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Abstract RDF (Resource Description Framework) data are more and more prevalent in
the applications of semantic web and web data publication. The search over Web scale
RDF data is essential for users to retrieve desired information from the huge RDF datasets,
which typically applied as knowledge bases supporting many advanced information seek-
ing tasks. In this paper, we propose some techniques that allow users to interactively search
over the Web scale RDF data by using keywords as well as their predicates as additional
constraints. We observe that the straightforward way of keyword search over the Web scale
RDF data often generates a huge number of matching sub-structures (i.e., graphs containing
the query keywords) due to the ambiguity of query intention generated from a small number
of query keywords, although most of them are false interpretations of the query intention.
To effectively interpret the semantics of queries, we define a novel keyword query called
structure-aware keyword query that utilizes the predicates of RDF triples to assist users in
clarifying their query intention. The challenge of such queries is to effectively and effi-
ciently find a proper set of predicate-keyword pairs for query interpretation, to reduce the
manual cost of user feedbacks as much as possible. To verify the novel query mechanism,
we implement a system, and test it over the DBPedia 3.7 dataset. Results show that, for
most queries, users can often efficiently get desired results by providing a small number of
simple feedbacks on the constraints of predicates automatically generated.
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1 Introduction

Knowledge bases extracted from the Web are becoming increasingly prevalent in our
daily applications because of the advance of knowledge harvesting technologies (Weikum
and Theobald 2010). Examples are Freebase (Bollacker et al. 2008), DBpedia (Auer
et al. 2007), and Linked Open Data (LOD (Heath and Bizer 2011)). Many of these
knowledge bases apply RDF (Resource Description Framework) as a basic data model
to record the huge amount of information units. An RDF triple, typically presented as
< subject, predicate, object >, represents a statement (object) of one aspect (predicate)
of a subject. Because of its simplicity, the RDF model is widely used for recording the
knowledge extracted from the Web or open data published from many sources. The RDF
knowledge bases are able to support important applications such as semantic search (Ferré
and Hermann 2011) because the high-quality information and knowledge they contain.

Recently, intensive studies have been conducted on efficient query processing over Web-
scale RDF datasets. One stream of these studies is focused on SPARQL query (Huang et al.
2011; Neumann andWeikum 2010), which is a W3C standard for searching RDF data struc-
turely. However, SPARQL query requires users to have a deep knowledge of the underlying
schema (predicates and prefixes) of the desired RDF triples. It is therefore not user-friendly
because general users are often ignorant to the schema of RDF datasets.

In RDF datasets, the object of an RDF triple can also be a subject of another triple. Hence,
an RDF dataset can be modeled as labeled graphs, in which the nodes consist of subjects and
objects, and edges are predicates (serve as edge labels). Keyword search over labeled graphs
has attracted much attention because it is an easy portal for users to retrieve the desired
information from labeled graphs. As introduced in the work (Bhalotia et al. 2002), given a
directed graph G in which each node is associated with a plain text label, keyword search
on graphs concerns with querying G by a set of keywords. The desired answer is a ranked
list of subgraphs which contain all the query keywords in their node labels. Compared to
the SPARQL, keyword search is more user-friendly. It is therefore widely used for many
information seeking tasks on the RDF knowledge bases.

However, keyword search may not be able to capture a user’s query intention accurately.
The ignorance of predicates in a keyword query will generate more ambiguity for keyword
search. For example, if a user presents a query “apple, snow” and hopes to find a recipe
for apple snow treat, keyword search engine may incorrectly return a MacBook computer
produced by Apple with Snow Leopard OS. The ambiguity of a keyword query is more
prominent when it is conducted over Web-scale RDF datasets, because many RDF labels
are long texts that may contain dozens of words (in contrast to the short labels used in
traditional labeled graphs). As a result, it is quite common that there are a large number of
sub-structures of the data graphs that contain the query keywords. However, most of them
may not be the sub-structures desired by the users. This brings challenge to effectively rank
sub-structures because users can only be patient to a small number of top results in web
search applications.

