
J Intell Inf Syst (2014) 43:379–407
DOI 10.1007/s10844-014-0327-2

Improving process models by mining mappings
of low-level events to high-level activities

Diogo R. Ferreira ·Fernando Szimanski ·Célia G. Ralha

Received: 11 January 2014 / Revised: 29 May 2014 / Accepted: 16 June 2014 /
Published online: 17 July 2014
© Springer Science+Business Media New York 2014

Abstract While it is possible to analyze the run-time behavior of a business process through
process mining techniques, in practice there is often a gap between the low-level nature of
the events recorded in an event log and the high-level of abstraction at which the process is
modeled. This makes it difficult to understand the recorded behavior in terms of the high-
level activities in the process model. Also, it makes it difficult to improve the model based
on run-time data about the process. In this work we present an approach to mine mappings
between the events in the log and the activities in the model. These mappings can be used
to generate suggestions of how the process model can be extended in order to capture the
behavior recorded in the event log. Using a real-world and publicly available event log, we
show how the approach can improve the model in a stepwise manner, until it covers all the
behavior recorded in the event log.

Keywords Business process modeling · Process mining · Model enhancement ·
Recommendation systems

1 Introduction

Process mining (van der Aalst 2011) is a new and emergent area, where the main focus is on
extracting information about the run-time behavior of business processes from event logs

D. R. Ferreira (�)
Universidade de Lisboa, Instituto Superior Técnico (IST), Lisbon, Portugal
e-mail: diogo.ferreira@ist.utl.pt

F. Szimanski · C. G. Ralha
Departamento de Ciência da Computação, Universidade de Brası́lia (UnB), Brası́lia, Brazil

F. Szimanski
e-mail: fszimanski@gmail.com

C. G. Ralha
e-mail: ghedini@cic.unb.br

mailto:diogo.ferreira@ist.utl.pt
mailto:fszimanski@gmail.com
mailto:ghedini@cic.unb.br

380 J Intell Inf Syst (2014) 43:379–407

recorded by the information systems available in an organization. Process mining can be
used for three different purposes (van der Aalst 2012):

- Discovery, which consists in deriving a process model from the behavior recorded in
an event log, without using any previous knowledge about the process which gen-
erated such event log. There are many techniques for this purpose, for example the
α-algorithm (van der Aalst et al. 2004), the heuristics miner (Weijters et al. 2006), or
the genetic miner (de Medeiros et al. 2007).

- Conformance, which consists in comparing the behavior recorded in an event log with
an existing process model, in order to determine to what extent the process is being per-
formed as described in the existing model. There are special metrics for conformance
checking (Rozinat and van der Aalst 2008), and there are also ways to replay the event
log in the process model in order to check conformance (van der Aalst et al. 2012).

- Enhancement, which consists in improving or extending an existing process model
based on the run-time behavior recorded in an event log. For example, if a process has a
decision between two branches at some point, it will be possible to determine the exact
percentage of cases that follow each branch, or even to discover other branches which
were not in the original model. There has been comparatively less work on enhancement
than on discovery or conformance.

This work focuses on model enhancement, and particularly on the problem of how to
enhance a given process model when there is a mismatch between the high-level activities
in the model and the low-level events that are recorded in the event log.

1.1 Problem description

To illustrate the problem, consider the simple example in Fig. 1. Here the process model is
expressed in terms of the high-level activities A, B and C. However, when these activities are
performed, they generate low-level events, namely U, V, W, X, Y and Z. In particular, activity
A generates the sequence UV; B generates WXX...; and C generates YZYZ... A sample trace
from such process could be: UVWXXYZYZ.

In this example, we have purposefully ensured that each kind of event (such as U, V, W,
etc.) can belong to one and only one activity. The more general case of allowing an event
to be produced by multiple activities (such as U being produced both by A and B) has been

A B C

U

V

W

X

Y

Z

Fig. 1 An simple example of how high-level activities may generate low-level events

J Intell Inf Syst (2014) 43:379–407 381

addressed in previous work, and we will discuss that shortly. Here, the fact that each event
belongs to a single activity will allow us to establish the concept of mapping in this work.

To illustrate the kind of model enhancement we seek here, suppose that, initially, the
process is thought to allow the sequence ABC only. However, suppose that in the event
log we find the sequences UVWXXYZYZ and UVYZYZ. If the following mapping is true
{U �→ A,V �→ A,W �→ B,X �→ B,Y �→ C,Z �→ C} then one must conclude that the
sequence of events UVYZYZ must have been produced by the sequence of activities AC.
Since AC is not in the original model, we can add it by allowing B to be skipped, as in the
model of Fig. 1. The model has been enhanced with a new possible route. Furthermore, if
we observe an equal number of UVWXXYZYZ and UVYZYZ traces in the event log, we can
conclude that 50 % of cases follow the route through B, and 50 % of cases follow the route
around B. Such information is not usually available in the process model, so we consider it
to be another kind of enhancement.

The problem with this approach is that, to begin with, the mapping of low-level events
to high-level activities is unknown. This mapping must be mined from the event log and
from the given process model. Also, the enhancements that are going to be suggested for
the process model depend on the particular mapping being used. Therefore, in case there
are multiple possible mappings (as is usually the case), one must do a careful choice of
mapping.

This work provides a solution to this problem, i.e. it presents an approach that is able to
mine possible mappings, select a candidate mapping, and provide suggestions as to how the
process model can be enhanced in order to capture the behavior observed in the event log.

1.2 Previous work

In previous work we have introduced a hierarchical Markov model (Ferreira et al. 2013a;
2013b) to capture the relationship between high-level activities and low-level events, and
in Szimanski et al. (2013) we introduced an approach for improving process models which
has the hierarchical Markov model at its core. Through a combination of process mining
and agent-based simulation, we described how a process model can be mined and improved
iteratively, where at each step a new event log is generated by agent-based simulation.

However, the application of such approach in real-world experiments involving noisy
event logs, such as in the Volvo IT case study that we present here, produced models that
were difficult to interpret by the business analyst, because each high-level activity ended up
containing a complex aggregate of low-level behavior, when the analyst was expecting, in
some cases, a one-to-one mapping between a low-level event and a high-level activity.

In other words, the approach was capturing patterns of behavior which were too complex
to interpret because each event could be produced by multiple activities and each activity
contained a different pattern involving many kinds of low-level events. It became clear to us
that, in some situations, the business analyst tends to see certain low-level events as being
associated with a single, particular activity. When attempting to embed this restriction in our
previous approach, we found that not only it changed the nature of the underlying model,
but it also opened the way for using an entirely different approach to mine that model.

Therefore, while in Szimanski et al. (2013) we used a hierarchical Markov model, here
we replaced that model with the new concept of mapping, which serves a similar purpose,
but has some distinct advantages (one of which is that there is no need for preprocessing of
the event log, since the approach can handle any amount of noise). Also, while in Szimanski
et al. (2013) we used an iterative approach with agent-based simulation, here we opted

382 J Intell Inf Syst (2014) 43:379–407

for a greedy optimization approach which offers more guarantees of finding meaningful
improvements to the process model. As a by-product of this new approach, we are able
to automatically generate suggestions for the user regarding possible improvements to the
process model.

1.3 Structure of presentation

The structure of this paper is as follows. Section 2 provides a formal definition of what a
mapping is, and describes how to find all mappings from a given set of traces and from a
set of possible paths through the process model. Then Section 3 explains how to select the
best mapping based on concepts such as range and coverage; this task is complicated by the
fact that it may be possible to combine existing mappings in order to create an even better
mapping. Section 4 presents a case study where we apply the approach to a real-world event
log, showing how the simplest possible model can be improved in a stepwise manner until
it covers all the behavior in the event log (including all noise). Finally, Section 5 discusses
several branches of related work, and Section 6 summarizes and concludes the paper.

2 The concept of mapping

In general, business processes are defined at a high level of abstraction, using modeling
languages such as BPMN (OMG 2011), EPCs (Scheer 2000), and Petri nets (van der Aalst
1998). However, when looking at an event log, the recorded behavior often refers to low-
level events which have no obvious relationship to the high-level activities defined in a
process model.

A mapping is a way to establish a relationship between each kind of event observed in
the event log and a specific high-level activity defined in the business process. In particular,
an event can be mapped to one and only one activity. Even though this assumption may
seem limiting at first sight, in practice there is more than one way to make the assumption
hold, as the following example illustrates.

Example 1 Suppose that one observes the trace UVWXUVYZ in the event log. This trace
does not seem to fit the sequence ABC if the mapping is {U �→ A,V �→ A,W �→ B,X �→
B,Y �→ C,Z �→ C}. If one is to believe this mapping, then it suggests that UVWXUVYZ
was generated by ABAC, and therefore the process model should include this possibility.
Alternatively, if one knows that the sequence ABAC cannot take place, then it is possible to
come up with a different mapping to explain how the trace UVWXUVYZ was generated from
the current model. Such a mapping is {U �→ A,V �→ A,W �→ A,X �→ A,Y �→ C,Z �→ C},
implying that UVWXUVYZ was generated by the sequence AC.

