
Data-centric intelligent information integration—
from concepts to automation

Matthias Jarke & Manfred Jeusfeld & Christoph Quix

Received: 21 December 2012 /Revised: 9 January 2014 /Accepted: 14 October 2014 /
Published online: 29 October 2014
Springer Science+Business Media New York 2014

Abstract Intelligent integration of information continues to challenge database research for
over 35 years. While data integration processes of all kinds are now reasonably well under-
stood and widely used in practice, the growth and heterogeneity of data requires much higher
degrees of automation to limit the need for human specialist work. This requires deeper
insights in data-centric approaches of Enterprise Information Integration which focus on the
semantics of information integration. Recent formalizations and algorithms enable both
significant improvement in schema integration, and in its automated transformation to efficient
data-level integration, in a wide variety of architectural settings such as data warehouses or
peer-to-peer databases. In addition to giving a short overview of developments in this field for
the past 20 years, this paper focuses particularly on the challenges posed by heterogeneity in
data models.

Keywords Metadata . Data integration . Role-basedmodel .Model management

1 Introduction

Even after 35 years of database research, information integration remains one of its key
challenges Shu et al. 1977. Traditionally, there have been two different foci in this research.
A focus on the process of data integration, for example the often cited ETL (extract-
transform-load) processes in data warehousing, is nowadays a well-established industry sector
called Enterprise Application Integration (EAI). Among other factors, it was driven by
resource constraints that often made the scheduling of integration tasks (in order to optimally
exploit the buffer space available for intermediate integration results) the most critical bottle-
neck in information integration.

J Intell Inf Syst (2014) 43:437–462
DOI 10.1007/s10844-014-0340-5

M. Jarke
RWTH Aachen University, Informatik 5, Ahornstr. 55, 52074 Aachen, Germany

M. Jarke (*) : C. Quix
Fraunhofer FIT, Schloss Birlinghoven, 53754 Sankt Augustin, Germany
e-mail: jarke@informatik.rwth-aachen.de

M. Jeusfeld
University of Skövde, School of Informatics, 54128 Skövde, Sweden

In contrast, the data-centric approach to information integration focuses on the semantics
of the integrated information, in practitioner terms: the data quality. Classical techniques
include the definition and analysis of formal constraints across data sources, in order to
identify semantic conflicts or overlaps that could be exploited for data cleaning and integration.
In industry, this strain—in the Internet propagated under the label of the Semantic Web—has
caught on much later than EAI but is nowadays gaining importance under the label of
Enterprise Information Integration (EII). One important motivation is obviously the enormous
costs of dealing with data quality problems. Even more importantly, advances in data mining
algorithms still need to rely on the exploitation of high-quality historical and sensor data for
successful pattern recognition and prediction in science and industry.

For decades, most integration tasks were solved manually, with rather limited formal or tool
support. Recent practice surveys have claimed that about 40 % of database-related work in
industry is spent on data integration issues Brodie 2010, an issue so important that it caused top
management attention with 68 % of CEOs surveyed by IBM Haas 2007.

The increasing complexity in terms of data volume, heterogeneity, and especially size and
number of models, poses new challenges to the design and the development of integrated
information systems. Fortune-500 enterprises now employ several thousand database systems
with a few hundred relations each Brodie 2010. In such settings, manual approaches to
information integration are no longer feasible Haas 2007; Smith 2007; Bernstein and Haas
2008. However, especially more automation in Enterprise Information Integration requires a
deeper formalization of the semantic foundations e.g. in logic Lenzerini 2002. Even informal
tasks such as the identification of shared or similar elements in different schemas must be
formalized somehow, albeit with many different techniques, leading to the development of a
complete new subarea of research and industry called schema matching or ontology matching
Rahm and Bernstein 2001.

In addition, while most database systems still use the relational data model, data sources
and applications may include a broad range of data formats, informal media objects, and a
wide variety of different modeling and metadata languages both in their operation and in their
design and evolution. The heterogeneity problem becomes even more intense in mobile
multimedia applications with data as well as service integration requirements.

Since the turn of the century, the research area of model management Bernstein et al. 2000
therefore aims at high-level methods and automated systems to support the development of
metadata-intensive applications. A typical example is the definition of a model algebra that
provides high-level abstract operators for the key model-level tasks underlying data
integration:

– Match: the identification of correspondences between models (match, Rahm and
Bernstein 2001; Shvaiko and Euzenat 2005),

– Compose: the (possibly multi-step) transformation between models based on specifica-
tions of their inter-relationships as a formal mapping Miller et al. 2000; Arenas et al. 2010,

– Merge: the integration of models (schema merge, Batini et al. 1986; Parent and
Spaccapietra 1998), and

– the actual execution of the specified data transformations Melnik et al. 2005; Haas et al.
2005.

In this paper, we present a brief review of the evolution from classical data-centric
integration to the recent advances in integrated model and data management enabled by more
than 20 years of research in intelligent information integration. In Section 2, we summarize
classical data integration efforts up to the data warehouse movement of the late 1990’s. In

438 J Intell Inf Syst (2014) 43:437–462

Section 3, the evolution of model management from precursors in the mid-1990s until today is
reflected with a discussion of some of the most important ideas and prototypes. At the
boundary between both phases, we briefly review the history of our ConceptBase system for
which a key paper appeared in JIIS 1995 Jarke et al. 1995, and became one of the most-cited
papers in the journal’s history.

Section 4 focuses on the challenge of automatically dealing with heterogeneity in model
management. A formal metamodeling framework and model management toolset must simul-
taneously support the model management operators and their automated data-level
executability for a broad range of modeling and operational data languages under which the
systems-to-be-integrated might be operated or (re-)designed. As an example, we describe our
Generic Role-Based Metamodeling suite and its underlying theory. In the final Section 5, we
present the application of this approach to classical data integration problems such as schema
matching and schema merging.

As a running example, we choose a case study in mobile traffic data integration Geisler
et al. 2012 shown in Fig. 1. In this scenario, data streams from mobile devices or sensor
networks have to be integrated with data from classical database systems and web services. For
example, consider a traffic information system which makes use of various information
sources to derive accurate information of a current traffic situation. In case of an accident or
a traffic jam, cars send messages (Floating Car Data FCD1 Kerner et al. 2005) of the event or
their current state to a traffic information system which integrates, aggregates, and analyzes the
received messages in real time in the context of existing database information.

Such context data might come from heterogeneous external information sources, e.g.,
weather information to check the consistency of temperature data delivered by sensors in
roads, road side units, or cars; traffic density information derived from aggregated C2X
messages is complemented by data from TMC (Traffic Message Channel) or a database of
road construction sites; a baseline for the traffic state can be derived from historical
information.

2 Classical data integration

The classical procedural approach to data integration implicitly assumes a staged software
architecture which was made explicit in the early 1990s as the so-called mediator architecture
as depicted in Fig. 2 Wiederhold 1992. Data from several sources is integrated by a mediator
which might follow a virtual or materialized integration approach.

In a virtual integration scenario first mentioned in the distributed database context by Ceri
and Pelagatti 1984, the mediator must reformulate the queries of the applications and integrate
the data from sources on the fly. The application queries are expressed in terms of the global
schema of the mediator. To retrieve the data from the source, they have to be translated into
queries in terms of the local schemas of the sources. Wrappers take these reformulated queries,
send them to the sources, extract the answers, and send the result back to the mediator.
Wrappers may also apply some simple transformations such as translating the answers into a
uniform format.

In the materialized integration scenario Zhou et al. 1996, the data is stored in a central data
repository, since the early 1990s called a data warehouse Jarke et al. 2003. While research has

1 FCD is transmitted using some Car-To-Car (C2C) or Car-to-Infrastructure communication service (C2I,
Stubing et al. 2010). C2C and C2I communication is summarized under the term C2X (Car-to-X)
communication.

J Intell Inf Syst (2014) 43:437–462 439

focused on the fundamental and transformational aspects of this, very similar to the virtual
integration scenario, industrial practice is at least equally interested in the resource-constrained
scheduling of the huge bulk tasks involved in operating this architecture with the enormous
data sizes of today. So-called ETL tools support the main steps within such a process which
actually predated data warehousing by over 10 years (EXPRESS Shu et al. 1977): Extract
source data into some buffer, Transform them by cleaning, model unification, and merging
(mediator), and Load them to the data warehouse.

Traffic
Information

System
Integration &

Analysis

Road
Sensors

Traffic
Information

System

Weather
Information

Integration &
Analysis

TMC

Historical
Data

Construction
Sites Calendar & Event

Information

Road Side Units

P
O
L
IC
E

P
O
L
IC
E

Fig. 1 Information integration in a traffic information system using C2X communication

Wrapper

Mediator

Application

Local

Schema 1

Local

Schema 2

Local

Schema n

...

Wrapper Wrapper

Global Schema

Query & Results

Virtual or
Materialized

Data Repository

Source 1 Source 2 Source n

Fig. 2 Architecture of an information integration system

440 J Intell Inf Syst (2014) 43:437–462

On the formal side, integration methods in the 1990s began to study explicit formal
mappings between the source and integrated data; for an early overview, see Wiederhold
1996. Such mappings could serve as a basis for “model-based” data integration where wrapper
and mediator code could be generated largely automatically from the mapping specifications
(e.g., Carnot Collet et al. 1991; Singh et al. 1997, Infomaster Genesereth et al. 1997,
Information Manifold Kirk et al. 1995, SIMS Arens et al. 1996). While Infomaster and the
Information Manifold focused on the Relational Data Model as modeling language, Carnot
and SIMS used description logics Nardi and Brachman 2003 to express relationships on the
model level as well as on the data level.

There are many ways to characterize the mappings between schemas. The simplest form is
correspondences between individual attributes of the schemas. This type of mapping is
frequently used in schema matching Rahm and Bernstein 2001 but cannot be used directly
for information integration because it does not capture more complex relationships such as
restructuring and regrouping of data. Since the logic-based data warehouse research of the late
1990s, mappings are therefore often expressed as a set of query pairs. In each pair, a query qS
over a source schema S is related to a query qG over the global schema G: qS ~ qG Lenzerini
2002. The relationship “~” between the queries is a set relationship like = or ⊆, which means
that the result set of the query qS is equivalent to (a subset of, resp.) of the result set of query qG
for all valid database instances.