The characteristics of RDF data model allow predicates to help to reduce the ambiguity
of simple keyword queries (Pound et al. 2010). However, like SPARQL queries, predi-
cates of RDF data are not user-friendly, and therefore they are hard to be directly applied
in keyword search. In this paper, we present a structure-aware keyword search solution
which allows users to leverage the discriminative functionality of predicates, through an
interactive process of keyword search. Our study on this solution is focused on how to effi-
ciently and effectively suggest predicate-keyword pairs to users so that irrelevant candidate
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sub-structures can be effectively removed during a quick and easy-to-use feedback process.
We propose an algorithm to efficiently propose a proper set of predicate-keyword pairs for
users’ feedbacks.

By using the proposed techniques, users are able to accurately and effectively search
desired information from Web-scale RDF knowledge bases. The proposed solution lever-
ages the easy-to-use keyword search approach by introducing the constraints of predicates
when seeking information from RDF knowledge bases. Users are able to dynamically adjust
their queries through interactively participating the feedbacks on the predicate-keyword
pairs. The proposed search technique can be easily applied to applications such as semantic
search and question answering (Unger et al. 2012).

The main contribution of the paper includes:

– We propose an interactive search framework that helps users to clarify their search
intention through the feedbacks on the automatically generated predicate-keyword
pairs. This is a large difference from the traditional SPARQL query and keyword search
that have been widely used for many information seeking tasks on Web-scale RDF
knowledge bases.

– To guarantee an interactive speed of efficient generation of predicate-keyword pairs
for feedbacks, we propose a sub-optimal algorithm to effectively and efficiently sug-
gest predicate-keyword pairs according to the search results. This makes the solution
scalable for Web-scale RDF knowledge bases.

– We implement a prototype of the search system. Extensive experiments over real
datasets demonstrate the proposed interactive search solution can be effectively and
efficiently conducted over Web-scale RDF data.

The paper is organized as follows. Section 2 gives the related work study. Section 3 intro-
duces the structure-aware keyword search solution. The strategies of interactive search by
predicate-keyword pairs are given in Section 4. Experimental studies are given in Section 5,
followed by the conclusions given in Section 6.

2 Related work

There are several types of accessing methods for large RDF datasets. One is a W3C
standard query language called SPARQL (Pérez et al. 2006), which is a declarative language
like SQL in traditional relational database systems. Studies on efficient SPARQL query pro-
cessing algorithms and systems have been widely proposed (Neumann and Weikum 2010;
Wilkinson et al. 2003). The major problem of SPARQL is that it is not user-friendly, given
the complex query syntax and the complicated predicates and prefixes used in the query. As
for this, keyword search over RDF graphs has been recently studied (Elbassuoni and Blanco
2011; He et al. 2007; Tran et al. 2009).

The goal of keyword search over RDF graphs is to find succinct local structures that con-
tain all the query keywords. They typically ignore the predicates that serve for representing
the relationships between nodes. Some of the keyword search solutions (Tran et al. 2009)
try to transform a keyword query into a number of structural queries so that a SPARQL-
like query can be finally formalized according to the statistical information derived from
the RDF graphs. Some recent studies (Unger et al. 2012; Yahya et al. 2012) also consider to
transform a natural language question to a SPARQL query, to support queries like natural
language questions.
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A more relevant work (Pound et al. 2010) considers to affiliate structural constraints
over the query keywords. The structural constraints specify the predicates of desired results
when matching local structures in RDF graphs. However, the structural constraints have to
be explicitly proposed by users. To our best knowledge, techniques on how to automatically
assign structural constraints over RDF data has never be studied.