As illustrated in the example above, the problem of mapping an event to a single activ-
ity can be turned into a problem of whether the current model or the current mapping is
actually a good description for the process. Since a process model can be freely designed
or redesigned to accommodate the behavior observed in an event log (if it cannot be freely
redesigned, them probably it cannot be enhanced), we will keep the assumption that an event
can be mapped to a single activity, leaving it up to the process analyst to come up with a
model that is coherent with this assumption.

The following definitions explain in more formal terms what a mapping actually is:

J Intell Inf Syst (2014) 43:379–407 383

Definition 1 (Process model) A process model is any kind of state machine defined in a
high-level modeling language. Each state in the process model is referred to as an activity.

Definition 2 (Activity) An activity represents an abstract unit of work, such as a human
task in the process. Even though an activity may be regarded as a single step in the process,
its execution may generate multiple events.

Definition 3 (Event) An event is defined as a tuple e = (u, t) where u is a symbol denoting
the type of event, and t is the timestamp of the event. Let π1(·) be a function (i.e. projection)
that returns the symbol of the event, and let π2(·) be a function that returns the timestamp
of event. For e = (u, t) we have π1(e) = u and π2(e) = t .

Definition 4 (Trace) A trace is a sequence of events τ = 〈e1, e2, . . . , en〉 such that ∀i<j

π2(ei) ≤ π2(ej), i.e. the events are ordered by timestamp.

Definition 5 (Micro-sequence) A micro-sequence is a sequence of symbols which is
obtained by projection of a trace: μ = 〈π1(e1), π1(e2), . . . , π1(en)〉 such that ∀i<j π2(ei) ≤
π2(ej). In other words, a micro-sequence corresponds to the sequence of symbols in a
trace.1

Definition 6 (Macro-sequence) A process model may allow one or more paths of exe-
cution. Each path corresponds to a sequence of activities σ = 〈a1, a2, . . . , am〉. As these
activities are performed, multiple events are generated. The sequence of events that is
generated by executing a sequence of activities σ is a trace τ (see Def. 4 above).

Definition 7 (Mapping) Let μ = 〈u1, u2, . . . , un〉 be a micro-sequence, which is the pro-
jection of some trace τ . Let σ = 〈a1, a2, . . . , am〉 be the macro-sequence which generated
the trace τ . Now, let U be the set of symbols in the micro-sequence μ, i.e. U = {u | u ∈ μ},
and let A be the set of activities in the macro-sequence σ , i.e. A = {a | a ∈ σ }.

Then a mapping is defined as a function f : U → A which maps each symbol u ∈ U to
an activity a ∈ A.

A mapping f can also be represented as a set in the form: λ = {u �→ f (u) | u ∈
U ∧ f (u)∈A}.

For a given micro-sequence and macro-sequence, there can be multiple possible map-
pings of events (in the micro-sequence) to activities (in the macro-sequence). However, the
set of possible mappings is definitely finite and restricted by the given macro-sequence. The
following examples illustrate this point.

Example 2 Given the micro-sequence UVWXXYZYZ and the macro-sequence ABC, the
possible mappings are:

λ1 = {U �→ A,V �→ A,W �→ A,X �→ A,Y �→ A, Z �→ A}
λ2 = {U �→ A,V �→ A,W �→ A,X �→ A,Y �→ B, Z �→ B}
λ3 = {U �→ A,V �→ A,W �→ A,X �→ B,Y �→ B, Z �→ B}
λ4 = {U �→ A,V �→ A,W �→ A,X �→ B,Y �→ C,Z �→ C}

1For simplicity, in the text we often refer to a micro-sequence as a “sequence of events”, even though what
we actually mean is the “sequence of symbols” (μ), to be fully precise.

384 J Intell Inf Syst (2014) 43:379–407

λ5 = {U �→ A,V �→ A,W �→ B,X �→ B,Y �→ B,Z �→ B}
λ6 = {U �→ A,V �→ A,W �→ B,X �→ B,Y �→ C,Z �→ C}
λ7 = {U �→ A,V �→ A,W �→ B,X �→ C,Y �→ C,Z �→ C}
λ8 = {U �→ A,V �→ B,W �→ B,X �→ B,Y �→ B,Z �→ B}
λ9 = {U �→ A,V �→ B,W �→ B,X �→ B,Y �→ C,Z �→ C}
λ10 = {U �→ A,V �→ B,W �→ B,X �→ C,Y �→ C,Z �→ C}
λ11 = {U �→ A,V �→ B,W �→ C,X �→ C,Y �→ C,Z �→ C}

Example 3 For the micro-sequence UVWXXYZYZ and the macro-sequence ABC, here are
some examples of impossible mappings:

λ12 = {U �→ A,V �→ A,W �→ A,X �→ A,Y �→ A,Z �→ B}
(impossible because the end of the micro-sequence YZYZ would be mapped to ABAB,

which is not allowed by the macro-sequence, since A cannot occur after B)
λ13 = {U �→ A,V �→ A,W �→ A,X �→ B,Y �→ B,Z �→ C}
(impossible because the end of the micro-sequence YZYZ would be mapped to BCBC,

which is not allowed by the macro-sequence, since B cannot occur after C)
λ14 = {U �→ B,V �→ B,W �→ B,X �→ C,Y �→ C,Z �→ C}
(impossible because U at the beginning of the micro-sequence would be mapped to B,

which is not allowed since the macro-sequence cannot begin with B)
λ15 = {U �→ A,V �→ A,W �→ B,X �→ B,Y �→ A,Z �→ A}
(impossible because XY in the micro-sequence would be mapped to BA , which is not

allowed by the macro-sequence, since A cannot occur after B)

Not all mappings in Example 2 are interesting. Mapping λ1, while certainly possible, is
not interesting because every event has been mapped to activity A. Similarly, mappings λ2,
λ3, λ5, and λ8 are not interesting because not every activity in the macro-sequence appears
in the mapping. In this work we are interested in complete mappings, meaning that the
mapping contains every activity in the macro-sequence.

Definition 8 (Complete mapping) Recall that U is the set of symbols in the micro-
sequence and A is the set of activities in the macro-sequence. A mapping is said to be
complete if and only if the function f : U → A is surjective, i.e. for every activity a ∈ A

there exists an event u ∈ U such that f (u) = a.

The following example illustrates that not all of the mappings in Example 2 are
admissible according to Definition 8.

Example 4 Given the micro-sequence UVWXXYZYZ and the macro-sequence ABC, the
complete mappings are:

λ4 = {U �→ A,V �→ A,W �→ A,X �→ B,Y �→ C,Z �→ C}
λ6 = {U �→ A,V �→ A,W �→ B,X �→ B,Y �→ C,Z �→ C}
λ7 = {U �→ A,V �→ A,W �→ B,X �→ C,Y �→ C,Z �→ C}
λ9 = {U �→ A,V �→ B,W �→ B,X �→ B,Y �→ C,Z �→ C}
λ10 = {U �→ A,V �→ B,W �→ B,X �→ C,Y �→ C,Z �→ C}
λ11 = {U �→ A,V �→ B,W �→ C,X �→ C,Y �→ C,Z �→ C}

J Intell Inf Syst (2014) 43:379–407 385

2.1 Finding all complete mappings

The problem of finding all complete mappings for a given micro-sequence and macro-
sequence is relatively easy to solve. Basically, one starts by assigning the first event in the
micro-sequence to the first activity in the macro-sequence. For each subsequent event, if
it has not been mapped already, then it can be mapped either to the current activity in the
macro-sequence or to the next activity in the macro-sequence (by advancing the current
position in the macro-sequence). By the time the end of the micro-sequence is reached,
the end of the macro-sequence should have been reached as well. If this is true, then the
mapping is complete.

Algorithm 1 specifies this procedure. Besides the micro-sequence μ and the macro-
sequence σ , the procedure has the following parameters: � is the set of complete mappings,
which is initially empty (� = {}); i is the current position in the micro-sequence, which
begins at the first position (i = 1); j is the current position in the macro-sequence, which
begins at the first position (j = 1); and λ is the current mapping, which is initially empty
(λ={}) and is built during recursion. At the end of the micro-sequence, if λ is a complete
mapping, then it will be added to � (line 18).

The algorithm begins by checking if i is at the beginning of the micro-sequence (line 2).
In this case, the first event is mapped to the first activity (line 3), and the same procedure is
called for the next position in the micro-sequence (line 4).

For i >1 (line 5), it may be the case that the event has been mapped already or not:

- If it has already been mapped, then the only viable options are that it has been mapped
to the current activity (line 6) or to the next activity (line 8).

- If the event has not been mapped already, then the same possibilities should be consid-
ered, i.e. either mapping it to the current activity (line 11), or mapping it to the next
activity (line 14).

386 J Intell Inf Syst (2014) 43:379–407

In any of these cases, the procedure advances to the next position (i+1) in the micro-
sequence (lines 7, 9, 12, 15).

