
DOI 10.1007/s10844-013-0268-1

Effectively and efficiently supporting roll-up
and drill-down OLAP operations over continuous
dimensions via hierarchical clustering

Michelangelo Ceci ·Alfredo Cuzzocrea ·
Donato Malerba

Received: 15 October 2012 / Revised: 12 July 2013 / Accepted: 12 July 2013

© Springer Science+Business Media New York 2013

Abstract In traditional OLAP systems, roll-up and drill-down operations over data
cubes exploit fixed hierarchies defined on discrete attributes, which play the roles
of dimensions, and operate along them. New emerging application scenarios, such as
sensor networks, have stimulated research on OLAP systems, where even continuous
attributes are considered as dimensions of analysis, and hierarchies are defined
over continuous domains. The goal is to avoid the prior definition of an ad-hoc
discretization hierarchy along each OLAP dimension. Following this research trend,
in this paper we propose a novel method, founded on a density-based hierarchical
clustering algorithm, to support roll-up and drill-down operations over OLAP data
cubes with continuous dimensions. The method hierarchically clusters dimension
instances by also taking fact-table measures into account. Thus, we enhance the clus-
tering effect with respect to the possible analysis. Experiments on two well-known
multidimensional datasets clearly show the advantages of the proposed solution.

Keywords Hierarchical clustering · OLAP · OLAP on continuous domains

1 Introduction

In traditional Business Intelligence applications, both On-Line Analytical Processing
(OLAP) and data mining are considered two distinct, well-consolidated technologies

M. Ceci (B) · D. Malerba
University of Bari “Aldo Moro”, Via Orabona, 4, 70125, Bari, Italy
e-mail: michelangelo.ceci@uniba.it

D. Malerba
e-mail: donato.malerba@uniba.it

A. Cuzzocrea
ICAR-CNR and University of Calabria, Via P. Bucci, 41C, 87036 Rende, Cosenza, Italy
e-mail: cuzzocrea@si.deis.unical.it

J Intell Inf Syst (2015) 44: –309 333

Published online: 201
/

2 August 3

positioned on top of a data warehouse architecture (Watson and Wixom 2007).
Data in the warehouse are accessed by OLAP tools to support efficient, interactive
multidimensional analyses through roll-up, drill-down, slice-and-dice and pivoting
operations. Clean data available in the warehouse are also a high quality input for
data mining tools which perform an automated discovery of patterns and models,
often used for predictive inference.

The two classes of front-end tools for data warehouses have long developed
independently of each other, focusing on distinct functionalities. Notable exceptions
are the on-line analytical mining architecture (Han et al. 1998), where mining
modules operate directly on data cubes via the OLAP engine, the OLAP-based
association mining (Zhu 1998), and the cubegrades (Imieliński et al. 2002), which
give a generalization of association rules which express how the change in the
structure of a given cube affects a set of predefined measures. In all these studies
data mining techniques are applied to OLAP cubes. The motivations are various,
such as efficiency or extending data mining techniques to OLAP cubes.

A different perspective is provided by ClustCube (Cuzzocrea and Serafino 2011),
where a data mining technique, namely clustering, is integrated in an OLAP frame-
work. In particular, both cubes and cube cells store clusters of complex database
objects and typical OLAP operations are performed on top of them. Thus, while
in traditional OLAP data cubes the multidimensional boundaries of data cube cells
along the dimensions are determined by the input OLAP aggregation scheme, in
ClustCube the multidimensional boundaries are the result of the clustering process
itself. This means that hierarchies are not fixed a priori, since they are determined
by the clustering algorithm. Hence, OLAP offers powerful tools to mine clustered
objects according to a multidimensional, multi-resolution vision of the underlying
object domain.

This perspective is also useful to face some limitations of conventional OLAP
technologies, which offer data cubes defined on top of dimensions that are discrete
and expose fixed hierarchies (Gray et al. 1997). These two dimension constraints are
regarded as being too strong for several application scenarios, such as sensor network
mining. To overcome the first limitation, OLAP data cubes have been defined on
top of continuous dimensions (Gunopulos et al. 2005; Shanmugasundaram et al.
1999). To handle them, a naïve approach has been initially investigated, which
consists in independently discretizing attribute domains of continuous dimensions
before processing them to obtain the final cube, given a certain measure (Gray et al.
1997). However, this approach is subject to information loss, due to the (univariate)
discretization process and the disregarding of fresh data periodically loaded into
the warehouse. The application of a clustering algorithm over continuous attributes
may indeed better approximate the multivariate distribution of numerical data as
well as facilitate range-sum query evaluation (Cuzzocrea 2006; Cuzzocrea and Wang
2007; Cuzzocrea et al. 2009). Moreover, the application of a hierarchical clustering
algorithm may contribute to overcoming the second limitation, since hierarchies are
dynamically defined on the basis of the database objects.

Based on these insights, in this paper we develop a novel knowledge discovery
framework for the multidimensional, multi-resolution analysis of complex objects,
characterized by continuous dimensions and dynamically defined hierarchies. The
framework, called OLAPBIRCH, aims at supporting next-generation applications,
ranging from analytics to sensor-and-stream data analysis and social network

310 J Intell Inf Syst (2015) 44: –309 333

analysis. The main idea pursued in this work is integrating a revised version of the
clustering algorithm BIRCH (Zhang et al. 1996) with an OLAP solution, in order to
build a hierarchical data structure, called CF Tree, whose nodes store information
on clusters retrieved by BIRCH from the target dataset. The CF tree improves the
efficiency of both roll-up and drill-down operations with respect to the baseline
case, which computes new clusters from pre-existent ones at each roll-up (or drill-
down) operation. In fact, the roll-up and drill-down operations directly correspond to
moving up and down the CF Tree. The proposed framework is also designed to work
with continuous dimensions in order to support emerging applications, such as sensor
data processing, where numerical data abound.

The proposed knowledge discovery framework presents several challenges that
must be addressed. First, the huge amount of data stored in data warehouses
and involved in OLAP queries requires efficient solutions. Second, a hierarchical
organization of clusters is necessary to give the OLAP users the possibility to perform
roll-up and drill-down operations. Third, the periodic loading of data warehouses
through ETL applications requires clustering methods which are incremental, so
that it is not needed to regenerate the CF tree from scratch each time new data are
loaded. Fourth, the hierarchical organization of clusters should be well-balanced to
guarantee effective roll-up and drill-down operations by exploiting the CF Tree.

These challenges are addressed by the BIRCH clustering algorithm, whose origi-
nal formulation presents the following important features:

– Efficiency (both in space and time): the algorithm has a time complexity which
is linear in the number of instances to cluster and a space complexity which is
constant.