There are two semantic perspectives for formalizing the mappings, called Local-As-View
(LAV) and Global-As-View (GAV). In GAV mapping, any single element g of the global
schema is defined as a view on the sources, i.e., qS ~ g. This reflects the classical data
integration perspective of the mediator approach. In the LAV approach, an element s of the
source schema is defined as a view on the global schema, i.e., s ~ qG. This reflects the idea of
the integrated data as a partial description of a uniform “real world” about which the data
sources capture perhaps incomplete, erroneous or even inconsistent observations; LAV there-
fore seems more relevant when we talk about important real-world problems such as semantic
data quality.

At first glance, query rewriting in the case of GAV seems to be easier as a query over the
global schema needs just to be unfolded, i.e., the elements of the global schema in the query
are replaced with the corresponding query qS over the sources Lenzerini 2002. However, in the
case of constraints and incomplete sources (which is a common assumption in information
integration) more complex reasoning is required to answer queries Calì et al. 2004.

In LAV, query rewriting corresponds to the problem of answering queries using views
Halevy 2001, which also requires reasoning; however, starting with MiniCon Pottinger and
Halevy 2001, a number of efficient algorithms have been developed. Some integration
architectures which go beyond the mediator schema of Fig. 2, such as Peer-to-Peer data
management systems Halevy et al. 2004, require a combination of GAV and LAV mappings
called GLAV.

In parallel to these developments, the growth of the Internet caused a rather different
approach to intelligent information integration to emerge. The lack of central planning and
the resulting irregularity of data structures in web-based systems require more flexible
approaches for data management. TSIMMIS was one of the first projects that moved away
from formal schemas and schema mappings as the basis for integration. Instead, it used self-
describing semi-structured graph data models Garcia-Molina et al. 1997, later replaced by the
slightly more restrictive, tree-oriented XML standard. Similar to the approach taken by modern
search engines, data integration in such a setting became a mix of text retrieval and graph
mappings without higher-level schemata. Even though this kind of approach persists until
today (as matching algorithms, see below in Section 5.1), it cannot easily exploit the rich

J Intell Inf Syst (2014) 43:437–462 441

knowledge available in the schemas of the ten thousands of databases and ontologies available
today, or the documented design models which give even more semantics to these schemas. To
address these challenges, model management emerged at the turn of the century.

3 The evolution of model management

The creation of models and mappings in the classical data integration systems was largely a
manual task. While automated support had been proposed for a few integration tasks (e.g.,
schema integration Batini et al. 1986 or schema matching Rahm and Bernstein 2001), the
design, implementation, and maintenance of the integration system had to be done manually.
This might have been acceptable for data management systems with a manageable schema
complexity, but the systems have grown significantly in the recent years. The complexity of
current “information eco-systems” Brodie 2010 with heterogeneity at various levels requires a
methodical support for the management of models and mappings.

The importance of data models in the development of integrated information systems has
been recognized by Bernstein et al. 2000 in their vision of model management systems. In such
systems, models should be regarded as first-class objects, and the systems should provide
operators to “work” with these models. For example, a Match operator should be used to
compute a mapping between two models, the Merge operator should integrate models based
on a given mapping, and theModelGen operator should generate a new model by translating a
given model into another modeling language. The vision was an algebra which would allow an
abstract specification of complex operations on data models.

3.1 Model management 0.1: repositories with formal metamodels

The vision of model management in Bernstein et al. 2000 initiated new research in this area,
but there has been significant research on individual topics before Quix et al. 2009.

The earliest approaches to schema integration and matching are summarized in Batini et al.
1986. They were mainly based on abstract, conceptual modeling languages (e.g., variants of
the Entity-Relationship model), or directly operated on the relational schemas with intra-
relational and inter-relational dependencies Casanova and Vidal 1983; Biskup and Convent
1986. In both cases, the mapping languages were rather weak as only one-to-one correspon-
dences could be expressed.

With the increasing size and complexity of database systems in the late 1980s, the necessity
for formal methods for the management of complex data models became evident. Business IT
researchers like Dolk 1988 first stated the requirement for a theory for models similar to the
relational database theory. Such a theory should include formal definitions of models and
operations on models and could be used as a basis for the implementation of a model
management system. This work was based on a draft of the Information Resource
Dictionary System (ISO/IEC 1990) standard ISO/IEC 1990 which was accepted by ISO in
1990. IRDS clarified the terminology of modeling systems as a four-level hierarchy. A decade
later, the Unified Modeling Language (UML) community adopted the same approach with
slightly different terminology in its MOF standard (Meta Object Facility ISO/IEC 2005). The
metamodel hierarchy in Fig. 3 shows a MOF-based repository hierarchy for our running
example: at the lowest level reside data instances which are described by a model (or schema)
on the next higher level. The model is expressed in some modeling language (or metamodel)
which is located at the third level. The highest level contains a metametamodel which can be
used to define metamodels.

442 J Intell Inf Syst (2014) 43:437–462

The IRDS framework introduced the concept of so-called metadata repositories for pur-
poses such as development process traceability, information integration, and model transfor-
mation Quix 2009a. For example, solutions for forward and reverse engineering between ER
models and relational databases were developed using generic metametamodels Atzeni and
Torlone 1996; Jeusfeld and Johnen 1995, i.e., a uniform representation at the M3 level).
Generic metamodels at the M2 level also addressed several aspects of database schema
integration Spaccapietra and Parent 1994; Pottinger and Bernstein 2003. However, these early
solutions mainly concentrated on the transformations at the model level and did not pay
detailed attention to automated transformation on the data level.

In parallel to the initial IRDS standardization, a logic-based approach to dealing with an
unbounded number of meta levels was investigated in the Telos project jointly conducted
between the University of Toronto and several European projects in the late 1980s Mylopoulos
et al. 1990. An important feature of Telos is the strong and highly efficient formalization in
Datalog with stratified negation Jeusfeld 1992 from which excerpts are briefly reviewed in
Section 4.3. Based on this formalization, we developed the deductive metadatabase system
ConceptBase whose complete description was published in JIIS 1995 Jarke et al. 1995 and
whose present version is still widely used in several thousand installations worldwide Jarke
et al. 2009. Based on the Datalog formalization, ConceptBase was the first metadata repository
to also offer effective query optimization, integrity constraint evaluation, and incremental view
maintenance at the data level Staudt and Jarke 2000, as well as viewpoint resolution Nissen
and Jarke 1999 and requirements traceability Ramesh and Jarke 2001 at the meta level
simultaneously, thus providing an early example of fully automated model-based code
generation.

With the confluence of structured data, text and multimedia capabilities, the World Wide
Web, and mobile communications, the range of data models has grown well beyond what
could be covered by these early approaches. In Haslhofer and Klas 2010, an overview of
metadata interoperability in heterogeneous media repositories is given. Although the survey
focusses on media repositories, it also addresses interoperability between “structural” model-
ing languages, such as UML, XML Schema, and OWL. The authors classify approaches
according to the MOF hierarchy and argue that effective interoperability between systems can
only be achieved if data transformations at the instance level are also addressed. Furthermore,
they distinguish between standardization and mapping approaches. The former propose

Fig. 3 Metamodeling hierarchy according to the meta object facility ISO/IEC 2005

J Intell Inf Syst (2014) 43:437–462 443

metadata standards to enable interoperability, whereas the latter build relationships between
different metamodels. Mapping approaches are more complex, but are advantageous in open
environments such as the Web, as in these cases, no central authority can enforce a standard
Haslhofer and Klas 2010.

3.2 Model management 1.0: algebra of model operators

The increasing complexity of information systems requires techniques for automating the tasks
of creating models and mappings. The original vision of model management aimed at
providing support for these tasks Bernstein et al. 2000, even though a complete automation
was expected to be hard to achieve. The creation of models and mappings was considered a
design activity which requires a deep understanding of the semantics of the modeled systems.
Such tasks are considered “AI-complete”, i.e., it requires human intelligence to solve these
problems Bernstein et al. 2004. Another important motivation for the definition of a model
management algebra was the observation that many applications that deal with models require
a significant amount of code for loading and navigating models in graph-like structures. A
model management system based on a formal algebra should simplify the development of
model-oriented applications in the same way as data management systems based on relational
algebra simplified the development of data-oriented applications Bernstein et al. 2000.

First model management systems such as Rondo Melnik et al. 2003a; b and COMADo and
Rahm 2002 applied simple, abstract model representations in which a model is represented as a
directed, labeled graph. Other approaches for model management include a large body of
research on schema matching Rahm and Bernstein 2001; Shvaiko and Euzenat 2005.
Although a graph representation is often sufficient for basic schema matching tasks, semantic
details of the models (such as constraints) cannot be easily represented. Mappings are often
just represented as a set of pairwise correspondences between nodes in the graphs. MISM
(Model-Independent Schema Management) uses a richer representation for schemas Atzeni
et al. 2009. Schemas are described in a generic way using a multi-level dictionary. However,
the system uses a set-theoretic approach for some model management operators (e.g.,Merge),
i.e. again only correspondences (‘equivalence views’ in the terminology of MISM) are used as
the mapping formalism.

In the original vision of model management Bernstein et al. 2000, mappings had a weak
representation and were seen as a special type of a model which might include expressions to
describe the semantics of a mapping in more detail (e.g., by using a SQL query). However, to
automate operations on models and mappings, mappings have to be represented in a separate
formalism which is more expressive than just simple correspondences.

3.3 Model management 2.0: mappings as first-class citizens

There have been several attempts aiming at combining a rich modeling language with
powerful mapping languages. For example, in the European DWQ project (Foundations of
Data Warehouse Quality Jarke et al. 2003), a semantically rich metamodel Jarke et al. 1999
was combined with an information integration approach based on description logics Calvanese
et al. 2001. Similarly, the Italian MOMIS system used an object-oriented modeling language to
support the integrated querying of heterogeneous information sources Bergamaschi et al. 2001.

The Clio project between IBM and the University of Toronto Hernández et al. 2001; Haas
et al. 2005; Fagin et al. 2009 introduced a strong mapping language based on tuple-generating
dependencies (tgds) Beeri and Vardi 1984; Abiteboul et al. 1995. The well-defined, formal
basis and the ability to easily translate the mappings into executable code (e.g., queries in SQL

444 J Intell Inf Syst (2014) 43:437–462

or XQuery) proved a significant advantage and caused a re-thinking of the whole definition of
model management, dubbed Model Management 2.0 Bernstein and Melnik 2007.

