ACs) are typically expressible
in closed form. To construct ACs in arbitrary dimensions, we need the notion of an
Archimedean generator and of complete monotonicity.

Definition 2 An Archimedean generator (shortly, generator) is a continuous, nonincreasing
function ψ : [0,∞] → [0, 1], which satisfies ψ(0) = 1, ψ(∞) = limt→∞ ψ(t) = 0 and
which is strictly decreasing on [0, inf{t | ψ(t) = 0}]. We denote the set of all generators
by � . If ψ satisfies (−1)kf (k)(t) ≥ 0, for all k ∈ N, t ∈ [0, ∞), ψ is called completely
monotone. We denote the set of all completely monotone generators by �∞.

Definition 3 Any d-copula C is called an Archimedean copula (we denote it d-AC) based
on a generator ψ ∈ � , if it admits the form

C(u) := C(u;ψ) := ψ(ψ−1(u1) + ... + ψ−1(ud)), u ∈ I
d , (2)

where ψ−1 : [0, 1] → [0,∞] is defined by ψ−1(s) = inf{t | ψ(t) = s}, s ∈ I.

A condition sufficient for C to be indeed a proper copula is ψ ∈ �∞; see McNeil and
Nešlehová (2009).

J Intell Inf Syst (2016) 46:21–59 25

Table 1 Completely monotone (c.m.) one-parametric Archimedean families from Nelsen (2006)[p. 116]
considered in this paper

Family θ ψ(t) (ψ−1
1 ◦ ψ2)

′(t) c.m.

Clayton (C) (0,∞) (1 + t)−1/θ θ1 ≤ θ2

Frank (F) (0,∞) − log(1 − (1 − e−θ) exp(−t))/θ θ1 ≤ θ2

Gumbel (G) [1,∞) exp(−t1/θ) θ1 ≤ θ2

The table contains the corresponding families, the parameter ranges and the sufficient nesting condition for
two generators from the same family (see Section 2.3 in Hofert (2011)). The sufficient nesting condition
involves generators ψ1 and ψ2 from the same family with parameters equal to θ1 and θ2, respectively

As we can see from Definition 3, if a random vector U is distributed according to some
AC, all its k-dimensional marginal copulas are equal. Thus, e.g., the dependence among all
pairs of components is identical. This symmetry of ACs is often considered to be a rather
strong restriction, especially in high dimensions; see Hofert et al. (2013) for a discussion
and possible applications.

To obtain an explicit form of an AC, we need ψ and ψ−1 to be explicit; many such gen-
erators can be found, e.g., in Nelsen (2006). In this paper, we use the three well-known
parametric generators of the Clayton, Frank and Gumbel families; see Table 1. We selected
these three families of generators because of two reasons. The first reason relates to flex-
ibility of these families to model tail dependence in pairs of random variables, as this is a
copula property. The Clayton family allows lower tail dependence in a pair (being upper tail
independent), the Gumbel family allows oppositely upper tail dependence in a pair (being
lower tail independent), and models from the Frank family are both lower and upper inde-
pendent, similarly to Gaussian copulas; see (Hofert 2010b, p. 43). The second reason is that
this choice allows for a comparison of our results with the results in Okhrin et al. (2013a)
and Holeňa and Ščavnický (2013). More precisely, in Okhrin et al. (2013a), HAC estima-
tion experiments involving HACs based on Clayton and Gumbel generators are reported;
these experiments relate to our experiments described in Section 4. In Holeňa and Ščavnický
(2013), a visual representation of a HAC structure involving Frank generators obtained
from the Iris dataset is presented; this tree-like representation relates to our dendrogram-like
representation described in Section 5.

2.3 Hierarchical archimedean copulas

To allow for asymmetries, one may consider the class of HACs (also called nested
Archimedean copulas), recursively defined as follows.

Definition 4 (Hofert 2011) A d-dimensional copula C is called a hierarchical Archimedean
copula if it is either an AC, or if it is obtained from an AC through replacing some of its argu-
ments with other hierarchical Archimedean copulas. In particular, if C is given recursively
by (2) for d = 2 and

C(u;ψ1, ..., ψd−1) = ψ1(ψ
−1
1 (u1) + ψ−1

1 (C(u2, ..., ud; ψ2, ..., ψd−1))), u ∈ I
d , (3)

for d ≥ 3, C is called fully-nested hierarchical Archimedean copula (FHAC)1 with

1also called fully-nested Archimedean copula

26 J Intell Inf Syst (2016) 46:21–59

Fig. 1 Tree-like structure of a
3-FNAC

d − 1 nesting levels. Otherwise, C is a partially-nested hierarchical Archimedean copula
(PHAC)2.

Remark 1 We denote a d-dimensional HAC as d-HAC, and analogously d-FHAC and d-
PHAC.

From the definition, we can see that ACs are special cases of HACs. The most simple
proper 3-HAC is a two-level FHAC given by

C(u;ψ1, ψ2) = C(u1, C(u2, u3;ψ2);ψ1)

= ψ1(ψ
−1
1 (u1) + ψ−1

1 (ψ2(ψ
−1
2 (u2) + ψ−1

2 (u3)))), u ∈ I
3. (4)

and its structure can be represented via a tree-like graph; see Fig. 1.
Assume that a random vector (U1, U2, U3) is distributed according to the 3-

FHAC given by (4), i.e., (U1, U2, U3) ∼ C(u;ψ1, ψ2). Then C(u1, u2, 1;ψ1, ψ2) =
C(u1, u2;ψ1), C(u1, 1, u3; ψ1, ψ2) = C(u1, u3; ψ1) and C(1, u2, u3; ψ1, ψ2) =
C(u2, u3;ψ2) for all u1, u2, u3 ∈ I. This means that this 3-FHAC involves two different
bivariate marginal copulas, the 2-AC based on ψ1, which is the distribution of the pairs
(U1, U2) and (U1, U3), and the 2-AC based on ψ2, which is the distribution of the pair
(U2, U3). The asymmetry of this 3-HAC is a motivating example for nesting of ACs. The
theoretical soundness of nesting is addressed in Theorem 2.

As in the case of ACs, we can ask for sufficient conditions for the function C given by
(3) to be a proper copula. An answer to this question is provided by the following theorem.
Note that another important result concerning stochastic representation of HACs is provided
by Theorem 3.2 in Hofert (2012).

Theorem 2 (McNeil 2008) If ψj ∈ �∞, j ∈ {1, ..., d − 1} such that ψ−1
k ◦ ψk+1 have

completely monotone derivatives for all k ∈ {1, ..., d −2}, then C(u;ψ1, ..., ψd−1), u ∈ I
d ,

given by (3) is a copula.

Theorem 2 is stated only for fully-nested HACs, but it can be easily translated to partially-
nested HACs. The condition for (ψ−1

k ◦ ψk+1)
′ to be completely monotone is often called a

sufficient nesting condition.

2also called partially-nested Archimedean copula

J Intell Inf Syst (2016) 46:21–59 27

Any d-HAC structure can be expressed as a tree with k ≤ d − 1 non-leaf nodes (shortly,
nodes), which correspond to the generators ψ1, ..., ψk , and d leaves, which correspond to
the variables u1, ..., ud . If the structure corresponds to a binary tree, then k = d − 1, oth-
erwise k < d − 1. For the sake of simplicity, we assume only binary-structured HACs in
the following. A binary-structured HAC is a HAC with the structure which corresponds to
a binary tree and for each parent-child pair of generators (ψi, ψj) in the structure holds that
ψi �= ψj .

Similar to any 2-AC being determined by its corresponding generator, we identify each
node in a HAC structure with one generator. Thus we always have the nodes ψ1, ...,ψd−1.
For a node ψ , denote by D(ψ) the set of all descendant non-leaf nodes of ψ , Dl the set of
all descendant leaves of ψ,A(ψ) the set of all ancestor nodes of ψ,Hl (ψ) the left child of
ψ and Hr (ψ) the right child of ψ . Next, let z be a non-leaf node or a leaf, and, assuming z

is not the root of the structure, denote by P(z) the parent node of z.
For simplicity, a d-HAC structure s is denoted by a sequence of reordered indices

{1, ..., d} using parentheses to mark the variables with the same parent node. For exam-
ple, the structure of the copula given by (4) is denoted as (1(23)). The inner pair of
parentheses corresponds to the variables u2, u3, for which P(u2) = P(u3) = ψ2. As
u2, u3 are connected through their parent, we can introduce a new variable denoted by
z23, which represents the variables u2, u3 and is defined by z23 = C(u2, u3; ψ2). Then
(4) translates to ψ1(ψ

−1
1 (u1) + ψ−1

1 (z23)) = C(u1, z23;ψ1), and thus the outer pair of
parenthesis in the notation of the structure corresponds to the variables u1, z23, for which
P(u1) = P(z23) = ψ1. The structure of the 4-FHAC according to Definition 4 is there-
fore s = (1(2(34))), for the 5-FHAC, s = (1(2(3(45)))), etc. Analogously, for PHACs,
s = ((12)(3(45))) and s = (1((23)(45))) denote the structures depicted on the left-hand
and on the right-hand side in Fig. 2, respectively.

When using HACs in applications, there exist many possible structures, for example for
d = 10, more than 280 millions structures exist (including also non-binary ones) and each
10-HAC can incorporate up to 9 parameters (using only one-parametric generators, possibly
from different families). On the one hand, choosing the model (structure and parameters)
that fits the data best is a much more complex relative to the case when using ACs which
have just one structure. On the other hand, this complexity is compensated by a substantially
higher flexibility of obtained models. Due to the asymmetry in HAC-based models (differ-
ent dependencies in pairs of variables are allowed), these models fit most data better than
AC models, which is illustrated by the experimental results presented below in Section 5.
There, different copula-based Bayesian classifiers are evaluated in terms of accuracy and,

Fig. 2 Two 5-PHAC structures denoted by ((12)(3(45))) and (1((23)(45))) are depicted on the left and on
the right side, respectively

28 J Intell Inf Syst (2016) 46:21–59

due to the flexibility of HAC models, the Bayesian classifiers based on HACs mostly score
higher than the Bayesian classifiers based on ACs .

To derive an explicit parametric form a d-HAC C, we need explicit parametric forms for
the generators ψ1, ..., ψd−1, which involve the parameters θ1, ..., θd−1, respectively, and its
structure s. Due to this, the copula C is also denoted by Cψ,θ;s (u1, ..., ud) in what follows.
For example, the 3-HAC given by (4) can be denoted by Cψ1,ψ2,θ1,θ2;(1(23)) and its paramet-
ric form, assuming, e.g., both of its generators ψ1, ψ2 to be Clayton generators, is given
by

Cψ1,ψ2,θ1,θ2;(1(23))(u1, u2, u3) =
(((

u
−θ2
2 + u

−θ2
3 − 1

)− 1
θ2

)−θ1

+ u
−θ1
1 − 1

)− 1
θ1

. (5)

2.4 Kendall’s tau and an extension to more than two dimensions

Let (X1, Y1) and (X2, Y2) be independent copies of a random vector (X, Y). Then the pop-
ulation version of Kendall’s tau is defined as the probability of concordance minus the
probability of discordance, i.e.,

τ = τXY = P((X1 − X2)(Y1 − Y2) > 0) − P((X1 − X2)(Y1 − Y2) < 0). (6)

It can be shown, see, e.g., (Genest and Favre 2007), that

τ(C) = 4
∫
I2

C(u1, u2)dC(u1, u2) − 1, (7)

so τ depends only on the copula of (X, Y). If C is a 2-AC based on a twice continuously dif-
ferentiable generator ψ with ψ(t) > 0 for all t ∈ [0,∞), Kendall’s tau can be represented
as Joe (1997)[p.91], Nelsen (2006)[p. 163]

τ(ψ) = τ(C(·;ψ)) = 1 − 4
∫ ∞

0
t (ψ ′(t))2dt = 1 − 4

∫ 1

0

ψ−1(t)

(ψ−1)′(t)
dt. (8)

Hence, (8) states a relationship between θ and τ , which can often be expressed in closed
form. For example, if C is a Clayton copula, see Table 1, we get τ = θ/(θ + 2) (the
relationship between θ and τ for other generators can be found, e.g., in Hofert (2010b)).
The inversion of this relationship establishes a method-of-moments-like estimator of the
parameter θ given by θ̂n = τ−1(τn), based on the empirical version τn of τ , given by

τn = 4

n(n − 1)

⎛
⎝ n∑

i=1,j=1

1{(ui1−uj1)(ui2−uj2)>0}

⎞
⎠ − 1, (9)

where (u•1, u•2) denotes a realization of n independent and identically distributed (i.i.d)
copies of (U1, U2) ∼ C; see Genest and Rivest (1993). Since we do not observe realizations
from C directly, note that τ can be computed based on the realizations of (X,Y). If τ(θ̂n) =
τn has no solution, this estimation method does not lead to an estimator. Unless there is an
explicit form for τ−1, θ̂n is computed by numerical root finding Hofert et al. (2013).

This estimation method can also be generalized to ACs when d > 2, see Berg (2009),
Hofert et al. (2013), Kojadinovic and Yan (2010b), and Savu and Trede (2010). One of
the methods proposed in Berg (2009) and Savu and Trede (2010) uses a sample version
of the Kendall correlation matrix. Denote by (τij) = (τXi,Xj

)ij the population version
of the Kendall correlation matrix for continuous random variables X1, ..., Xd . Note that
(τXi,Xj

)ij = (τUi,Uj
)ij , where F1(X1) = U1, ..., Fd(Xd) = Ud . Similarly, denote the

J Intell Inf Syst (2016) 46:21–59 29

sample version of Kendall correlation matrix by (τn
ij), where τn

ij denotes the sample version
of Kendall’s tau between the i-th and j -th data column. Then θ is estimated by

θ̂n = τ−1

⎛
⎝(

d

2

)−1 ∑
1≤i≤j≤d

τn
ij

⎞
⎠ . (10)

As can be seen, the parameter is chosen such that the value of Kendall’s tau equals the aver-
age over all pairwise sample versions of Kendall’s tau. Properties of this estimator are not
known and also not easy to derive since the average is taken over dependent data columns
(Kojadinovic and Yan 2010a). However, simulations conducted in Hofert et al. (2013) sug-

gest consistency of this estimator. Moreover,

(
d

2

)−1 ∑
1≤i≤j≤dτn

ij is an unbiased estimator

of τ(θ). This is an important property and we transfer it later to an estimator that we use
for the structure determination which we base on appropriately selected pairwise sample
versions of Kendall’s tau.

For applying this generalized estimation approach to HACs, we define a generalization
of τ for m (possibly > 2) random variables (r.v.s) based on the following notation. Let
I, J ⊂ {1, ..., d}, I �= ∅, J �= ∅, (U1, ..., Ud) ∼ C and C be a d-HAC. Denote a set of
pairs of r.v.s by UIJ = {(Ui, Uj)|(i, j) ∈ I × J } and a set of pairs of data columns by
uIJ = {(u•i , u•j)|(i, j) ∈ I × J }, where u•i , u•j denotes realizations of (Ui, Uj).