– Hierarchical organization of clusters.
– Incrementality: as new instances are given to the algorithm, the hierarchical

clustering is revised and adapted by taking into account memory constraints.
– Balanced hierarchies in output: when the hierarchical clustering is revised, the

algorithm still keeps the hierarchy well balanced.

The main contributions of this paper are as follows:

1. Principles, models and algorithms of the OLAPBIRCH framework;
2. An extensive discussion of related work;
3. A theoretical discussion of the OLAPBIRCH time complexity;
4. A wide experimental analysis of OLAPBIRCH performance on both benchmark

and real datasets.

From a data mining perspective, this paper also faces the challenging problem of
clustering objects, defined by multiple relational tables logically organized according
to a star schema. This in turn relates our work to recent research on co-clustering
star-structured heterogeneous data (Ienco et al. 2012), where the goal is to cluster
simultaneously the set of objects and the set of values in the different feature spaces.
The main difference is that we distinguish between a primary type of objects to be
clustered (examples in the fact table) and a secondary type of objects to be clustered
(examples in the considered dimensional table). Thus, we cluster both types of
objects as in co-clustering star-structured heterogeneous data, but with the difference

311J Intell Inf Syst (2015) 44: –309 333

that clusters on the objects of the primary type implicitly define the (soft) clusters on
objects of the secondary type.

The paper is organized as follows. In Section 2, we discuss proposals related to our
research. In Sections 3 and 4, we present the background of the presented work and
the proposed framework OLAPBIRCH, respectively. In Section 5, we present an
empirical evaluation of the proposed framework. In Section 6, we focus attention on
emerging application scenarios of OLAPBIRCH and, finally, in Section 7 we draw
some conclusions and delineate future research directions.

2 Related work

Two main areas are pertinent to our research, namely clustering techniques over large
databases and integration of OLAP and Data Mining. They are both reviewed in the
next subsections.

2.1 Clustering over large databases

In the last decade several clustering algorithms have been proposed to cope with new
challenges brought to the forefront by the automated production of a vast amount of
high-dimensional data (Kriegel et al. 2009; Hinneburg and Keim 1999). CLARANS
(Ng and Han 2002) is a pioneer clustering algorithm that performs randomized search
over a partitioned representation of the target data domain to discover clusters
in spatial databases. DBSCAN (Ester et al. 1996) introduces the notion of cluster
density, to discover clusters of arbitrary shape. Compared to CLARANS, DB-
SCAN proves to be more efficient and can scale well over large databases. Indeed,
CLARANS assumes that all objects to be clustered can be kept in main memory,
which is unrealistic in many real-life application scenarios. In CURE (Guha et al.
2001), clustering is based on representatives built from the target multidimensional
data points via an original approach that combines random sampling and partitioning
strategies. An advantage of this approach is its robustness to outliers. WaveCluster
(Sheikholeslami et al. 2000) is based on the wavelet transforms and guarantees
both low dependence on possible sorting of input data and low sensibility to the
presence of outliers in data. Moreover, well-understood, multi-resolution tools, made
available by wavelet transforms make WaveCluster able to discover clusters of
arbitrary shape at different levels of accuracy. CLIQUE (Agrawal et al. 2005) aims
at clustering the target data with respect to a partition of the original features of
the reference data source, even without the support of feature selection algorithms.
Inspired by the well-known monotonicity property of the support of frequent patterns
(Agrawal and Srikant 1994), CLIQUE starts clustering at the lower dimensionality
of the target dimensional space and then progressively derives clusters at the higher
dimensionalities. The monotonicity property exploited in CLIQUE states that if a
collection of data points c is a cluster in a k-dimensional space S, then c is also part
of a cluster in any (k − 1)-dimensional projections of S.

Another recent research trend related to this work is clustering methodologies in
complex database environments. Based on the vast, rich literature on this specific
topic, it is worthwhile mentioning CrossClus (Yin et al. 2007), which considers an ap-
plicative setting where data are stored in semantically-linked database relations and

312 J Intell Inf Syst (2015) 44: –309 333

clustering is conducted across multiple relations rather than a single one, as in most
of the above mentioned algorithms. To this end, CrossClus devises an innovative
methodology according to which the clustering phase is “propagated” across data-
base relations by following associations among them, starting just from a small set of
(clustering) features defined by users.

Finally, another topic of interest for this work is clustering high-dimensional
datasets (Kriegel et al. 2009), since high-dimensional data are reminiscent of OLAP
data. Here, clustering scalability and quality of clusters are the major research
challenges, as it is well-understood that traditional clustering approaches are not
effective on high-dimensional data (Kriegel et al. 2009).

2.2 Integration of OLAP and data mining

As recognized in Parsaye (1997), applying data mining over data cubes definitely
improves the effectiveness and the reliability of decision-support systems. One of
the pioneering works in this direction is Han (1998), which introduces the OLAM
methodology to extract knowledge from OLAP data cubes. In Chen et al. (2000)
traditional OLAP functionalities over distributed database environments are ex-
tended, in order to generate specialized data cubes storing association rules rather
than conventional SQL-based aggregates. A similar idea is pursued in Goil and
Choudhary (2001), except that data cubes are used as primary input data structures
for association rule mining.

In Sarawagi (2001) and Sarawagi et al. (1998) the integration of statistical tools
within OLAP servers is proposed, in order to support the discovery-driven explo-
ration of data cubes. The gradient analysis over OLAP data cubes (Dong et al. 2001)
is a sophisticated data cube mining technique, which aims at detecting significant
changes among fixed collections of cube cells. While in Imieliński et al. (2002) data
cubes define the conceptual layer for association rule mining, in Messaoud et al.
(2006) inter-dimensional association rules are discovered from data cubes on the
basis of SUM-based aggregate measures.

Contrary to all these approaches, where OLAP operations are invoked by data
mining tools, in this work we follow the opposite direction and integrate data mining
in OLAP solutions, in order to enable OLAP queries over complex objects. Details
of this alternative approach are reported in the following sections.

3 Background

For the sake of completeness, in this section we briefly review the BIRCH algorithm.
Then we explain the modifications required to integrate BIRCH in an OLAP
framework.

The BIRCH algorithm (Zhang et al. 1996) works on a hierarchical data structure,
called Clustering Feature tree (CF tree), which allows incoming data points to be
partitioned both incrementally and dynamically. Formally, given a cluster of n d-
dimensional data points xi (i = 1, . . . ,n), its Clustering Feature (CF) is the following
triple summarizing the information maintained about the cluster:

CF = (n,LS, SS) (1)

313J Intell Inf Syst (2015) 44: –309 333

where the d-dimensional vector LS = ∑
i=1,...,n xi is the linear sum of the n data

points, while the scalar value SS = ∑
i=1,...,n x

2
i is the square sum of the n data points.