3 Structure-aware keyword search

An RDF statement is a triple consisting of a subject, a predicate, and an object. It is repre-
sented as < s, p, o >, which corresponds to an edge from a subject s to an object o with
the edge type p as a predicate. An RDF knowledge base can be abstracted as a set of graphs
G. Vertices in G are partitioned into two disjoint sets: literal nodes and entity nodes (typi-
cally represented as URIs). A literal node is a node of pure textual information. It therefore
can only be an object. An entity node is a node with a URI. It can be both subjects of some
triples and objects of some other triples. In contrast, a literal node must be attached to one
entity node. We denote the function p(v) as the predicate of a literal node v. For the example
shown in Fig. 1, Paper1 is an entity node (note that the URIs is not shown out in the figure).
The node “semantic data management” is a literal node. Note that in our study, keywords
can only appear in literal nodes because we treat the URIs of entity nodes as identifications
of entities.

Given a keyword k, a literal node v is called a spot of the keyword k if k appears in the
literal text of v. For example, in Fig. 1, nodes v4 and v5 are spots of the keyword “semantic”.
The goal of keyword search over RDF graphs is to find some local structures in the graphs
such that each local structure contains spots for each keyword, and the spots are connected
with each other in the local structure.

The following two intuitions motivate the definition of the structure-aware keyword
search query.

Intuition 1 Generally, users who provide the query keywords know the exact semantics of
these keywords. However, they do not know how the semantics is interpreted in the huge
RDF graphs because they often do not know the structure of RDF datasets in details. Simply
providing more keywords for clarifying the query intention may cause many false negatives
of matching local structures in the RDF graphs.

Fig. 1 Examples of RDF graph and matching trees
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Intuition 2 The desired results are local structures with a very small radius in terms of
graph distance. In other words, all the query keywords must appear in literal nodes close to
each other in the RDF graphs. A small radius guarantees the strong semantic correlation
among the spots of all the query keywords.

Many approaches (Bhalotia et al. 2002; He et al. 2007; Kacholia et al. 2005) of keyword
search over graphs use tree-shaped local structures (in particular, Steiner trees (Bhalotia
et al. 2002)) where the keyword nodes correspond to leaves, to represent the query answers.
Although the edges of RDF graphs are directed, the direction (which is not specified in
keyword queries) can be ignored when identifying local structures containing the spots of
the query keywords. In this paper, we apply the tree structure to interpret the query results
of keyword search.

Definition 1 (Matching tree) Given a keyword query q = {k1, · · · , kn} consisting of n

keywords, a radius threshold dmax , if we can find an entity node vT as a root, and a spot
vi for each query keyword ki , such that the graph distance (the number of hops) between
vT and vi is no more than dmax , then we say that the tree T rooted as vT , with leaf nodes
only consisting of vi (note that some spots may be identical for different keywords), is a
matching tree of the query q.

According to the above definition, a matching tree of a query is a tree of depth no more
than dmax , describing a local structure. It must contain spots for each keyword. Figure 1
shows examples of matching trees for a keyword query “SIGMOD semantic”. If dmax = 1,
there is only one matching tree rooted at the node v1 (with nodes v3 and v4 as spots of the
corresponding query keywords). If dmax = 2, there will be 2 matching trees because the
node v2 can be another root node with nodes v3 and v5 as spots.

As stated, because of the ambiguity of the simple keyword query, a keyword query may
potentially have a large number of matching trees in the huge RDF graphs, especially when
only a small number of common keywords are included in the query. Our solution in this
problem is to apply predicates for constraining the semantic interpretation of keywords.
This leads to the concept of structure-aware spots.

Definition 2 (Structure-aware spot) Given a predicate set P and a keyword k, they form
a pair denoted as P : k. A literal node v is called a structure-aware spot of the pair P : k if
k appears in the literal text of v, and p(v) �∈ P .

To be a structure-aware spot of a pair P : k, a literal node v must first be a spot of k.
Additionally, the predicate (p(v)) of the literal node v must not present in the predicate set
P associated with the keyword k. For example, if {session} : semantic is specified in the
example of Fig. 1, node v5 will be the only structure-aware spot for the keyword “semantic”.
The predicate set P is used for specifying the false interpretation of spots for the query
keyword k. Note that when P is an empty set, any spot of the keyword k will be also a
structure-aware spot of P : k.