Definition 5 Any function g : Ik → I, k ∈ N, satisfying 1) g(u, ..., u) = u for all u ∈ I and
2) g(up1, ..., upk

) = g(u1, ..., uk) for all u1, ..., uk ∈ I and all permutations (p1, ..., pk) of
(1, ..., k) is called an I-aggregation function.

Examples of I-aggregation functions are the functions max, min or mean restricted to I
k .

Definition 6 Let g be an I-aggregation function. Then define a g-aggregated Kendall’s tau
(or simply an aggregated Kendall’s tau) τg as

τg(UIJ) =
{

τ(Ui, Uj), if I = {i}, J = {j },
g(τ(Ui1 , Uj1), τ(Ui1 , Uj2), ..., τ(Uil , Ujq)), otherwise,

(11)

where I = {i1, ..., il}, J = {j1, ..., jq} are non-empty disjoint subsets of {1, ..., d}.

Note that the sets I and J are assumed to be disjoint because we are interested only in
the values of Kendall’s tau for bivariate margins of a HAC. For example, if I = {1, 2} and
J = {2, 3}, then τg(UIJ) would involve τ(U2, U2), which is not related to any bivariate
margin of a HAC.

As the aggregated τg depends only on the pairwise τ and the aggregation function g, we
can easily derive its empirical version τ

g
n by substituting τ in τg by its empirical version

τn given by (9). Analogously to the case of ACs, the parameter can then be estimated as
θ̂n = τ−1(τ

g
n). This is further explained in Remark 3 of Section 3.1.

2.5 Goodness-of-fit tests

Assume i.i.d. random vectors Xi = (Xi1, ..., Xid), i ∈ {1, ..., n}, distributed according
to a joint distribution function H with continuous margins Fj , j ∈ {1, ..., d}, and the
binary-structured HAC C generated by one-parametric generators ψ1, ...,ψd−1. All gener-
ators ψ1, ..., ψd−1 are assumed to belong to a one-parametric family of generators (e.g., to
one of the families listed in Table 1) and their parameters are denoted by θ1, ..., θd−1.

30 J Intell Inf Syst (2016) 46:21–59

Once we have the parameters estimated, we can ask how well our fitted model fits the
data. This can be done using methods known as goodness-of-fit tests (GoF tests). In the
following, we recall three GoF tests based on statistics that are analogues to Cramér-von
Mises statistics (Cramér 1928). A large value of such statistics leads to the rejection of
H0 : C ∈ C0, where C0 = {Cθ : θ ∈ O} and O is an open subset of Rp, p ≥ 1. Thus for
measuring the fitting quality of copula models, we can, informally, assess copula models
with lower value of such statistics as “better”.

Now consider that, if the margins Fj , j ∈ {1, ..., d}, are known, Uij = Fj (Xij), i ∈
{1, ..., n}, j ∈ {1, ..., d}, is a random sample from C. In practice, the margins are typically
unknown and must be estimated parametrically or non-parametrically. In the following, we
will work under unknown margins and thus we consider the pseudo-observations

Uij = n

n + 1
F̂n,j (Xij) = Rij

n + 1
(12)

where F̂n,j denotes the empirical distribution function corresponding to the j th margin and
Rij denotes the rank of Xij among X1j , ..., Xnj . The information contained in pseudo-
observations is conveniently summarized by the associated empirical distribution given by

Cn(u) = 1

n

n∑
i=1

1{Ui1≤u1,...,Uid≤ud }, (13)

where u = (u1, ..., ud) ∈ I
d . This distribution is usually called “empirical copula”, though

it is not a copula except asymptotically (Genest et al. 2009).
The first GoF test is based on the empirical process

Cn = √
n(Cn − Cθn), (14)

and uses a rank-based version of the Cramér-von Mises statistics

Sn =
∫
Id

Cn(u)2dCn(u) =
n∑

i=1

(Cn(ui) − Cθn(ui))
2. (15)

Large values of this statistic lead to the rejection of H0 : C ∈ C0. It is shown in Genest
and Rémillard (2008) that the test is consistent, i.e., if C /∈ C0, then H0 is rejected with
probability approaching 1 as n → ∞. Appropriate p-values can be obtained via specially
adapted Monte Carlo methods described in Genest et al. (2009).

The second GoF test, proposed in Genest and Favre (2007), uses a probability integral
transformation of the data, the so-called Kendall’s transform

X �→ V = H(X) = C(U1, ...,Ud), (16)

where (U1, ..., Ud) ∼ C; see (Genest et al. 2009). Let K denote the univariate d.f. of V

and U1, ..., Un the pseudo-observations Ui = (
Ri1
n+1 , ...,

Rid

n+1), i ∈ {1, .., n}. Then K can be
estimated nonparametrically by the empirical distribution function of a rescaled version of
the pseudo-observations V1 = Cn(U1), ..., Vn = Cn(Un) given by

Kn(v) = 1

n

n∑
i=1

1{Vi≤v}, v ∈ I, (17)

which is a consistent estimator of the underlying distribution K. Under H0, U =
(U1, ..., Ud) is distributed as Cθ for some θ ∈ O and hence Cθ(U) ∼ Kθ . One can then test

H ′
0 : K ∈ K0 = {Kθ : θ ∈ O} (18)

J Intell Inf Syst (2016) 46:21–59 31

based on Kn = √
n(Kn−Kθn), where Kθn denotes the distribution function of Cθn(U). Gen-

erally, because H0 ⊂ H ′
0 the nonrejection of H ′

0 does not entail the nonrejection of H0 and
consequently, the consistency of the above tests using (14) does not imply the consistency
of the tests using Kn = √

n(Kn − Kθn). But, in the case of bivariate ACs, H ′
0 and H0 are

equivalent; see Genest et al. (2009). As we are mainly interested in 2-ACs as building blocks
of HACs, this test is thus convenient for our purposes. The specific statistic considered in
Genest and Favre (2007) is a rank-based analogue of the Cramér-von Mises statistic

S(K)
n =

∫
I

Kn(v)2dKθn . (19)

This statistic can be easily computed as follows (Genest and Favre 2007):

S(K)
n = n

3 + n
n−1∑
j=1

K2
n

(
j
n

) {
Kθn

(
j+1
n

)
− Kθn

(
j
n

)}

−n
n−1∑
j=1

Kn

(
j
n

){
K2

θn

(
j+1
n

)
− K2

θn

(
j
n

)}
. (20)

The third GoF test (proposed in Genest et al. (2009)) is based on another probability inte-
gral transform - namely on the Rosenblatt’s transform, which is a mapping Rθ : (0, 1)d →
(0, 1)d such that e1 = u1 and for each j = 2, ..., d ,

ej = ∂j−1Cθ(u1, ..., uj , 1, ..., 1)

∂u1...uj−1

/
∂j−1Cθ (u1, ..., uj−1, 1, ..., 1)

∂u1...uj−1
. (21)

A crucial property of Rosenblatt’s transform is that U ∼ Cθ if and only if the distribution
of Rθ (Cθ) is the d-variate independence copulaC�(u) = u1u2...ud ; see, e.g., (Genest et al.
2009). Thus for all θ ∈ O, H0 : Cθ ∈ C0 is equivalent to H ′′

0 : Rθ (U) ∼ C�.
To test H ′′

0 , we can therefore use the fact that under H0, the transformed pseudo-
observations E1 = Rθ (U1), ..., En = Rθ (Un), can be interpreted as a sample from the
independence copula C�. Defining the empirical distribution function on E1, ..., En as

Dn(u) = 1

n

n∑
i=1

1{Ei≤u}, u ∈ I
d , (22)

it should be close to CΠ under H0. Cramér-von Mises statistics based on Rosenblatt’s
transformation are given by

S(C)
n = n

∫
Id

(Dn(u) − C�(u))2dDn(u) =
n∑

i=1

{Dn(Ei) − C�(Ei)}2; (23)

see Genest et al. (2009). All three test statistics performed well in a large scale simulation
study conducted at Genest et al. (2009) in the bivariate case. We choose them as good
candidates for our purpose of goodness-of-fit testing.

We now introduce a g-aggregated statistic that will be used for the GoF assessment of
d-HAC estimates in Section 4.

Definition 7 Let C be a d-HAC, g be an I-aggregation function and 2Sn((u•i, u•j),
C2(·;ψ)) be the statistic corresponding to a GoF test, e.g., Sn, S

(K)
n or S

(C)
n , for a bivari-

32 J Intell Inf Syst (2016) 46:21–59

ate copula C2(u1, u2;ψ) and a pair of data columns (u•i , u•j). A g-aggregated statistics
2S

g
n is

2S
g
n (u•1, ..., u•d, C) = g (2Sn((u•1, u•2),C12), 2Sn((u•1, u•3), C13), ...,

2Sn((u•1, u•d), C1d), 2Sn((u•2, u•3),C23), ...,

2Sn((u•2, u•d), C2d), ..., 2Sn((u•d−1, u•d), C(d−1)d)
)
, (24)

where Cij , 1 ≤ i < j ≤ d , are the bivariate marginal copulas of C.

We employ g-aggregated statistics in order to simplify the computation of S
(K)
n and S

(C)
n

for d > 2. Considering the S
(K)
n statistic, the main difficulty in its computation consists

in expressing Kθn . For d = 2, given a 2-AC C(·;ψθn), where ψθn denotes a genera-
tor with a parameter θn, Kθn is the bivariate probability integral transform, which can be

easily computed as Kθn(t) = t − ψ−1
θn

(t)

(ψ−1
θn

)′(t) ; see Genest and Rivest (1993). However, for

d > 2 and particularly for HACs, the complexity of Kθn dramatically increases. In Okhrin
et al. (2013b), its computation is addressed for HACs, however, the authors restrict only
to FNACs, which rarely occurs in our experiments, and, even for FHACs the obtained for-
mulas involve multivariate integration that substantially increases the complexity of their
application.

Considering the statistic S
(C)
n , the main difficulty in its computation consists in express-

ing ej , for j = 2, ..., d , given by (21). Observe that ed includes d − 1 partial derivatives
of Cθ , thus its complexity quickly grows in d and the time consumption of its computation
exceeds reasonable limits already for d = 6, particularly for families with a more complex
generator, e.g., for the Frank family. Using g-aggregated statistics, computations for d > 2
are substantially simplified.

2.6 Okhrin’s algorithm for the structure determination of HAC

We recall the algorithm presented in Okhrin et al. (2013b) for the structure determination of
HACs, which returns the structure for some unknown HAC C using only the known forms
of its bivariate margins. The algorithm uses the following definition.

Definition 8 Let C be a d-HAC with generators ψ1, ...,ψd−1 and (U1, ..., Ud) ∼ C. Define
UC(ψk) = {i ∈ {1, ..., d} | there exists j ∈ {i + 1, ..., d} such that (Ui, Uj) ∼ C(·;ψk)

}
,

k = 1, ..., d − 1.

Note that (Uj ,Ui) ∼ C(·;ψk) if and only if (Ui, Uj) ∼ C(·;ψk).

Proposition 1 (Górecki and Holeňa 2013) Defining UC(ui) = {i} for the leaf ui, 1 ≤ i ≤
d , there is a unique disjoint decomposition of UC(ψk) given by

UC(ψk) = UC(Hl (ψk)) ∪ UC(Hr (ψk)). (25)

For an unknown d-HAC C with all bivariate margins known, its structure can be easily
determined using Algorithm 1. We start from the sets UC(u1), ...,UC(ud) joining them
together through (25) until we reach the node ψ for which UC(ψ) = {1, ..., d}.

J Intell Inf Syst (2016) 46:21–59 33

2.7 Example

We illustrate Algorithm 1 for a 5-HAC given by C(C(u1, u2; ψ2), C(u3, C(u4, u5;ψ4);
ψ3);ψ1) = Cψ1,...,ψ4;((12)(3(45)))(u1, ..., u5). The structure of this copula is depicted on the
left side in Fig. 2 and its bivariate margins are:

(U1, U2) ∼ C(·;ψ2), (U1, U3) ∼ C(·;ψ1), (U1, U4) ∼ C(·;ψ1),

(U1, U5) ∼ C(·;ψ1), (U2, U3) ∼ C(·;ψ1), (U2, U4) ∼ C(·;ψ1),

(U2, U5) ∼ C(·;ψ1), (U3, U4) ∼ C(·;ψ3), (U3, U5) ∼ C(·;ψ3),

(U4, U5) ∼ C(·;ψ4).

Now assume that the structure is unknown and only the bivariate margins are known. We
see that UC(ψ1) = {1, 2, 3, 4, 5}, UC(ψ2) = {1, 2}, UC(ψ3) = {3, 4, 5},UC (ψ4) = {4, 5}.
For the leaves u1, ..., u5, we have UC(ui) = {i}, i = 1, ..., 5. In Step 1 of Algorithm 1,
there are two minima: k = 2 and k = 4. We arbitrarily choose k = 4. As UC(ψ4) =
UC(u4) ∪ UC(u5), we set Hl (ψ4) := u4 and Hr (ψ4) := u5 in Step 3. In Step 4, we
set I = {1, 2, 3, 5}. In the second loop, k = 2. As UC(ψ2) = UC(u1) ∪ UC(u2), we
set Hl (ψ2) := u1 and Hr (ψ2) := u2 in Step 3. In the third loop, we have k = 3. As
UC(ψ3) = UC(u3) ∪ UC(ψ4), we set Hl (ψ3) := u3 and Hr (ψ3) := ψ4 in Step 3. In the
last loop, we have k = 1. As UC(ψ1) = UC(ψ2) ∪ UC(ψ3), we set Hl (ψ1) := ψ2 and
Hr (ψ1) := ψ3 in Step 3. Observing the original copula form and Fig. 2, we see that we
have determined the correct structure, which is stored in Hl (ψk),Hr (ψk), k = 1, ..., 4.

3 Our approach

3.1 HAC structure determination based on Kendall’s tau

According to Theorem 2, our goal is to build the HAC such that the sufficient nesting condi-
tion is satisfied for each generator and its parent in a HAC structure. The sufficient nesting
condition typically results in constraints on the parameters θ1, θ2 of the involved generators
ψ1, ψ2; see, e.g., Table 1 or Hofert (2011). As θi, i = 1, 2 is related to τ through (8), there is
also an important relationship between the values of τ and the HAC tree structure following
from the sufficient nesting condition. This relationship is described for the fully-nested 3-
HAC (4) in Remark 2.3.2 in Hofert (2010b). There, it is shown that if the sufficient nesting

34 J Intell Inf Syst (2016) 46:21–59

condition holds for the parent-child pair (ψ1, ψ2), then 0 ≤ τ(ψ1) ≤ τ(ψ2). We generalize
this statement as follows.