In model management 2.0, it has been realized that the representation of mappings is at least
equally important as the representation of models Bernstein and Melnik 2007. Mappings are
involved in all model management operations, and mappings are at the core of any integration
approach. Furthermore, model management is not only a design time issue. The runtime system
has also to be taken into account, because mappings have to be executed eventually to perform
data transformation tasks. Thus, it is not sufficient to hide the semantics of a mapping in a string
expression in some arbitrary language. Model management systems must be able to understand
the semantics of a mapping in order to enable mapping operations (e.g., composition, inversion)
and produce mappings as output (e.g., in match and merge operations). While Clio mostly
explored this issue in the context of (nested) relational data models, the following section will
investigate the extension to the management of heterogeneous data models.

4 Towards heterogeneous model management

The heterogeneity of data management systems and modeling languages used in the web, but
also in enterprise information systems, requires a mapping language, which is able to cope
with the different modeling formalisms in a single uniform framework. Moreover, this has to
be done at the same time at the model level as well as the data level.

A heterogeneous model mapping states how the data of one model is related to the data of
another model. It is important to note that mappings relate data and not only models. Because
of this, mappings need to be very expressive in order to be able to represent rich data
transformations. Executability of a mapping language means that it must be possible to apply
a mapping such that it enables automatic code generation that executes the data transforma-
tions specified in the mapping.

Summarizing, a model management system needs to address at least the three lower levels
of Fig. 3: the data level for expressive data translations, the model level for operations on
models such as Match and Merge, and the metamodel level to enable a generic representation
of heterogeneous data models.

Defining a mapping language between all individual pairs of different modeling languages
would be a daunting if not impossible task, as for each pair, syntax and semantics of two
individual formalisms have to be interlinked. A generic modeling language simplifies this task
by providing a uniform basis for the definition of mappings. Model management operations
have to be based on formal languages with rich semantics. These formalisms are necessary in
order to support the development of model management systems which have to produce in the
end mappings and models in existing, formal languages (e.g., SQL, XML Schema, XQuery).
Moreover, a formal basis is required to prove characteristics of model management operations,
e.g., that a model transformation is correct and complete, or a merged schema is minimal, but
also preserves all information of the input schemas.

Last not least, there is a trend that the restrictions of relational and even XML database
systems are too tight for new applications that require high availability and scalability for the
web Vogels 2007; Stonebraker 2010. Thus, new data management systems with another set of
modeling languages are being introduced (e.g., not-only-SQL or NoSQL database systems
Cattell 2010), which again require transformations and mappings of existing data models.
Consequently, the management of heterogeneous data models will be a running challenge also
for future information integration projects, and model management systems must be extensible
and flexible to support also future modeling languages.

J Intell Inf Syst (2014) 43:437–462 445

To illustrate the concepts and algorithms in the following subsections, Fig. 4 extracts a
simplified heterogeneous schema integration task from the scenario in Fig. 1. An XML web
service S provides information about vehicles and their location. A relational data stream R
gives Floating car information about cars, their speed and the roads on which the cars are
traveling. These two sources should be integrated into an XML database T, which has
information about roads and for each road a list of cars which are driving on this road. The
XML documents use a different vocabulary, therefore, we might use an ontology O as the
semantic bridge between the XML documents. The relational schema R is mapped directly to
the target XML schema T.

4.1 Requirements for a generic model management system

A generic representation of models is a prerequisite for building a model management system.
Without a generic representation, model operations would have to be implemented for each
modeling language that should be supported by the system. Especially for the task of model
transformation, a generic representation of models is advantageous as the necessary transfor-
mations have just to be implemented for the generic representation. Such a generic represen-
tation is called a generic metamodel. A generic metamodel should be able to represent models
originally represented in different metamodels (or modeling languages) in a generic way
without losing much detailed information about the semantics of the model.

First implementations of model management systems used rather simple graph representa-
tions of models, e.g., Rondo Melnik et al. 2003b. Although the graph-based approach might
allow an efficient implementation of operations which do not rely on a detailed representation
of the models (such as schema matching), it makes it more difficult to implement more
complex operations (such as model transformation or schema integration). Schema integration
methods often use rather abstract metamodels extending traditional conceptual modeling
formalisms, such as the ERC + model in Spaccapietra and Parent 1994. They usually focus
on the conflicts at the semantic level, because such modeling languages are good at
representing the semantics of a model. Schema integration approaches using a more concrete
metamodel (e.g., the relational model with constraints and dependencies Casanova and Vidal
1983; Biskup and Convent 1986) assume that these semantic conflicts have already been
resolved and provide solutions for integrating schemas without conflicting constraints.

Fig. 4 A simple, heterogeneous data integration scenario

446 J Intell Inf Syst (2014) 43:437–462

It is apparent, that a richer modeling language is required for model management operations
that explicitly deal with the semantics of model elements in a heterogeneous setting. Early
examples of such metamodels have been used, e.g., for model transformation Atzeni and
Torlone 1996; Atzeni et al. 2006; Mork et al. 2007.

In Atzeni and Torlone 1996, the authors describe a metamodel consisting of “superclasses”
of the modeling constructs in the native metamodels. The transition between this internal
representation and a native metamodel is described as a set of patterns. This induces the
concept of a supermodel which is the union of patterns defined for any supported native
metamodel. This model representation has been expressed in a relational model dictionary
Atzeni et al. 2005, and was used for the generic ModelGen implementation MIDST Atzeni
et al. 2006.

In Jeusfeld and Johnen 1995, a ConceptBase metametamodel to enable the translation of
models between different modeling languages is used. A model element in a concrete
modeling language is mapped to the metametamodel, in which models can be rearranged,
and then translated into the desired target modeling language. Another metamodel following
the approach of generalizing metaclasses is Vanilla Pottinger and Bernstein 2003 which has
been used to implement model merging.

4.2 Role-based metamodeling with GeRoMe

Our metamodel GeRoMe provides a generic, yet detailed representation of data models
originally represented in different languages Kensche et al. 2007a. In its role-based modeling
approach Bachman and Daya 1977; Richardson and Schwarz 1991; Wong et al. 1997, an
object is regarded as playing roles in collaborations with other objects. This allows describing
the properties of model elements as accurately as possible while using only metaclasses and
roles from a relatively small set. This strongly reduces a well-known problem in
metamodeling, as follows.

A classical approach for modeling a generic metamodel could define a hierarchy of
metaclasses that represent an abstraction of concrete modeling elements in existing modeling
languages (e.g. Jeusfeld and Johnen 1995. One could then map the concrete modeling
elements to exactly one of these metaclasses. However, modeling elements in different
modeling languages have often similar or overlapping semantics, but rarely a truly equivalent
semantics. When two model elements from different metamodels are mapped to the same
metaclass in the generic metamodel, this implies that the elements have the same semantics in
the view of the generic metamodel. Thus, differences and details of model elements are lost
due to the abstraction in the generic metamodel. A solution to this problem could be to model
the detailed semantics of model elements by intersection classes, i.e., classes which inherit
features from several base classes representing basic modeling features (e.g., aggregation,
inheritance, association). However, many intersection classes would be necessary to represent
all the different combinations of modeling features which are present in one concrete modeling
element. In earlier works, e.g., in our interdisciplinary research on conceptual modeling of
chemical engineering processes Baumeister and Jarke 1999; Brandt et al. 2008, this has been
shown to lead, even in practice, to a combinatorial explosion of subclasses.

GeRoMe’s role-based approach represents each modeling feature by a separate role class.
Model elements are plain objects which do not have any semantics by their own. By
decorating a model element with role objects, a model element gains the modeling features
of these role objects. This allows an arbitrary combination of modeling features.

The implementation of model management operators is simplified as it can focus on the
roles which are relevant for a specific operator. Roles provide a view, i.e., a subset of the

J Intell Inf Syst (2014) 43:437–462 447

features of a model element. For example, when elements should be matched by name, the
match operator needs to consider only the role providing the name of the element, all other
roles can be ignored. Another advantage of the role based modeling approach is that roles—
and thereby modeling features—can be easily added to or removed from a model element
without changing its identity. This characteristic is in particular important for model
transformation.

Consider again the example in Fig. 4. Simplified GeRoMe representations for the relational
model R and the XML Schema Tare shown in Fig. 5. Gray boxes denote model elements, white
boxes attached to them are role objects. The left part of the figure illustrates theGeRoMemodel
for the relational schema. The light gray elements car and road represent the model elements for
the two relations car and road. Both elements play the role Aggregate (abbreviated by Ag),
meaning that they can have attributes. In addition, they play the role Referable (R), which
allows them to be the target of a key constraint. The attributes are represented by the medium
graymodel elements; all of them play the role Attribute (Att). In addition, roadId in car plays the
role Reference (Ref) as it is a foreign key attribute. For simplicity, we show only the domain for
the roadId attributes; it is the model element Integer which plays a Domain role (D).

Constraints are represented by dark gray elements. The primary key constraints PKcar and
PKroad play the roles Injective (Inj) and Identifier (Id) as they represent uniqueness constraints
which, in addition, identify the referenced type. Furthermore, the foreign key FKroad points to
the reference role of the corresponding attribute.

The representation of the XML schema is more complex, as it contains more structural
information. Complex types in XML-Schema are similar to classes in UML or entity types in
the ER model, as they can have attributes and participate in associations. Elements in XML
represent associations, i.e. a relationship between two complex types (a nested and a nesting

Fig. 5 Simplified GeRoMe models for the relational and XML schema from Fig. 4

448 J Intell Inf Syst (2014) 43:437–462

type). Because of XML’s tree structure, an instance of a complex type is always nested into
exactly one parent element. In the right part of Fig. 5, the complex types roadT and carT also
play Aggregate roles as the corresponding constructs in the relational model. In addition, they
play ObjectSet (OS) roles as they also may participate in associations. In the example, road and
car play the Association role (AS) and represent the XML elements. They link the complex
types (and the document root) using association end roles, as indicated by unlabeled dark gray
boxes. There are two different types of association ends in this example: CompositionEnds
(CE) state the relationship to the parent element and ObjectAssociationEnds (OE) represent the
link to the child element. These elements also maintain the information about the cardinality
constraints of this association. Associations in UML or relationship types in ER are modeled in
GeRoMe using the same set of roles.