If i gets past the end of the micro-sequence (line 16), then all events have been mapped,
and the last thing to check is if j reached the end of the macro-sequence (line 17). This
ensures that the mapping is complete.

Taking into account that each symbol (ui) in the micro-sequence can be mapped either to
the current activity (aj) or to the next (aj+1), at first sight it would seem that the complexity
of Algorithm 1 would be of the order of O(2n), where n is the length of the micro-sequence.
However, once a symbol has been mapped to an activity, every occurrence of that symbol in
the micro-sequence has already been mapped and there is no other choice for that symbol,
so the complexity is actually O(2|U |) where |U | (i.e. the size of U) is the number of dis-
tinct symbols in the micro-sequence. Additionally, the first symbol in the micro-sequence
is mapped to the first activity in the macro-sequence, so there is only one choice for that
symbol. Therefore, the complexity of Algorithm 1 is O(2|U |−1).

Still, many branches in the recursion get pruned because, in general, if is often the case
that a symbol ui can be mapped to only one of the two possibilities aj and aj+1, or even
to none of them. As an example, for the micro-sequence UVWXXYZYZ and the macro-
sequence ABC, there are only 11 mappings remaining at the end of the micro-sequence (see
Example 2); this is less than what the estimate 2|U |−1 = 25 = 32 would suggest.

2.2 Working with multiple macro- and micro-sequences

In practice, an event log may contain several different micro-sequences, and each of these
micro-sequences may occur more than once. We define the support of a micro-sequence as
the number of times that the micro-sequence appears in an event log.

Definition 9 (Event log) An event log L is defined as a bag of micro-sequences, e.g. L =
[μ1, μ2, μ1, μ3, μ2, . . .], where these micro-sequences are not necessarily different (i.e.
there can be duplicates among them).

Definition 10 (Support) The support of a micro-sequence is the number of times that μ
appears in an event log L, and it is denoted by μ@L. Let qi = μi@L be the support of
μi in L. Then an alternative representation for L is L = [

μ
q1
1 , μ

q2
2 , μ

q3
3 , . . .

]
where all

micro-sequences are now different.

Also, as explained in Definition 6, a process model may have several possible paths
of execution and, typically, each of these paths generates a different macro-sequence. We
define the macro-model as the set of possible macro-sequences that can be generated by a
process model.

Definition 11 (Macro-model) A macro-model is the set of all macro-sequences M =
{σ1, σ2, . . .} that can be generated by a given process model.

In general, the macro-model can be obtained from any kind of process model (BPMN,
EPC, Petri net, etc.) by following all possible paths of execution. Even if the process model
contains loops, which could originate an infinite set of macro-sequences, it is usually pos-
sible to establish a maximum number of possible iterations for any given loop. In fact, it
would be unrealistic to think that a loop in a business process can run an infinite number of
times.

J Intell Inf Syst (2014) 43:379–407 387

In Definitions 9 and 10, we have seen that an event log may contain several different
micro-sequences. Now in Definition 11 we see that a process model may originate several
different macro-sequences. This means that, if we are given an event log and a process
model, we can obtain the bag of micro-sequences L and the set of macro-sequences M .
However, in general we do not know which macro-sequence in M produced each micro-
sequence in L.

Let L = [μq1
1 , μ

q2
2 , μ

q3
3 , . . .] and M = {σ1, σ2, . . .}. If we are interested in finding

all possible mappings, then we need to consider the possibility that each micro-sequence
μi ∈ L might have been generated by any of the macro-sequences σj ∈ M . Therefore, we
need to extend Algorithm 1 in order to consider all of these possibilities.

Algorithm 2 provides a function that returns all complete mappings as a table T of
records in the form (μi, σj , λk) where μi is a micro-sequence, σj is a macro-sequence, and
λk is a mapping between μi and σj . There may be several possible mappings between μi

and σj , so table T may contain several records for the same μi and σj , as illustrated in
Example 5.

Example 5 Let L = [μq1
1 , μ

q2
2] be an event log with the micro-sequences μ1 =

UVWXXYZYZ and μ2 = UVYZYZ, and some arbitrary q1 and q2. Also, let M = {σ1, σ2} be
a macro-model with the macro-sequences σ1 = ABC and σ2 = AC.

Then Algorithm 2 produces the following table of mappings between each micro-
sequence μi and each macro-sequence σj :

388 J Intell Inf Syst (2014) 43:379–407

2.3 Subsumption and compatibility

In table T it is possible that the same mapping λk applies to different pairs of
micro-sequences and macro-sequences. For example, suppose that T contains the tuples
(μ1, σ1, λ3) and (μ2, σ2, λ3); then λ3 covers both μ1 and μ2. In fact, this is not only pos-
sible but it is also desirable to happen since, ideally, we would like to be able to cover all
micro-sequences with the same mapping.

Now, suppose that T contains the tuples (μ1, σ1, λ3) and (μ2, σ2, λ4) and that λ4 is
“contained” in λ3 in the sense that every pair u �→ a that appears in λ4 also appears in λ3

(but λ3 may contain more). Then we say that λ3 subsumes λ4. It is clear that if λ3 subsumes
λ4 then λ3 covers all the micro-sequences which are covered by λ4. The following example
illustrates this point.

Example 6 Let UVWXXYZYZ be a micro-sequence which can be mapped to the macro-
sequence ABC through the following mapping:

λ1 = {U �→ A,V �→ A,W �→ B,X �→ B,Y �→ C,Z �→ C}
Let UVYZYZ be a micro-sequence which can be mapped to the macro-sequence AC through
the following mapping:

λ2 = {U �→ A,V �→ A,Y �→ C, Z �→ C}
Since λ1 subsumes λ2, λ1 covers both micro-sequences.

Definition 12 (Subsumption) Let λ1 and λ2 be two given mappings. We say that λ1

subsumes λ2, denoted as λ1
 λ2, if and only if for every (u �→ a) ∈ λ2 we have
(u �→ a) ∈ λ1.

In addition to the concept of subsumption, there is the related concept of compatibility.
This concept is illustrated by means of the following example.

Example 7 Let UVWXXYZYZ be a micro-sequence which can be mapped to the macro-
sequence ABC through the following mapping:

λ1 = {U �→ A,V �→ A,W �→ B,X �→ B,Y �→ C,Z �→ C}
Let UVST be a micro-sequence which can be mapped to the macro-sequence AD through
the following mapping:

λ2 = {U �→ A,V �→ A,S �→ D, T �→ D}
Then λ1 does not subsume λ2, but λ1 is compatible with λ2 in the sense that it is possible
to create a third mapping λ3 = {U �→ A,V �→ A,W �→ B,X �→ B,Y �→ C,Z �→ C,S �→
D, T �→ D} which combines λ1 and λ2.

Definition 13 (Compatibility) Let λ1 and λ2 be two given mappings, and let U1 and U2 be
their domains, respectively. We say that λ1 is compatible with λ2 if and only if every event
u ∈ (U1 ∩ U2) is mapped to the same activity a in both λ1 and λ2, i.e. (u �→ a) ∈ λ1 and
(u �→ a) ∈ λ2. In particular, if U1 ∩ U2 = ∅ then the two mappings are compatible.

If two mappings are compatible, then they can be merged into a third mapping, as λ3 in
Example 7.

J Intell Inf Syst (2014) 43:379–407 389

Definition 14 (Merge) Let λ1 and λ2 be two compatible mappings. Then λ1 and λ2 can be
merged into a third mapping λ3 = {u �→ a | (u �→ a) ∈ λ1 ∨ (u �→ a) ∈ λ2}. This merge
operation will be denoted as λ3 ← MERGE(λ1, λ2).

2.4 Coverage of a mapping

With the table of mappings provided by Algorithm 2, it possible to find which micro-
sequences are covered by a given mapping λ. These are the micro-sequences that can be
mapped to some macro-sequence σj (it does not matter which one in particular) through
mapping λ. In essence, this is just a matter of finding the tuples (μi, σj , λk) from T where
λk is subsumed by λ, i.e. λk � λ.

Algorithm 3 describes how the coverage of a given mapping λ is computed. The event
log L = [μq1

1 , μ
q2
2 , μ

q3
3 , . . .] and the macro-model M = {σ1, σ2, . . .} are assumed to be

global variables, and table T is the result of Algorithm 2, as indicated in line 1. In line 3,
the function initializes Scov , which will contain the set of micro-sequences covered by λ.
Similarly, in line 4 it initializes Sall , which will contain all micro-sequences (both covered
and non-covered). The sets Scov and Sall are built through lines 5–8.

In line 9, scov is a count of how many micro-sequences from the event log L are actually
covered. Recall from Definition 10 that μi@L is the support of μi in L, i.e. it is the number
of times that μi appears in L. Line 10 does a similar count, but for all the micro-sequences
in T . The coverage of λ is then the ratio of scov to sall . This is usually expressed as a
percentage value, as in line 11.