The reason of using the predicate set P as false interpretations, instead of true ones, for
defining the structure-aware spots is in two folds: 1) users are often not able to know the
full set of true interpretations of the predicates. The usage of a subset of true interpretations
will cause false negatives of matching trees. 2) most local structures of false interpreta-
tions come from the false interpretations of popular predicates. A small number of negative
popular predicates usually help to reduce the number of matching trees significantly.
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With structure-aware spots, the matching tree given in Definition 1 need to be modified as
a tree connecting structure-aware spots (instead of simple spots) of all the query keywords.

Definition 3 (Structure-aware matching tree) A structure-aware keyword query q is
specified as q = {P1 : k1, · · · , Pn : kn}, where ki is a keyword and Pi is the set of pred-
icates associated with ki . Given a radius threshold dmax , if we can find an entity node vT

as a root, and a structure-aware spot vi for each query pair Pi : ki , such that the distance
between vT and vi is no more than dmax , then we say that the tree T rooted as vT , with leaf
nodes only consisting of vi , is a structure-aware matching tree of the query q.

The goal of structure-aware keyword search is to find all the structure-aware matching
trees. In structure-aware keyword search, the matching trees can be purified by removing
the false association of predicates and keywords, obtained through users’ feedbacks. By
pruning the false interpretation of matching trees using structure-aware spots, the number
of matching trees to a given a keyword query can be significantly reduced. This is because
many false interpretations of spots come from the association of keywords with a small
number of popular predicates falsely interpreted.

To retrieve a list of ranked structure-aware matching trees, the relevance score of a match-
ing tree can be evaluated by using some heuristics proposed in keyword search over graphs
(He et al. 2007; Li et al. 2008). The problem of structure-aware keyword search can be sim-
ply reduced to the problem of keyword search over RDF graphs with a filtering process for
the structure-aware spots as an additional operation.

4 Interactive predicate filtering

The structure-aware keyword search is a variant of keyword search over graphs. Techniques
on efficient keyword search (using inverted indexes) over graphs and effective ranking mod-
els can also be applied to the problem of structure-aware keyword search. They are not the
focus of the paper. In this paper, we focus on how to efficiently and effectively generate the
structure-aware keyword queries through the feedbacks of users. An interactive process is
designed to allow users for clarifying their query intention by providing a small number of
predicate-keyword pairs to compose a structure-aware keyword query.

The interactive process must be as simple as possible to avoid too much manual effort.
Moreover, the interactive process must be conducted at an interactive speed. This provides
challenges for finding the optimal set of predicate-keyword pairs, which need to be effi-
ciently detected from the search results, especially when the search results include too
many matching trees. We call the interactive process as the process of interactive predicate
filtering, which can be formally defined as follows:

Definition 4 (Interactive predicate filtering) Given a query q0 = {P1 : k1, · · · , Pn :
kn}, to find c predicate-keyword pairs forming a new query q ′ = {P ′

1 : k1, · · · , P ′
n : kn}

satisfying
∑

i |P ′
i | = c, such that the merge of q0 and q ′, denoted as q1 = q0 + q ′ =

{P1
⋃

P ′
1 : k1, · · · , Pn

⋃
P ′

n : kn} has the minimal number of structure-aware matching
trees.

According to above definition, the merge of a query component Pi : ki with a predicate-
keyword pair p : ki will generate an updated query component Pi

⋃{p} : ki , which happens
when a predicate-keyword pair p : ki is picked through the user’s feedbacks. When a pure
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keyword query (of n terms) is first generated by a user, Pi = ∅, for i = 1, . . . , n. The more
the predicate-keyword pairs for a keyword ki selected by the user during the feedback pro-
cess, the more predicates in the set Pi , and therefore the less ambiguity the spots of keyword
ki have. After selecting a small number of frequent predicate-keyword pairs of false seman-
tic interpretation of spots, the number of structure-aware matching trees (search results) will
be significantly reduced. Through several rounds of feedbacks, the query intention of users
will be more and more clear.