4.3 Logical foundation for the generic metamodel

Based on our experience with Telos Mylopoulos et al. 1990 and ConceptBase Jarke et al.
1995; Jarke et al. 2009, the formalization of GeRoMe represents a model as a set of logical
facts. Each fact defines a model element, a role, a property, or a relationship between role
objects. This logical representation allows declarative specifications and sound and efficient
implementation of some model management operators.

A generic metamodel must provide a transformation between the concrete modeling
languages and its generic representation. GeRoMe enables this import and export of models
in a declarative way: equivalence rules state that a combination of modeling constructs in a
particular modeling language are equivalent to a set of model elements and role objects in
GeRoMe Kensche and Quix 2007. As in Jeusfeld 1992, the translation between GeRoMe and
specific modeling languages is based on Datalog rules Kensche and Quix 2007. However, the
generation of modeling constructs—a key requirement in model transformation—requires a
language that is more expressive than pure Datalog. Figure 6 shows a simplified version of the
rule for translating SQL columns into the corresponding GeRoMe elements. As it is an
equivalence rule, it can be used to import SQL schemas into GeRoMe, and to export
GeRoMe models back into SQL schemas.

The first part of the rule refers to the elements of the SQL schema; the corresponding facts
are generated by traversing the SQL schema. The second part of the rule specifies a fragment
of the GeRoMe model: a model element with the identifier ID; an attribute role for this
element; then, the aggregate role of the element TableID (specified by another rule) gets the
attribute as an additional property; finally, the maximum cardinality of the attribute is set to one
as attributes in the relational model are single-valued.

Fig. 6 Simplified rule for translating SQL columns to GeRoMe model elements

J Intell Inf Syst (2014) 43:437–462 449

Our representation for the data instance level again extends ideas from Telos. In Telos, a
base relation proposition expresses the relationships between objects: P(o,x,l,y) states that the
object x has a relationship with label l to object y. The variable o represents the object identifier
of this link. We can make further statements about the type of link, e.g., whether it is an
attribute link, an instantiation, or a specialization. With only a few predefined classes and only
few constraints for this base relation, Telos supports the representation of models as well as of
its instances, but also metamodels, metametamodels, …

In GeRoMe, an instance of a model is described by a set of objects; each object may have
links to other objects (associations) or atomic values (attributes). In contrast to Telos, GeRoMe
thus distinguishes objects and values. Furthermore, each object has a type (an instantiation link
to a model element). Syntactically, GeRoMe instances can be represented as a set of logical
facts using a limited set of predefined predicates. This enables the use of logical languages to
express mappings on the instance level. Even if data instances have complex, nested structures,
the Datalog representation just uses ‘flat’ facts.

The logical representation ofGeRoMe uses the predicates inst, attr, value, and part to describe
an instance of a model. The model is defined by a set of model elements M and an instance is
described by a set of objects O. Furthermore, we have a set A of atomic values (literals).

& inst(o,m) denotes that the object o ∈ O is an instance of the model element m ∈ M.
& value(o,v) denotes that the object o ∈ O has the value v ∈ A. This is only possible, if o is an

instance of a model element that plays a domain role.
& attr(o,a,ov) denotes that the object o ∈ O has an attribute of type a ∈ M, and the value for

this attribute is represented by the object ov ∈ O.
& part(o,ae,op) denotes that the object o ∈ O is an association, and the object op ∈ O is a

participator in this association for the association end ae ∈ M.

As the predicates value and attr are often used in combination for simple typed attributes,
we use the predicate av(o,a,v) as a shortcut to denote that the object o has a value v for the
attribute a. As an example, Fig. 7 shows instances for the models in Fig. 5.

Fig. 7 Example instances for the models of Fig. 5

450 J Intell Inf Syst (2014) 43:437–462

The description of the relational instance in GeRoMe is straightforward. For each
tuple, there is a corresponding object (t1 and t2), and each attribute value of these
tuples is defined by an av predicate. In the XML instance, we first define an object xr
for the (invisible) document root. Then, x0 denotes the road element which is an
association between the document root xr and the instance x1 of the complex type
roadT. Attribute values are defined in the same way as in the relational instance. The
instance of the car element x2 is also an association; it links the parent element x1
with the child element x3, which is an instance of carT.

In practice, we never explicitly create instances of GeRoMe models in this verbose
representation; it is only the formal basis for the definition of mappings. Our model-based
code generation GeRoMeSuite transforms data during mapping execution directly from one
native representation into another according to the specified mapping Kensche et al. 2007b.

4.4 Languages for schema mappings

The choice of GAV and LAV mappings mentioned in Section 2 is only one aspect of schema
mappings. In addition, we have tasks like explicit data exchange or even physical generation of
new data.

The choice of a mapping query language depends obviously on the choice for the
metamodel. In the literature, the Relational Data Model is most frequently used for data
integration systems, and a relational query language chosen for representing mappings.
However, the full expressive power of a relationally complete query language (such as
Relational Algebra) makes reasoning over mappings undecidable. Query containment (which
has often to be proven during query rewriting) is only decidable for conjunctive, i.e. Select-
Project-Join (SPJ) queries Shmueli 1993.

In Clio, Fagin et al. 2005a, b initially proposed to use tuple-generating dependencies (tgds)
Beeri and Vardi 1984 for representing mappings between relational schemas, because tgds can
be easily translated into executable queries.

A source-to-target tuple-generating dependency (s-t tgd) has the form:

∀x φS xð Þ→∃yψT x; yð Þð Þ

x and y are sets of variables, φS and ψT are conjunctive queries over the relational schemas
S and T, respectively. A mapping M is then defined as M = <S,T,Σ > where S and T are the
mapped schemas, and Σ is a set of s-t tgds. Their simplicity combined with reasonable
expressive power is a strength of s-t tgds.

Clio Hernández et al. 2001 creates mappings over a nested relational model to support
mappings between relational databases and XML data. Using a set of value correspondences
as input, Clio is able to generate queries which transform source data into the desired target
data structure. However, it would still be difficult to extend this mapping representation to
express a mapping between other models, such as UML models, because there is simply no
appropriate query language.

Another drawback of these basic mappings in Clio is pointed out in Fuxman et al.
2006: the mappings do not reflect the nested structure of the data. This leads to an
inefficient execution of the mappings and redundant mapping specifications as parts of
the mapping have to be repeated for different nesting levels. Furthermore, the desired
grouping of the target data cannot be specified using basic mappings, as they would
cause redundancy in the target. A nested mapping language introduced in Fuxman
et al. 2006 addresses these problems. Furthermore, they provide an algorithm to

J Intell Inf Syst (2014) 43:437–462 451

compute the nested mappings from simple morphisms which can be executed more
efficiently than basic mappings.

Because executable mappings usually drive the transformation of instances of
models, Melnik et al. Melnik et al. 2005 specified the semantics of model manage-
ment operators by relating the instances of the operator’s input and output models.
They also implemented two model management system prototypes to study the
specifying and manipulating of executable mappings. In the first implementation, they
modified Rondo’s Melnik et al. 2003b language to define path morphisms and showed
that it is possible to generate executable mappings in a form of relational algebra
expressions. On the positive side, this system works correctly whenever the input is
specified using path morphisms, and the input is also closed under operators which
return a single mapping. However, the expressiveness of path morphisms is very
limited. To overcome this limitation, they developed a new prototype Melnik et al.
2005 in which mappings are specified using embedded dependencies. The expressive-
ness is improved, but it suffers from the problem that embedded dependencies are not
closed under composition. Because of this problem, the output of the very important
Compose operator cannot be represented as an embedded dependency; thus, a se-
quence of model management operators may not be executable.

4.4.1 Mapping composition

In general, the problem of composing mappings has the following definition: Given a mapping
M12 from model S1 to model S2, and a mapping M23 from model S2 to model S3, derive a
mappingM13 from model S1 to model S3 that is equivalent to the successive application ofM12

and M23 Fagin et al. 2005a, b.
So far, mapping composition has been studied only for mappings which use the

Relational Data Model as a basis Bernstein et al. 2006; Fagin et al. 2005a, b,
MaHa03.

In Madhavan and Halevy 2003, the semantics of the Compose operator is defined relative to
a class Q of queries over the model S3. For every query q∈ Q, the certain answers for q wrt.
M13 are the same as the certain answers for q wrt.M12 andM23. This provided a solid basis for
further research on mapping composition, but suffers from certain drawbacks caused by the
fact that the semantics is defined relative to a class Q of queries. Fagin et al. 2005a, b proposed
a different semantics which is defined over instance spaces of schema mappings. M13 is the
composition ofM12 andM23 if the instance space ofM13 is the set-theoretic composition of the
instance spaces ofM12 andM23. Under this semantics the mapping compositionM13 is unique
up to logical equivalence.

Another approach to define composition uses relational algebra expressions as
mappings Bernstein et al. 2006. An incremental algorithm tries to replace as many
symbols as possible from the “intermediate” model. Because the result of mapping
composition cannot be always expressed as relational algebra expressions, the algo-
rithm may fail under certain conditions; this limitation is in line with the results of
Fagin et al. 2005a, b.

4.4.2 Towards composable, executable, generic schema mappings

Fagin et al. 2005a, b proved that the language of s-t tgds is not closed under composition. To
illustrate the problem, we adapt an example from Fagin et al. 2005a, b to our traffic scenario.
Suppose we have a schema S1 with one relation Travels1(C,R) which means that a car with the

452 J Intell Inf Syst (2014) 43:437–462

id C is traveling on a road named R. Another schema S2 has two relations: Travels2(C,R) which
is a copy of Travels1(C,R), and Car2(C,N) which states that a car C is owned by a person with
name N. The mapping M12 between these schemas can be expressed using the following s-t
tgds:

∀c∀r Travels1 c; rð Þ → Travels2 c; rð Þ

∀c ∀r Travels1 c; rð Þð Þ →∃n Car2 c; nð Þ

When we execute this mapping, transform data from S1 to S2, we do not have data for n as
this information is not contained in S1. However, we know that a car can be owned only by one
person; thus, the value of n depends on the car id c. If we execute the mapping, we can thus
create ‘labeled null values’ for n.