2.5 Coverage vs. range of a mapping

Ideally, it would be interesting to find the mapping λ with the highest possible coverage.
This could be one of the mappings λk in T , or it could be a merge of several such mappings

390 J Intell Inf Syst (2014) 43:379–407

(like λ3 in Example 7). If the coverage of λ would be 100%, then this would mean that the
mapping λ is able to cover all the micro-sequences in the event log.

However, it turns out that coverage is not the only factor that should be considered. In
fact, it is possible to get a mapping with 100 % coverage, but this mapping may not be
interesting at all, as the following example illustrates.

Example 8 For the micro-sequence UVWXXYZYZ and the macro-sequence ABC, one
possible mapping is:

λ1 = {U �→ A,V �→ A,W �→ B,X �→ B,Y �→ C,Z �→ C}
Now suppose that we observe the micro-sequence UV in the event log. There is no com-
plete mapping between the micro-sequence UV and the macro-sequence ABC. However, λ1

suggests that UV might have been produced by a macro-sequence with a single activity A.
If we add this macro-sequence to the macro-model, then Algorithm 2 comes up with the
following mapping:

λ2 = {U �→ A,V �→ A,W �→ A,X �→ A,Y �→ A,Z �→ A}
which covers both UVWXXYZYZ and UV, and therefore has a coverage of 100% (assuming
that there are no other micro-sequences in the event log).

The problem is that both UVWXXYZYZ and UV have been mapped to the macro-sequence
A, when UVWXXYZYZ should have been mapped to ABC and UV should have been mapped
to A. Fortunately, by trying all pairings of μi and σj , Algorithm 2 also comes up with λ1
again:

λ1 = {U �→ A,V �→ A,W �→ B,X �→ B,Y �→ C,Z �→ C}
which (now with macro-sequences ABC and A) covers both micro-sequences as well.

Clearly, λ1 is preferable to λ2. The reason for this is that the range of λ1 includes activities
A, B and C, whereas the range of λ2 includes only activity A.

Definition 15 (Range) The range of a mapping λ is the set of activities that appear in λ. It
is defined as

R(λ) = {a | (u �→ a) ∈ λ}
To compare two given mappings λ′ and λ′′ it is often useful to use the size of their ranges, i.e.
|R(λ′)| and |R(λ′′)|. Therefore, we define the function RANGE(λ) as RANGE(λ)← |R(λ)|.

As in Example 8, we will be looking for mappings with the largest possible range (ideally,
this range should contain all the activities in the macro-model M). Then, from all those
mappings with the largest possible range, we pick the mapping (or mappings) with highest
coverage. The next section explain the mining algorithm in more detail.

3 Mining approach

In general terms, the problem to be addressed here consists in finding a mapping between
the low-level events in an event log L = [μq1

1 , μ
q2
2 , μ

q3
3 , . . .] and the high-level activities

in a macro-model M = {σ1, σ2, . . .}. Such mapping should have the following desired
characteristics:

1 Range – the range of the mapping should include, to the furthest extent possible, all the
activities that appear in the macro-model M .

2 Coverage – the mapping should cover, to the furthest extent possible, all the micro-
sequences that appear in the event log L.

J Intell Inf Syst (2014) 43:379–407 391

The first approach that comes to mind would be to generate all complete mappings
through Algorithm 2 and then pick the mapping (or mappings) that best fit the characteris-
tics above. However, there are additional possibilities to be considered. In Example 2, we
have seen that it is possible to generate new mappings by merging existing ones, and those
new mappings should be considered as well.

Suppose that for a given micro-sequence μi and a given macro-sequence σj there are
k complete mappings. Then if there are n micro-sequences and m macro-sequences, the
total number of complete mappings is of the order of n × m × k. In addition, we have
to consider merges of two mappings (for those pairs of mappings which are compati-
ble), merges of three mappings (for those triples of mappings which are compatible), and
so on.

For practical purposes, the set of mappings to be considered is simply too large to be
searched exhaustively. Therefore, we use a greedy approach to search for a mapping λ̂ that
maximizes range and coverage. Such greedy approach is described in Algorithm 4. To make
things clearer (even if at the expense of some rigor), this algorithm is described in plain
words whenever possible.

In essence, the idea of Algorithm 4 is to keep merging compatible mappings into λ̂

(which is initially empty). At each iteration, a new mapping λ′k is merged into λ̂ (step 6), so
that all micro-sequences that are covered by λ′k are now covered by λ̂ as well. This mapping
λ′k is chosen according to three selection criteria:

– it must be compatible with λ̂ (step 3);
– it must be the mapping (or one of the mappings) which, when merged with λ̂, produces

a new mapping with the largest possible range (step 4);
– it must be the mapping (or one of the mappings) with with highest coverage (step 5).

392 J Intell Inf Syst (2014) 43:379–407

After running steps 2–8 iteratively, Algorithm 4 ends in one of three possible ways:

– either there are no mappings for the remaining (i.e. non-covered) micro-sequences in L

(T is empty in step 2),
– or there are mappings, but none of them are compatible with λ̂ (T ′ is empty in step 3),
– or there are no micro-sequences left to be covered in L (L is empty in step 8).

In the first two cases, there will be some micro-sequences left in L that cannot be covered
by the mapping λ̂ and therefore the coverage of λ̂ will be lower than 100 %. In the last
case, λ̂ has 100% coverage, and we can say that the macro-model M seems to be a perfect
description for the behavior observed in the event log.

Example 9 Let L = [μq1
1 , μ

q2
2] be an event log with the following micro-sequences:

μ1 = UVWXXYZYZ q1 = 5

μ2 = UVYZYZ q2 = 3

Let M = {σ1, σ2} be a macro-model with the macro-sequences σ1 = ABC and σ2 = AC.
Given L and M , Algorithm 4 runs as follows:

1. λ̂ is initialized as an empty mapping.
2. Algorithm 2 produces the same table as in Example 5 on page 9.
3. Since λ̂ is empty, every mapping in T is compatible with λ̂, so T ′ = T .
4. The mappings which yield the largest range are λ1 through λ6, and also λ11.
5. The mappings with highest coverage are λ1 through λ6, because they cover μ1 (with

q1 = 5), whereas λ11 covers μ2 (with q2 = 3). We can pick one of the mappings λ1

through λ6 arbitrarily, so let us pick, for example:
λ2 = {U �→ A,V �→ A,W �→ B,X �→ B,Y �→ C,Z �→ C}.

6. Since λ̂ is empty, merging λ2 into λ̂ yields λ̂ = λ2.
7. Since μ1 has been covered, it is removed from L, which becomes L = [μq2

2].
8. Since L is not empty, go back to step 2.
2. Table T is now the following:

3. Only λ12 is compatible with λ̂.
4. There is only λ12 to choose from.
5. There is only λ12 to choose from.
6. Merging λ12 into λ̂ yields the same mapping λ̂ as before, because λ̂ subsumes λ12.
7. Since μ2 has been covered, it is removed from L, which becomes empty.
8. Since L is empty, λ̂ = {U �→ A,V �→ A,W �→ B,X �→ B,Y �→ C,Z �→ C} is returned.

In Algorithm 4 and in the example above there is an arbitrary choice of mapping λ′k in
step 5. In this particular example, any of the available choices would lead to a mapping λ̂

with the same coverage, but in a general case this choice could have an impact in the final
coverage of λ̂. This is one of the problems of using a greedy approach: at each iteration
we are choosing a mapping that appears to maximize coverage immediately, but it could
happen that another mapping with equal coverage (or even lower coverage) would yield a
higher coverage in the long run (i.e. in subsequent iterations).

J Intell Inf Syst (2014) 43:379–407 393

On the other hand, it is possible that a mapping λ′k which has not been chosen in the
current iteration will end up being chosen in a subsequent iteration. (The only reason why
this may not occur is if an incompatible mapping has been merged into λ̂ in the meantime.)
In any case, regardless of whether λ′k or another mapping is chosen, the coverage of λ̂ will
increase, and it will keep increasing for as long as it is possible to find mappings that are
compatible with (and therefore that can be merged into) λ̂.

For this reason, Algorithm 4 is usually capable of finding a mapping with good coverage
(i.e. higher than 50 %). This is also helped by the fact that the distribution of sequences
in an event log is typically unbalanced (with a few, very frequent sequences having a lot
of occurrences and many sequences having just a few occurrences). By focusing on the
mappings with highest coverage, Algorithm 4can usually find a mapping that covers most
of the event log. For those micro-sequences that are left to be covered, it is usually possible
to come up with a suggestion, as described below.

3.1 Generating suggestions for improvement

As stated above, when Algorithm 4 gets to a point where it cannot cover the micro-
sequences that are left in L, it stops and returns the current mapping λ̂. However, in practice
it is often the case that the mapping cannot cover the remaining micro-sequences not because
the mapping itself is wrong, but because the macro-model does not include the behavior that
could generate such micro-sequences. The following example illustrates this point.