These statistics allows us to efficiently compute three relevant features of the cluster
(the centroid, the radius and the diameter), as well as other important features of
pairs of clusters (e.g. average inter-cluster distance, average intra-cluster distance
and variance increase distance).

A distinctive property of CF vectors is the additivity property, according to which,
given two non-intersecting clusters S1 and S2 with CF vectors CF1 = (n1,LS1, SS1)
and CF2 = (n2,LS2, SS2) respectively, the CF vector for the cluster S1 ∪ S2 is CF1 +
CF2 = (n1 + n2,LS1 + LS2, SS1 + SS2).

A CF tree is a balanced tree with a structure similar to that of a B+ tree. Its size
depends on two parameters:

(i) the branching factor B and
(ii) a user-defined threshold T on the maximum cluster diameter. This threshold

controls the size of the CF tree: the larger the T, the smaller the tree.

Each internal node Nj corresponds to a cluster made up of all the subclusters
associated to its children. The branching factor B controls the maximum number of
children. Therefore, Nj is described by at most B entries of the form [CFi, ci]i=1,..,B,
where ci is a pointer to the i-th child node of Nj and CFi is the clustering feature
of the cluster identified by ci. Each leaf node contains at most L (typically L = B)
entries, each of the form [CFi], and two pointers, prev and next, which chain all the
leaves together, in order to efficiently perform an in-order traversal. Each entry at
a leaf is not a single data point but a subcluster, which “absorbs” many data points
with diameter (or radius) less than T.

The algorithm BIRCH builds a CF tree in four phases. In the first phase, an initial
CF tree is incrementally built by considering data points one by one. In particular,
each data point recursively descends the CF tree, by choosing the closest child note
according to some distance measure. Once a leaf is reached, a check is performed. If
an entry at the leaf can “absorb” the new point, its CF is updated. Otherwise, a new
entry is added to the leaf node, if there is room (the maximum number of entries is
L), or the leaf node is split (i.e. it becomes an internal node) if there is no room. In
the case of splitting, the CF tree may need some restructuring, since the constraint
on the branching factor B can be violated. The restructuring proceeds bottom up and
can cause the increase of the tree height by one. In order to satisfy RAM constraints,
in this first phase BIRCH frequently rebuilds the whole CF tree, while increasing
values of T. In particular, BIRCH starts with the maximum precision (T = 0) and, as
the CF tree grows larger than the available memory, it increases T to a value larger
than the smallest distance between the two entries in the CF tree. Since all necessary
data are kept in the main memory, this recurring construction of the whole CF tree is
quite fast. The first phase also includes an outlier-handling process, in which outliers
are detected, removed from the tree and stored on disk.

The second phase (optional) aims at condensing the CF tree to a desirable size.
This can involve removing more outliers and further merging of clusters. In the
third phase, BIRCH applies an agglomerative hierarchical clustering algorithm1 to

1In our implementation, the clustering algorithm used in the third phase is the well-known DBSCAN
(Ester et al. 1996) algorithm which performs a density-based clustering.

314 J Intell Inf Syst (2015) 44: –309 333

the subclusters represented by the leaves of the CF tree. This aims at mitigating the
undesirable effects caused by both the skewed ordering of input data and the node
splitting triggered by space constraints. Once again the CF vectors convey all the
necessary information for calculating the distance and quality metrics used by the
clustering algorithm adopted in this phase.

In the first three phases, the original data is scanned once, although the tree and
the outlier information may have been scanned multiple times. By working only with
the statistics stored in a CF vector, the actual partitioning of the original data is un-
known. The fourth (optional) phase refines clusters at the cost of an additional scan
of original data, and associates each data point with the cluster that it belongs to (data
labeling).

The distance measure used in our implementation of BIRCH is the variance
increase distance (Zhang et al. 1996), which is mathematically defined as follows:

Definition 1 (Variance Increase Distance) Let C1 and C2 be two clusters, where
C1 = {xi}i=1..n1 and C2 = {xi}i=n1+1,...,n1+n2 . The variance increase distance between C1

and C2 is:

D =
n1+n2∑

k=1

⎛

⎜
⎜
⎜
⎜
⎜
⎝

xk −

n1+n2∑

l=1

xl

n1 + n2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

2

−
n1∑

i=1

⎛

⎜
⎜
⎜
⎜
⎝
xi −

n1∑

l=1

xl

n1

⎞

⎟
⎟
⎟
⎟
⎠

2

−
n1+n2∑

i=n1+1

⎛

⎜
⎜
⎜
⎜
⎜
⎝

xi −

n1+n2∑

l=n1+1

xl

n2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

2

(2)

It can be reformulated as follows:

D = (n1 + n2) ∗ (Variance of merged clusters C1 ∪ C2)

−n1 ∗ (Variance of C1)

−n2 ∗ (Variance of C2) (3)

Since the variance of merged clusters is greater than or equal to the variance of
both C1 and C2, then D ≥ 0. This measure can be easily computed by using the CF
vectors of the two clusters, and it allows BIRCH to discover both circular-shaped
clusters and near rectangular-shaped clusters. Moreover, it follows the same principle
of the variance reduction heuristic which is at the basis of several clustering and
predictive clustering algorithms (Vens et al. 2010).

4 OLAPBIRCH: combining BIRCH and OLAP

The integration of the implemented BIRCH algorithm in the OLAP solution we
present is not a trivial task, since different issues have to be considered. First, OLAP
queries can consider all the levels of the hierarchy and not only the last level. This
means that it is necessary to have refined clusters, not only in the last level of the
hierarchy, but also in the intermediate levels. Second, in OLAP frameworks, the user
is typically able to control the size of hierarchies, but this is not possible in the
original BIRCH algorithm. Third, although the last step of the BIRCH algorithm
is not mandatory, it becomes necessary in our framework, in order to simplify

315J Intell Inf Syst (2015) 44: –309 333

the computation of OLAP queries. Fourth, in order to avoid the combinatorial
explosion that is typical in multidimensional clustering, it is necessary to focus only
on interesting continuous dimension attributes.