Proposition 2 Let C be a d-HAC with the structure s and the generators ψ1, ...,ψd−1,
where each parent-child pair satisfies the sufficient nesting condition. Then τ(ψi) ≤
τ(ψj), where ψj ∈ D(ψi), holds for each ψi, i = 1, ..., d − 1.

Proof As ψj ∈ D(ψi), there exists a unique sequence ψk1 , ..., ψkl
, where 1 ≤ km ≤

d − 1, m = 1, ..., l, l ≤ d − 1, ψk1 = ψi, ψkl
= ψj and ψk−1 = P(ψk) for k = 2, ..., l.

Applying the above mentioned remark for each pair (ψk−1, ψk), k = 2, ..., l, we get
τ(ψk1) ≤ ... ≤ τ(ψkl

).

Thus, having a branch from s, all its nodes are uniquely ordered according to their value
of τ assuming unequal values of τ for all parent-child pairs. This provides an alternative
algorithm for determining the structure of a HAC. We assign generators with the highest
values of τ to the lowest levels of the branches in the structure. Ascending higher up in the
tree we assign generators with lower values of τ . Now consider the following definition and
proposition.

Definition 9 Let C be a d-HAC and ui, uj are two different leaves from the structure of the
d-HAC. Then we call youngest common ancestor of ui, uj (denoted Ay(ui, uj)) the node
ψ , for which (ψ ∈ A(ui) ∩ A(uj)) ∧ (A(ui) ∩ A(uj) ∩ D(ψ) = ∅).

Remark 2 Let ψ be a generator from a d-HAC structure, ui ∈ Dl (Hl (ψ)) and
uj ∈ Dl (Hr (ψ)). Then Ay(ui, uj) = ψ .

Note that due to clear correspondence of the variables in a d-HAC and the leaves in the
structure of the same d-HAC, both the variables and the leaves are denoted by the same
u1, . . . , ud . This can be made without a worry to confuse the reader.

Proposition 3 Let C be a d-HAC with the structure s with generators ψ1, ...,ψd−1. Then

C(1, ..., 1, ui, 1, ..., 1, uj , 1, ..., 1) = C(ui, uj ;Ay(ui, uj)), 1 ≤ i < j ≤ d. (26)

Proof The proof is leaded by induction. Let d = 2. Then C(u1, u2) = C(u1, u2;ψ1), i.e.,
the leaves u1 and u2 are the children of ψ1. It implies that (ψ1 ∈ A(u1)∩A(u2))∧(A(u1)∩
A(u2) ∩ D(ψ1) = ∅) and thus ψ1 = Ay(u1, u2) according to Definition 9.

Assume d ≥ 3 and that (26) holds for d − 1, d − 2, ..., 3. Start denoting the root
node of s as ψm. The bivariate marginal copula of C corresponding to variables ui, uj is
C(1, ..., 1, ui, 1, ..., 1, uj , 1, ..., 1;ψ1, ..., ψd−1). To simplify notation, we show in each
involved inner HAC only the generator corresponding to the highest node in its structure.
Thus, for the bivariate marginal copula, we simplify its notation to C(1, ..., 1, ui, 1, ..., 1,

uj , 1, ..., 1; ..., ψm, ...). Note that C(1, ..., 1) = 1 and C(1, ..., 1, u, 1, ..., 1) = u, u ∈ I for
an arbitrary copula C.

If Hl (ψm) = uk, k = 1, ..., d , we just formally define ψl = uk and C(·;ψl) = uk . If
Hr (ψm) = uk, k = 1, ..., d , we also just formally define ψr = uk and C(·;ψr) = uk .
Although neither C(·;ψl) nor C(·;ψr) are copulas, this will simplify the notation used in

J Intell Inf Syst (2016) 46:21–59 35

the proof. In other case, we set ψl = Hl (ψm),ψr = Hr (ψm). Now, we distinguish the three
following situations:

1. If ui ∈ Dl (ψl) and uj ∈ Dl (ψr), then C(C(1, ..., 1, ui, 1, ..., 1; ..., ψl, ...),

C(1, ..., 1, uj , 1, ..., 1; ...,ψr, ...);ψm) = C(ui, uj ; ψm). As ψm = Ay(ui, uj)

(Remark 2), the statement holds.
2. If {ui, uj } ⊂ Dl (ψl), then C(C(1, ..., 1, ui, 1, ..., 1, uj , 1, ..., 1; ..., ψl, ...),

C(1, ..., 1; ..., ψr, ...);ψm) = C(1, ..., 1, ui, 1, ..., 1, uj , 1, ..., 1; ..., ψl, ...). Since
the tree rooted in ψl has less leaves than the tree rooted in ψm, for
C(1, ..., 1, ui, 1, ..., 1, uj , 1, ..., 1; ...,ψl, ...) we already know that (26) holds, thus it
holds also for C(1, ..., 1, ui, 1, ..., 1, uj , 1, ..., 1; ..., ψm, ...).

3. If {ui, uj } ⊂ Dl (ψr), then C(C(1, ..., 1; ..., ψl, ...),C(1, ..., 1, ui ,

1, ..., 1, uj , 1, ..., 1; ...,ψr, ...);ψm) = C(1, ..., 1, ui, 1, ..., 1, uj , 1, ..., 1; ..., ψr, ...).
Since the tree rooted in ψr has less leaves than the tree rooted in ψm, for
C(1, ..., 1, ui, 1, ..., 1, uj , 1, ..., 1; ...,ψr, ...) we already know that (26) holds, thus it
holds also for C(1, ..., 1, ui, 1, ..., 1, uj , 1, ..., 1; ..., ψm, ...).

Thus (Ui, Uj) is distributed according to the 2-AC C(·;Ay(ui, uj)) for all i, j ∈
{1, ..., d}, i �= j . This fact allows to prove the following proposition.

Proposition 4 Let C be a d-HAC with the generators ψ1, ...,ψd−1, (U1, ..., Ud) ∼ C and
(τij) be the population version of the Kendall correlation matrix of (U1, ..., Ud). Then, given
k ∈ {1, ..., d − 1},

τ(ψk) = τij (27)

for all (ui, uj) ∈ Dl (Hl (ψk)) × Dl (Hr (ψk)).

Proof Recall that τij = τUi ,Uj
and τ(ψk) = τ(C(·;ψk)) by definition and let k ∈

{1, ..., d − 1} and (ui, uj) ∈ Dl (Hl (ψk)) × Dl (Hr (ψk)). Using Proposition 3, it implies
(Ui, Uj) ∼ C(·;Ay(ui, uj)). As ψk = Ay(ui, uj) according to Remark 2, it follows that
(Ui, Uj) ∼ C(·;ψk). Hence, τUi,Uj

= τ(C(·;ψk)).

Remark 3 It holds that τ(ψk) = τg(UDl (Hl (ψk))×Dl (Hr (ψk))) for a d-HAC C and for each
k = 1, ..., d − 1. This is because, given k ∈ {1, ..., d − 1}, the values of τij for (ui, uj) ∈
Dl (Hl(ψk)) × Dl (Hr (ψk)) are all equal to τ(ψk), see Proposition 4, and g(u, ..., u) = u

for all u ∈ I.

Computing τ(ψk), k = 1, ..., d − 1, according to Remark 3 and using Proposition 2
leads to an alternative algorithm for HAC structure determination; see Algorithm 2. This
algorithm can be used for arbitrary d > 2 (see Górecki and Holeňa (2013) for more details
including an example for d = 4). It returns the sets UC(ψk), k = 1, ..., d − 1. Passing them
to Algorithm 1, we avoid the computation of UC(ψk), k = 1, ..., d − 1 in Definition 8 and
we get the requested d-HAC structure without having to know the forms of the bivariate
margins. Assuming a parametric family for each ψk , the θ − τ relationship for the given
family can be used to obtain the parameters, i.e., θk = τ−1

θ (τ(ψk)), k = 1, ..., d − 1, where
τ−1
θ denotes this θ − τ relationship, e.g., for the Clayton family τ−1

θ (τ) = 2τ/(1 − τ).
In other words, assuming (U1, ..., Ud) ∼ C, where C is a d-HAC with one-parametric
generators ψ1, ..., ψd−1 from the same family, if C is unknown but the population version

36 J Intell Inf Syst (2016) 46:21–59

of the Kendall correlation matrix (τij) is known, both structure and parameters of C can be
obtained from (τij) using Algorithms 1 and 2. Based on the empirical version of the Kendall
correlation matrix, we thus obtain the following approach for both determining the structure
and estimating parameters of C.

3.2 Structure determination and parameter estimation of a HAC

Using τ
g
n instead of τg , we can easily derive a new approach for structure determination and

parameter estimation of a HAC from Algorithms 1 and 2. The approach is summarized in
Algorithm 3. The algorithm returns the parameters θ̂1, ..., θ̂d−1 of the estimate Ĉ and the sets
U

Ĉ
(ψk), k = 1, ..., d − 1. Passing the sets to Algorithm 1, we get the requested Ĉ structure.
From Algorithm 3, the reader can see our motivation for basing the estimation process

on Kendall’s tau. Firstly, the matrix (τn
ij) is computed in order to determine the structure

of a HAC. Then, the computed values of (τn
ij) are reused for the estimation of the param-

eters. The latter can be done effectively as the function τ−1 is known in closed form for
many Archimedean families, e.g., for the Clayton and Gumbel families listed in Table 1, cf.
(Hofert 2011). As we will see in Section 4, the estimator is comparably fast to compute, at
least if d is not too large. Theoretically, Spearman’s rho or Blomqvist’s beta could be con-
sidered for this task as well despite the fact that these rank correlation measures are much
less popular in this domain. It is also known that Kendall’s tau works well in comparison to
Blomqvist’s beta; see Hofert et al. (2013).

If g is set to be the average function then τ
avg
n (θk) = g((τn

ĩj̃
)
(ĩ,j̃)∈U

Ĉ
(zi)×U

Ĉ
(zj)

) (i, j are

the indices found in Step 1 of Algorithm 1) is an unbiased estimator of τ(θk), and thus the
structure determination is based only on unbiased estimators, which is another favorable
property of the proposed method. Note that recently an approach allowing for consistent
estimation of all parameters of a HAC been published (Górecki et al. 2014). Its comparison
with the approach presented here is a topic of future research.

In order to fulfill the sufficient nesting condition, the parameter θ̃d+k is trimmed in Step
3 in order to obtain a proper d-HAC. Note that one can allow the generators to be from
different Archimedean families. However, this case is more complex and we do not address
it in this paper; see Hofert (2010a) and Hofert (2010b).

Note that Algorithm 3 is a variation of the algorithm for agglomerative hierarchical clus-
tering (AHC) (Clarke et al. 2009, p.414). Defining δij = 1 − τn

ij , δij is a commonly used

J Intell Inf Syst (2016) 46:21–59 37

distance between the random variables Ui, Uj . Setting g to be the aggregation function min-
imum, average or maximum, the algorithm results in complete-linkage, average-linkage or
single-linkage AHC, respectively (Clarke et al. 2009, p. 414). As many types of statistical
software include an implementation of AHC, the implementation of the proposed algorithm
is straightforward. Moreover, adding the dendrogram obtained during AHC simplifies the
interpretation of the estimator; see Fig. 8 in Section 5.

4 Experiments on simulated data

4.1 Design of the performed experiments

In this section, we compare our methods for HAC estimation based on Algorithm 3 with
several methods presented in Okhrin et al. (2013a), which are implemented in R, see Okhrin
and Ristig (2014). As we are interested in binary structured HACs, we choose for the com-
parison the methods θbin, θRML, τbin, which return binary structured HAC estimates as their
results (note that the θRML method also allows for non-binary structured HACs estimation).
The first two methods are based on the ML estimation technique, whereas the third method
is based on the θ − τ relationship. Our methods are denoted by τmin

bin , τmax
bin and τ

avg
bin , i.e.,

the involved function g, see Algorithm 3, is selected to be the minimum, maximum and
average, respectively. The first two functions are selected as they represent “extremes” of
I-aggregation functions. The last function is selected due to the reasons mentioned in Sec-
tion 3.2, i.e., if g is the average function, the structure determination is based on unbiased
estimates of τ(θk), k = 1, ..., d − 1.

The comparison is performed on simulated data for d ∈ {5, 6, 7, 9}. We selected the max-
imal dimension d = 9 for two reasons. The first reason is that the results for d > 9 do not
bring any surprising information about the differences among the considered methods. The
second reason is that, for d ≤ 9, the obtained structure estimate representations (described
in the following paragraph) involve single-digit numbers only, which allows for more

38 J Intell Inf Syst (2016) 46:21–59

concise notation. We simulated N = 1000 samples of size n = 500 according to Hofert (2011)
for 4 copula models based on Clayton generators. Our choice of the Clayton family of gener-
ators was due to the intended comparison of our method with the above-mentioned methods
that are implemented for the Gumbel and Clayton family of generators only. The Clayton
family of generators was chosen arbitrarily from these two after we have experimented with
both families and have found out that results for both of them are similar.

The first considered model is ((12) 3
4
(3(45) 4

4
) 3

4
) 2

4
. The natural numbers in the model

notation (as in (Okhrin et al. 2013a)) are the indexes of the copula variables, i.e.,
1,...5, the parentheses correspond to each UC(·) of individual copulas, i.e., UC(ψ1) =
{1, 2, 3, 4, 5},UC(ψ2) = {3, 4, 5},UC(ψ3) = {1, 2},UC(ψ4) = {4, 5}, and the sub-
scripts are the model parameters, i.e, (θ1, θ2, θ3, θ4) = (2

4 , 3
4 , 3

4 , 4
4). Note that the

indices of the 4 generators could be permuted arbitrarily, and our particular selection
of their ordering just serves for better illustration. The other 3 models are given with
analogously by (1((23) 5

4
(4(56) 6

4
) 5

4
) 4

4
) 2

4
, (1((23) 5

4
(4(5(67) 7

4
) 6

4
) 5

4
) 4

4
) 2

4
and ((1(2(34) 5

4
) 4

4
) 3

4

((56) 4
4
(7(89) 5

4
) 4

4
) 3

4
) 2

4
. The smallest difference between the parameters is set to 1

4 and the

values of the parameters are set in the way that the sufficient nesting condition is satisfied
for each parent-child pair of the generators. As we discovered while experimenting with
different parametrizations, a larger difference in the parameters could hide the impact of the
bias in most of the methods of Okhrin et al. (2013a) on the structure determination, and the
results obtained by different methods can be similar for those parametrizations. Smaller dif-
ferences than 1

4 were not necessary as setting them to 1
4 fully reveals the impact of the bias

and clearly shows the difference among the methods. This fact is illustrated in the following
subsection in the part where the methods are assessed in terms of ability to determine the
true copula structure.