With the process of interactive predicate filtering, the framework of structure-aware key-
word search over RDF graphs can be illustrated in Fig. 2. The initial list of matching trees
of a keyword query can be found from inverted indexes of the RDF graphs using techniques
such as (Li et al. 2008). As intermediate results, the matching trees will be partially ordered
(depending on the number of matching trees found), with some top results shown out to the
user. In the meanwhile, the component of the predicate-keyword pair suggestion automati-
cally finds c predicate-keyword pairs for users’ feedbacks. After taking the feedbacks from
users, the structure-aware keyword query is updated. The component of interactive pred-
icate filtering then removes those false interpretations of matching trees derived from the
user’s feedbacks. After this, a new round of feedbacks will be triggered. This loop continues
until the user does not provide feedbacks any more, which usually happens when he finds
ideal interpretations of the query from a limited number of structure-aware matching trees.

Through experiments over large scale real life datasets, we observe that for many non
structure-aware queries, the number of distinct matching trees can be as large as millions
to billions when dmax ≥ 2. It is prohibitive to evaluate the relevance scores of so many
matching trees one by one. The process of interactive predicate filtering is necessary to
prune most of those matching trees before ranking them, because most of them are false
interpretations of the query. Fortunately, we find that although the number of matching trees
is often very huge, the number of distinct roots for those trees is however typically not
too large (typically tens to thousands). This is because in many cases, for each root node,
we can find a large number of spots (whose distance to the root is no more than dmax) of
each query keyword. The combination of these spots generates a huge number of distinct
matching trees. Another observation is that, although there are often a large number of spots
in the matching trees for each query keyword, the predicates for the spots of many non

Fig. 2 The framework of structure-aware keyword search. Note that, the original query is issued by the user
only by once
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popular query terms, however, are often limited to a small number. This allows us to be able
to efficiently find an effective set of predicate-keyword pairs for predicate filtering.

Given a query q = {P1 : k1, · · · , Pn : kn}, the number of structure-aware matching trees
that can be pruned (also denoted as the pruning power) by the query, denoted as C(q), can
be computed without enumerating all the matching trees using the following formula:

C(q) =
∑

r

(
∏

i

Cr (ki) −
∏

i

Cr (Pi : ki)

)

(1)

where r is a distinct root of for a number of structure-aware matching trees with the same
root r , Cr(ki) is the number of spots of ki rooted at r , and Cr(Pi : ki) is the number
of structure-aware spots of ki rooted at r , restricted by predicates in Pi . The component∏

i Cr (ki) is the number of all structure-aware matching trees rooted at r , which come from
the combinations of spots for each keyword.

Lemma 1 For two structure-aware keyword queries q1 and q2, we have C(q1 + q2) ≤
C(q1) + C(q2).

Proof Let q1 = {P1,1 : k1, · · · , Pn,1 : kn}, q2 = {P1,2 : k1, · · · , Pn,2 : kn}. To prove
Lemma 1, we need to prove that

∏
Cr(ki) − ∏

Cr(Pi,1
⋃

Pi,2 : ki) ≤ (
∏

Cr(ki) −∏
Cr(Pi,1 : ki))+(

∏
Cr(ki)−∏

Cr(Pi,2 : ki)), i.e., to prove
∏

Cr(ki)+∏
Cr(Pi,1

⋃
Pi,2 :

ki) ≥ ∏
Cr(Pi,1 : ki) + ∏

Cr(Pi,2 : ki) for any given r . Let ai = Cr(ki), bi =
Cr(Pi,1

⋃
Pi,2 : ki), ci = Cr(Pi,1 : ki), and di = Cr(Pi,2 : ki). According to the

definition of Cr(), we have ai + bi = ci + di , and 0 ≤ bi ≤ ci, di ≤ ai . Let
mi = (ai+bi)/2 = (ci+di)/2, xi = (ai−bi)/2, yi = |ci−di |/2. Obviously, xi ≥ yi . Then,∏

ai+∏
bi = ∏

(mi+xi)+∏
(mi−xi), and

∏
ci+∏

di = ∏
(mi+yi)+∏

(mi−yi). When
conducting polynomial expansion for

∏
(mi+xi)+∏

(mi−xi) and
∏

(mi+yi)+∏
(mi−yi)

respectively, it can be easily found that
∏

(mi+xi)+∏
(mi−xi) ≥ ∏

(mi+yi)+∏
(mi−yi).