Example 10 Let L = [μq1
1 , μ

q2
2 , μ

q3
3] be an event log with the following micro-sequences:

μ1 = UVWXXYZYZ q1 = 5

μ2 = UVWXUVYZ q2 = 2

μ3 = UV q3 = 1

Let M = {σ1} be a macro-model with a single macro-sequence σ1 = ABC.
Given L and M , Algorithm 4 finds the mapping:

λ̂ = {U �→ A,V �→ A,W �→ B,X �→ B,Y �→ C,Z �→ C}
which covers μ1. Therefore, λ̂ covers 5/8 = 62.5 % of the micro-sequences in the event log.

The most frequent micro-sequence which is not covered is μ2 = UVWXUVYZ. However,
if we believe λ̂ to be correct, then λ̂ suggests that the micro-sequence μ2 = UVWXUVYZ
was generated by a macro-sequence σ2 = ABAC. If we add this macro-sequence to the
macro-model, then λ̂ increases its coverage to 7/8 = 87.5 %.

Now there is only one micro-sequence left to be covered: μ3 = UV. If we keep to
mapping λ̂, then λ̂ suggests that μ3 is generated by the macro-sequence σ3 = A. By adding
σ3 to M , we achieve 100 % coverage for λ̂.

In this example, the macro-sequences σ2 = ABAC and σ3 = A can be regarded as sug-
gestions for improving the macro-model in order to increase the coverage of mapping λ̂. Of
course, this mapping could be wrong from the perspective of a business analyst, and in this
case these suggestions should not be followed. In any case, they are just suggestions; if the
analyst believes that the mapping λ̂ makes sense, then the additional macro-sequences can
be incorporated in the macro-model, resulting in a new, improved version.

A suggestion can be generated by applying the mapping λ̂ to a given non-covered micro-
sequence μi . In the example above, λ̂ has been applied to μ2 and to μ3. When λ̂ is applied

394 J Intell Inf Syst (2014) 43:379–407

to μ2 = UVWXUVYZ the result is σ�
2 = AABBAACC. By eliminating all consecutive repeti-

tions of activities, we get σ2 = ABAC. Similarly, when λ̂ is applied to μ3 = UV the result is
σ�

3 = AA and σ3 = A. The following definitions establish the notation for these operations.

Definition 16 (Apply) A mapping λ= {ui �→ f (ui)} can be applied to a micro-sequence
μ = 〈u1, u2, . . . , un〉, resulting in a new sequence σ� = 〈f (u1), f (u2), . . . , f (un)〉. This
operation is denoted as σ� ← APPLY(λ,μ).

Definition 17 (Collapse) A sequence of symbols:

σ� = 〈a1, a1, ..., a1︸ ︷︷ ︸
a1

, a2, a2, ..., a2︸ ︷︷ ︸
a2

, . . . , an, an, ..., an︸ ︷︷ ︸
an

〉

can be collapsed into:

σ = 〈a1, a2, . . . , an〉
by eliminating all consecutive repetitions of the same symbol in σ�. This operation is
denoted as σ ← COLLAPSE(σ �).

To generate a suggested macro-sequence σj for a non-covered micro-sequence μi , first
we apply the mapping λ̂ to the micro-sequence μi in order to generate the sequence σ�

j , i.e.

σ�
j ← APPLY(λ̂, μi). Then we eliminate all consecutive repetitions of the same symbol in

σ�
j in order to obtain the suggested macro-sequence σj , i.e. σj ← COLLAPSE(σ�

j).

Example 11 Given the micro-sequenceμ4 = UVYZYZ and the mapping λ̂ = {U �→ A,V �→
A,W �→ B,X �→ B,Y �→ C, Z �→ C} from Example 10, it is possible to generate a
suggested macro-sequence in the form σ�

4 = AACCCC and σ4 = AC.

3.2 Visualizing the (new) process model

In Example 10 we started with a single macro-sequence σ1 = ABC and then we added
σ2 = ABAC and σ3 = A to the macro-model. How has the process model changed when
these new macro-sequences were added? Clearly, the point of adding σ2 and σ3 was to be
able to map μ1 to σ1 = ABC, μ2 to σ2 = ABAC, and μ3 to σ3 = A. However, once we
added σ2 and σ3 to the macro-model, the process itself is no longer a simple sequence of
activities ABC.

In Example 10, there are 5 instances of μ1, 2 instances of μ2, and 1 instance of μ3. In
total, there are 8 instances of this process. Since μ1, μ2 and μ3 are being mapped to σ1, σ2

and σ3 respectively, it is as if the process has been executed 8 times in the following way: 5
instances in the form σ1 = ABC; 2 instances in the form σ2 = ABAC; and 1 instance in the
form σ3 = A. With this information, we can calculate the transition probabilities between
the activities in the process in order to visualize the process model as a Markov chain.

Of course, another kind of model could be used to visualize the process, such as a depen-
dency graph (Weijters et al. 2006) or a Petri net (van der Aalst 1998). Our goal here is just to
illustrate the process (and its changes from one version to another) in an intuitive way, and
for that purpose we use the simplest possible framework. In particular, the type of Markov
chain that we use here, which is extended with special “open” and “closed” states, is some-
what similar to the concept of WF-net, as defined in van der Aalst (1998), which has special
“input” and “output” places.

J Intell Inf Syst (2014) 43:379–407 395

Example 12 Let ◦ (“open”) and • (“closed”) be two special symbols to denote the beginning
and the end of the process, respectively. With σ1 = ◦ABC•, σ2 = ◦ABAC•, and σ3 = ◦A•,
we can say that the process always begins with activity A. We write P (◦,A) = 1.0 to say
that the transition probability between ◦ and A is 1.0.

With regard to the transition probabilities from A to other activities, first we note that
there is one A in σ1, two A’s in σ2, and one A in σ3. Since there are 5 instances of σ1, 2
instances of σ2, and 1 instance of σ3, we get a total number of 5×1 + 2×2 + 1×1 = 10
occurrences of A. The transition probabilities are as follows:

- in 5×1 + 2×1 = 7 of those occurrences, the process goes from A to B, therefore
P (A,B) = 7/10;

- in 2×1 = 2 of those occurrences, the process goes from A to C, therefore P (A,C) =
2/10;

- in 1×1 = 1 of those occurrences, the process ends with A, therefore P (A, •) = 1/10.

With regard to the transition probabilities from B to other activities, we note that there is
one B in σ1, one B in σ2, and none in σ3. Therefore, there is a total number of 5×1 + 2×
1 + 1×0 = 7 occurrences of B. The transition probabilities are:

- in 5×1 = 5 of those occurrences, the process goes from B to C, therefore P (B,C) =
5/7;

- in 2×1 = 2 of those occurrences, the process goes from B to A, therefore P (B,A) = 2/7.

With regard to the transition probabilities from C to other activities, we note that there is
one C in σ1 and one C in σ2. Therefore, there is a total number of 5×1+2×1 = 7 occurrences
of C. In all of those occurrences, the process ends with C. Therefore, P (C, •) = 1.0.

All other transitions probabilities are zero. Therefore, the transition matrix for this
process is:

This transition matrix can be depicted as a graphical model, as shown in Fig. 2.

As this example illustrates, calculating the transition matrix for the process is a matter
of counting the transitions of one activity to another, and dividing by the total number of
occurrences of the first activity. The procedure is relatively simple, as is the conversion of
the transition matrix to the type of graphical model shown in Fig. 2. Therefore, we do not
provide a formal description of the procedure that has just been illustrated in Example 12.

Fig. 2 A graphical depiction of the transition matrix for a macro-model with three macro-sequences

396 J Intell Inf Syst (2014) 43:379–407

However, it is important to mention how the required data for computing the transition
matrix can be obtained. For each micro-sequence μ̂ that is covered by λ̂, we can lookup the
corresponding macro-sequence σ̂ in table T by selecting the tuple (μi, σj , λk) where μi = μ̂

and λk� λ̂. As for the number of instances that should be assigned to σj , this is equal to the
sum of the support (μi@L) for every micro-sequence μi that ends up being mapped to σj .

4 Case study: Volvo IT Belgium

This case study is based on a real-world event log collected from an incident management
system at Volvo IT Belgium. Originally, this event log was made publicly available for the
BPI Challenge 2013.2 In that challenge, the goal was to analyze the event log in order
to answer a number of specific questions posed by the process owner. Here we focus on
arriving at a high-level process model that captures the low-level behavior recorded in the
event log.

For the purpose of BPI Challenge 2013, there were actually three event logs available for
two different processes: incident management, and problem management. Here, we illus-
trate the application of our mining approach to the incident management process, which is
the one that is described in more detail in existing documentation.

4.1 The event log

In the event log3, we find the events that correspond to all changes in the status of each
incident (an incident is also referred to as a service request). Each event has:

– an SR number, which is a unique identifier for the service request;
– a Status, which can be Accepted, Queued or Completed;
– a Sub-status, which is one of In Progress, Awaiting Assignment, Assigned, Resolved,

Closed, etc.;
– the Involved ST, which is the support team working on the incident and which changed

its status or sub-status;
– a timestamp for the event, in the form of a date and time;
– other fields, such as the impact of the incident (high, medium, low), the product that

the incident refers to, and the country that the support team belongs to.