Assume there is a third schema S3 with a single relation DrivesOn3(N,R) which holds
information about persons driving on specific roads. The mapping M23 between S2 and S3 can
be also expressed as a s-t tgd:

∀n∀r ∀c Car2 c; nð Þ∧Travels2 c; rð Þð Þ→DrivesOn3 n; rð Þ

If we now want to compose the mappings to a mapping M13=M12∘M23, a correct formula
in first-order logic would be

∀c∃n∀r Travels1 c; rð Þ→DrivesOn3 n; rð Þ ð1Þ

However, this is not a valid s-t tgd as existential quantification is only allowed on the right-
hand side of the implication. Note that the s-t tgd

∀c∀r Travels1 c; rð Þ→∃n DrivesOn3 n; rð Þ

is not a composition ofM12 andM23 as n depends now on both, c and r, which is not correct
with respect to composition semantics. To ameliorate the problem, we can skolemize formula
(1) and replace n with a Skolem function f(c):

∃ f ∀c∀r Travels1 c; rð Þ →DrivesOn3 f cð Þ; rð Þð Þ

This is a second-order formula as we quantify over the function symbol f. Fagin et al.
2005a, b showed that second-order tgds (SO tgds) are the smallest class of formulas which can
be used to represent the result of the composition of any finite s-t tgds. Thus, SO tgds are
closed under composition, and mappings expressed as SO tgds can be executed in polynomial
time. Therefore, SO tgds are a good formalization of mappings, albeit only for mapping
relational schemas.

By extending SO tgds to GeRoMe we have enabled the definition of generic schema
mappings Kensche et al. 2009. We will use the running example to illustrate that SO tgds
and the logical representation of GeRoMe instances fit nicely together and enable generic
mappings which are expressive, executable, and composable.

J Intell Inf Syst (2014) 43:437–462 453

Suppose, we want to map the relational schema R from Fig. 4 to the target XML schema T,
in which cars are nested into road elements. We can use the example instances in Fig. 7 as
templates for the conjunctive queries that specify the mapping:

∀I∀S∀R ∀T1∀T2ð ð
inst T 1; carð Þ∧av T 1; id; Ið Þ∧av T1; speed; Sð Þ∧av T1; roadId; Nð Þ∧
inst T 2; roadð Þ∧av T 2; roadId; Nð ÞÞ⇒

∃Xr∃X0∃X1∃X2∃X3
inst X r; rootð Þ∧inst X0; roadð Þ∧
part X 0; parent;X rð Þ∧part X 0; child;X 1ð Þ∧
inst X 1; roadTypeð Þ∧av X 1; id; Nð Þ∧inst X 2; carð Þ∧
inst X 3; carTypeð Þ∧part X 2; parent; X 1ð Þ∧part X 2; child; X 3ð Þ∧
av X 3; id; Ið Þ∧av X 3; speed; Sð ÞÞ

The concrete values for attributes and object identifiers have been replaced with variables.
As the target schema does not contain information about length and name of roads, we do not
use the corresponding predicates on the source side. This formula is a valid s-t tgd, but it does
not specify how to structure the data on the target side. In this case, there is one road element
for each tuple in the road relation, as roadId is the key of the road relation and all cars driving
on this road should be represented as nested elements. We cannot infer this constraint from the
mapping definition above, as all object variables are existentially quantified, i.e. they can have
different values for each matching pair of car and road tuples on the source side.

To overcome this problem, we can skolemize the formula in a similar way as in the
relational example. The variables Xi on the target side will be replaced by corresponding
functions fi(I,S,R). Note that I, S, and R are the arguments of these functions as they are the
universally quantified variables which appear on both sides of the implication. The resulting
formula is

∃ f r∃ f 0∃ f 1∃ f 2∃ f 3 ∀I∀S∀Rð ∀T1∀T 2ð
inst T1; carð Þ∧av T1; id; Ið Þ∧av T1; speed; Sð Þ∧av T 1; roadId; Nð Þ∧
inst T2; roadð Þ∧av T2; roadId; Nð ÞÞ⇒

inst f r I ; S;Rð Þ; rootð Þ∧inst f 0 I ; S;Rð Þ; roadð Þ∧
part f 0 I ; S;Rð Þ; parent; f r I ; S;Rð Þð Þ∧part f 0 I ; S;Rð Þ; child; f 1 I ; S;Rð Þð Þ∧
inst f 1 I ; S;Rð Þ; roadTypeð Þ∧av f 1 I ; S;Rð Þ; id; Nð Þ∧inst f 2 I ; S;Rð Þ; carð Þ∧
inst f 3 I ; S;Rð Þ; carTypeð Þ∧part f 2 I ; S;Rð Þ; parent; f 1 I ; S;Rð Þð Þ∧
part f 2 I ; S;Rð Þ; child; f 3 I ; S;Rð Þð Þ∧av f 3 I ; S;Rð Þ; id; Ið Þ∧
av f 3 I ; S;Rð Þ; speed; Sð ÞÞÞ

This is now a valid SO tgd, but it still would not allow generating correctly structured data:
All object identifiers depend on I, S, and R, such that for each combination of values for these
variables, there will be a road element with a nested car element. As I is the key for cars, a road
element will be generated for each car, and this is not the desired structured.

To address this problem, we need to consider the schema information in the GeRoMemodel
to figure out the correct data structuring. We will see that the constraints allow only one
instance of the root element for the whole document; thus, the corresponding Skolem function
fr should have no arguments (i.e., it is a constant). Roads are identified by roadId; thus, the

454 J Intell Inf Syst (2014) 43:437–462

Skolem functions for the road element (f0) and the road type (f1) should have only R as
argument. The car elements are identified by the car id I. Therefore, the Skolem functions for
the instances of the car element (f2) and the car type (f3) have to include the variable I in their
argument list. In addition, these functions need also the identifying variables of the parent
element, as the car elements are nested under road elements. Consequently, the resulting
functions are f2(I,R) and f3(I,R). The revised formula is given here:

∃ f r∃ f 0∃ f 1∃ f 2∃ f 3 ∀I∀S∀Rð ∀T1∀T 2ð
inst T1; carð Þ∧av T1; id; Ið Þ∧av T1; speed; Sð Þ∧av T1; roadId; Nð Þ∧
inst T2; roadð Þ∧av T2; roadId; Nð ÞÞ⇒

inst f rðÞ; rootð Þ∧inst f 0 Rð Þ; roadð Þ∧
part f 0 Rð Þ; parent; f rðÞð Þ∧part f 0 Rð Þ; child; f 1 Rð Þð Þ∧
inst f 1 Rð Þ; roadTypeð Þ∧av f 1 Rð Þ; id;NÞ∧inst f 2 I ;Rð Þ; carðð Þ∧
inst f 3 I ; Rð Þ; carTypeð Þ∧part f 2 I ;Rð Þ; parent; f 1 I ;Rð Þð Þ∧
part f 2 I ;Rð Þ; child; f 3 I ;Rð Þð Þ∧av f 3 I ;Rð Þ; id; Ið Þ∧
av f 3 I ;Rð Þ; speed; Sð ÞÞÞ

By using the generic mapping language and Skolem functions, we can define mappings
between arbitrarily structured models in various modeling languages. To execute the map-
pings, we do not have to provide an interpretation of the Skolem functions. The Skolem
functions will be used by the mapping compiler to generate appropriate queries or update
statements which take the defined structure into account.

5 Schema matching and merging

The formal definition of GeRoMe and its mapping language enable the formal definition and
verification of model management operators. We discuss briefly the realization of the operators
Match andMerge. Schema merging and schema matching are two related operators, in that the
output of matching can be used as input for schema merging.

5.1 Schema matching

Schema matching is the task of identifying a set of correspondences (also called a morphism)
between schema elements. Many aspects have to be considered during the process of
matching, such as data values, element names, constraint information, structure information,
domain knowledge, cardinality relationships, and so on. All this information is useful in
understanding the semantics of a schema, but it can be a very time consuming problem to
collect and apply this information.

Therefore, automatic methods are required for schema matching Rahm and Bernstein 2001;
Shvaiko and Euzenat 2005. Element-Level Matchers separately take the information of each
schema element into account, using linguistic information (name of the element) or constraint
information (data type, key constraints). Structure-Level Matchers use graph matching to
measure the similarity of the structures implied the schema. Instance-Level Matchers employ
data instances to match schema elements: If the instance sets of two elements are similar, or
have a similar value distribution, this might indicate a similarity of the schema elements.

J Intell Inf Syst (2014) 43:437–462 455

Machine-Learning Matchers use either instance data or previously identified matches as
training data to detect similar matches in new schema matching problems.

It is widely agreed, that no single method can solve the schema matching problem.
Therefore, matching frameworks such as COMA++ Aumueller et al. 2005, Protoplasm
Bernstein et al. 2004, or YAM Duchateau et al. 2009 combine multiple individual matching
methods to achieve a better result. For the heterogenous case, we have developed an extensible
and flexible matching framework in our model management system GeRoMeSuite Kensche
et al. 2007a, which is also able to combine several matching methods in entirely configurable
matching strategies. We could show that our system in particular good for heterogeneous
matching tasks, e.g., matching of XML schemas and OWL ontologies Quix et al. 2007. The
field of ontology matching had more attention in the recent years than schema matching
because of the structured evaluation of ontology matching systems in the Ontology Alignment
Evaluation Initiative (OAEI, Euzenat et al. 2011).

Such logical methods include, for example, the validation of correspondences. A computed
alignment should be consistent with the information present in the matched ontologies (or
schemas). If it is possible to derive an inconsistency from a correspondence, the identified
correspondences may be wrong. For example, in ASMOV Jean-Mary et al. 2009, validation of
the computed alignment is a key concept in their ontology matching system and greatly
improves the quality of the match result.

Our matching framework also incorporates validation methods for schema matching. We
could show that such methods also improve the quality of matching for our generic approach
(e.g., by comparing the results in Quix et al. 2008 and Quix et al. 2009). This also demon-
strates another advantage of the rich generic metamodel: due to the exact representation of
models in GeRoMe, we are able to apply these logical methods not only to ontologies, but to
other modeling languages as well (e.g., by exploiting inheritance relationships or foreign key
constraints).