In order to face the first issue, we revised the clustering algorithm to allow the sys-
tem to run the clustering algorithm used in the third phase (henceforth called global
clustering) also in the intermediate nodes of the tree. At this end, we extended the CF
tree structure by providing pointers prev and next to each internal node. This allows
us to linearly scan each single level of the tree when performing OLAP operations.
In Fig. 1, we report a graphical representation of the CF tree structure used in the
proposed framework. The application of the global clustering also to intermediate
nodes of the tree may also cause additional time complexity problems. Indeed,
running OLAPBIRCH incrementally would require the execution of DBSCAN at
each level of the tree for each new set of instances that is added to the database. In
order to avoid this problem, which would negatively affect the use of OLAPBIRCH
in real-world scenarios, we consider the incremental implementation of DBSCAN,
as suggested in Ester et al. (1998). This algorithm is described in Section 4.1.

As for the second issue, in addition to the memory space constraints, we consider
also an additional constraint that forces tree rebuilding when a maximum number of
levels (MAX_LEV) is exceeded. This is coherent with the goal of having a limited
number of levels, as in classical OLAP systems.

As for the third issue, given the maximum number of levels MAX_LEV and the
branching factor B, it is possible to use a numerical representation of the complete
path of clusters for each dimension instance, so that the classical B+tree index

Fig. 1 OLAPBIRCH: an example of a CF tree

316 J Intell Inf Syst (2015) 44: –309 333

structure can be used, in order to allow efficient computation of range queries
(Gunopulos et al. 2005). The representation is in the form < d1d2 . . . dMAX_LEV >,
where each di is a sequence of �log2B� bits that allows the identification of each
subcluster. The number obtained in this way is then used to perform roll-up and drill-
down operations.

Finally, as for the fourth issue, in order to integrate the algorithm in an OLAP
framework, we defined a language that supports the user in the specification of
the attributes to be considered in the clustering phase. For this purpose, we have
exploited the Mondrian2 project, according to which a multidimensional schema of a
data warehouse is represented by means of an XML file. In particular, this file allows
the user to define a mapping between the multidimensional schema and tables and
attributes stored in the database. The main elements in this XML file are: the data
source, cubes, measures, the fact table, dimensions and hierarchies.

For our purposes, we have modified the DTD originally proposed in Mondrian, in
order to extend the definition of the hierarchies. The modified portion of the DTD is:

<!ELEMENT Hierarchy ((%Relation;)?,(Level)*,
(MemberReaderParameter)*,(Attribute)+, (Depth))>

<!ATTLIST Hierarchy
hasAll (true|false) #REQUIRED
allMemberName CDATA #IMPLIED
allMemberCaption CDATA #IMPLIED
primaryKey CDATA #IMPLIED
primaryKeyTable CDATA #IMPLIED
defaultMember CDATA #IMPLIED
memberReaderClass CDATA #IMPLIED>

<!ELEMENT Attribute EMPTY>

<!ATTLIST Attribute
name CDATA #IMPLIED
table CDATA #REQUIRED
column CDATA #REQUIRED
nameColumn CDATA #REQUIRED
type (Numeric) Numeric #REQUIRED>

<!ELEMENT Depth EMPTY>

<!ATTLIST Depth value (Numeric) Numeric #REQUIRED>

The modified DTD permits us to add two new elements (< Attribute > and
< Depth >) to the elements defined in < Hierarchy >. The < Attribute > element
allows the user to define one or more attributes to be used in the clustering
procedure. Properties that can be defined in the < Attribute > tag are: name—
attribute name; table—table that contains the attribute; column—database column
name; nameColumn—database column name (alias); type—SQL attribute type. The
< Depth > element is used to specify the maximum depth of the CF-tree.

Clustering is performed by considering one or more user-defined dimensional
continuous attributes and, by default, all the measures in the fact table. The CF-tree

2http://sourceforge.net/projects/mondrian/files/mondrian/

317J Intell Inf Syst (2015) 44: –309 333

http://sourceforge.net/projects/mondrian/files/mondrian/

is updated when a new dimension tuple is saved in the data warehouse while
(incremental) DBSCAN is run only when OLAP queries are executed and clusters
are still not updated. This allows OLAPBIRCH to “prepare” for the analysis
only levels that are actually used in the queries. It is noteworthy that, contrary
to Shanmugasundaram et al. (1999), the global clustering is run on compact data
representations and does not pose efficiency problems.

Example 1 Let us consider the database schema reported in Fig. 2 where lineitem is
the fact table and orders is a dimensional table. By selecting, in the XML file, the
attributes orders.o_totalprice and orders.o_orderpriority:

< Attribute name="totalprice" table="orders"
column="o_totalprice" nameColumn="o_totalprice"
type="Integer">

< Attribute name="orderpriority" table="orders"
column="o_orderpriority" nameColumn="o_orderpriority"
type="Integer" >

< Depth value="20">

we have that the OLAP engine performs clustering on the following database view:

SELECT l_quantity, l_extendedprice, l_discount, l_tax,
o_totalprice, o_orderpriority

FROM lineitem, orders
WHERE l_orderkey = o_orderkey

Fig. 2 TPC-H database schema

318 J Intell Inf Syst (2015) 44: –309 333

4.1 Global clustering: the incremental DBSCAN

Global clustering is applied to clusters obtained in the second phase of the BIRCH
algorithm. In particular, each cluster obtained after the second phase and repre-
sented by its centroid, is clustered together with other clusters (represented by their
centroids) by means of the application of DBSCAN, so that we obtain at the end
“clusters of clusters”. This means that, in our implementation, DBSCAN is used in
the clustering of centroids of clusters obtained after the previous phase.

The key idea of the original DBSCAN algorithm is that, for each object of a clus-
ter, the neighborhood of a given radius (ε) has to contain at least a minimum number
of objects (MinPts), i.e. the cardinality of the neighborhood has to exceed some
threshold. The algorithm (see Algorithm 1) begins with an arbitrary starting object
that has not been visited. This object’s neighborhood is retrieved and, if it contains
a sufficient number of objects, a cluster is defined. Otherwise, the object is labeled
as noise. This object might later be found in a sufficiently-sized environment of a
different object and hence be made part of a cluster. If an object is found to be a dense
part of a cluster, its neighborhood is also part of that cluster. Hence, the algorithm
adds all the objects that are found within the neighborhood and their own neighbor-
hood when they are also dense. This process continues until the density-connected
cluster is completely found. Then a new unvisited point is retrieved and processed,
leading to the discovery of a further cluster or noise.

IncrementalDBSCAN (Ester et al. 1998) is the incremental counterpart of DB-
SCAN. In our implementation, it starts to work in batch mode, according to the clas-
sical DBSCAN algorithm, and then performs cluster updates incrementally. Indeed,
due to the density-based nature of clusters extracted by DBSCAN, the insertion or
deletion of an object affects the current clustering only in the neighborhood of this
object. IncrementalDBSCAN leverages on this property and is able to incrementally
insert and delete examples into/from an existing cluster.