An excerpt of the event log with the fields SR number, Status, Sub-status, Involved ST
and timestamp is shown in Table 1. Here it is possible to see that the first event in the log is
from March 2010 and the last event is from May 2012. There are 7554 cases (i.e. incidents)
recorded in the event log, and a total of 65533 events. From these 7554 cases, there are 2278
different traces (i.e. micro-sequences).

The Involved ST field contains the identifier of the support team, sometimes with a suffix
“2nd” or “3rd”. This means that the support team belongs to the second line and/or third
line, rather than to the first line. The first line is the service helpdesk that serves as a frontend
to the user or customer who submitted the service request. The second and third lines refer
to support teams that take care of those incidents which cannot be solved by the first line. In

2http://www.win.tue.nl/bpi/2013/challenge
3The event log has the following DOI reference: http://dx.doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-
aa5468b10cee

http://www.win.tue.nl/bpi/2013/challenge
http://dx.doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee
http://dx.doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee

J Intell Inf Syst (2014) 43:379–407 397

Table 1 An excerpt of the event log from Volvo IT Belgium

SR number Status Sub-status Involved ST times tamp

1-364285768 Accepted In Progress V30 2010-03-31 15:59:42

1-364285768 Accepted In Progress V30 2010-03-31 16:00:56

1-364285768 Queued Awaiting Assignment V5 3rd 2010-03-31 16:45:48

1-364285768 Accepted In Progress V5 3rd 2010-04-06 15:44:07

1-364285768 Queued Awaiting Assignment V30 2010-04-06 15:44:38

1-364285768 Accepted In Progress V13 2nd 3rd 2010-04-06 15:44:47

1-364285768 Completed Resolved V13 2nd 3rd 2010-04-06 15:44:51

.

1-467153946 Completed Closed S42 2012-05-23 00:22:25

particular, the third line is comprised of experts in product development which should only
be involved if the incident cannot be solved within the first or second line.

The act of passing work from the first line to the second or even to the third line is known
as escalation in the popular ITIL framework (van Bon and Pieper 2005). One of the issues
to be analyzed in the BPI Challenge 2013 was whether escalation of service requests takes
place too often or too soon. Here we will be focusing on the Status and Sub-status columns,
in order to map these statuses to a set of high-level activities.

4.2 The process model

An interesting feature of BPI Challenge 2013 is that the event log was made available
together with some documentation about the process of handling service requests. A BPMN
model for this process is shown in Fig. 3.

The model shows how an incident that is being “investigated” within the first line can
escalate to the second line, and possibly to the third line. This happens in a similar way
across lines: if no solution can be found within the current line, the incident escalates to the
next line, where it will be matched against a database of known issues; if the incident is
recognized as a known issue, then an existing solution is applied to resolve it; otherwise, the
support team will try to come up with a solution to the problem. Eventually, if the problem is
traced back to a certain component, the support team may get in contact with the respective
supplier in order to fix the problem.

Our goal is to map the low-level events in Table 1 to the high-level activities in Fig. 3.
For this purpose, we define a low-level event as being the concatenation of the Status and
Sub-status fields in Table 1. For example, if the status is Accepted and the sub-status is In
Progress, we concatenate these fields into the string AcceptedInProgress. Then the mapping
we are looking for will contain pairs of event and activity, such as:

AcceptedInProgress �→ Investigate

In fact, in the event log we find that about 84.4 % of cases begin with AcceptedInProgress,
15.3 % begin with QueuedAwaitingAssignment, and the remaining 0.3 % begin with other
events. The fact that such a large percentage of cases begin with AcceptedInProgress
appears to suggest that this event should be mapped to the first activity in the process, i.e.

398 J Intell Inf Syst (2014) 43:379–407

g
n il

d
n

a
H t

n
e

dic
nI

1
kse

d
ple

H
eci

vre
S e

nil ts
2
n

d
 l

in
e

3
rd

 l
in

e

 rei l
p

p
u

S S
u

p
p

o
rt

Register

Investigate

Resolve Close

Known

issue?

Found

solution?

Yes

Yes

No

No

Resolve
Known

issue?

Yes

Investigate

Found

solution?

Yes

No

No

Resolve
Known

issue?

Yes

Investigate

No

Fig. 3 A BPMN model of the high-level process associated with handling service requests

Register. However, Table 1 shows that the event AcceptedInProgress can appear multiple
times in each trace, so it cannot belong to the activity Register.

See for example the escalation from first line (V30) directly(!) to third line (V5 3rd) that
takes place from the second to the third event in Table 1. According to Fig. 3, there is no
Register activity in the third line, so AcceptedInProgress cannot be mapped to Register.
Therefore, we conclude that the observable behavior recorded in the event log begins with
the activity Investigate.

Before proceeding with the analysis, we should mention that no form of filtering or
preprocessing was applied to the event log; we simply take the micro-sequences as they
are, with duplicate events included. This is important to mention because, in practice, it is
quite difficult to analyze real-world event logs without some sort of preprocessing (Mans
et al. 2009). However, with the present approach we are able to analyze the event log in its
entirety, without worrying about noise (van der Aalst and Weijters 2004).

4.3 Analysis

We start with the event log and a macro-model with a single macro-sequence:

σ1 = 〈Investigate,Resolve,Close〉

J Intell Inf Syst (2014) 43:379–407 399

On a Linux laptop with an Intel Core i5-4200U processor, an implementation of Algorithm
4 in Python 2.7 takes about 1.26 seconds to run, and produces the following mapping with
68.7 % coverage:

AcceptedAssigned �→ Investigate

AcceptedInProgress �→ Investigate

AcceptedWait �→ Investigate

AcceptedWaitCustomer �→ Investigate

AcceptedWaitImplementation �→ Investigate

AcceptedWaitUser �→ Investigate

AcceptedWaitVendor �→ Investigate

CompletedClosed �→ Close

CompletedInCall �→ Investigate

CompletedResolved �→ Resolve

QueuedAwaitingAssignment �→ Investigate

Since at this stage there is only one macro-sequence, all covered micro-sequences are
mapped to σ1. The current process model is shown in Fig. 4.

The most frequent micro-sequence that cannot be covered is: μ1 =
〈AcceptedInProgress, AcceptedInProgress, CompletedInCall〉. This corresponds to those
incidents which end up being resolved during a call with the customer. The mapping above
suggests that this micro-sequence μ1 might have been generated by a macro-sequence in
the form:

σ2 = 〈Investigate〉
Therefore, the suggestion is to add this macro-sequence to the macro-model. If we accept

this suggestion and run Algorithm 4 again, it takes 2.59 seconds to generate a mapping with
93.7 % coverage. The new mapping is equal to the previous one, with the addition of the
following pair:

CompletedCancelled �→ Investigate

This means that, provided with σ1 and σ2, Algorithm 4 was able to cover not only the
micro-sequence μ1 but also other traces containing the status CompletedCancelled.

Based on the macro-sequences which the covered micro-sequences have been mapped
to, a new version of the process model is shown in Fig. 5.

The most frequent micro-sequence that cannot be covered is now: μ2 =
〈AcceptedInProgress, AcceptedInProgress, CompletedResolved, AcceptedInProgress,
CompletedResolved, CompletedClosed〉. This corresponds to those incidents which were

Fig. 4 Process model, version 1

400 J Intell Inf Syst (2014) 43:379–407

Fig. 5 Process model, version 2

thought to have been resolved on a first attempt, but were resolved only after a sec-
ond attempt. The current mapping suggests that this micro-sequence μ2 might have been
generated by a macro-sequence in the form:

σ3 = 〈Investigate,Resolve, Investigate,Resolve,Close〉
After inserting this suggestion in the macro-model and running Algorithm 4 again, it

takes 9.66 seconds to generate a mapping with 96.9 % coverage. The new mapping adds the
following pair:

UnmatchedUnmatched �→ Resolve

This means that, provided with σ1, σ2 and σ3, Algorithm 4 was able to cover also those
micro-sequences with the (undocumented) status UnmatchedUnmatched.

Based on the macro-sequences which the covered micro-sequences have been mapped
to, a third version of the process model is shown in Fig. 6.

The most frequent micro-sequence that is not covered is now: μ3 =
〈AcceptedInProgress, AcceptedInProgress, AcceptedWaitUser, CompletedResolved〉. The
current mapping suggests that this micro-sequence μ3 might have been generated by a
macro-sequence in the form:

σ4 = 〈Investigate,Resolve〉
We add this micro-sequence to the macro-model and run Algorithm 4 again, which takes

18.05 seconds to find out that the current mapping, without any further change, is now able
to cover 98.0% of the traces in the event log. However, because we added σ4, there has been
a slight change in the process model, as shown in Fig. 7.