Therefore, we have
∏

ai + ∏
bi ≥ ∏

ci + ∏
di , and Lemma 1 can then be proved.

Let F be the set of all predicate-keyword pairs detected from the existing list of structure-
aware matching trees. According to the Definition 4, given a query q0, the goal of interactive
predicate filtering is to find c pairs (forming a new query q ′) from F such that they (q0+q ′)
can maximize the number of structure-aware matching trees that can be pruned, if these c

pairs are all taken by the user. The straightforward way of finding the optimal c predicate-
keyword pairs requires to generate all possible c-combinations from the set F , and compute
the pruning power of each combination to find the optimal one. Therefore, there will be( |F |

c

)

times of computing the pruning powers. However, computing the pruning power

based on the (1) is an expensive process. The total cost of interactive predicate filtering will
be extremely expensive when |F | is large (which happens in many cases), which may lead
to the predicate filtering cannot be interacitvely processed. When an interactive speed of
predicate filtering cannot be guaranteed (for example, by an estimator according to |F |),
we will apply the following strategy which leads to a sub-optimal set of predicate-keyword
pairs for pruning the structure-aware matching trees.

As stated in Algorithm 1, the queries formed from each predicate-keyword pair are first
computed and ranked as queries in L in a descending order of their pruning power (lines
3–7). Instead of finding the optimal combination of c predicate-keyword pairs straight-
forwardly, we apply a greedy strategy which finds the sub-optimal combinations of c′
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predicate-keyword pairs incrementally, with c′ increased from 2 to c (lines 13–37). For
each c′, instead of get a ranking list of queries from all combinations of c′ predicate-
keyword pairs, we only find the top-m (in term of pruning powers) queries stored in H2.
This allows us to apply an upper bounding technique to prune most of combinations that
satisfy C(L[i]) + C(q) ≤ H2.min (line 21 to line 25). The top-m list of c′ is com-
puted incrementally, i.e., it expands the top-m list of c′ − 1 by one predicate-keyword pair
heuristically (lines 17–30). Compared to the optimal solution where all combinations of
c′ − 1 predicate-keyword pairs are need to be expanded, such an approximation (by only
expanding top-m combinations in the previous step) often allows us to get a sub-optimal
solution very efficiently. According to Algorithm 1, there will be O(cm2) times of
computing the pruning powers (note that an early abandoning strategy is applied), much
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more efficient than the solution to find the optimal combination whose complexity is( |F |
c

)

, because m � |F |. Although the returned set of predicate-keyword pairs may not

be optimal, as will be shown in the experimental results, it is often able to find a set of
predicate-keyword pairs very effectively.

5 Experimental results

To test the performance (both efficiency and effectiveness) of the proposed algorithm, we
implement an interface that is shown in Fig. 3. We allow users to submit any keyword query
to the system. The top results of the structure-aware matching trees will be shown out to
the user. When the number of structure-aware matching trees is very large, to guarantee
the search performance, only part of them will be evaluated for computing the relevance
scores of the matching trees. For each query, a number of predicate-keyword pairs will be
presented to the users for feedbacks. Those pairs are selected by default. However, users can
deselect some of them which interpret the semantics of keywords correctly. Once the user
submits the picked predicate-keyword pairs for feedbacks, the results of the structure-aware
matching trees will be updated. The number of matching trees will be shown out so that the
users can experience the pruning power of the predicate filtering process. In addition to the
updated results, a new set of predicate-keyword pairs will be generated for the next round
of feedbacks from the user.