4.2 Time complexity

The learning time complexity depends on the time complexity of both BIRCH and
DBSCAN algorithms. In the literature, it is recognized that BIRCH time complexity
is linear in the number of instances, that is, O(n), where n is the number of instances.

Concerning DBSCAN, its time complexity is O(n ∗ log n). However, its incremen-
tal version requires additional running time. In particular, as theoretically and em-
pirically proved in Ester et al. (1998), time complexity of the incremental DBSCAN
algorithm is O(γ ∗ n ∗ log n), where γ is a speedup factor, which is proportional to n

Algorithm 1 High-level description of DBSCAN
1: DBSCAN (D, ε, MinPts)
2: for each example o in D do
3: if o is unclassified then
4: call function expand_cluster to construct a cluster wrt. ε and MinPts con-

taining o.
5: end if
6: end for

319J Intell Inf Syst (2015) 44: –309 333

Algorithm 2 expand_cluster
1: expand_cluster (o, D, ε, MinPts)
2: retrieve the ε-neighborhood NEps(o) of o;
3: if |NEps(o)| < MinPts then
4: mark o as noise and RETURN;
5: else
6: select a new cluster-id and mark all objects in NEps(o) with this current

cluster-id;
7: push all objects from NEps(o) − {o} onto the stack seeds;
8: while NOT seeds.empty() do
9: currentObject ← seeds.top();

10: retrieve the Eps-neighborhood NEps(currentObject) of currentObject;
11: if NEps(currentOb ject) ≥ MinPts then
12: select all objects in NEps(currentObject) not yet classified or marked

as noise, push the unclassified objects onto seeds and mark all of these
objects with current cluster-id;

13: end if
14: seeds.pop();
15: end while
16: end if

and generally increases running times by 10 % with respect to the non-incremental
version.

By considering that the number of levels of a tree is MAX_LEV and that we
apply, differently from the original BIRCH algorithm, the global clustering algorithm
also in intermediate nodes of the tree, time complexity is:

O

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

n︸︷︷︸
BIRCH

+ γ ∗ (n ∗ log n)
︸ ︷︷ ︸

incrementalDBSCAN

∗ MAX_LEV

︸ ︷︷ ︸
globalclustering

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4)

where the first addend is due to the BIRCH algorithm, while the second is motivated
by the application of the global clustering to all the levels of the tree.

Although time complexity in (4) represents the typical scenario in which OLAP-
BIRCH works, it refers to the case in which:

– Instances are processed in a batch mode. Indeed, as previously stated, the global
clustering is not applied in all situations, but only in the case in which OLAP
operations are performed. This means that the time complexity reported in the
second addend of (4) represents a pessimistic situation.

– The data warehouse logical schema follows a star or a snowflake structure. In the
case in which a tuple in the fact table is associated to multiple tuples in the same
dimensional table, n does not represent the number of instances in the fact table.

– Tree rebuilding is not considered. Indeed, despite the fact that in the original
BIRCH paper the authors write that tree rebuilding does not represent a

320 J Intell Inf Syst (2015) 44: –309 333

computational problem, in our case, where we define the maximum number of
levels, rebuilding costs cannot be ignored.

As for the last aspect, in the (pessimistic and rare) case in which rebuilding affects
the complete tree, time complexity of rebuilding is:

O

⎛

⎜
⎝ BMAX_LEV

︸ ︷︷ ︸
BIRCH tree rebuilding

+ (γ ∗ n ∗ log n) ∗ MAX_LEV
︸ ︷︷ ︸

global clustering

⎞

⎟
⎠ (5)

where the first addend represents the cost introduced by BIRCH and the second
addend is due to the execution of DBSCAN.

By combining (4) and (5) and by considering that (5) is a due to the pessimistic
(and rare) situation in which rebuilding is necessary, time complexity of OLAP-
BIRCH is:

O(γ ∗ n ∗ log n) (6)

5 Experimental evaluation and analysis

In order to evaluate the effectiveness of the proposed solution, we performed experi-
ments on two real world datasets which will be described in the following subsection.
The results are presented and discussed in Section 5.2.

5.1 Datasets and experimental setting

The first dataset is the SPAETHCluster Analysis Dataset,3 a small dataset that allows
us to visually evaluate the quality of extracted clusters.

The second dataset is the well-known TPC-H benchmark (version 2.1.0).4 In
Fig. 2, we report the relational schema of TPC-H implemented on PostgreSQL,
which we used for supporting DBMS. The TPC-H database holds data about the
ordering and selling activities of a large-scale business company. For experiments we
used the 1GB version of TPC-H containing more than 1 × 106 tuples in the fact table
(lineitem). From the original TPC-H dataset, we extracted four samples containing
1,082, 15,000, 66,668, 105,926 tuples in the fact table respectively. Henceforth we will
refer to these samples as TPC-H_1, TPC-H_2, TPC-H_3, TPC-H_4.

On TPC-H we generated hierarchies on the following attributes in two distinct
dimensional tables (see Fig. 2):

– orders.o_totalprice and orders.o_orderpriority (as specified in Example 1) which
give an indication of the price and priority of the order;

– customer.c_acctbal, which gives an indication of the balance associated to the
customer.

Henceforth we will indicate as H1 the hierarchy extracted according to the first
setting and as H2 the hierarchy extracted according to the second setting.

3http://people.sc.fsu.edu/∼jburkardt/datasets/spaeth/spaeth.html
4http://www.tpc.org/tpch/

321J Intell Inf Syst (2015) 44: –309 333

http://people.sc.fsu.edu/~jburkardt/datasets/spaeth/spaeth.html
http://www.tpc.org/tpch/

On this dataset, we performed experiments on the scalability of the algorithm and
collected results in terms of running times and cluster quality.

The cluster quality is measured according to the weighted average cluster diameter
square measure:

Q =
∑

i=1..K

ni(ni − 1)D2
i

/ ∑

i=1..K

ni(ni − 1) (7)

where K is the number of obtained clusters, ni is the cardinality of the i-th cluster and
Di is the diameter of the i-th cluster. The smaller the Q value, the higher the cluster
quality.