Although the field of schema and ontology matching has made significant improvements in
the recent years, there are still a lot of challenges to be addressed. For example, Shvaiko and
Euzenat 2012 mention efficiency, matching with background knowledge, matcher selection
and tuning as important requirements for ontology matching systems. We have developed a
method for automatically retrieving background knowledge in form of ontologies from the
web Quix et al. 2011. For a matching task, we inspect the source and target models and extract
a few descriptive keywords from the models, in order to characterize the domain of the models
to be matched. Using these keywords, we employ traditional search engines or specific
ontology search engines (e.g., Swoogle Ding et al. 2004 or Watson d’Aquin and Motta
2011) to find ontologies on the web. In addition to matching the source and target models
directly, we thus match the input models also with the background ontology. For example, the
ontology O in Fig. 4 can be seen as an ontology bridging the semantic gap between the input
models S and T. By composing the computed matches, we can then infer more matches
between the models S and T and thereby get a more accurate mapping. In an extensive
evaluation of the approach Quix et al. 2011, we could show that the ‘noise’ which might be
introduced by inappropriate background knowledge is low and that it is more useful to use
several ontologies as background knowledge instead of just one.

5.2 Schema merging

The challenging part in schema merging is a formal definition of the desired outcome. How
can we characterize the requirements for the integrated schema formally? How can we prove
that a schema integration method actually produced the correct result?

456 J Intell Inf Syst (2014) 43:437–462

In Pottinger and Bernstein 2003, requirements for a Merge operator include the preserva-
tion of the original semantics of the input schemas (e.g., elements, relationships, and equal-
ities) and the minimality of the merged schema (i.e., no extra information should be added). We
present a method based on the previous formalisms that achieves these goals under certain
assumptions.

In the previous sections, we have addressed extensional mappings between instances of
schemas for tasks such as data translation or query rewriting. The semantics of extensional
mappings (and their composition) is defined with respect to the instances of schemas.

For schema merging, we need intensional mappings. For example, consider relational
databases from two different cities A and B which maintain information about roads, e.g.,
both databases have one relation of the form road(id, length, name). We could state the
relationship between the two databases using the following mapping expression:

∀I∀L∀N roadA I ; L;Nð Þ→roadB I ; L;Nð Þ:
This mapping is not correct if we consider the extensions of the relations. A road in city A is

not a road in city B and vice versa. Nevertheless, at the intensional level, the mapping is useful
because it states that the two relations have the same intended semantics. If additionally both
databases would contain information for the same domain (i.e., for the same city), then the
mapping would be correct. This difference in the semantics of mappings has been character-
ized in Calvanese et al. 1998.

Schema merging is about integrating models according to their intensional semantics. It has
the goal to construct a “duplicate-free” union of the input models and mapping, with respect to
the real world concepts described by the model elements. The integrated model should
describe each real world concept only once. Thus, we need intensional mappings for schema
integration.

In our schema merging approach Li et al. 2010; Li and Quix 2011, tuple-generating
dependencies (tgds) are used to express the constraints of the input schemas as well as the
inter-schema constraints (Fig. 8).

Assume we want to merge a set of schemas S1,…, Sn. We first construct S as the duplicate-
free union of S1, …, Sn (if there are elements with identical names, they need to be renamed).
The mappings between the input schemas as well as the constraints are defined as tgds in the
input mapping Mi. When we create the integrated schema T, we also produce two mappings:
Mo is the output mapping responsible for translating data from the sources to the new target
schema;Mr is a recovery mapping (or witness mapping) which is basically an inversion ofMo.
The integrated schema T is created by a step-by-step procedure in which we remove incre-
mentally elements from the input schema and check whether the obtained schema still fulfills
the requirements of the integrated schema.

Fig. 8 The basic idea for Schema Merge using logical mappings

J Intell Inf Syst (2014) 43:437–462 457

In our approach, the main requirement is that queries over the integrated schema should
have the same result as over the source schemas. We can prove this property by using the
generated mappingsMo andMr. If we can prove that the answers for queries are the same when
we evaluate them directly over S and when we evaluate them over S through the mapping Mo

and Mr, then we know that no information has been lost in the integrated schema T.
This means that we must be able to prove query equivalence for all queries in a specific

query language over the integrated schema and the source schemas. This is only possible if we
have a formal mapping from the data sources to the integrated schema and vice versa. As query
equivalence is decidable for conjunctive queries, we chose the class of conjunctive queries
over relational schemas as our query language.

The target schema T is minimized by identifying elements which are potentially redundant.
Redundant attributes are detected by reasoning over the input mappings and constraints. Our
implementation of this merge method Li et al. 2011 also considers the case of collapsing
relations, i.e., it removes redundant relations by discovering bi-directional inclusion depen-
dencies Li et al. 2011.

6 Conclusion and outlook

In this paper, we have reviewed the evolution of data-centric (enterprise information integra-
tion) approaches that emphasize the semantics of information integration. We have shown that
this approach has enabled significant progress in automation of many data and model
management tasks, especially in the context of the relational data model and its extensions,
e.g. to nested relations. With our GeRoMe approach, we have also illustrated current research
on how to extend these approaches to the case of heterogeneous data models, without losing
again the advantages of clear semantics and highly automated tools.

We intentionally limited our discussion to the case of structured or semi-structured data
with a schema. The linkage of these approaches to text and media information integration
which are also subject to intense research in the last years, still remains to be explored in depth.

But even within schema-based approaches, there is still a long way to go, in order to truly
conquer the challenge of heterogeneity. While our algorithms in GeRoMeSuite address
surprisingly well the aspects of (automatically) executable mapping in a significantly richer
model language context than earlier solutions, and provide decent assistance for heterogeneous
schema matching, our present solution for merging—information-preserving schema integra-
tion including target schema minimization—is unfortunately only provably correct and com-
plete for the case of relational model integration; a tractable case where this also holds for
heterogeneous merging remains an open problem.

References

Abiteboul, S., Hull, R., Vianu, V. (1995). Foundations of databases. Addison-Wesley.
Arenas, M., Barceló, P., Libkin, L., Murlak, F. (2010). Relational and XML data exchange. Synthesis lectures on

data management. Morgan & Claypool Publishers.
Arens, Y., Knoblock, C. A., & Shen, W.-M. (1996). Query reformulation for dynamic information integration.

Journal of Intelligent Information Systems, 6(2–3), 99–130.
Atzeni, P., & Torlone, R. (1996). Management of multiple models in an extensible database design tool. In P. M.

G. Apers, M. Bouzeghoub, & G. Gardarin (Eds.), Proc. 5th international conference on extending database
technology (EDBT) (Lecture Notes in Computer Science, Vol. 1057, pp. 79–95). Avignon: Springer.

458 J Intell Inf Syst (2014) 43:437–462

Atzeni, P., Cappellari, P., & Bernstein, P. A. (2005). A multilevel dictionary for model management. In L. M. L.
Delcambre, C. Kop, H. C. Mayr, J. Mylopoulos, & O. Pastor (Eds.), Proc. 24th international conference on
conceptual modeling (ER) (Lecture Notes in Computer Science, Vol. 3716, pp. 160–175). Klagenfurt:
Springer.

Atzeni, P., Cappellari, P., & Bernstein, P. A. (2006). Model-independent schema and data translation. In Y. E.
Ioannidis, M. H. Scholl, J. W. Schmidt, F. Matthes, M. Hatzopoulos, K. B¨ohm, A. Kemper, T. Grust, & C.
Böhm (Eds.), Proc. 10th international conference on extending database technology (EDBT) (Lecture Notes
in Computer Science, Vol. 3896, pp. 368–385). Munich: Springer.

Atzeni, P., Bellomarini, L., Bugiotti, F., & Gianforme, G. (2009). Mism: A platform for model-independent
solutions to model management problems. Journal of Data Semantics, 14, 133–161.

Aumueller, D., Do, H. H., Massmann, S., & Rahm, E. (2005). Schema and ontology matching with COMA++. In
F. Ozcan (Ed.), Proceedings of the ACM SIGMOD international conference on management of data (pp.
906–908). Baltimore: ACM.

Bachman, C.W., Daya, M. (1977). The role concept in data models. In: Proceedings of the Third International
Conference on Very Large Data Bases (VLDB), pp. 464–476. IEEE-CS and ACM, Tokyo, Japan.

Batini, C., Lenzerini, M., & Navathe, S. B. (1986). A comparative analysis of methodologies for database
schema integration. ACM Computing Surveys, 18(4), 323–364.

Baumeister, M., & Jarke, M. (1999). Compaction of large class hierarchies in databases for chemical engineer-
ing. proceedings 8. gi-fachtagung für datenbanksysteme in büro, technik und wissenschaft (BTW) (pp. 343–
361). Freiburg: Springer.

Beeri, C., & Vardi, M. Y. (1984). A proof procedure for data dependencies. Journal of the ACM, 31(4), 718–741.
Bergamaschi, S., Castano, S., Vincini, M., & Beneventano, D. (2001). Semantic integration of heterogeneous

information sources. Data & Knowledge Engineering, 36(3), 215–249.
Bernstein, P. A., & Haas, L. M. (2008). Information integration in the enterprise. Communications of the ACM,

51(9), 72–79.
Bernstein, P. A., & Melnik, S. (2007). Model management 2.0: Manipulating richer mappings. In L. Zhou, T. W.

Ling, & B. C. Ooi (Eds.), Proc. ACM SIGMOD intl. conf. on management of data (pp. 1–12). Beijing: ACM
Press. doi:10.1145/1247480.1247482.

Bernstein, P. A., Halevy, A. Y., & Pottinger, R. (2000). A vision for management of complex models. SIGMOD
Record, 29(4), 55–63.

Bernstein, P. A., Melnik, S., Petropoulos, M., & Quix, C. (2004). Industrialstrength schema matching. SIGMOD
Record, 33(4), 38–43.

Bernstein, P.A., Green, T.J., Melnik, S., Nash, A. (2006). Implementing mapping composition. In: U. Dayal, K.Y.
Whang, D.B. Lomet, G. Alonso, G.M. Lohman, M.L. Kersten, S.K. Cha, Y.K. Kim (eds.) Proc. 32nd Intl.
Conference on Very Large Data Bases (VLDB), pp. 55–66. ACM Press.

Biskup, J., & Convent, B. (1986). A formal view integration method. In C. Zaniolo (Ed.), Proc. ACM SIGMOD
intl. conf. on management of data (pp. 398–407). Washington: ACM Press.

Brandt, S. C., Morbach, J., Miatidis, M., Theißen, M., Jarke, M., & Marquardt, W. (2008). An ontology-based
approach to knowledge management in design processes. Computers & Chemical Engineering, 32(1–2),
320–342.