By carrying out the same procedure repeatedly – i.e. by adding the suggested macro-
sequences and running Algorithm 4 again – the mapping does not change anymore, but
the new macro-sequences keep refining the process model, until eventually all the micro-
sequences in the event log are covered. Figures 8–19 show the successive versions of the
process model, as each new macro-sequence is added.

Starting with version 6 in Fig. 9 it can be seen that the coverage is already very close
to 100%. From that point onwards, the new macro-sequences that are added to the macro-
model are intended to cover some very particular cases which represent a very small fraction
of the event log (of the order of 0.1 % or even less). For example, from version 8 (Fig. 11)
to version 9 (Fig. 12) the macro-sequence σ9 = 〈Resolve, Investigate, Resolve〉 was added.
This is an interesting point in the analysis because σ9 is the first macro-sequence to be added
that begins with an activity other than Investigate. However, as can be seen in the model of
Fig. 12, only 0.03 % of cases are actually covered by that macro-sequence.

Fig. 6 Process model, version 3

J Intell Inf Syst (2014) 43:379–407 401

Fig. 7 Process model, version 4

Fig. 8 Process model version 5, after adding σ5 = 〈Investigate, Resolve, Investigate, Resolve, Investigate,
Resolve, Close〉, coverage 98.29 %

Fig. 9 Process model version 6, after adding σ6 = 〈Investigate, Resolve, Close, Investigate, Resolve, Close〉,
coverage 99.59 %

Fig. 10 Process model version 7, after adding σ7 = 〈Investigate, Resolve, Investigate, Resolve〉, coverage
99.63 %

Fig. 11 Process model version 8, after adding σ8 = 〈Investigate, Resolve, Close, Investigate, Resolve,
Investigate, Resolve, Close〉, coverage 99.67%

Fig. 12 Process model version 9, after adding σ9 = 〈Resolve, Investigate, Resolve〉, coverage 99.69 %

402 J Intell Inf Syst (2014) 43:379–407

Fig. 13 Process model version 10, after adding σ10 = 〈Resolve, Close, Resolve〉, coverage 99.71 %

Fig. 14 Process model version 11, after adding σ11 = 〈Investigate, Resolve, Investigate, Resolve, Close,
Investigate, Resolve, Close〉, coverage 99.79 %

Fig. 15 Process model version 12, after adding σ12 = 〈Investigate, Resolve, Close, Investigate, Resolve,
Close, Investigate, Resolve, Close〉, coverage 99.91 %

Fig. 16 Process model version 13, after adding σ13 = 〈Investigate, Resolve, Investigate, Resolve,
Investigate, Resolve, Close, Investigate, Resolve, Close〉, coverage 99.92 %

Fig. 17 Process model version 14, after adding σ14 = 〈Investigate, Resolve, Close, Investigate, Resolve,
Investigate, Resolve, Close, Investigate, Resolve, Close〉, coverage 99.93 %

Fig. 18 Process model version 15, after adding σ15 = 〈Investigate, Resolve, Investigate, Resolve,
Investigate, Resolve, Investigate, Resolve, Close〉, coverage 99.99 %

J Intell Inf Syst (2014) 43:379–407 403

Fig. 19 Process model version 16, after adding σ16 = 〈Investigate, Resolve, Investigate, Resolve, Close,
Investigate, Resolve, Investigate, Resolve, Investigate, Resolve, Close, Investigate, Resolve, Close〉, coverage
100.00 %

Eventually, by adding the suggested macro-sequences, the mapping is able to cover all
the cases in the event log. The resulting process model is shown in Fig. 19. Even if the
analyst does not follow the suggestions and prefers to add different macro-sequences at
each step, it will still be possible to achieve a macro-model with 100 % coverage, albeit a
different one from that of Fig. 19.

4.4 Execution time and coverage

Figure 20 plots the execution time and coverage achieved by Algorithm 4 as each new
macro-sequence is added to the macro-model. These plots illustrate two important facts:

– Even though Algorithm 2 computes all possible mappings between each micro-
sequence μi and each macro-sequence σj , the total execution time of Algorithm 4
does not appear to rise exponentially with the number of macro-sequences. This pro-
vides confidence that, in practice, it will be possible to add an arbitrary number of
macro-sequences and still carry out the analysis within a reasonable amount of time.

– Even though it is possible to achieve 100 % coverage by adding all of the suggested
macro-sequences, for practical purposes it will be hardly necessary to do so since, at
a certain point, the gain in coverage does not justify the extra execution time. By the
time the mapping covers 99 % of the event log (or another percentage that the analyst
finds appropriate), the remaining traces can be dismissed as noise, and the current pro-
cess model can be considered to be a sufficiently accurate description for the behavior
observed in the event log.

Fig. 20 Time and coverage vs. number of macro-sequences in the macro-model

404 J Intell Inf Syst (2014) 43:379–407

5 Related work

The gap between high-level activities and low-level events is a well-known problem in the
field of process mining (Greco et al. 2005; Günther and Van der Aalst 2007; Günther et al.
2010; Jagadeesh Chandra Bose et al. 2012). Despite the development of a wide range of
process mining techniques, most of these techniques are able to discover process models
that are at the same level of abstraction as the events recorded in the event log (i.e. when
there is a one-to-one mapping between events and activities, and this mapping is known a
priori). However, end users need solutions to analyze event data and to visualize the results
at a higher level of abstraction, preferably at the same level of abstraction of their process
models.

The research community has been looking into this problem and, while it is still a topic of
ongoing research, some approaches have already been proposed to be able to produce more
abstract models from an event log. These approaches can be divided into two main groups:

– First, there are techniques that work on the basis of models, by extracting a low-level
model from the event log and then creating more abstract representations of that model.
Examples are Greco et al. (2005) and Günther and Van der Aalst (2007). Basically, these
techniques work by aggregating nodes in the model, in order to produce a simplified
and more abstract picture of the process. In general, these approaches allow a stepwise
simplification of the process until, in the limit, everything is aggregated into a single
node. It is the end user who must know how far to carry the simplification in order to
obtain meaningful results. A disadvantage of these approaches is that it is not possible
to automatically identify aggregated nodes as meaningful business activities (they are
simply labeled as “Cluster A”, “Cluster B”, etc.), so it may be difficult for the end user
to understand and analyze the results.

– Second, there are techniques that work on the basis of the events, by translating the
event log into a more abstract sequence of events and then producing a model from that
translated event log. Examples are Günther et al. (2010) and Jagadeesh Chandra Bose
et al. (2012). Basically, these techniques work by identifying frequent patterns of events
in the event log, and then substituting each of these patterns by a single, higher-level
event. After all substitutions have been made, the event log becomes a sequence of more
abstract events. As a final step, it is possible to extract a model by usual techniques,
such as the α-algorithm (van der Aalst et al. 2004), the heuristics miner (Weijters et al.
2006), or the genetic miner (de Medeiros and Weijters 2005). As with other approaches,
it is possible to perform this abstraction in multiple stages, but there is no guarantee
that the patterns of events that are identified in the event log correspond to meaningful
business activities, so it is up to the end user to determine whether such correspondence
actually exists.

The problem with these approaches is that, although they are able to create new layers
of abstraction over an event log, in general they do not take into account that there may
already exist an abstract notion of the business process in the form of a process model, or in
another form (e.g. a flowchart, or a procedure manual) that can be translated into a process
model. This information can become a valuable input for the analysis, since it identifies the
high-level activities that one should use when building abstractions over an event log. Our
approach differs by taking this information into account.

On the other hand, there has been a surging interest in techniques that are based on align-
ing the events in an event log with the activities in a process model (van der Aalst et al. 2012;
de Leoni et al. 2012b; de Leoni et al. 2012a; de Leoni and van der Aalst 2013b; 2013a).

J Intell Inf Syst (2014) 43:379–407 405

The concept of mapping that we use here can be somewhat related to that kind of alignment,
in the sense that an alignment also establishes a correspondence between events and activi-
ties. Also, there is a search space for possible alignments that is somewhat analogous to the
search space of possible mappings. However, in those alignments the process model is at
the same level of abstraction of the event log, whereas in the present work we use the con-
cept of mapping to bridge the gap between those two different levels. A further difference
is that we focus on model improvement, whereas the works cited above focus either on dis-
covery (Greco et al. 2005; Günther and Van der Aalst 2007; Günther et al. 2010; Jagadeesh
Chandra Bose et al. 2012; de Leoni and van der Aalst 2013b) or conformance (van der Aalst
et al. 2012; de Leoni et al. 2012b; de Leoni et al. 2012a; de Leoni and van der Aalst 2013a).

Also, another branch of work that can be related to the present approach is that of generat-
ing recommendations in the context of process modeling (Hornung et al. 2008; Schonenberg
et al. 2008; Vanderfeesten et al. 2008; Koschmider et al. 2009; Koschmider et al. 2011). Of
special interest is (Schonenberg et al. 2008), where the recommendations are based on the
past history of the process, which is recorded in an event log. However, once again there
is a one-to-one mapping between the events in the log and the activities in the process. In
contrast, our suggestions for new macro-sequences are based on a mapping which must be
mined from the event log and from a higher-level model of the process. This model may
be inaccurate at first, but through the addition of the suggested macro-sequences, or other
macro-sequences that the analyst finds appropriate, the model is able to cover more and
more of the event log.