Finally, in order to prove the quality of extracted hierarchies, we evaluate the
correlation between obtained clusters and two different dimensional properties, that
is, the supplier’s region (SR) and the customer’s region (CR). In this way, we are able
to evaluate the following correlations at different levels of the trees: H1 vs. SR; H1
vs. CR; H2 vs. SR; H2 vs. CR. Let C(k) = {C(k)

l } be the set of clusters extracted at the
k-th level and C ′ = {C′

r} be the set of distinct values for the considered dimensional
property, then, correlation is measured according to the following equation:

ρ = 1
n ∗ (n − 1)

∗
n∑

i, j=1,...,n; i �= j

v
(k)

i, j (8)

where:

vi, j =
{
1 if

[(
∃l s.t. (xi ∈ C(k)

l ∧ x j ∈ C(k)

l)
)

↔ (∃r s.t. (xi ∈ C′
r ∧ x j ∈ C′

r)
)]

0 otherwise
(9)

Fig. 3 Clustering effect on Spaeth dataset. CF-tree is obtained with B=L=2. Left: OLAPBIRCH
without DBSCAN, Right: OLAPBIRCH with DBSCAN; Top: LEVEL = 6, Bottom: LEVEL = 7.
Points outside clusters are considered outliers

322 J Intell Inf Syst (2015) 44: –309 333

Table 1 TPC-H: scalability results

Hierarchy Sample Running time (s) Q No of rebuilds

H1 TPC-H_1 2 0.08 5
TPC-H_2 2,760 0.07 5
TPC-H_3 7,500 0.018 5
TPC-H_4 128,249 0.039 9

H2 TPC-H_1 1 0.013 5
TPC-H_2 2,520 0.01 5
TPC-H_3 7,440 0.004 5
TPC-H_4 21,600 0.008 9

MAX_LEV = 20, B = L = 2

Intuitively, vi, j is 1 if xi and x j belong to the same cluster and are associated to
the same property value; 1 if xi and x j do not belong to the same cluster and are not
associated to the same property value; 0 in other cases.

5.2 Results

In Fig. 3, we report a graphical representation of obtained clusters for the SPAETH
dataset. As we can see, the global clustering (DBSCAN) is necessary in order to
have good quality clusters (visually). Moreover, as expected, by increasing the depth
of the tree, it is possible to have more detailed clusters, which do not lead to the
degeneration of the final clustering (see right-side images in Fig. 3).

The results obtained on the TPC-H database are reported in Table 1. The first in-
teresting conclusion we can draw from them is that the number of times that the CF-
tree is rebuilt is very small, even for huge datasets. This means that the algorithm is
able to assign new examples to existing clusters without increasing the T value. More-
over, this also means that the evaluation of the algorithm with a higher number of
levels would lead to less interpretable hierarchies without advantages in the quality of

Table 2 TPC-H: number of extracted clusters

Hierarchy H1 H2

Level No of clusters Level No of clusters

TPC-H_1 1 2 1 2
10 2 10 18
20 641 20 640

TPC-H_2 1 2 1 2
10 2 10 23
20 957 20 1,098

TPC-H_3 1 2 1 2
10 2 10 20
20 1,116 20 1,180

TPC-H_4 1 2 1 2
10 2 10 63
19 811 19 864

MAX_LEV = 20, B = L = 2. Only values for the highest level (level 1), for the middle level (level
10) and for the last level (either 19 or 20) are reported

323J Intell Inf Syst (2015) 44: –309 333

Cluster 1 Cluster 2 Cluster 3

Fig. 4 TPC-H: data distribution over the customer’s region dimension

Fig. 5 ρ values computed on TPC-H_1 and TPC-H_2

324 J Intell Inf Syst (2015) 44: –309 333

the extracted clusters. Moreover, running times empirically confirm the complexity
analysis reported in Section 4.2 and, in particular, confirm that, as expected, tree re-
building affects time complexity. Concerning the Q value, it is possible to see that the
quality of the clusters does not deteriorate when the number of examples increases.
Moreover, when the number of rebuilds increases, we observe that the cluster quality
decreases. This confirms the observation that the number of rebuilds has to be kept
under control, in order to avoid cluster’s quality loss.

In Table 2, we report the number of extracted clusters. As it can be seen, by
increasing the number of instances in the fact table (from TPC-H_1 to TPC-H_3)
we have, as expected, that the number of clusters increases. The situation is different
in the case of TPC-H_4, where the relatively higher number of rebuilds leads to a
reduction of the number of clusters.

Figure 4 shows a different perspective of the obtained results. In particular, with
the aim of giving a clear idea of the validity of extracted clusters from a qualitative
viewpoint, it shows that there is a strong correlation between the supplier’s region
dimension (that is not considered during the clustering phase) and the clusters

Fig. 6 ρ values computed on TPC-H_3 and TPC-H_4

325J Intell Inf Syst (2015) 44: –309 333

obtained at the second level of the H1 hierarchy. This means that the numerical
properties of the orders stored in TPC-H change in distribution between the regions
where the orders are performed. Figures 5 and 6 provide a more detailed qualitative
analysis which exploits the ρ coefficient introduced before. In detail, it is possible to
see that at lower levels of the hierarchies the ρ values increase. This is due to the
fact that at higher levels of the hierarchy, clusters tend to group together examples
that, according to the underlying distribution of the data, should not be grouped.
Moreover, it can be seen that by increasing the number of examples, the correlation
decreases for higher levels of the tree, but not for lower levels. This means that,
even for small sets of examples, lower levels of the hierarchy are able to catch the
underlying distribution of the data. Finally, there is no clear difference between the
four configurations. This depends on the considered dataset and on the considered
dimensional properties that, in both cases, seem to be correlated to the attributes
used to construct the hierarchies.

6 Applications scenarios

In this Section, we focus attention on possible application scenarios of OLAP-
BIRCH. Among all the possible alternatives offered by the amenity of integrating
OLAP methodologies and clustering algorithms, we found in emerging Web search
environments (Broder 2002) one with most potential that may connotate OLAP-
BIRCH as a truly enabling technology for these application scenarios. It should
be noted that OLAP methodologies are particularly suitable for representing and
mining (clustered) database objects (which can be easily implemented on top of
relational data sources that represent the classical target of OLAPBIRCH) in Web
search environments, as aggregation schemes. These are developed in the context
of relational database settings (e.g. Kotidis and Roussopoulos 2013) and oriented to
progressively aggregate relational data from low-detail tuples towards coarser ag-
gregates which can be meaningfully adapted to progressively aggregate objects from
(object) groups, aggregated on the basis of low-level (object) fields, towards groups
aggregated on the basis of coarser ranges of low-level fields, in a hierarchical fashion.

In order to be sure of the potentialities offered by OLAPBIRCH in Web search
environments, which are typical data-intensive application scenarios of interest for
our research, we consider the case of Google Squared.5 Google Squared offers
intuitive two-dimensional Web views over keyword-based search results retrieved
by means of Web search engines (like Google itself). Results retrieved by Google
Squared can naturally be modeled in terms of complex objects extracted from the
target sources (e.g. relational databases available on the Web) and delivered via
popular Web browsers. Two-dimensional Web views of Google Squared support
several functionalities, such as removing a column (of the table which models the
two-dimensional Web view), adding a new column, and so forth, which are made
available to the user. Thus, the user can further process and refine retrieved results.