Brodie, M.L. (2010). Data integration at scale: From relational data integration to information ecosystems. In:
Proc. 24th IEEE Intl. Conf. on Advanced Information Networking and Applications (AINA), pp. 2–3. IEEE
Computer Society, Perth, Australia.

Calì, A., Calvanese, D., Giacomo, G. D., & Lenzerini, M. (2004). Data integration under integrity constraints.
Information Systems, 29(2), 147–163. doi:10.1016/S0306-4379(03)00050-4.

Calvanese, D., Giacomo, G. D., Lenzerini, M., Nardi, D., & Rosati, R. (1998). Description logic framework for
information integration. In A. G. Cohn, L. K. Schubert, & S. C. Shapiro (Eds.), Proceedings of the sixth
international conference on principles of knowledge representation and reasoning (KR’98) (pp. 2–13).
Trento: Morgan Kaufmann.

Calvanese, D., Giacomo, G. D., Lenzerini, M., Nardi, D., & Rosati, R. (2001). Data Integration in Data
Warehousing. International Journal of Cooperative Information Systems (IJCIS), 10(3), 237–271.

Casanova, M.A., Vidal, V.M.P. (1983). Towards a sound view integration methodology. In: Proc. 2nd ACM
Symposium on Principles of Database Systems (PODS), pp. 36–47. ACM, Atlanta, GA.

Cattell, R. (2010). Scalable SQL and NoSQL data stores. SIGMOD Record, 39(4), 12–27.
Ceri, S., Pelagatti, G. (1984). Distributed databases: principles and systems. McGraw-Hill Book Company.
Collet, C., Huhns, M. N., & Shen, W. M. (1991). Resource integration using a large knowledge base in carnot.

IEEE Computer, 24(12), 55–62.
d’Aquin, M., & Motta, E. (2011). Watson, more than a semantic web search engine. Semantic Web Journal,

2(1), 55–63. http://www.semantic-web-journal.net/content/new-submission-watson-more-semantic-
web-search-engine.

J Intell Inf Syst (2014) 43:437–462 459

http://dx.doi.org/10.1145/1247480.1247482
http://dx.doi.org/10.1016/S0306-4379(03)00050-4

Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R., Peng, Y., Reddivari, P. et al. (2004). Swoogle: a search and
metadata engine for the semantic web. In: Proc. CIKM.

Do, H.H., Rahm, E. (2002). Coma -a system for flexible combination of schema matching approaches. In: Proc.
28th Intl. Conference on Very Large Data Bases (VLDB), pp. 610–621. Morgan Kaufmann, Hong Kong,
China.

Dolk, D.R. (1988). Model management and structured modeling: the role of an information resource dictionary
system. Communications of the ACM 31(6).

Duchateau, F., Coletta, R., Bellahsene, Z., & Miller, R. J. (2009). (Not) yet another matcher. In D. W. L. Cheung,
I. Y. Song, W. W. Chu, X. Hu, & J. J. Lin (Eds.), Proc. 18th ACM conference on information and knowledge
management (CIKM) (pp. 1537–1540). Hong Kong: ACM.

Euzenat, J., Meilicke, C., Stuckenschmidt, H., Shvaiko, P., & dos Santos, C. T. (2011). Ontology alignment
evaluation initiative: 6 years of experience. Journal on Data Semantics, 15, 158–192.

Fagin, R., Kolaitis, P., Miller, R. J., & Popa, L. (2005a). Data exchange: Semantics and query answering.
Theoretical Computer Science, 336, 89–124.

Fagin, R., Kolaitis, P. G., Popa, L., & Tan, W. C. (2005b). Composing schema mappings: Second-order
dependencies to the rescue. ACM Transactions on Database Systems, 30(4), 994–1055.

Fagin, R., Haas, L.M., Hern’andez, M.A., Miller, R.J., Popa, L., Velegrakis, Y. (2009). Clio: Schema mapping
creation and data exchange. In: A. Borgida, V.K. Chaudhri, P. Giorgini, E.S.K. Yu (eds.) Conceptual
Modeling: Foundations and Applications, Lecture Notes in Computer Science, vol. 5600, pp. 198–236.
Springer.

Fuxman, A., Hernández, M.A., Ho, C.T.H., Miller, R.J., Papotti, P., Popa, L. (2006). Nested mappings: Schema
mapping reloaded. In: U. Dayal, K.Y. Whang, D.B. Lomet, G. Alonso, G.M. Lohman, M.L. Kersten, S.K.
Cha, Y.K. Kim (eds.) Proc. 32nd Intl. Conference on Very Large Data Bases (VLDB), pp. 67–78. ACMPress.

Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y., Ullman, J. D., et al. (1997). The
tsimmis approach to mediation: Data models and languages. Journal of Intelligent Information Systems,
8(2), 117–132.

Geisler, S., Quix, C., Schiffer, S., & Jarke, M. (2012). An evaluation framework for traffic information systems
based on data streams. Transportation Research Part C, 23, 29–55.

Genesereth, M. R., Keller, A. M., & Duschka, O. M. (1997). Infomaster: An information integration system. In J.
Peckham (Ed.), Proceedings of the ACM SIGMOD international conference on management of data (pp.
539–542). Tucson: ACM Press.

Haas, L. M. (2007). Beauty and the beast: The theory and practice of information integration. In T. Schwentick &
D. Suciu (Eds.), ICDT, lecture notes in computer science (Vol. 4353, pp. 28–43). Barcelona: Springer.

Haas, L. M., Hernández, M. A., Ho, H., Popa, L., & Roth, M. (2005). Clio grows up: From research prototype to
industrial tool. In F. Ozcan (Ed.), Proceedings of the ACM SIGMOD international conference on manage-
ment of data (pp. 805–810). Baltimore: ACM.

Halevy, A. Y. (2001). Answering queries using views: A survey. VLDB Journal, 10(4), 270–294.
Halevy, A. Y., Ives, Z. G., Madhavan, J., Mork, P., Suciu, D., & Tatarinov, I. (2004). The piazza peer data

management system. IEEE Transactions on Knowledge and Data Engineering, 16(7), 787–798. doi:10.
1109/TKDE.2004.1318562.

Haslhofer, B., Klas, W. (2010). A survey of techniques for achieving metadata interoperability. ACM Comput.
Surv. 42(2).

Hernández, M.A., Miller, R.J., Haas, L.M. (2001). Clio: A semi-automatic tool for schema mapping. In: Proc.
ACM SIGMOD Intl. Conference on the Management of Data, p. 607. ACM Press, Santa Barbara, CA.

ISO/IEC (1990). Information technology—Information Resource Dictionary System (IRDS) framework.
International Standard ISO/IEC 10027:1990, ISO International Organization for Standardization.

ISO/IEC (2005). Information technology -Meta Object Facility (MOF). International Standard ISO/IEC 19502:
2005, ISO International Organization for Standardization.

Jarke, M., Gallersdörfer, R., Jeusfeld, M. A., & Staudt, M. (1995). ConceptBase -a deductive object base for meta
data management. Journal of Intelligent Information Systems, 4(2), 167–192.

Jarke, M., Jeusfeld, M. A., Quix, C., & Vassiliadis, P. (1999). Architecture and Quality in Data Warehouses: An
Extended Repository Approach. Information Systems, 24(3), 229–253.

Jarke, M., Lenzerini, M., Vassiliou, Y., Vassiliadis, P. (eds.) (2003). Fundamentals of data warehouses, 2 edn.
Springer-Verlag.

Jarke, M., Jeusfeld, M., Nissen, H., Quix, C., Staudt, M. (2009). Metamodelling with datalog and classes:
Conceptbase at the age of 21. In: Proc. 2nd Intl. Conf. Object Databases (ICOODB 09), pp. 95–112.
Springer-Verlag.

Jean-Mary, Y. R., Shironoshita, E. P., & Kabuka, M. R. (2009). Ontology matching with semantic verification.
Journal of Web Semantics, 7(3), 235–251.

Jeusfeld, M.A. (1992). Änderungskontrolle in deduktiven Objektbanken. PhD thesis, Universität Passau.

460 J Intell Inf Syst (2014) 43:437–462

http://dx.doi.org/10.1109/TKDE.2004.1318562
http://dx.doi.org/10.1109/TKDE.2004.1318562

Jeusfeld, M. A., & Johnen, U. A. (1995). An executable meta model for reengineering of database schemas. Intl.
Journal of Cooperative Information Systems, 4(2–3), 237–258.

Kensche, D., Quix, C., Chatti, M.A., Jarke, M. (2007). GeRoMe: A generic role based metamodel for model
management. Journal on Data Semantics VIII, 82–117.

Kensche, D., Quix, C., Li, X., Li, Y. (2007). GeRoMeSuite: A system for holistic generic model management. In:
C. Koch, J. Gehrke, M.N. Garofalakis, D. Srivastava, K. Aberer, A. Deshpande, D. Florescu, C.Y. Chan, V.
Ganti, C.C. Kanne, W. Klas, E.J. Neuhold (eds.) Proceedings 33rd Intl. Conf. on Very Large Data Bases
(VLDB), pp. 1322–1325. Vienna, Austria.

Kensche, D., Quix, C., Li, X., Li, Y., & Jarke, M. (2009). Generic schema mappings for composition and query
answering. Data & Knowledge Engineering, 68(7), 599–621. doi:10.1016/j.datak.2009.02.006.

Kerner, B., Demir, C., Herrtwich, R., Klenov, S., Rehborn, H., Aleksic, M. et al. (2005). Traffic state detection
with floating car data in road networks. In: Proceedings of the 8th International IEEE Conference on
Intelligent Transportation Systems, pp. 700–705. Daimler Chrysler AG.

Kirk, T., Levy, A.Y., Sagiv, Y., Srivastava, D. (1995). The Information Manifold. In: Proceedings of the AAAI 1995
Spring Symposium on Information Gathering from Heterogeneous, Distributed Environments, pp. 85–91.

Lenzerini, M. (2002). Data integration: A theoretical perspective. In L. Popa (Ed.), Proc. 21st ACM symposium
on principles of database systems (PODS) (pp. 233–246). Madison: ACM Press. doi:10.1145/543613.
543644.

Li, X., & Quix, C. (2011). Merging relational views: A minimization approach. In M. A. Jeusfeld, L. M. L.
Delcambre, & T. W. Ling (Eds.), Proc. 30th intl. conference on conceptual modeling (ER 2011) (Lecture
Notes in Computer Science, Vol. 6998, pp. 379–392). Brussels: Springer.