6 Conclusion

In this work we have shown that it is possible to enhance a given process model with
information about the run-time behavior of the process, as recorded in an event log. More
importantly, we have shown that it is possible to do this even when the relationship between
the activities in the process model and the events in the log is unknown.

Assuming that each event can be mapped to a single activity, we introduced the concept
of mapping and we showed how to mine the set of possible mappings from a given micro-
sequence and macro-sequence (Algorithm 1). Then we generalized this procedure in order
to be able to find the set of possible mappings between all the micro-sequences in the event
log and all the macro-sequences in the process model (Algorithm 2).

In general, the set of possible mappings can be large, and one should focus on the map-
ping which has the highest coverage, meaning that the chosen mapping should be applicable
to the largest possible number of traces in the event log (Algorithm 3). However, coverage
is not the only factor to take into account, since a mapping where all events are mapped to
the same activity will have 100 % coverage but will be of no practical interest.

The range of a mapping, i.e. the set of activities that appear in the mapping, is an
even more important factor. Therefore, first we select the mappings with largest range,
and then we select the mappings with highest coverage from those with largest range.
If possible, we combine (i.e. merge) mappings in order to create a new mappings with
even larger range and higher coverage. There may be many such possible combinations,
so Algorithm 4 adopts a greedy approach, where it tries to merge those mappings which,
by themselves, already appear to have the largest range and highest coverage among
their peers.

In practice, such greedy approach is enough to find a mapping that covers a large fraction
of the event log. For those traces which are not covered by the mapping, it is possible

406 J Intell Inf Syst (2014) 43:379–407

to generate a suggestion in the form of a macro-sequence which, if added to the process
model, will allow the mapping to increase its coverage. These suggestions, or whatever
macro-sequences the analyst decides to add, are the basis for enhancing the process model.

In a case study involving a real-world event log from the BPI Challenge 2013, we have
shown how the successive inclusion of the suggested macro-sequences has contributed to
reach a model that captures the run-time behavior of the process in terms of the high-level
activities used to document that process. We have also highlighted the fact that the approach
scales reasonably well with the increase in the number of macro-sequences, and that it is
able to deal with noise, by eventually covering all traces in the event log.

References

de Leoni, M., & van der Aalst, W.M.P. (2013a). Aligning event logs and process models for multi-
perspective conformance checking: an approach based on integer linear programming. In Business
process management of LNCS (Vol. 8094, pp. 113–129). Springer.

de Leoni, M., & van der Aalst, W.M.P. (2013b). Data-aware process mining: discovering decisions in pro-
cesses using alignments. In Proceedings of the 28th annual ACM symposium on applied computing (pp.
1454–1461). ACM.

de Leoni, M., Maria Maggi, F., Van der Aalst, W.M.P. (2012a). Aligning event logs and declarative process
models for conformance checking. In Business process management of LNCS (Vol. 7481, pp. 82–97).
Springer.

de Leoni, M., Van der Aalst, W.M.P., Van Dongen, B.F. (2012b). Data- and resource-aware conformance
checking of business processes. In Business information systems of LNBIP (Vol. 117, pp. 48–59).
Springer.

de Medeiros, A.K.A., & Weijters, A.J.M.M. (2005). Genetic process mining. In Applications and theory of
petri nets 2005 of LNCS (Vol. 3536, pp. 48–69). Springer.

de Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P. (2007). Genetic process mining: an
experimental evaluation. Data Mining and Knowledge Discovery, 14(2), 245–304.

Ferreira, D.R., Szimanski, F., Ralha, C.G. (2013a). A hierarchical Markov model to understand the behaviour
of agents in business processes. In Business process management workshops of LNBIP (Vol. 132, pp.
150–161). Springer.

Ferreira, D.R., Szimanski, F., Ralha, C.G. (2013b). Mining the low-level behavior of agents in high-level
business processes. International Journal of Business Process Integration and Management, 6(2), 146–
166.

Greco, G., Guzzo, A., Pontieri, L. (2005). Mining hierarchies of models: from abstract views to concrete
specifications. In 3rd international conference on business process management of LNCS (Vol. 3649, pp.
32–47). Springer.

Günther, C.W., Rozinat, A., van der Aalst, W.M.P. (2010). Activity mining by global trace segmentation. In
BPM 2009 international workshops of LNBIP (Vol. 43, pp. 128–139). Springer.

Günther, C.W., & Van der Aalst, W.M.P. (2007). Fuzzy mining – adaptive process simplification based on
multi-perspective metrics. In 5th international conference on business process management of LNCS
(Vol. 4714, pp. 328–343). Springer.

Hornung, T., Koschmider, A., Lausen, G. (2008). Recommendation based process modeling support: method
and user experience. In Conceptual modeling - ER 2008 of LNCS (Vol. 5321, pp. 265–278). Springer.,
Springer.

Jagadeesh Chandra Bose, R.P., Verbeek, E.H.M.W., van der Aalst, M.P. (2012). Discovering hierarchical
process models using ProM. In CAiSE Forum 2011 of LNBIP (Vol. 107, pp. 33–48). Springer.

Koschmider, A., Hornung, T., Oberweis, A. (2011). Recommendation-based editor for business process
modeling. Data & Knowledge Engineering, 70(6), 483–503.

Koschmider, A., Song, M., Reijers, H.A. (2009). Advanced social features in a recommendation system for
process modeling. In Business information systems of LNBIP (Vol. 21, pp. 109–120). Springer.

Mans, R.S., Schonenberg, M.H., Song, M., Aalst, W.M.P., Bakker, P.J.M. (2009). Application of process min-
ing in healthcare – a case study in a dutch hospital. In A. Fred, J. Filipe, H. Gamboa (Eds.) Biomedical
Engineering Systems and Technologies of CCIS (Vol. 25, pp. 425–438): Springer.

OMG (2011). Business Process Model and Notation (BPMN), Version 2.0.

J Intell Inf Syst (2014) 43:379–407 407

Rozinat, A., & van der Aalst, W.M.P. (2008). Conformance checking of processes based on monitoring real
behavior. Information Systems, 33(1), 64–95.

Scheer, A.-W. (2000). ARIS: Business Process Modeling, 3rd edn. Springer.
Schonenberg, H., Weber, B., van Dongen, B., van der Aalst, W. (2008). Supporting flexible processes through

recommendations based on history. In Business process management, (Vol. 5240 of LNCS, pp. 51–66).
Springer.

Szimanski, F., Ralha, C.G., Wagner, G., Ferreira, D.R. (2013). Improving business process models with
agent-based simulation and process mining. In Enterprise, business-process and information systems
modeling, (Vol. 147 of LNBIP, pp. 124–138). Springer.

van Bon, J., & Pieper, M. (2005). Foundations of IT Service Management: based on ITIL. Van Haren
Publishing van der Veen, A., & Verheijen, T. (Eds.)

van der Aalst, W.M.P. (2011). Process mining: discovery, conformance and enhancement of business
processes. Springer.

van der Aalst, W.M.P., & Weijters, A.J.M.M. (2004). Process mining: a research agenda. Computers in
Industry, 53(3), 231–244.

van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L. (2004). Workflow mining: discovering process
models from event logs. IEEE Transactions on Knowledge and Data Engineering, 16, 1128–1142.

van der Aalst, W.M.P. (2012). Process mining. Communications of the ACM, 55(8), 76–83.
van der Aalst, W.M.P. (1998). The application of Petri nets to workflow management. The Journal of Circuits,

Systems and Computers, 8(1), 21–66.
van der Aalst, W.M.P., Adriansyah, A., van Dongen, B. (2012). Replaying history on process models for

conformance checking and performance analysis. WIREs Data Mining and Knowledge Discovery, 2(2),
182–192.

Vanderfeesten, I., Reijers, H.A., van der Aalst, W.M.P. (2008). Product based workflow support: A recom-
mendation service for dynamic workflow execution. BPM Center Report BPM-08-03, BPMcenter.org.

Weijters, A.J.M.M., van der Aalst, W.M.P., de Medeiros, A.A.K. (2006). Process mining with the Heuristic-
sMiner algorithm. Technical Report WP 166. Eindhoven University of Technology.

	Improving process models by mining mappings of low-level events to high-level activities
	Abstract
	Introduction
	Problem description
	Previous work
	Structure of presentation

	The concept of mapping
	Finding all complete mappings
	Working with multiple macro- and micro-sequences
	Subsumption and compatibility
	Coverage of a mapping
	Coverage vs. range of a mapping

	Mining approach
	Generating suggestions for improvement
	Visualizing the (new) process model

	Case study: Volvo IT Belgium
	The event log
	The process model
	Analysis
	Execution time and coverage

	Related work
	Conclusion
	References