4.2 Results of the experiments

The results for d ∈ {5, 6} are shown in Tables 2 and 4, where the first table concerns the
structures determined by the methods, whereas the second table concerns goodness-of-fit
of the HACs estimated by the methods and time consumption of the methods. Similarly, the
results for d ∈ {7, 9} are shown in Tables 3 and 5. Result for different models are separated
by double lines. Note that all experiments were performed on a PC with Intel Core 2.3 GHz
CPU and 4GB RAM. As θRML failed in most cases for d = 9 on the described hardware
configuration, the result of the method for this dimension is not presented.

The third column in Tables 2 and 3 shows the number of different estimated copula
structures (denoted #d.s.) in N = 1000 runs of the considered method. The value gives us
information on how much the resulting estimated structure varies for a given method and
model. The lower the value is, the more stable the structure determination can be considered.
For d = 5, 6, θbin and θRML show the strongest stability, whereas τbin shows the weakest
stability. For d = 7, the situation slightly changes and θbin and τbin clearly represent two
extremes – the first showing substantially stronger stability than the remaining methods
and the latter represents the opposite. As the dimension increases, we observe comparably
increasing stability for τ

avg
bin until it reaches the best stability for d = 9. In all considered

dimensions, we observe that τmax
bin shows slightly worse stability than τmin

bin and τ
avg
bin .

The next two columns in Tables 2 and 3 address the ability of the methods to deter-
mine the true copula structure. The fourth column shows the three most frequent structures
obtained by the method (if the true structure is not one of three the most frequent struc-
tures, then we add it in the fourth row corresponding to the method) with average parameter

J Intell Inf Syst (2016) 46:21–59 39

Table 2 The first part of the results for the copula models for d ∈ {5, 6}

d Method #d.s. Structure(s) %

5 θbin 9 (3((12)0.77(45)1.00)0.75)0.24 78.7

((12)0.68(3(45)1.03)0.73)0.68 19

(5((12)0.78(34)0.91)0.78)0.24 0.8

θRML 9 ((12)0.71(3(45)1.01)0.78)0.53 49.7

((45)1.00(3(12)0.80)0.72)0.62 47.1

(3((12)0.89(45)0.83)0.54)0.53 1.2

τbin 20 ((12)0.81(3(45)1.01)0.93)0.89 45.3

(1(2(3(45)1.02)0.93)0.78)0.86 22.2

(2(1(3(45)1.03)0.93)0.78)0.85 20.9

τmin
bin 11 ((12)0.76(3(45)1.01)0.70)0.41 92

((12)0.75(5(34)0.92)0.74)0.40 3.4

((12)0.75(4(35)0.90)0.75)0.40 2.8

τmax
bin 15 ((12)0.77(3(45)1.01)0.80)0.59 83.6

(1(2(3(45)1.06)0.82)0.66)0.61 3.9

((12)0.75(5(34)0.92)0.87)0.60 3.3

τ
avg
bin 11 ((12)0.76(3(45)1.01)0.75)0.50 91.3

((12)0.75(5(34)0.92)0.80)0.50 3.4

((12)0.75(4(35)0.90)0.80)0.50 2.8

6 θbin 14 (1(4((23)1.29(56)1.50)1.29)0.56)0.18 51.7

((14)0.57((23)1.25(56)1.49)1.25)0.57 24.2

(1((23)1.16(4(56)1.55)1.23)1.16)0.22 17.5

θRML 14 (1((56)1.50(4(23)1.30)1.21)1.08)0.51 47.3

(1((23)1.21(4(56)1.52)1.27)1.00)0.50 45

(1((23)1.22(5(46)1.39)1.31)1.01)0.50 2.2

τbin 26 (1(2(3(4(56)1.53)1.48)1.39)1.38)0.70 37.6

(1(3(2(4(56)1.54)1.50)1.41)1.40)0.70 36.7

(1((23)1.43(4(56)1.54)1.50)1.40)0.72 5.5

τmin
bin 21 (1((23)1.26(4(56)1.52)1.20)0.88)0.43 83.6

(1((23)1.24(5(46)1.38)1.19)0.85)0.41 5.8

(1((23)1.27(6(45)1.47)1.24)0.88)0.44 3.6

τmax
bin 22 (1((23)1.28(4(56)1.52)1.30)1.11)0.58 68.2

(1(2(3(4(56)1.52)1.31)1.16)1.12)0.57 7.4

(1(3(2(4(56)1.56)1.34)1.17)1.11)0.59 6.5

τ
avg
bin 21 (1((23)1.26(4(56)1.52)1.25)1.00)0.50 83.1

(1((23)1.24(5(46)1.38)1.25)0.98)0.49 5.7

(1((23)1.27(6(45)1.46)1.30)1.00)0.52 3.6

The columns contain: method denotation; total number of different estimated structures (#d.s); the 3 most
frequent estimated structures with average parameter values; frequency of the true structure in all estimated
structures (in %). The values corresponding to the true structure are in bold

values. The true structure is emphasized by bold text. The fifth column shows the frequency
of the true structure in all estimated structures. The methods τmin

bin and τ
avg
bin dominate in the

ability to determine the true copula structure in all four cases (d ∈ {5, 6, 7, 9}). The τmax
bin

40 J Intell Inf Syst (2016) 46:21–59

Table 3 The first part of the results for the copula models for d ∈ {7, 9}
d Method #d.s. Structure(s) %

7 θbin 10 (1((23)1.00((45)1.01(67)1.01)0.96)0.78)0.16 82.4

((1(23)1.06)0.75((45)0.99(67)0.99)0.94)0.75 9.7

(1((67)0.88((23)1.01(45)1.05)0.91)0.87)0.16 3.1

θRML 33 ((23)1.01(1((45)1.01(67)1.01)0.58)0.57)0.56 29.2

((67)1.00((23)1.08(1(45)0.93)0.77)0.63)0.63 16.7

((45)1.00((23)1.07(1(67)0.93)0.76)0.63)0.62 15.7

((1(23)0.77)0.53((45)1.01(67)1.02)0.77)0.53 0.2

τbin 97 ((1(23)1.01)0.96((45)1.06(67)1.05)1.00)1.03 13

(1((23)1.00((45)1.06(67)1.05)1.00)0.92)0.96 8.5

((1(23)1.00)0.95(4(5(67)1.05)0.99)0.99)1.03 8

τmin
bin 22 ((1(23)1.02)0.70((45)1.01(67)1.01)0.67)0.38 87.5

((3(12)0.91)0.73((45)0.97(67)0.98)0.64)0.36 3.5

((2(13)0.91)0.75((45)1.02(67)1.02)0.68)0.37 2.6

τmax
bin 38 ((1(23)1.02)0.80((45)1.01(67)1.01)0.83)0.63 72.5

((1(23)1.04)0.80(4(5(67)1.03)0.90)0.85)0.62 3.6

(1((23)1.00((45)1.05(67)1.04)0.86)0.72)0.68 3.4

τ
avg
bin 20 ((1(23)1.02)0.75((45)1.01(67)1.01)0.75)0.50 85.5

((3(12)0.91)0.80((45)0.99(67)0.98)0.74)0.49 3.3

((2(13)0.91)0.80((45)1.01(67)1.02)0.76)0.50 2.7

9 θbin 34 ((17)0.50((2(34)1.26)0.91((56)1.02(89)1.26)1.02)0.90)0.50 67.5

(1((2(34)1.25)0.87((56)0.96(7(89)1.28)1.00)0.95)0.87)0.13 9.4

(1((56)0.88((2(34)1.26)0.96(7(89)1.29)0.96)0.93)0.71)0.12 5.3

τbin 116 ((1(2(34)1.27)1.21)1.07(5(6(7(89)1.28)1.20)1.09)1.09)1.11 13.2

((1(2(34)1.29)1.22)1.07(6(5(7(89)1.28)1.22)1.10)1.10)1.11 12.1

(1((2(34)1.26)1.19(5(6(7(89)1.30)1.23)1.12)1.11)1.05)1.03 11.4

((1(2(34)1.26)1.22)1.09((56)1.09(7(89)1.30)1.24)1.08)1.12 6.2

τmin
bin 32 ((1(2(34)1.27)0.96)0.68((56)1.01(7(89)1.28)0.95)0.65)0.36 76.7

((1(2(34)1.24)0.91)0.66((56)1.00(9(78)1.16)0.98)0.65)0.35 4

((1(4(23)1.14)0.98)0.66((56)0.97(7(89)1.28)0.96)0.64)0.37 3.7

τmax
bin 55 ((1(2(34)1.27)1.06)0.82((56)1.02(7(89)1.28)1.05)0.85)0.65 62.5

((1(2(34)1.30)1.06)0.81(5(6(7(89)1.29)1.09)0.91)0.85)0.65 4.4

((1(2(34)1.25)1.05)0.84(6(5(7(89)1.33)1.09)0.93)0.89)0.65 3.8

τ
avg
bin 26 ((1(2(34)1.27)1.01)0.75((56)1.01(7(89)1.28)1.00)0.75)0.50 78.7

((1(2(34)1.24)0.96)0.73((56)1.01(9(78)1.16)1.04)0.74)0.49 4.2

((1(4(23)1.14)1.03)0.73((56)0.98(7(89)1.28)1.00)0.75)0.50 3.8

The columns contain: method denotation; total number of different estimated structures (#d.s); the 3 most
frequent estimated structures with average parameter values; frequency of the true structure in all estimated
structures (in %). The values corresponding to the true structure are in bold

method ranks as the third best, also in all four cases. The remaining methods show very
poor ability to detect the true structure, especially for d ≥ 7. For example, for d = 7, θRML
returned the true structure only 2 times out of 1000. For d = 9, the difference between our
and the remaining methods is most obvious. The worst performance shows the θbin method,

J Intell Inf Syst (2016) 46:21–59 41

which did not return any estimate with the true structure. The τbin method, which returned
6.2 %, is also substantially outperformed by all of our methods.

The ability of the methods to determine the true copula structure is additionally illus-
trated in Fig. 3, which shows the frequency of the true structure in 1000 estimated
structures for the considered methods, for sample sizes 10, 20, ..., 500 and for the differ-
ences in the parameters set consecutively to 1, 1

2 , 1
3 , 1

4 , namely for four 5-HAC models
((12)3∗q(3(45)4∗q)3∗q)2∗q with q = 1, 1

2 , 1
3 , 1

4 , respectively. For q = 1, we observe that
the frequency of the true structure for the considered sample sizes is similar for all the
considered methods except the θRML method and approaches to 100 % as the sample size
increases. For θRML, the frequency never exceeds 55 % and the same holds for the remain-
ing q = 1

2 , 1
3 , 1

4 . This fact indicates that, from a certain level that is lower than 100 %, the
θRML method is not able to improve in estimation of the true structure even with increas-
ing sample size. Decreasing in q , the difference between our methods and the remaining
methods in the frequency of the true structure for the considered sample sizes increases.
We also observe that the τmin

bin and τ
avg
bin methods are methods that most quickly approach to

100 % frequency of the true structure for for all q = 1, 1
2 , 1

3 , 1
4 while increasing the sample

size. The third most successful method is clearly τmin
bin for q = 1

2 , 1
3 , 1

4 . For the remain-
ing methods and q = 1

3 , 1
4 , the frequency of the true structure remains below 70 %, 60 %,

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80

90

100

sample size

 fr
eq

ue
nc

y
of

 th
e

tr
ue

 s
tr

uc
tu

re
 (

in
 %

)

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80

90

100

sample size

 fr
eq

ue
nc

y
of

 th
e

tr
ue

 s
tr

uc
tu

re
 (

in
 %

)

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

sample size

 fr
eq

ue
nc

y
of

 th
e

tr
ue

 s
tr

uc
tu

re
 (

in
 %

)

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

sample size

 fr
eq

ue
nc

y
of

 th
e

tr
ue

 s
tr

uc
tu

re
 (

in
 %

)

Fig. 3 The frequency of the true structure in 1000 estimated structures for the considered methods, for
sample sizes 10, 20, ..., 500 and for the differences in the parameters set consecutively to 1, 1

2 , 1
3 , 1

4 , i.e., for

four 5-HAC models ((12)3∗q (3(45)4∗q)3∗q)2∗q with q = 1, 1
2 , 1

3 , 1
4 , respectively

42 J Intell Inf Syst (2016) 46:21–59

respectively. Surprisingly, for q = 1
3 , 1

4 , the θbin method shows (approximately) decreasing
frequency of the true structure with increasing sample size for the sample sizes larger than
(approximately) 200.

Next, we assess the methods by means of goodness-of-fit. The results can be seen in
columns 3–6 in Tables 4 and 5, where the averages and standard deviations of four GoF
statistics are shown. The values in each row correspond to the averages of the GoF statis-
tics over all estimates with the structure corresponding to the one shown in the same row
in Tables 2 and 3. The dSn corresponds directly to the statistics given by (15). By the
lower index d in the notation, we accentuate the fact that this is non-aggregated, i.e, “truly”
d-dimensional statistics, as the rest of the statistics, 2S

max
n , 2S

(K) max
n , 2S

(C) max
n , are the

aggregated (using max function) statistics given by Definition 7 that are based on the bivari-
ate statistics Sn, S

(K)
n , S

(C)
n , respectively. The reason for choosing the maximum function

as the I-aggregation function g is that then this g-aggregated statistics can be interpreted in
the way that it evaluate how the estimate fits the data according to its worst fitting bivari-
ate margin. Observing the results, we see that the τ

avg
bin method dominates in GoF in all

four dimensions. The methods θRML and τmax
bin show good results as well, but the time con-

sumption of θRML for comparable results is considerably higher (especially for d = 7). A
surprising result shows the τmin

bin method. Despite it shows very good ability in estimating
the true structure, it is ranked as the third best in GoF, i.e., it shows the results opposite
to τmax

bin , which is very good in GoF but is ranked as the third in the ability to estimate the
true structure. Here, it is worth to note that τ

avg
bin performs very good both in the ability to

determine the true structure and in GoF. The remaining methods show poor results, what is
additionally illustrated by the discrepancy between the estimated average parameter values
shown in the fourth column in Tables 2 and 3 and the true parameter values.

The last row for each dimension and each method in Tables 4 and 5, denoted by false
structures in the second column, shows averages of the considered statistics over all esti-
mates with structures different to the true structure, say false structured estimates. These
results allow for studying the performance of the methods when the true structure is mis-
specified. Comparing the results for the false structured estimates among the considered
methods, we observe that the τ

avg
bin method shows the lowest values for each dimension and

statistic considered. The second and the third lowest values show alternately the θRML and
τmax

bin methods for each d ∈ {5, 6, 7} and statistics considered. The fourth lowest values
mostly shows the τmin

bin method. For the remaining two methods, the results are varying.
Summarizing these results, a false structured HAC estimate fits the best to the data if it is
obtained by the τ

avg
bin method.