Experiments are run on a server with a 4-core processor of 2.40 GHz, 16GB memory,
2TB disk. The DBPedia 3.7 dataset1 (contains 3.64 million entities) is applied as the KB in
our experiments. We encode the dataset using a word dictionary. We apply the query set of
INEX 2009 entity track2 that contains 55 query topics. Stop words are removed from the
original topics.

To test the effectiveness of the proposed structure-aware keyword search solution, we
compare the proposed solution (labeled as filter in Fig. 4) with two existing solutions of
keyword search over RDF graphs (labeled as keyword for a pure keyword search solution
over RDF data (Tran et al. 2009) and NLQ for a nature language question solution (Yahya
et al. 2012) respectively in Fig. 4). For each solution, we test the precision of top-k retrieved
results that belong to the ground truth provided by the test set of INEX 2009 entity track.
We adjust the parameter k used in picking top-k results, and compute the average precision
of all the queries. The results for the three compared solutions are shown in Fig. 4. It can be
easily found that the precision of the proposed solution (filter) is much better than those of
the other two baselines (keyword and NLQ) for all settings of the query parameter k. This
is because the proposed solution is able to more accurately capture the user query intention
through the feedback process.

Note that, for the filter solution in the above test, we allow users to provide at most 3
rounds of feedbacks. The results of filter is based on an average of results from five users
participating in the test.

To evaluate the proposed ranking algorithm for predicate-keyword pairs (Algorithm 1),
we use two baselines for predicate-keyword pairs’ suggestion. The first baseline (shorted as
B1) simply ranks predicate-keyword pairs based on their frequency in the searching results.

1http://dbpedia.org
2http://www.inex.otago.ac.nz/tracks/entity-ranking/entity-ranking.asp

http://dbpedia.org
http://www.inex.otago.ac.nz/tracks/entity-ranking/entity-ranking.asp
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Fig. 3 Snapshots of the search interface

The second baseline (shorted asB2) exactly computes the optimal c predicate-keyword pairs
maximizing the number of structure-aware matching trees that can be pruned. We compare
our solution with the two alternatives using two measures: 1) the filtering ratio (percentage
of remaining results after feedbacks) and 2) the elapsing time of each feedback process. By
default, we set the query parameter dmax = 2 for all keyword queries.
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Fig. 4 The precision of top-k
results
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A subset of 18 queries that have the top numbers of matching trees are selected from
the overall query set. Before testing, for each query, we manually select all the qualified
predicate-keyword pairs as the ground truth. They will be deselected by the user once
appearing in the feedback interface. This guarantees that the three testing approaches use
the same rule for filtering structure-aware matching trees. For each query topic in the results
of Figs. 5 and 6, the red (left) one stands for B1; the blue (right) one stands for B2; and the
black (middle) one stands for the proposed algorithm (shorted as A1).

Figure 5 shows the results of the percentage of remaining results after the first three
rounds of feedbacks. Squares, crosses and circles represent the first, the second and the third
round of feedbacks respectively. We can see that, for all the approaches, the more rounds of
feedbacks applied, the less of the remaining results left. Comparatively, the pruning power
of A1 and B2 is much better than that of B1 for almost every round of a query. This is
reasonable because both A1 and B2 try to maximize the number of structure-aware match-
ing trees that can be pruned by selecting all the predicate-keyword pairs shown out in the
query interface. The pruning power of B2 is slightly better than that of A1 in many cases.
This is because B2 is an optimal solution (although expensive) for suggesting predicate-
keyword pairs. However, the pruning performance of A1 is not surpassed by B2 too much,
in some cases (e.g., Q2, Q4, Q6, Q17), it even performs better than B2. This is also rea-
sonable, because not all the predicate-keyword pairs will be selected for filtering during
the feedbacks. In general, the results of Fig. 5 show that the proposed algorithm (A1) is a
good approximation of B2. It can significantly reduce the number of structure-aware match-
ing trees through a small number of feedbacks for picking predicate-keyword pairs to be
filtered.