The described Web search interaction paradigm supported by Google Squared is
likely to be associated with a typical Web-enabled OLAP interface, where the fol-
lowing operations are supported: (i) selection of the OLAP analysis to be performed

5http://www.google.com/squared

326 J Intell Inf Syst (2015) 44: –309 333

http://www.google.com/squared

(this requires the selection of the corresponding DTD); (ii) selection of the measures
to be included in the answer (among those included in the DTD); (iii) selection of
the level of the hierarchy to be rendered; (iv) showing the cube, where the clusters
can be used as dimensions (clusters are numbered using dot notation, where each
dot represents a new level of the hierarchy); (v) “natural” roll-up (i.e. removing
a column) and drill-down (i.e. adding a column) (Chaudhuri and Dayal 1997); (vi)
pivoting. Operations (i), (ii) and (iii) are necessary in order to run the query (which
is executed by OLAPBIRCH), while operations (iv), (v), (vi) are only available after

Fig. 7 Integration of clustering techniques and OLAP methodologies over Google Squared: an
OLAP-aware Web view of clustered digital cameras

327J Intell Inf Syst (2015) 44: –309 333

Fig. 8 The view of Fig. 7 after a roll-up operation over the dimension Resolution

the query has been computed. They are performed by JPivot,6 which uses Mondrian
as its OLAP Server.

These operations can be easily supported by OLAPBIRCH, as demonstrated
throughout the paper. It is clear enough that Google Squared can also act over
clustered objects, as a result of clustering techniques over keyword-based retrieved
objects, according to a double-step approach that encompasses the retrieval phase
and the clustering phase, respectively. Clustered objects can then be delivered via
the OLAP-aware Web interface. Figure 7 shows a typical instance of the integration
of clustering and OLAP over Google Squared. Here, Fig. 7 shows clustered objects,
representing digital cameras retrieved via Google Squared and delivered via OLAP
methodologies. In particular, the OLAP-aware Web view of Fig. 7 represents
clustered objects/digital-cameras, for which the clustering phase has been performed
over the clustering attributes Resolution and DigitalZoom, which also naturally
model OLAP dimensions of the view. Furthermore, Fig. 8 shows the same view

6http://jpivot.sourceforge.net

328 J Intell Inf Syst (2015) 44: –309 333

http://jpivot.sourceforge.net

over which a roll-up operation over the dimension Resolution has been applied.
Moreover, Fig. 9 shows the same view over which a drill-down operation over the
dimension Price has been applied.

Figure 10 shows the logical architecture of the OLAP-enabled Web system
implementing the OLAPBIRCH approach. This system embeds the OLAPBIRCH
algorithm within its internal layer, in order to provide OLAP-enabled search and
access primitives, according to the guidelines discussed above. As shown in Fig. 10,
the OLAPBIRCH algorithm is set by a DWAdministrator, in order to determine the
most appropriate setting parameters (see Section 4). To this end, the OLAPBIRCH
algorithm interfaces the Target Relational Database, where the dataset of interest
is stored. Based on the keyword-search interaction of the End-User interfaced
to Google Squared, the OLAPBIRH algorithm computes from the target dataset
a suitable OLAP-like Hierarchical Cuboid Lattice, which stores multidimensional

Fig. 9 The view of Fig. 7 after a roll-up operation over the dimension Price

329J Intell Inf Syst (2015) 44: –309 333

Fig. 10 Logical architecture of the OLAP-enabled Web system implementing the OLAPBIRCH
approach

clusters organized in a hierarchical fashion. This cuboid lattice is mapped onto
an ad-hoc Snowf lake Multidimensional Schema implemented on top of Mondrian
ROLAP Server. The so-determined OLAP data repository is accessed and queried
via the JPivot Application Interface, which finally provides the OLAP-enabled
Web functionalities encoded in Google Squared, as described. This visualization
solution can be further improved if advanced OLAP visualization techniques, like
Cuzzocrea et al. (2007), are integrated within its internal layers. As regards proper
implementation aspects, it should be noted that the OLAP-enabled Web system
described can be further improved to gain efficiency by deploying it over a composite
platform including emerging NoSQL (e.g., Cattell 2010) and Cloud Computing (e.g.,
Armbrust et al. 2010) paradigms.

The amenities deriving from the integration of clustering techniques and OLAP
methodologies we propose in our research should be noted. First, complex objects
are characterized by multiple attributes that naturally combine with the multidimen-
sionality of OLAP (Gray et al. 1997), i.e. clustering attributes also play the role
of OLAP dimensions of Web views. However, such views can also embed OLAP
dimensions that are not considered in the clustering phase. Second, retrieved Web
views can be manipulated via well-understood OLAP paradigms, such as multi-
dimensionality and multi-resolution (Chaudhuri and Dayal 1997), and operators,
such as roll-up, drill-down and pivoting (Chaudhuri and Dayal 1997). This clearly
represents a critical add-in value for actual Web search models and methodologies.
Moreover, most importantly, it opens the door to novel research challenges that

330 J Intell Inf Syst (2015) 44: –309 333

we conceptually located under the term multidimensional OLAP-like Web search,
which can be reasonably intended as the integration of multidimensional models and
methodologies with Web search paradigms. We then selected the latter as a critical
application scenario of OLAPBIRCH.

7 Conclusions and future work

In this paper we have presented the framework OLAPBIRCH. This framework
integrates a clustering algorithm in an OLAP engine, in order to support roll-up and
drill-down operations on numerical dimensions. OLAPBIRCH integrates a revised
version of the BIRCH clustering algorithm and extends it by supporting the incre-
mental construction of refined hierarchical clusters for all the levels of the hierarchy.
For this purpose, OLAPBIRCH integrates an incremental version of DBSCAN,
which further refines clusters for each level of the hierarchy.

The results show the effectiveness of the proposed solution on large real-world
datasets and prove its capability in catching underlying data distribution also at lower
levels of the hierarchy, even if we consider small training datasets.

For future work, we intend to extend the proposed approach according to the
multi-view clustering learning task (Gao et al. 2006) in order to simultaneously
construct hierarchies on attributes belonging to multiple distinct dimensions. For
this purpose, we intend to leverage techniques used in co-clustering biological data
(Pio et al. 2012, 2013). Finally, we intend to exploit hierarchical clustering in order
to tackle classification/regression problems, by exploiting the predictive clustering
learning framework (Stojanova et al. 2011, 2012).