The last column in Tables 4 and 5 shows the average computing time needed for a single
estimation process. In this case, τmin

bin , τmax
bin , τ

avg
bin show similar results that are slightly better

than the binary methods θbin, τbin, whereas θRML shows substantially (several times) higher
time consumption, particularly for d ≥ 6.

Based on all experimental results presented in this section, we can rank the presented
methods as follows:

1. the τ
avg
bin method only. We can claim that this method is the clear winner out of all here

presented methods. It shows the best results in goodness-of-fit, even for the cases when
the true structure is not determined; it is also one of the two best methods (together
with τmin

bin) in the evaluation of the ability to determine the true structure, including the
analysis of this ability for different sample sizes; it offers comparably low run-time
(together with τmin

bin and τmax
bin); its stability in structure determination increases in d if

compared to the remaining methods.

J Intell Inf Syst (2016) 46:21–59 43

Table 4 The second part of the results for the copula models for d ∈ {5, 6}
d Method dSn 2S

max
n 2S

(K) max
n 2S

(C) max
n time (in s)

5 θbin 0.18 (0.09) 0.63 (0.29) 2.11 (0.4) 0.69 (0.29) 0.079 (0.023)

0.11 (0.09) 0.38 (0.22) 0.51 (0.25) 0.35 (0.18)

0.20 (0.08) 0.76 (0.4) 2.84 (0.5) 0.82 (0.4)

false structures 0.18 (0.09) 0.64 (0.29) 2.11 (0.5) 0.69 (0.29)

θRML 0.08 (0.06) 0.31 (0.19) 0.21 (0.09) 0.27 (0.13) 0.172 (0.024)

0.10 (0.08) 0.36 (0.2) 0.50 (0.25) 0.33 (0.16)

0.08 (0.03) 0.34 (0.13) 0.45 (0.2) 0.33 (0.12)

false structures 0.10 (0.08) 0.37 (0.2) 0.50 (0.25) 0.33 (0.16)

τbin 0.25 (0.14) 0.43 (0.23) 1.22 (0.28) 0.51 (0.21) 0.190 (0.008)

0.21 (0.13) 0.40 (0.22) 0.92 (0.26) 0.44 (0.21)

0.20 (0.12) 0.37 (0.2) 0.95 (0.27) 0.42 (0.18)

false structures 0.21 (0.13) 0.40 (0.22) 0.96 (0.27) 0.45 (0.2)

τmin
bin 0.10 (0.07) 0.32 (0.18) 0.37 (0.2) 0.29 (0.15) 0.065 (0.02)

0.10 (0.08) 0.33 (0.22) 0.43 (0.18) 0.31 (0.19)

0.09 (0.04) 0.31 (0.15) 0.41 (0.14) 0.28 (0.17)

false structures 0.10 (0.06) 0.33 (0.18) 0.47 (0.22) 0.32 (0.18)

τmax
bin 0.08 (0.05) 0.30 (0.17) 0.28 (0.15) 0.26 (0.13) 0.062 (0.02)

0.09 (0.07) 0.32 (0.18) 0.33 (0.14) 0.31 (0.18)

0.09 (0.06) 0.35 (0.22) 0.31 (0.15) 0.32 (0.16)

false structures 0.09 (0.06) 0.33 (0.18) 0.36 (0.18) 0.32 (0.16)

τ
avg
bin 0.07 (0.04) 0.29 (0.16) 0.18 (0.07) 0.26 (0.13) 0.06 (0.001)

0.07 (0.04) 0.31 (0.2) 0.20 (0.07) 0.29 (0.14)

0.07 (0.04) 0.30 (0.16) 0.19 (0.05) 0.26 (0.15)

false structures 0.07 (0.04) 0.29 (0.17) 0.20 (0.08) 0.26 (0.14)

6 θbin 0.40 (0.22) 0.72 (0.4) 1.99 (0.4) 0.87 (0.4) 0.127 (0.026)

0.13 (0.09) 0.57 (0.28) 1.74 (0.5) 0.72 (0.3)

0.19 (0.16) 0.51 (0.26) 1.20 (0.3) 0.49 (0.23)

false structures 0.32 (0.23) 0.67 (0.4) 1.92 (0.4) 0.82 (0.4)

θRML 0.09 (0.08) 0.36 (0.23) 0.31 (0.14) 0.31 (0.16) 1.5 (0.7)

0.09 (0.08) 0.34 (0.21) 0.22 (0.09) 0.28 (0.14)

0.10 (0.06) 0.33 (0.19) 0.21 (0.07) 0.26 (0.14)

false structures 0.10 (0.08) 0.37 (0.24) 0.31 (0.14) 0.32 (0.16)

τbin 0.21 (0.13) 0.39 (0.23) 0.65 (0.17) 0.45 (0.19) 0.312 (0.007)

0.19 (0.12) 0.36 (0.2) 0.65 (0.18) 0.41 (0.17)

0.17 (0.1) 0.36 (0.18) 0.69 (0.18) 0.44 (0.15)

false structures 0.20 (0.13) 0.38 (0.22) 0.65 (0.18) 0.43 (0.18)

τmin
bin 0.10 (0.07) 0.34 (0.21) 0.34 (0.14) 0.31 (0.16) 0.09 (0.002)

0.11 (0.07) 0.35 (0.18) 0.35 (0.12) 0.33 (0.15)

0.12 (0.1) 0.38 (0.21) 0.37 (0.14) 0.36 (0.14)

false structures 0.10 (0.07) 0.34 (0.19) 0.39 (0.16) 0.33 (0.15)

τmax
bin 0.08 (0.05) 0.32 (0.2) 0.27 (0.12) 0.29 (0.13) 0.096 (0.0025)

0.08 (0.04) 0.30 (0.17) 0.29 (0.11) 0.28 (0.11)

0.09 (0.05) 0.33 (0.18) 0.30 (0.12) 0.29 (0.12)

44 J Intell Inf Syst (2016) 46:21–59

Table 4 (continued)

d Method dSn 2S
max
n 2S

(K) max
n 2S

(C) max
n time (in s)

false structures 0.09 (0.06) 0.32 (0.18) 0.30 (0.11) 0.29 (0.13)

τ
avg
bin 0.07 (0.04) 0.31 (0.19) 0.17 (0.05) 0.27 (0.13) 0.093 (0.0021)

0.07 (0.04) 0.33 (0.18) 0.18 (0.05) 0.28 (0.12)

0.08 (0.07) 0.35 (0.19) 0.18 (0.05) 0.30 (0.12)

false structures 0.07 (0.05) 0.31 (0.17) 0.18 (0.05) 0.28 (0.12)

The columns contain: method denotation; GoF test statistics dSn, 2S
max
n , 2S

(K) max
n , 2S

(C) max
n ; the average

estimation time of one estimation process in s. The values corresponding to the true structure are in bold. The
values in parenthesis are the corresponding standard deviations. The last row for each dimension and each
method, denoted by false structures in the second column, shows averages of the considered statistics over
all estimates with structures different to the true structure

2. the methods τmin
bin , τmax

bin . These methods show in some comparisons results similar
to τ

avg
bin , e.g., τmin

bin in the ability to determine the true structure, however, in other
comparisons, e.g., in goodness-of-fit, these methods show worse results than τ

avg
bin .

3. the θRML method only. This method shows, on the one hand, comparably good results
in goodness-of-fit (mostly similar to τmax

bin), on the other hand, it show poor results in
the ability to determine the true structure, particularly when analyzed for the differ-
ent sample sizes, and its run-time is substantially higher than the run-time of all other
considered methods.

4. the methods θbin and τbin. These methods score poorly in most of the presented
comparisons.

Note that a similar experiment was reported in (Górecki and Holeňa 2014), where N

= 100 was used instead. Comparing the results of both experiments, we see that they are
almost the same for d = 5, 6. For the two higher dimensions d = 7, 9, the results show
several rather smaller differences, mostly for rarely occurring estimated structures. Consid-
ering the τ

avg
bin method, the results in both experiments for the same statistics considered, i.e.,

2S
(K) max
n , 2S

(C) max
n (denoted by S

(K)
n , S

(C)
n , respectively, in Górecki and Holeňa (2014))

and frequencies of the 3 most frequent estimated structures, are almost the same for the
considered dimensions.

5 Copula-based Bayesian classification

5.1 Construction of copula-based Bayesian classifiers

Bayesian classifiers belong to the most popular classifiers and are used for pattern recog-
nition in several image processing, statistical learning and data mining applications. Here
we briefly recall some basics for Bayesian classifiers and a way how copulas could be inte-
grated in them as proposed in Sathe (2006). Later we describe experiments that involve
Bayesian classifiers based on Gaussian copulas, ACs or HACs. Note that we introduce
Bayesian classifiers based on ACs and HACs here for the first time.

J Intell Inf Syst (2016) 46:21–59 45

Table 5 The second part of the results for the copula models for d ∈ {7, 9}
d Method dSn 2S

max
n 2S

(K) max
n 2S

(C) max
n time (in s)

7 θbin 0.14 (0.06) 0.80 (0.3) 3.01 (0.5) 0.86 (0.3) 0.190 (0.028)

0.16 (0.15) 0.51 (0.27) 0.89 (0.4) 0.49 (0.23)

0.13 (0.04) 0.74 (0.28) 3.04 (0.5) 0.81 (0.28)

false structures 0.15 (0.06) 0.81 (0.3) 3.02 (0.6) 0.87 (0.4)

θRML 0.07 (0.05) 0.42 (0.2) 0.53 (0.2) 0.39 (0.17) 7.4 (8)

0.07 (0.05) 0.43 (0.21) 0.66 (0.29) 0.42 (0.18)

0.07 (0.05) 0.45 (0.22) 0.65 (0.27) 0.42 (0.18)

0.07 (0.04) 0.34 (0.01) 0.34 (0.14) 0.26 (0.06)

false structures 0.07 (0.05) 0.44 (0.21) 0.59 (0.24) 0.41 (0.18)

τbin 0.40 (0.16) 0.62 (0.27) 2.07 (0.4) 0.80 (0.23) 0.470 (0.009)

0.33 (0.16) 0.56 (0.3) 1.43 (0.26) 0.65 (0.26)

0.41 (0.16) 0.64 (0.3) 2.03 (0.4) 0.84 (0.28)

false structures 0.36 (0.16) 0.59 (0.29) 1.75 (0.4) 0.74 (0.28)

τmin
bin 0.10 (0.06) 0.38 (0.2) 0.53 (0.22) 0.35 (0.17) 0.128 (0.003)

0.09 (0.05) 0.36 (0.13) 0.59 (0.2) 0.33 (0.12)

0.11 (0.07) 0.43 (0.18) 0.67 (0.3) 0.38 (0.16)

false structures 0.10 (0.06) 0.39 (0.16) 0.63 (0.3) 0.37 (0.16)

τmax
bin 0.07 (0.05) 0.36 (0.2) 0.43 (0.19) 0.34 (0.16) 0.129 (0.003)

0.09 (0.05) 0.46 (0.23) 0.50 (0.22) 0.43 (0.15)

0.07 (0.04) 0.33 (0.11) 0.54 (0.2) 0.34 (0.11)

false structures 0.08 (0.05) 0.37 (0.2) 0.50 (0.21) 0.35 (0.16)

τ
avg
bin 0.04 (0.025) 0.33 (0.18) 0.22 (0.08) 0.29 (0.13) 0.135 (0.004)

0.04 (0.018) 0.32 (0.15) 0.23 (0.06) 0.28 (0.11)

0.05 (0.028) 0.36 (0.15) 0.25 (0.1) 0.29 (0.12)

false structures 0.05 (0.02) 0.33 (0.14) 0.24 (0.08) 0.29 (0.12)

9 θbin 0.08 (0.05) 0.71 (0.3) 1.71 (0.5) 0.79 (0.28) 0.467 (0.028)

0.12 (0.05) 0.98 (0.4) 3.61 (0.6) 1.04 (0.4)

0.13 (0.04) 0.99 (0.4) 3.79 (0.5) 1.05 (0.4)

false structures 0.10 (0.06) 0.79 (0.4) 2.32 (1.2) 0.87 (0.3)

τbin 0.53 (0.19) 0.75 (0.3) 2.52 (0.4) 0.99 (0.3) 0.726 (0.011)

0.51 (0.16) 0.71 (0.29) 2.65 (0.5) 1.01 (0.26)

0.46 (0.14) 0.65 (0.28) 1.96 (0.3) 0.82 (0.23)

0.51 (0.18) 0.72 (0.3) 2.60 (0.5) 0.98 (0.3)

false structures 0.49 (0.17) 0.71 (0.3) 2.22 (0.5) 0.92 (0.29)

τmin
bin 0.10 (0.05) 0.44 (0.14) 0.66 (0.21) 0.42 (0.12) 0.195 (0.004)

0.09 (0.06) 0.42 (0.23) 0.65 (0.26) 0.39 (0.2)

0.10 (0.05) 0.44 (0.14) 0.66 (0.21) 0.42 (0.12)

false structures 0.10 (0.06) 0.44 (0.2) 0.71 (0.26) 0.42 (0.19)

τmax
bin 0.07 (0.05) 0.41 (0.2) 0.54 (0.21) 0.38 (0.16) 0.198 (0.004)

0.07 (0.03) 0.40 (0.18) 0.51 (0.22) 0.40 (0.14)

0.07 (0.05) 0.41 (0.2) 0.54 (0.21) 0.38 (0.16)

false structures 0.08 (0.05) 0.43 (0.2) 0.57 (0.23) 0.40 (0.16)

46 J Intell Inf Syst (2016) 46:21–59

Table 5 (continued)

d Method dSn 2S
max
n 2S

(K) max
n 2S

(C) max
n time (in s)

τ
avg
bin 0.03 (0.02) 0.38 (0.18) 0.25 (0.08) 0.33 (0.13) 0.205 (0.013)

0.03 (0.02) 0.37 (0.19) 0.27 (0.08) 0.32 (0.16)

0.04 (0.02) 0.40 (0.17) 0.26 (0.07) 0.35 (0.13)

false structures 0.04 (0.017) 0.39 (0.18) 0.27 (0.08) 0.34 (0.13)

The columns contain: method denotation; GoF test statistics dSn, 2S
max
n , 2S

(K) max
n , 2S

(C) max
n ; the average

estimation time of one estimation process in s. The values corresponding to the true structure are in bold. The
values in parenthesis are the corresponding standard deviations. The last row for each dimension and each
method, denoted by false structures in the second column, shows averages of the considered statistics over
all estimates with structures different to the true structure

Let
 = {ω1, ..., ωm} be a finite set of m classes. The problem of classification is to
assign each x from the variable space R

d to a class from
. A Bayesian classifier is said to
assign x to the class ωi if,

gi(x) > gj (x) for all j �= i, (28)

where gi : R
d �→ R, i = 1, ...,m are known as discriminant functions, (Sathe 2006),

defined by

gi(x) = P(ωi |x) = f (x|ωi)P(ωi)∑m
j=1 f (x|ωj)P(ωj)

. (29)

Here, f : Rd �→ [0, ∞) is a probability density function (pdf) and P(ωi), i = 1, ...,m are
the prior probabilities of the classes from
 . Since any monotonically increasing function
Q : R → R keeps the classification unaltered, the discriminant functions can be simplified
by gi := Q ◦ gi with Q(t) = ln(t

∑m
j=1 f (x|ωj) P(ωj)) from (29) to

gi(x) = ln f (x|ωi) + lnP(ωi). (30)

If f (x|ωi) is assumed to be, e.g., a Gaussian pdf (leading to the normal Bayesian classi-
fier (Clarke et al. 2009, p. 242)), all the margins are distributed according to the same type of
distribution. It follows that the corresponding classifier does not accurately classify samples
with marginal distributions of different types. This drawback can be addressed by assuming
the variables to be independent. This assumption, which leads to the Naive Bayesian classi-
fier (Clarke et al. 2009, p. 241), does not impose any restrictions on the margins. However,
if there exists dependence among the variables, the Naive Bayesian classifier is also inap-
propriate for the task. An elegant solution that overcomes the drawbacks of both mentioned
approaches can be achieved by bringing copulas into play.