Figure 6 shows the time cost for generating the contents of interface, majorly for cre-
ating the list of top predicate-keyword pairs (in our implementation, we set c = 12 in the
Algorithm 1). A square represents the end-to-end time from receiving a keyword query to
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Fig. 5 Comparison of the pruning power of the 3 approaches for the first three rounds of feedbacks
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Fig. 6 Comparison of the efficiency of the 3 approaches for generating feedback interfaces

generating the interface for the first round of feedback. A cross represents the end-to-end
time from receiving the first feedback to generating the interface for the second round of
feedback. We do not show the results for the other rounds of feedbacks as they are typically
faster than the first round. According to the results of Fig. 6, the performance of B2 is the
worst among the three approaches. B2 often costs more than 4 s, which are not tolerable
for many interactive information seeking tasks. Comparatively, B1 and A1 are much faster.
Almost all the cases of A1 take less than 3 s (with only one exception Q11). B1 is faster than
A1 because it is a simple implementation with very poor pruning power of matching results
(shown out in Fig. 5). In general, the results of Fig. 6 show that the proposed algorithm (A1
for Algorithm 1) is a very efficient solution for the interactive keyword search task. It can
be easy applied to large scale RDF knowledge bases such as DBPedia containing millions
of entities.

We further test the performance of the proposed ranking algorithm for predicate-keyword
pairs (Algorithm 1) under different parameter settings. We choose two important parameters
of Algorithm 1 for testing: c and m. We test the impacts of the parameter c on the ratio of
remaining results simply for the first round of feedbacks. We also test its impacts on the
time cost for generating the interface of the first round feedback. Table 1 show the results
when the parameter c is set from 6 to 18. Note that the results are an average over all the
queries. As we can see from the results, the enlargement of the parameter c increases the
pruning power (with ratio of remaining results drops) of the algorithm. However, larger
computational cost are desired when the parameter c is enlarged. Obviously, there is a trade-
off between the pruning power and the time cost when setting the parameter c. We set
c = 12 by default for the other tests, because practically it is convenient for users to pick
predicate-keyword pairs from such a number of choices.

Similarly, we also test the impacts of the parameter m in Algorithm 1 by adjusting its
value from 10 to 50. The results are shown in Table 2. We can observe from the results that,
the enlargement of the parameter m increases the pruning power of the algorithm. However,
this is achieved by paying a larger computational cost. We set m = 20 by default for the
other tests.

Table 1 The impacts of the parameter c

c 6 8 10 12 14 16 18

Ratio of remaining results 0.0673 0.0252 0.0114 0.0079 0.0046 0.0029 0.0013

Time cost (seconds) 0.22 0.27 0.62 0.88 1.15 1.40 1.52

The bold emphasis indicates a default value of c
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Table 2 The impacts of the parameter m

m 10 15 20 30 40 50

Ratio of remaining results 0.095 0.0082 0.0079 0.0071 0.0066 0.0059

Rime cost (seconds) 0.42 0.74 0.88 1.18 1.29 1.52

The bold emphasis indicates a default value of m

6 Conclusion

In this paper, we propose an effective keyword search solution to answer keyword queries
over large-scale RDF knowledge bases. Our method takes the advantage of keyword search
(easy-to-use) and that of SPARQL query (better semantic discrimination) by associating
predicates with keywords. This is achieved by allowing users to select predicate-keyword
pairs for filtering the false interpretations of spots of query keywords. To make the feedback
process more effective (i.e., avoiding too much manual effort) and efficient (at an inter-
active speed), we adopt a greedy approach to find a sub-optimal set of predicate-keyword
pairs for user to provide feedbacks. By applying the proposed algorithm for interactive
predicates filtering, we conduct extensive experiments to show that the proposed solution
is able to support structure-aware keyword search over large-scale RDF data efficiently and
effectively.
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