Li, X., Quix, C., Kensche, D., & Geisler, S. (2010). Automatic schema merging using mapping constraints among
incomplete sources. In J. Huang, N. Koudas, G. J. F. Jones, X. Wu, K. Collins-Thompson, & A. An (Eds.),
Proc. 19th ACM conf. on information and knowledge management (CIKM) (pp. 299–308). Toronto: ACM.

Li, X., Quix, C., Kensche, D., Geisler, S., & Guo, L. (2011). Automatic generation of mediated schemas through
reasoning over data dependencies. In S. Abiteboul, K. B¨ohm, C. Koch, & K. L. Tan (Eds.), Proc. 27th intl.
conf. on data engineering (ICDE) (pp. 1280–1283). Hannover: IEEE Computer Society.

Madhavan, J., & Halevy, A. Y. (2003). Composing mappings among data sources. In J. C. Freytag, P. C.
Lockemann, S. Abiteboul, M. J. Carey, P. G. Selinger, & A. Heuer (Eds.), Proc. of 29th intl. conference on
very large data bases (VLDB) (pp. 572–583). Berlin: Morgan Kaufmann.

Melnik, S., Rahm, E., & Bernstein, P. A. (2003a). Developing metadata-intensive applications with Rondo.
Journal of Web Semantics, 1(1), 47–74.

Melnik, S., Rahm, E., Bernstein, P.A. (2003). Rondo: A programming platform for generic model management.
In: Proc. ACM SIGMOD Intl. Conference on Management of Data, pp. 193–204. ACM, San Diego, CA.

Melnik, S., Bernstein, P. A., Halevy, A. Y., & Rahm, E. (2005). Supporting executable mappings in model
management. In F. Ozcan (Ed.), Proceedings of the ACM SIGMOD international conference on manage-
ment of data (pp. 167–178). Baltimore: ACM.

Miller, R. J., Haas, L. M., & Hernández, M. A. (2000). Schema mapping as query discovery. In A. E. Abbadi, M.
L. Brodie, S. Chakravarthy, U. Dayal, N. Kamel, G. Schlageter, & K. Y. Whang (Eds.), Proc. 26th intl.
conference on very large data bases (VLDB) (pp. 77–88). Cairo: Morgan Kaufmann.

Mork, P., Bernstein, P.A., Melnik, S. (2007). Teaching a schema translator to produce o/r views. In: Proc. 26th
Intl. Conf. on Conceptual Modeling (ER’07), LNCS, vol. 4801, pp. 102–119. Springer.

Mylopoulos, J., Borgida, A., Jarke, M., & Koubarakis, M. (1990). Telos: Representing Knowledge About
Information Systems. ACM Transactions on Information Systems, 8(4), 325–362.

Nardi, D., Brachman, R.J. (2003). An introduction to description logics. In: F. Baader, D. Calvanese, D.L.
McGuinness, D. Nardi, P.F. Patel-Schneider (eds.) Description Logic Handbook. Cambridge University Press.

Nissen, H. W., & Jarke, M. (1999). Repository Support for Multi-Perspective Requirements Engineering.
Information Systems, 24(2), 131–158.

Parent, C., & Spaccapietra, S. (1998). Issues and approaches of database integration. Communications of the
ACM, 41(5), 166–178.

Pottinger, R., & Bernstein, P. A. (2003). Merging models based on given correspondences. In J. C. Freytag, P. C.
Lockemann, S. Abiteboul, M. J. Carey, P. G. Selinger, & A. Heuer (Eds.), Proc. of 29th intl. conference on
very large data bases (VLDB) (pp. 826–873). Berlin: Morgan Kaufmann.

Pottinger, R., & Halevy, A. Y. (2001). Minicon: A scalable algorithm for answering queries using views. VLDB
Journal, 10(2–3), 182–198.

Quix, C. (2009). Meta data repository. In: L. Liu, M.T. Ozsu (eds.) Encyclopedia of Database Systems, pp. 1718–
1722. Springer.

Quix, C., Kensche, D., & Li, X. (2007). Matching of ontologies with xml schemas using a generic metamodel. In
R. Meersman & Z. Tari (Eds.), Proc. OTM confederated international conf. CoopIS/DOA/ODBASE/GADA/
IS (Lecture Notes in Computer Science, Vol. 4803, pp. 1081–1098). Vilamoura: Springer.

J Intell Inf Syst (2014) 43:437–462 461

http://dx.doi.org/10.1016/j.datak.2009.02.006
http://dx.doi.org/10.1145/543613.543644
http://dx.doi.org/10.1145/543613.543644

Quix, C., Geisler, S., Kensche, D., Li, X.: Results of GeRoMesuite for OAEI 2008. In: Proc. 3rd Intl. Workshop
On Ontology Matching (OM2008) (2008). URL http://data.semanticweb.org/workshop/om/2008/paper/
main/13.

Quix, C., Geisler, S., Kensche, D., & Li, X. (2009). Results of geromesuite for oaei 2009. In P. Shvaiko, J.
Euzenat, F. Giunchiglia, H. Stuckenschmidt, N. F. Noy, & A. Rosenthal (Eds.), Proc. 4th intl. workshop on
ontology matching (CEURWorkshop Proceedings, Vol. 551). Chantilly: CEUR-WS.org.

Quix, C., Roy, P., Kensche, D. (2011). Automatic selection of background knowledge for ontology matching. In:
Proc. Intl. Workshop on Semantic Web Information Management (SWIM), pp. 5:1–5:7. ACM, New York,
NY, USA.

Rahm, E., & Bernstein, P. A. (2001). A survey of approaches to automatic schema matching. VLDB Journal,
10(4), 334–350.

Ramesh, B., & Jarke, M. (2001). Toward Reference Models of Requirements Traceability. IEEE Transactions on
Software Engineering, 27(1), 58–93.

Richardson, J., Schwarz, P. (1991). Aspects: extending objects to support multiple, independent roles. In: Proc.
ACM SIGMOD Intl. Conference on Management of Data, pp. 298–307. Denver, CO.

Shmueli, O. (1993). Equivalence of datalog queries is undecidable. Journal of Logic Programming, 15(3), 231–
241.

Shu, N. C., Housel, B. C., Taylor, R. W., Ghosh, S. P., & Lum, V. Y. (1977). EXPRESS: A Data EXtraction,
Processing, amd REStructuring System. ACM Transactions on Database Systems, 2(2), 134–174.

Shvaiko, P., Euzenat, J. (2005). A survey of schema-based matching approaches. Journal on Data Semantics IV,
146–171. LNCS 3730.

Shvaiko, P., Euzenat, J. (2012). Ontology matching: State of the art and future challenges. IEEE Transactions on
Knowledge and Data Engineering. To appear, preprint available at http://www.dit.unitn.it/~p2p/
RelatedWork/Matching/SurveyOMtkde_SE.pdf.

Singh, M. P., Cannata, P. E., Jacobs, N., Ksiezyk, T., Ong, K., Sheth, A. P., et al. (1997). The carnot
heterogeneous database project: Implemented applications. Distributed and Parallel Databases, 5(2),
207–225.

Smith, M. (2007). Toward enterprise information integration. SoftwareMagazine. URL http://www.softwaremag.
com/content/ContentCT.aspP=3034.

Spaccapietra, S., & Parent, C. (1994). View integration: A step forward in solving structural conflicts. IEEE
Transactions on Knowledge and Data Engineering, 6(2), 258–274.

Staudt, M., & Jarke, M. (2000). View Management Support in Advanced Knowledge Base Servers. Journal
Intelligent Information Systems, 15(3), 253–285.

Stonebraker, M. (2010). SQL databases v. NoSQL databases. Communications of the ACM, 53(4), 10–11.
Stubing, H., Bechler, M., Heussner, D., May, T., Radusch, I., Rechner, H., et al. (2010). simtd: A car-to-x system

architecture for field operational tests. IEEE Communications Magazine, 48(5), 148–154.
Vogels, W. (2007). Data access patterns in the amazon.com technology platform. In: C. Koch, J. Gehrke, M.N.

Garofalakis, D. Srivastava, K. Aberer, A. Deshpande, D. Florescu, C.Y. Chan, V. Ganti, C.C. Kanne, W.
Klas, E.J. Neuhold (eds.) Proceedings 33rd Intl. Conf. on Very Large Data Bases (VLDB), p. 1. Vienna,
Austria.

Wiederhold, G. (1992). Mediators in the architecture of future information systems. IEEE Computer, 25(3), 38–
49.

Wiederhold, G (ed.). (1996). Special Issue on Intelligent Integration of Information. Journal of Intelligent
Information Systems 6(2–3), 93–291.

Wong, R. K., Chau, H. L., & Lochovsky, F. H. (1997). A data model and semantics of objects with dynamic
roles. In A. Gray & P. A. Larson (Eds.), Proceedings of the 13th international conference on data
engineering (ICDE) (pp. 402–411). Birmingham: IEEE Computer Society.

Zhou, G., Hull, R., & King, R. (1996). Generating data integration mediators that use materialization. Journal of
Intelligent Information Systems, 6(2–3), 199–221.

462 J Intell Inf Syst (2014) 43:437–462

http://data.semanticweb.org/workshop/om/2008/paper/main/13
http://data.semanticweb.org/workshop/om/2008/paper/main/13
http://www.dit.unitn.it/%7Ep2p/RelatedWork/Matching/SurveyOMtkde_SE.pdf
http://www.dit.unitn.it/%7Ep2p/RelatedWork/Matching/SurveyOMtkde_SE.pdf
http://www.softwaremag.com/content/ContentCT.aspP=3034
http://www.softwaremag.com/content/ContentCT.aspP=3034

	Data-centric intelligent information integration—from concepts to automation
	Abstract
	Introduction
	Classical data integration
	The evolution of model management
	Model management 0.1: repositories with formal metamodels
	Model management 1.0: algebra of model operators
	Model management 2.0: mappings as first-class citizens

	Towards heterogeneous model management
	Requirements for a generic model management system
	Role-based metamodeling with GeRoMe
	Logical foundation for the generic metamodel
	Languages for schema mappings
	Mapping composition
	Towards composable, executable, generic schema mappings

	Schema matching and merging
	Schema matching
	Schema merging

	Conclusion and outlook
	References