Provided H in (1) is an absolutely continuous multivariate distribution function with
marginals F1, ..., Fd , the pdf f of H can be expressed as

f (x1, ..., xd) = c(F1(x1), ..., Fd(xd))

d∏
k=1

fk(xk), (31)

where c(u1, ..., ud) = ∂dC(u1,...,ud)
∂u1...∂ud

denotes the density of the copula C(u1, ..., ud) and fk

denotes the density of Fk, k = 1, ..., d . Returning to (30), f (x|ωi) can then be rewritten as

f (x|ωi) = c(F1(x1|ωi), ..., Fd(xd |ωi)|ωi)

d∏
k=1

fk(xk|ωi), (32)

J Intell Inf Syst (2016) 46:21–59 47

which turns (30) into

gi(x) = ln (c(F1(x1|ωi), ..., Fd(xd |ωi)|ωi))) +
d∑

k=1

ln(fk(xk|ωi)) + ln(P(ωi)). (33)

In this way, the discriminant function gi is represented using three ingredients: the condi-
tional copula density c(·|ωi), the conditional marginal densities f1(·|ωi), ..., fd(·|ωi), and
the prior probability P(ωi). These ingredients do not impose any restrictions on each other,
hence, any assumption made on the dependence structure represented by the copula density
c(·|ωi) is unrelated to assumptions made on the marginal distributions f1(·|ωi), ..., fd(·|ωi).
This flexibility overcomes the mentioned drawbacks of the normal and the Naive Bayesian
classifier, which is also confirmed by the experimental results presented in Section 5.2.

The training of such a copula-based Bayesian classifier can be performed for each class
ωi, i = 1, ...m, separately as follows. Let Xi be training data corresponding to the class ωi .
Compute parametric or non-parametric estimates F̂1(·|ωi), ..., F̂d (·|ωi) based on X

i . Com-
pute a parametric or non-parametric estimate Ĉ(·|ωi) based on X

i . Compute an estimate
P̂(ωi) of P(ωi) as the proportion of the class ωi in the training data {X1, ...,Xm}. The triplet
(Ĉ(·|ωi); F̂1(·|ωi), ..., F̂d (·|ωi); P̂(ωi)) uniquely determines the discriminant function gi .

5.2 Evaluation of the accuracy of copula-based Bayesian classifiers

In what follows, we evaluate the accuracy of such copula-based Bayesian classifiers (CBCs).
Note that a similar evaluation study have been conducted only for Gaussian copula-based
classifiers (against SVM) and only for simulated data; see Sathe (2006). On real-world data,
all here presented CBCs are evaluated for the first time.

We construct three types of CBCs, each type involving different classes of copulas:

– a Gaussian copula-based Bayesian classifier (GCBC). For any GCBC, it is assumed
that Ĉ(·|ωi) is a Gaussian copula. The computation of the estimator of Ĉ(·|ωi) is
described in Bouyé et al. (2000) and is implemented by the Matlab’s Statistics toolbox
function copulafit. We used all the arguments of copulafit with their default
values

– an AC-based Bayesian classifier (ACBC). For any ACBC, it is assumed that Ĉ(·|ωi) is
an AC. Given a family of generators, the copula parameter is estimated by the inversion
of pairwise Kendall’s tau, see (10). In our experiments, we used the families listed in
Table 1, however, an ACBC is not restricted to them. A family is considered as an input
parameter of a ACBC and we selected the family of Ĉ(·|ωi) based on a 10-fold cross-
validation. Note that for d ≥ 3, ACs based on the Laplace-Stieltjes transform generators
are generally unable to model negative dependencies (Hofert 2010b), i.e., the cases
where τX,Y < 0 for some random variables X and Y . If X and Y are continuous then
τ−X,Y = τX,−Y = −τX,Y . We employ this fact and invert, i.e., X := −X, some of the
variables to reduce the negative dependence among the variables using Algorithm 4,
i.e., in each sample X

i , i = 1, ...,m, we inverted columns corresponding to the indices
in I obtained by Algorithm 4 with Input 1) given X := X

i . Note that even if we do
not have a proof that it is possible to reduce, using this inverting process, the negative
dependence to an extent that θ̂n ≥ 0 is satisfied, we were able to get θ̂n ≥ 0 in all
performed experiments.

– a HAC-based Bayesian classifier (HACBC). For any HACBC, it is assumed that
Ĉ(·|ωi) is an HAC. Given a family, the copula estimation is based on the procedure

48 J Intell Inf Syst (2016) 46:21–59

described in Section 3.2, which is summarized by Algorithm 3. The I-aggregation func-
tion g is set to be the average function. The choice of this function is based on the
results presented in Section 4. As for ACBCs, we use in our experiments the fami-
lies listed in Table 1. Which particular among those 3 families to use is considered an
input parameter of a HACBC and we selected the family of Ĉ(·|ωi) based on a 10-
fold cross-validation. As HACs based on the Laplace-Stieltjes transform generators are
also generally unable to model negative dependencies, which is a property they inherit
from ACs, we use the same inverting process for the variables as described above for
the ACBC type. However, contrarily to the ACBC case, we were sometimes not able to
reduce the negative dependence to an extent that θ̂k ≥ 0 for all k ∈ {1, ..., d −1}, where
θ̂k is the parameter estimate computed in Step 2 of Algorithm 3. Consider a Kendall
correlation matrix (τn

ij) ∈ [−1, 1]4×4 with τn
12 = τn

34 = 0.5, τn
13 = τn

23 = τn
24 = 0

and τn
14 = −0.1. The reader can easily see that, whichever variable is inverted or if all

variables are left unchanged, the argument of τ−1(·) in Step 2 of Algorithm 3 is neg-
ative at least for one k ∈ {1, 2, 3} providing g is the average function. For the latter
case, we would obtain, using Algorithm 3, a 4-PNAC estimate ((12)

θ̂1
(34)

θ̂2
)
θ̂3

, where

τ(θ̂1) = τ(θ̂2) = 0.5 and τ(θ̂3) = −0.025. Due to this fact, we use max(0, θ̂k) instead
of θ̂k computed in Step 2 of Algorithm 3.

The estimates F̂1(·|ωi), ..., F̂d (·|ωi) of the margins are computed in the same way for all
above-mentioned classifiers using the Kernel smoothing function ksdensity in Matlab
with the parameter function set to cdf. Note that, if fitting a GCBC, these estimates
are also used for transforming the data to [0, 1]. If fitting an ACBC or a HACBC, the
transformation of the the data to [0, 1] is not necessary, because the corresponding copula
estimation process is based just on the sample version of the Kendall correlation matrix.

These CBCs are compared in terms of accuracy with four non-copula-based classifiers
and one copula-based classifier, which are all available in Matlab’s Statistical toolbox.
These are:

1. the Classification and regression trees method (Breiman et al. 1984), which is imple-
mented by the class ClassificationTree and is referred as CART in the

J Intell Inf Syst (2016) 46:21–59 49

following. Each classification tree was first trained to the deepest possible level and
then it was pruned to the optimal level, obtained by the function test, using the
crossvalidate method;

2. an ensemble method based on bagging of classification trees (Breiman 1996). The
classifier, referred as TREEBAG in the following, is implemented by the func-
tion fitensemble with its parameters Method set to Bag and Learners set
to ClassificationTree.template(‘MinLeaf’, MinLeaf), respectively.
In each training phase, we tuned the parameters NLearn and MinLeaf as they
shown to be most influential on the accuracy. From all pairs (NLearn, MinLeaf)
∈ {1, ..., 200} × {1, ..., 5}, we always chose the pair corresponding to the highest
accuracy based on a 10-fold cross-validation.

3. an ensemble method based on boosting of classification trees (Freund and Schapire
1995). The classifier, referred as ADABOOST in the following, is implemented by the
function fitensemble with its parameters Method set to AdaBoostM1 (for the
datasets with two classes and AdaBoostM2 for the datasets with three or more classes)
and Learners set to ClassificationTree.template(‘MinLeaf’,
MinLeaf), respectively. In each training phase, we tuned the parameters NLearn
and MinLeaf in the same way as for TREEBAG.

4. a support vector machine (Vapnik 2000). The classifier, referred as SVM in the follow-
ing, is implemented by the function smvtrain. The parameter KernelFunction
is set to rbf as this setting provided the highest accuracy on the considered datasets.
In each training phase, we tuned the parameters boxconstraint and rbf sigma
as they shown to be most influential on the accuracy. The parameters were tuned using
unconstrained nonlinear optimization (implemented by the function fminsearch) in
order to get the maximal accuracy computed based on a 10-fold cross-validation. To
search for a global maximum, we always repeated the optimization task 5 times, each
time with different initial values of the parameters.

5. the Naive Bayes classifier, which is actually a CBC that assumes independence copulas
Ĉ(·|ωi), i = 1, ...,m and is referred as NAIVE in the following. We used the imple-
mentation by the function fitNaiveBayes and in each training phase, we tuned the
parameter Distribution. Its value (normal or kernel) was chosen based on a
10-fold cross-validation. Default parameters are used otherwise.

All in all, we evaluate 8 classifiers on 6 commonly known datasets obtained from the
UCI Repository (Bache and Lichman 2013), namely on Iris (4 variables, i.e., d = 4),
BankNote (4 variables), Vertebral (6 variables), Seeds (7 variables), BreastTissue (9 vari-
ables), and Wine (13 variables), as well as on the dataset Appendicitis (7 variables) from the
KEEL-dataset repository (Alcalá et al. 2010), and on one dataset from a recent real-world
application in catalysis (Moehmel et al. 2008) (we refer to the last dataset as Catalysis),
which contains 4 variables. The variables in the Catalysis dataset are proportions of oxides
of the metals La, Pt, Ag, Au used during the conversion of methane and ammonia to hydro-
cyanic (HCN) acid (Moehmel et al. 2008). As most of the UCI and the KEEL datasets
contain 3 classes, we have created arbitrarily 3 equi-frequent classes (low, medium, high)
also for the Catalysis dataset using the continuous output variable HCN yield. These datasets
are selected in order to every considered classifier could be applicable to every dataset. Par-
ticularly, as CBCs require continuous input variables, all datasets include only such input
variables. Moreover, as using HACBC classifiers is challenging in higher dimensions as
described below in detail, we preferred low-dimensional datasets.

50 J Intell Inf Syst (2016) 46:21–59

The accuracy computation for a given classifier and a given dataset is based on a 10-fold
cross-validation and repeated 10 times, more precisely, each classifier except GCBC was
tuned and trained 100 times and each tuning of its parameter(s) involved another “inner”
10-fold cross-validation, by which we refer to the cross-validation that is mentioned in the
description of the classifier. All computations were performed in Matlab on a PC with Intel
Core 2.3 GHz CPU and 4GB RAM.

Here we must mention the most serious restriction we faced when using a HACBC.
Such classifier relies on discriminant functions gi, 1, ...,m given by (33), each involving
the density of a HAC estimate Ĉ(·;ωi). To assign new data to one of the m classes, d par-
tial derivatives for each Ĉ(·;ωi) have to be evaluated. Consider that complexity of such a
density function quickly grows in d , which cause that the time consumption of its evalu-
ation exceeds reasonable limits already for d = 5, particularly for families with a more
complex generator, e.g., for the Frank family. Note that this problem is similar to the prob-
lem of computation of the statistic S

(C)
n mentioned in Section 2.5. To be able to evaluate

our experiments in reasonable time, we thus projected all datasets to d = 4, i.e., before any
evaluation of all classifiers on a dataset had started, we performed the feature selection and
selected only 4 variables from the dataset. With such a comparison of the classifiers on such
low-dimensional data presented below in Section 5.3, we are able to demonstrate capabil-
ities of CBCs, particularly capabilities of HACBCs, when compared to other well-known
classifiers.

However, we are aware of the fact that such a comparison is too limited from the prac-
tical point of view and it discriminates against the classifiers that easily scale up to high
dimensions. For this reason, we provide another comparison presented below in Section 5.4,
where all the datasets are considered in their original dimension. However, due to the above-
mentioned reasons, such an evaluation would not be viable for HACBCs for the datasets
with d > 4, hence, we again involve the feature selection, which is, in contrast to the first
comparison, performed on training data as a part of the training phase of a HACBC just
before tuning of its parameter. With this comparison, we aim to demonstrate applicability
of a HACBCs for data with d > 4 provided we deal with the above-mentioned restriction
using the feature selection.

Note that the feature selection was performed using the function sequentialfs and
we based the selection process on the discriminant analysis (Lachenbruch 1975) imple-
mented by the function classify. The reason for choosing the discriminant analysis,
i.e., a classifier that is different from all the evaluated classifiers, is that we tried not
to favour any of the evaluated classifiers. The feature selection process is indeed per-
formed for Appendicitis, BreastTissue, Seeds, Vertebral and Wine datasets. As the Iris,
BankNote and Catalysis datasets have all the dimension d = 4, evaluation for these datasets
does not involve the feature selection process and we include it in both above-mentioned
comparisons.

It is also important to note that the evaluation presented here is not meant to be an exhaus-
tive study of possibilities of CBCs. Rather, this study should be viewed as a first example
considering applicability of ACs and HACs in Bayesian classification, which shows that
such classifiers, despite the above-mentioned restriction, provide simplicity and accuracy,
as discussed below.

5.3 The first comparison (all datasets projected to d = 4 dimensions)

The accuracy of the classifiers computed on the datasets projected to d = 4 dimensions
using the feature selection is shown in Figs. 4 and 5. It can be observed that there is not

J Intell Inf Syst (2016) 46:21–59 51

0.8

0.82

0.84

0.86

0.88

0.9
C

A
R

T

N
A

IV
E

T
R

E
E

B
A

G

A
D

A
B

O
O

S
T

S
V

M

G
C

B
C

A
C

B
C

H
A

C
B

C
0.84

0.86

0.88

0.9

0.92

C
A

R
T

N
A

IV
E

T
R

E
E

B
A

G

A
D

A
B

O
O

S
T

S
V

M

G
C

B
C

A
C

B
C

H
A

C
B

C

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

C
A

R
T

N
A

IV
E

T
R

E
E

B
A

G

A
D

A
B

O
O

S
T

S
V

M

G
C

B
C

A
C

B
C

H
A

C
B

C

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

C
A

R
T

N
A

IV
E

T
R

E
E

B
A

G

A
D

A
B

O
O

S
T

S
V

M

G
C

B
C

A
C

B
C

H
A

C
B

C

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

C
A

R
T

N
A

IV
E

T
R

E
E

B
A

G

A
D

A
B

O
O

S
T

S
V

M

G
C

B
C

A
C

B
C

H
A

C
B

C

Fig. 4 The accuracy of the classifiers measured on 4-dimensional projections of the Appendicitis, Breast-
Tissue, Seeds, Vertebral and Wine datasets

a clear winning classifier on all the datasets, what is not surprising in the context of the
“No Free Lunch Theorem” (Wolpert 2002). However, some of the classifiers score higher
substantially more often then the others. This observation is supported by the rankings of
the classifiers in Table 6.

0.93

0.94

0.95

0.96

0.97

0.98

C
A

R
T

N
A

IV
E

T
R

E
E

B
A

G

A
D

A
B

O
O

S
T

S
V

M

G
C

B
C

A
C

B
C

H
A

C
B

C

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

C
A

R
T

N
A

IV
E

T
R

E
E

B
A

G

A
D

A
B

O
O

S
T

S
V

M

G
C

B
C

A
C

B
C

H
A

C
B

C

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

C
A

R
T

N
A

IV
E

T
R

E
E

B
A

G

A
D

A
B

O
O

S
T

S
V

M

G
C

B
C

A
C

B
C

H
A

C
B

C

Fig. 5 The accuracy of the classifiers measured on the Iris, BankNote and Catalysis datasets

52 J Intell Inf Syst (2016) 46:21–59

Table 6 Rankings of the classifiers in the first comparison according to the averaged accuracy on a given
(1st column) dataset

classifier CART NAIVE TREEBAG ADABOOST SVM GCBC ACBC HACBC

Iris 7 5 8 6 3 1 4 2

BankNote 5 8 4 3 2 1 7 6

Catalysis 7 4 5 2 1 8 3 6

Appendicitis 8 1 3 6 7 5 2 4

BreastTissue 8 5 6 7 3 4 2 1

Seeds 5 7 6 4 3 2 8 1

Vertebral 8 7 5 6 1 4 3 2

Wine 8 5 6 7 3 4 2 1

average rank 7 5.25 5.375 5.125 2.875 3.625 3.875 2.875

top-three 0 1 1 2 7 3 5 5

The top-three ranks are in bold. The penultimate row shows the average rank of a classifier. The last row
shows how many times a classifier is ranked in the top-three

Each of classifiers is ranked according to its averaged accuracy: 1 stands for the highest
and 8 stand for the lowest averaged accuracy on the given dataset. Observing the averages
of these ranks – the average rank row in Table 6 – four groups of the classifiers can be
distinguished:

– the highest-ranked group - SVM (average rank = 2.875) and HACBC (2.875);
– the middle-high-ranked group - GCBC (3.625) and ACBC (3.875);
– the middle-low-ranked group - NAIVE (5.25), TREEBAG (5.375) and ADABOOST

(5.125);
– the lowest-ranked group - CART (7).

This high-low ranking is also supported by another ranking – the top-three rank-
ing, which counts how many times a classifier is ranked among the three best. We
see that the classifiers from the highest-ranked and the middle-high-ranked group reside
more frequently in the top-three than the classifiers from the lowest-ranked and the
middle-low-ranked group.

If we divide the classifiers into four groups according to their type – 1) simple classi-
fiers (CART and NAIVE), 2) ensemble classifiers (TREEBAG and ADABOOST) 3) SVM
4) CBCs (GCBC, ACBC and HACBC) – we can also observe the superiority of SVM and
CBCs to the remaining types of classifiers. This is illustrated by the first two rows of graphs
in Fig. 7, which show the boxplot of the best 4 (according to the averaged accuracy) classi-
fiers out of these four groups. We can see that SVM and the best representative of the CBCs
score better than the best representatives of simple and ensemble classifiers on most of the
datasets.

5.4 The second comparison (all datasets in their original dimension)

The accuracy of the classifiers computed on the datasets in their original dimension except
for the HACBCs is shown in Figs. 5 and 6. We again observe that there is no classifier that
wins on all the datasets. In contrast to the first comparison, we observe that the difference
between the two best ranked classifiers is substantially higher, which is supported by the
rankings of the classifiers in Table 7.

J Intell Inf Syst (2016) 46:21–59 53

0.8

0.85

0.9

0.95
C

A
R

T

N
A

IV
E

T
R

E
E

B
A

G

A
D

A
B

O
O

S
T

S
V

M

G
C

B
C

A
C

B
C

H
A

C
B

C
*

0.78

0.8

0.82

0.84

0.86

0.88

C
A

R
T

N
A

IV
E

T
R

E
E

B
A

G

A
D

A
B

O
O

S
T

S
V

M

G
C

B
C

A
C

B
C

H
A

C
B

C
*

0.9

0.91

0.92

0.93

0.94

0.95

0.96

C
A

R
T

N
A

IV
E

T
R

E
E

B
A

G

A
D

A
B

O
O

S
T

S
V

M

G
C

B
C

A
C

B
C

H
A

C
B

C
*

0.8

0.82

0.84

0.86

0.88

0.9

C
A

R
T

N
A

IV
E

T
R

E
E

B
A

G

A
D

A
B

O
O

S
T

S
V

M

G
C

B
C

A
C

B
C

H
A

C
B

C
*

0.86

0.88

0.9

0.92

0.94

0.96

0.98

C
A

R
T

N
A

IV
E

T
R

E
E

B
A

G

A
D

A
B

O
O

S
T

S
V

M

G
C

B
C

A
C

B
C

H
A

C
B

C
*

Fig. 6 The accuracy of the classifiers measured on Appendicitis, BreastTissue, Seeds, Vertebral and Wine
datasets.. The asterisk for HACBC emphasize that the feature selection was performed for this classifier

Table 7 Rankings of the classifiers in the second comparison according to the averaged accuracy on a given
(1st column) dataset

classifier CART NAIVE TREEBAG ADABOOST SVM GCBC ACBC HACBC*

Iris 7 5 8 6 3 1 4 2

BankNote 5 8 4 3 2 1 7 6

Catalysis 7 4 5 2 1 8 3 6

Appendicitis 7 3 1 5 4 8 6 2

BreastTissue 8 4 5 7 1 6 2 3

Seeds 7 8 4 5 1 2 6 3

Vertebral 8 6 4 5 1 7 3 2

Wine 8 5 4 7 2 3 1 6

average rank 7.125 5.375 4.375 5 1.875 4.5 4 3.75

top-three 0 1 1 2 7 4 4 5

The top-three ranks are in bold. The penultimate row shows the average rank of a classifier. The last row
shows how many times a classifier is ranked in the top-three. The asterisk for HACBC emphasize that the
feature selection was performed for this classifier

54 J Intell Inf Syst (2016) 46:21–59

Now, observing the averages of the ranks in Table 7, again, four groups of the classifiers
similar to the first comparison can be distinguished, however, with one important switch
between the first two groups :

– the highest-ranked group - SVM (average rank = 1.875);

– the middle-high-ranked group - GCBC (4.5), ACBC (4) and HACBC (3.75);

– the middle-low-ranked group - NAIVE (5.375), TREEBAG (4.375) and ADABOOST
(5);

– the lowest-ranked group - CART (7.125).

We see that HACBC substantially decreased in the ranking and it is now more convenient
to put it in the middle-high-ranked group. As addressed before, due to the extreme time
consumption of HACBCs in high dimensions, here presented results for these classifiers
involve the feature selection, which, on the one hand, considerably influence their accuracy,
on the other hand, allows for at least some applicability of HACBCs in higher dimensions.
The remaining classifiers show results similar to the first comparison, again supported by
the top-three ranking.

The supremacy of the SVM and the CBCs to other types of classifiers is again observable,
now illustrated by the second and the third row of the graphs in Fig. 7. We again observe
that SVM and the best representative of CBCs score better than the best representatives of
simple and ensemble classifiers on most of the datasets.

We can conclude that, in these experiments, CBCs and particularly HACBC classifiers
have shown to be competitive for low-dimensional data with highly-accurate classifiers like
SVM or ensemble methods in terms of accuracy while keeping the produced models rather
comprehensible, as also discussed in Section 5.5. If there appears a way how to compute
efficiently the density function of a HAC, e.g., as the simplification of the density func-
tions for the five popular AC families presented in Hofert et al. (2012), it is possible that
results similar to the results for the HACBCs in low-dimensions could also be obtained for
HACBCs in high-dimensions.

Here, it is important to note that none of the results presented here must be over-
generalized and we recall that, when selecting the datasets, we selected the ones with all
continuous input variables and we also preferred low-dimensional ones. Hence, the results,
e.g., for ensemble methods, which are applicable to much wider classes of data, must be
considered with this in mind.

In further research, we will aim to confirm here presented results for the CBCs on sub-
stantially larger amount of datasets produced by diverse applications. Moreover, as there
exist many other copula classes, e.g., pair copulas (Aas et al. 2009), skew t-copulas (Smith
et al. 2012), etc., which could be used for a CBC construction in the same way as for the
above-mentioned copula classes, we will also consider these CBC types. To put CBCs more
firmly into the framework of commonly used classifiers, CBCs should be compared with
other types of classifiers, e.g., neural-networks-based classifiers, K-Nearest Neighbors, etc.
Apart from accuracy and simplicity, the classifiers should also be compared in terms of
classification run-times and memory usage.

5.5 Note on accuracy vs comprehensibility

At this point, we want to consider the typical trade-off between the accuracy and the com-
prehensibility of a classification model. In most cases, the accuracy of a classification model

J Intell Inf Syst (2016) 46:21–59 55

0.82

0.84

0.86

0.88

0.9
N

A
IV

E

T
R

E
E

B
A

G

S
V

M

A
C

B
C

0.86

0.88

0.9

0.92

N
A

IV
E

T
R

E
E

B
A

G

S
V

M

H
A

C
B

C

0.91

0.92

0.93

0.94

0.95

0.96

C
A

R
T

A
D

A
B

O
O

S
T

S
V

M

H
A

C
B

C

0.82

0.84

0.86

0.88

N
A

IV
E

T
R

E
E

B
A

G

S
V

M

H
A

C
B

C

0.92

0.93

0.94

0.95

0.96

0.97

N
A

IV
E

T
R

E
E

B
A

G

S
V

M

H
A

C
B

C

0.94

0.95

0.96

0.97

0.98

N
A

IV
E

A
D

A
B

O
O

S
T

S
V

M

G
C

B
C

0.98

0.985

0.99

0.995

1

C
A

R
T

A
D

A
B

O
O

S
T

S
V

M

G
C

B
C

0.35

0.4

0.45

0.5

0.55

0.6

N
A

IV
E

A
D

A
B

O
O

S
T

S
V

M

A
C

B
C

0.88

0.9

0.92

0.94

N
A

IV
E

T
R

E
E

B
A

G

S
V

M

A
C

B
C

0.82

0.83

0.84

0.85

0.86

0.87

0.88

N
A

IV
E

T
R

E
E

B
A

G

S
V

M

H
A

C
B

C
*

0.9

0.91

0.92

0.93

0.94

0.95

0.96

C
A

R
T

T
R

E
E

B
A

G

S
V

M

G
C

B
C

0.82

0.84

0.86

0.88

0.9

N
A

IV
E

T
R

E
E

B
A

G

S
V

M

H
A

C
B

C
*

0.96

0.965

0.97

0.975

0.98

0.985

N
A

IV
E

T
R

E
E

B
A

G

S
V

M

A
C

B
C

Fig. 7 The accuracy of the representative classifiers on all considered datasets. The first row and the second
row of the graphs correspond to the first comparison described in Section 5.3, whereas the second row and
the third row of the graphs correspond to the second comparison described in Section 5.4. The asterisk for
HACBC emphasize that the feature selection was performed for this classifier

grows at the expense of its comprehensibility. In our comparison, two easily comprehen-
sible classifiers participate – CART and NAIVE – which, on the one hand, produce easy
to understand models and, on the other hand, score lower in the accuracy computed on the
selected datasets. In contrast, the highly-accurate classifier SVM produces highly complex
models which, however, are not so easy to understand.

From this point of view, CBCs could be, in our opinion, considered as a good trade-off
between those two extremes. On the one hand, we observe that the accuracy of CBSs is close
to the accuracy of SVM on low-dimensional data, on the other hand, the models produced
by the classifiers are also easily interpretable with some knowledge of copulas.

Here we want to emphasize the HACBC classifiers, which produce models of the joint
dependency among the variables in the form of a HAC. As we know, a HAC can be
expressed as a tree-like graph. As an specific example, see Fig. 8. The figure shows the
HAC parameters and structure estimates for the classes Setosa, Versicolor and Virginica

56 J Intell Inf Syst (2016) 46:21–59

Fig. 8 The HAC estimates based on the Frank generators for the classes Setosa, Versicolor and Virginica in
Iris dataset. The θ estimates are the parameters of the generators

in the Iris dataset that were obtained using Algorithm 3 with the assumption that all the
generators are from the Frank family. The θ̂1, ..., θ̂3 are the parameter values of each HAC
estimate. The dendrogram-like representation of the trees has the advantage that, instead of
showing only the structure of the HAC, it also visualize the strength of dependency among
the variables. This is because each generator node is vertically positioned according the
value of the Kendall’s tau that corresponds to its parameter. Such a representation enables
one (with some knowledge of HACs) to get fuller picture of the dependencies among the
variables than the standard HAC tree-like representation. It is worth mentioning that the
dependencies also can be obtained from such graphs in a more formal way as sentences of
an observational calculus, as recently proposed in Holeňa and Ščavnický (2013).

6 Conclusion

We proposed a new approach to structure determination and parameter estimation of hier-
archical Archimedean copulas, which combines the advantages of existing methods in
terms of the correctly determined structures ratio, the goodness-of-fit of the estimates, and
run-time. This has been confirmed in several experiments based on simulated data in dif-
ferent dimensions and copula models. The proposed method is particularly attractive in
lower-dimensional (d ≤ 100) applications where a good approximation and computa-
tional efficiency are crucial. However, as the computation of Kendall’s tau for all pairs
of data columns has complexity O(d2n log n), the approach becomes demanding in high

J Intell Inf Syst (2016) 46:21–59 57

dimensions. Also note that the proposed method restricts to binary structured HACs, i.e.,
any d-HAC estimate has d − 1 parameters. In high dimensions, substantially less parame-
ters are often required, hence, a generalization to non-binary structured HACs should also
be considered, e.g., in a way proposed in Okhrin et al. (2013a).

The presented work does not explicitly consider the following:

1. The proposed method assumes all generators of the estimated HAC to be from the same
family, i.e., it assumes that a homogeneous HAC results from the estimation process.
Despite the possibility of mixing different families in a HAC, see Hofert (2011), the
estimation of such non-homogenous HACs has not been addressed in the literature in
detail except in Okhrin et al. (2013a), which, however, addresses this issue only briefly
without any experimental results. From the construction of our estimation method, it
becomes clear that it easily extends to non-homogeneous HACs as long as the sufficient
nesting condition is fulfilled;

2. Until now, all HAC estimation methods that estimate both the structure and the param-
eters of a HAC, incorporate either ML estimator or estimator based on the inversion
of Kendall’s tau. However, there exist also different types of estimation methods, e.g.,
estimation based on Blomqvists beta, Simulated maximum-likelihood estimation, Min-
imum distance estimation or Diagonal maximum-likelihood estimation, see Hofert et al.
(2013), which have been originally designed for the estimation of ACs, but could also
be considered in HACs estimation. Our estimation method is not restricted to the esti-
mator based on the inversion of Kendall’s tau and can easily be extended for using with
other estimators like the above-mentioned ones.

Additionally, we applied the proposed method to the construction of copula-based
Bayesian classifiers, which are experimentally compared with other types of commonly
used classifiers on several real-world datasets. Two types of such classifiers, namely the
AC-based and the HAC-based Bayesian classifiers, were evaluated for the first time. Due
to the restrictions addressed in Section 5.2, applicability of HAC-based Bayesian classifiers
for high-dimensional data is limited, however, the experimental results for low-dimensional
data show that these classifiers are competitive with highly-accurate classifiers like SVM
or ensemble methods in terms of accuracy while keeping the produced models rather
comprehensible.

References

Aas, K., Czado, C., Frigessi, A., Bakken, H. (2009). Pair-copula constructions of multiple dependence.
Insurance: Mathematics and Economics, 44(2), 182–198.

Alcalá, J., Fernández, A., Luengo, J., Derrac, J., Garcı́a, S., Sánchez, L., Herrera, F. (2010). Keel data-mining
software tool: Data set repository, integration of algorithms and experimental analysis framework.
Journal of Multiple-Valued Logic and Soft Computing, 17, 255–287.

Bache, K., & Lichman, M. (2013). UCI machine learning repository. http://archive.ics.uci.edu/ml.
Berg, D. (2009). Copula goodness-of-fit testing: an overview and power comparison. The European Journal

of Finance, 15(7–8), 675–701.
Bouyé, E., Durrleman, V., Nikeghbali, A., Riboulet, G., Roncalli, T. (2000). Copulas for finance - a reading

guide and some applications. Available at SSRN 1032533.
Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123–140.
Breiman, L., Freidman, J., Olshen, R., Stone, C. (1984). Classification and Regression Trees. Wadsworth.
Chen, X., Fan, Y., Patton, A.J. (2004). Simple tests for models of dependence between multiple financial

time series, with applications to us equity returns and exchange rates. Discussion paper 483, Financial
Markets Group, London School of Economics.

http://archive.ics.uci.edu/ml

58 J Intell Inf Syst (2016) 46:21–59

Clarke, B., Fokoue, E., Zhang, H.H. (2009). Principles and Theory for Data Mining and Machine Learning.
Springer.

Cramér, H. (1928). On the composition of elementary errors: First paper: Mathematical deductions.
Scandinavian Actuarial Journal, 1928(1), 13–74.

Cuvelier, E., & Noirhomme-Fraitur, M. (2005). Clayton copula and mixture decomposition. In Applied
Stochastic Models and Data Analysis, ASMDA’05: Brest.

Freund, Y., & Schapire, R.E. (1995). A desicion-theoretic generalization of on-line learning and an
application to boosting. In Computational learning theory (pp. 23–37). Springer.

Genest, C., & Favre, A. (2007). Everything you always wanted to know about copula modeling but were
afraid to ask. Hydrologic Engineering, 12, 347–368.

Genest, C., & Rémillard, B. (2008). Validity of the parametric bootstrap for goodness-of-fit testing in
semiparametric models. In Annales de l’Institut Henri Poincaré: Probabilités et Statistiques, (Vol. 44
pp. 1096–1127).

Genest, C., Rémillard, B., Beaudoin, D. (2009). Goodness-of-fit tests for copulas: A review and a power
study. Insurance: Mathematics and Economics, 44(2), 199–213.

Genest, C., & Rivest, L.P. (1993). Statistical inference procedures for bivariate archimedean copulas. Journal
of the American statistical Association, 88(423), 1034–1043.

González-Fernández, Y., & Soto, M. (2012). Copulaedas: An R package for estimation of distribution
algorithms based on copulas. arXiv:abs1209.5429 CoRR.

Górecki, J., Hofert, M., Holeṅa, M. (2014). On the consistency of an estimator for hierarchical archimedean
copulas. In Talaṡová, J., Stoklasa, J., Taláṡek, T. (Eds.) 32nd International Conference on Mathematical
Methods in Economics, (pp. 239–244). Olomouc: Palacký University.

Górecki, J., & Holeňa, M. (2013). An alternative approach to the structure determination of hierarchical
Archimedean copulas. In Proceedings of the 31st International Conference on Mathematical Methods in
Economics (MME 2013), (pp. 201–206). Jihlava.

Górecki, J., & Holeňa, M. (2014). Structure determination and estimation of hierarchical Archimedean cop-
ulas based on Kendall correlation matrix. In Appice, A., Ceci, M., Loglisci, C., Manco, G., Masciari,
E., Ras, Z.W. (Eds.) New Frontiers in Mining Complex Patterns, Lecture Notes in Computer Science,
(pp. 132–147).

Hofert, M. (2010a). Construction and sampling of nested Archimedean copulas. In Jaworski, P., Durante,
F., Hardle, W.K., Rychlik, T. (Eds.), Copula Theory and Its Applications, Lecture Notes in Statistics,
(Vol. 198, pp. 147–160). Berlin Heidelberg: Springer.

Hofert, M. (2010b). Sampling Nested Archimedean Copulas with Applications to CDO Pricing: Suedwest-
deutscher Verlag fuer Hochschulschriften.

Hofert, M. (2011). Efficiently sampling nested Archimedean copulas. Computational Statistics and Data
Analysis, 55(1), 57–70.

Hofert, M. (2012). A stochastic representation and sampling algorithm for nested Archimedean
copulas. Journal of Statistical Computation and Simulation, 82(9), 1239–1255.
doi:10.1080/00949655.2011.574632.

Hofert, M., Mächler, M., Mcneil, A.J. (2012). Likelihood inference for archimedean copulas in high
dimensions under known margins. Journal of Multivariate Analysis, 110, 133–150.

Hofert, M., Mächler, M., McNeil, A.J. (2013). Archimedean copulas in high dimensions: Estimators and
numerical challenges motivated by financial applications. Journal de la Société Française de Statistique,
154(1), 25–63.

Hofert, M., & Scherer, M. (2011). CDO pricing with nested Archimedean copulas. Quantitative Finance,
11(5), 775–787.

Holeňa, M., & Ščavnický, M. (2013). Application of copulas to data mining based on observational logic.
In ITAT: Information Technologies Applications and Theory Workshops, Posters, and Tutorials, North
Charleston: CreateSpace Independent Publishing Platform, Donovaly Slovakia.

Joe, H. (1997). Multivariate Models and Dependence Concepts. London: Chapman & Hall.
Kao, S.C., Ganguly, A.R., Steinhaeuser, K. (2009). Motivating complex dependence structures in data min-

ing: A case study with anomaly detection in climate. In International Conference on Data Mining
Workshops. doi:10.1109/ICDMW.2009.37, (Vol. 0 pp. 223–230).

Kao, S.C., & Govindaraju, R.S. (2008). Trivariate statistical analysis of extreme rainfall events via plackett
family of copulas. Water Resources Research, 44.

Kojadinovic, I. (2010). Hierarchical clustering of continuous variables based on the empirical copula process
and permutation linkages. Computational Statistics & Data Analysis, 54(1), 90–108.

Kojadinovic, I., & Yan, J. (2010a). Comparison of three semiparametric methods for estimating dependence
parameters in copula models. Insurance: Mathematics and Economics, 47, 52–63.

http://arxiv.org/abs/1209.5429
http://dx.doi.org/10.1080/00949655.2011.574632
http://dx.doi.org/10.1109/ICDMW.2009.37

J Intell Inf Syst (2016) 46:21–59 59

Kojadinovic, I., & Yan, J. (2010b). Modeling multivariate distributions with continuous margins using the
copula r package. Journal of Statistical Software, 34(9), 1–20.

Kuhn, G., Khan, S., Ganguly, A.R., Branstetter, M.L. (2007). Geospatial-temporal dependence among
weekly precipitation extremes with applications to observations and climate model simulations in South
America. Advances in X-ray Analysis, 30(12), 2401–2423.

Lachenbruch, P.A. (1975). Discriminant analysis. Wiley Online Library.
Lascio, F., & Giannerini, S. (2012). A copula-based algorithm for discovering patterns of dependent

observations. Journal of Classification, 29, 50–75. doi:10.1007/s00357-012-9099-y.
Maity, R., & Kumar, D.N. (2008). Probabilistic prediction of hydroclimatic variables with nonparametric

quantification of uncertainty. Journal of Geophysical Research, 113.
McNeil, A.J. (2008). Sampling nested Archimedean copulas. Journal of Statistical Computation and

Simulation, 78(6), 567–581.
McNeil, A.J., & Nešlehová, J. (2009). Multivariate Archimedean copulas, d-monotone functions and l1-norm

symmetric distributions. The Annals of Statistics, 37, 3059–3097.
Moehmel, S., Steinfeldt, N., Engelschalt, S., Holena, M., Kolf, S., Baerns, M., Dingerdissen, U., Wolf, D.,

Weber, R., Bewersdorf, M. (2008). New catalytic materials for the high-temperature synthesis of hydro-
cyanic acid from methane and ammonia by high-throughput approach. Applied Catalysis A: General,
334(1), 73–83.

Nelsen, R. (2006). An Introduction to Copulas, 2nd edn. Springer.
Okhrin, O., Okhrin, Y., Schmid, W. (2013a). On the structure and estimation of hierarchical Archimedean

copulas. Journal of Econometrics, 173(2), 189–204. http://www.sciencedirect.com/science/article/pii/
S0304407612002667.

Okhrin, O., Okhrin, Y., Schmid, W. (2013b). Properties of hierarchical Archimedean copulas. Statistics &
Risk Modeling, 30(1), 21–54.

Okhrin, O., & Ristig, A. (2014). Hierarchical Archimedean copulae: The HAC package. Journal of Statistical
Software, 58(4). http://www.jstatsoft.org/v58/i04.

Rey, M., & Roth, V. (2012). Copula mixture model for dependency-seeking clustering. Preprint
arXiv:1206.6433.

Sathe, S. (2006). A novel Bayesian classifier using copula functions. Preprint arXiv:cs/0611150.
Savu, C., & Trede, M. (2008). Goodness-of-fit tests for parametric families of Archimedean copulas.

Quantitative Finance, 8(2), 109–116.
Savu, C., & Trede, M. (2010). Hierarchies of Archimedean copulas. Quantitative Finance, 10, 295–304.
Segers, J., & Uyttendaele, N. (2014). Nonparametric estimation of the tree structure of a nested Archimedean

copula. Computational Statistics & Data Analysis, 72, 190–204.
Sklar, A. (1959). Fonctions de répartition a n dimensions et leurs marges. Publishing Institute of Statistical

University Paris, 8, 229–231.
Smith, M.S., Gan, Q., Kohn, R.J. (2012). Modelling dependence using skew t copulas: Bayesian inference

and applications. Journal of Applied Econometrics, 27(3), 500–522.
Vapnik, V. (2000). The nature of statistical learning theory. Springer.
Wang, L., Guo, X., Zeng, J., Hong, Y. (2012). Copula estimation of distribution algorithms based

on exchangeable Archimedean copula. International Journal of Computer Applications in Tech-
nology, 43(1), 13–20. doi:10.1504/IJCAT.2012.045836, http://inderscience.metapress.com/content/
42R4M650P16V1227.

Wolpert, D.H. (2002). The supervised learning no-free-lunch theorems. In Soft Computing and Industry (pp.
25–42). Springer.

Yuan, A., Chen, G., Zhou, Z.C., Bonney, G., Rotimi, C. (2008). Gene copy number analysis for family data
using semiparametric copula model. Bioinform Biol Insights, 2, 343–355.

http://dx.doi.org/10.1007/s00357-012-9099-y
http://www.sciencedirect.com/science/article/pii/S0304407612002667
http://www.sciencedirect.com/science/article/pii/S0304407612002667
http://www.jstatsoft.org/v58/i04
http://arxiv.org/abs/1206.6433
http://arxiv.org/abs/cs/0611150
http://dx.doi.org/10.1504/IJCAT.2012.045836
http://inderscience.metapress.com/content/42R4M650P16V1227
http://inderscience.metapress.com/content/42R4M650P16V1227

	An approach to structure determination and estimation of hierarchical Archimedean Copulas and its application to Bayesian classification
	Abstract
	Introduction
	Preliminaries
	Copulas
	Archimedean copulas
	Hierarchical archimedean copulas
	Kendall's tau and an extension to more than two dimensions
	Goodness-of-fit tests
	Okhrin's algorithm for the structure determination of HAC
	Example

	Our approach
	HAC structure determination based on Kendall's tau
	Structure determination and parameter estimation of a HAC

	Experiments on simulated data
	Design of the performed experiments
	Results of the experiments

	Copula-based Bayesian classification
	Construction of copula-based Bayesian classifiers
	Evaluation of the accuracy of copula-based Bayesian classifiers
	The first comparison (all datasets projected to d = 4 dimensions)
	The second comparison (all datasets in their original dimension)
	Note on accuracy vs comprehensibility

	Conclusion
	References