Acknowledgements The authors thank Lynn Rudd for reading through the paper. This work is in
partial fulfillment of the requirements of the Italian project VINCENTE PON02_00563_3470993 “A
Virtual collective INtelligenCe ENvironment to develop sustainable Technology Entrepreneurship
ecosystems”.

References

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules in large databases.
In J.B. Bocca, M. Jarke, C. Zaniolo (Eds.), VLDB’94, Proceedings of 20th international confer-
ence on very large data bases, 12–15 Sept 1994, Santiago de Chile, Chile (pp. 487–499). Morgan
Kaufmann.

Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P. (2005). Automatic subspace clustering of high
dimensional data. Data Mining and Knowledge Discovery, 11(1), 5–33.

Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Patterson,
D.A., Rabkin, A., Stoica, I., Zaharia, M. (2010). A view of cloud computing. Communications of
the ACM, 53(4), 50–58.

Broder, A.Z. (2002). A taxonomy of web search. SIGIR Forum, 36(2), 3–10.
Cattell, R. (2010). Scalable sql and nosql data stores. SIGMOD Record, 39(4), 12–27.
Chaudhuri, S., & Dayal, U. (1997). An overview of data warehousing and olap technology. SIGMOD

Record, 26(1), 65–74.
Chen, Q., Dayal, U., Hsu, M. (2000). An olap-based scalable web access analysis engine. In Y.

Kambayashi, M.K. Mohania, A.M. Tjoa (Eds.), DaWaK, Lecture notes in computer science
(Vol. 1874, pp. 210–223). Springer.

Cuzzocrea, A. (2006). Improving range-sum query evaluation on data cubes via polynomial approx-
imation. Data and Knowledge Engineering, 56(2), 85–121.

331J Intell Inf Syst (2015) 44: –309 333

Cuzzocrea, A., & Serafino, P. (2011). Clustcube: An olap-based framework for clustering and mining
complex database objects. In SAC.

Cuzzocrea, A., & Wang, W. (2007). Approximate range-sum query answering on data cubes with
probabilistic guarantees. Journal of Intelligent Information Systems, 28(2), 161–197.

Cuzzocrea, A., Saccà, D., Serafino, P. (2007). Semantics-aware advanced olap visualization of multi-
dimensional data cubes. International Journal of Data Warehousing and Mining, 3(4), 1–30.

Cuzzocrea, A., Furfaro, F., Saccà, D. (2009). Enabling olap in mobile environments via intelligent
data cube compression techniques. Journal of Intelligent Information Systems, 33(2), 95–143.

Delis, A., Faloutsos, C., Ghandeharizadeh, S., (Eds.) (1999). In SIGMOD 1999, proceedings ACM
SIGMOD international conference on management of data, 1–3 June 1999. Philadelphia, PA:
ACM Press.

Dong, G., Han, J., Lam, J.M.W., Pei, J., Wang, K. (2001). Mining multi-dimensional constrained
gradients in data cubes. In P.M.G. Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao,
R.T. Snodgrass (Eds.), VLDB (pp. 321–330). Morgan Kaufmann.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X. (1996). A density-based algorithm for discovering clusters
in large spatial databases with noise. In KDD (pp. 226–231).

Ester, M., Kriegel, H.-P., Sander, J., Wimmer, M., Xu, X. (1998). Incremental clustering for mining
in a data warehousing environment. In A. Gupta, O. Shmueli, J. Widom (Eds.), VLDB (pp. 323–
333). Morgan Kaufmann.

Gao, B., Liu, T.-Y., Ma, W.-Y. (2006). Star-structured high-order heterogeneous data co-clustering
based on consistent information theory. In Proceedings of the 6th International Conference on
Data Mining, ICDM ’06 (pp. 880–884). Washington, DC: IEEE Computer Society.

Goil, S., & Choudhary, A.N. (2001). Parsimony: an infrastructure for parallel multidimensional
analysis and data mining. Journal of Parallel and Distributed Computing, 61(3), 285–321.

Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow, F., Pirahesh,
H. (1997). Data cube: a relational aggregation operator generalizing group-by, cross-tab, and sub
totals. Data Mining and Knowledge Discovery, 1(1), 29–53.

Guha, S., Rastogi, R., Shim, K. (2001). Cure: an efficient clustering algorithm for large databases.
Information Systems, 26(1), 35–58.

Gunopulos, D., Kollios, G., Tsotras, V.J., Domeniconi, C. (2005). Selectivity estimators for multidi-
mensional range queries over real attributes. VLDB Journal, 14(2), 137–154.

Han, J. (1998). Towards on-line analytical mining in large databases. SIGMOD Record, 27(1), 97–
107.

Han, J., Chee, S.H.S., Chiang, J.Y. (1998). Issues for on-line analytical mining of data warehouses
(extended abstract). In SIGMOD’98 workshop on research issues on Data Mining and Knowl-
edge Discovery (DMKD’98).

Hinneburg, A., & Keim, D.A. (1999). Clustering methods for large databases: From the past to the
future. In A. Delis, C. Faloutsos, S. Ghandeharizadeh (Eds.), SIGMOD 1999, Proceedings ACM
SIGMOD international conference on management of data, 1–3 June 1999, Philadelphia, PA,
USA (p. 509). ACM Press.

Ienco, D., Robardet, C., Pensa, R., Meo, R. (2012). Parameter-less co-clustering for star-structured
heterogeneous data. Data Mining and Knowledge Discovery, 26(2), 1–38.

Imieliński, T., Khachiyan, L., Abdulghani, A. (2002). Cubegrades: generalizing association rules.
Data Mining and Knowledge Discovery, 6(3), 219–257.

Kotidis, Y., & Roussopoulos, N. (2013). Dynamat: A dynamic view management system for data
warehouses. In A. Delis, C. Faloutsos, S. Ghandeharizadeh (Eds.), SIGMOD 1999, proceedings
ACM SIGMOD international conference on management of data, 1–3 June 1999, Philadelphia,
PA, USA (pp. 371–382). ACM Press.

Kriegel, H.-P., Kröger, P., Zimek, A. (2009). Clustering high-dimensional data: a survey on subspace
clustering, pattern-based clustering, and correlation clustering. Transactions on Knowledge Dis-
covery from Data, 3(1), Article 1.

Messaoud, R.B., Rabaséda, S.L., Boussaid, O., Missaoui, R. (2006). Enhanced mining of association
rules from data cubes. In I.-Y. Song, P. Vassiliadis (Eds.), DOLAP (pp. 11–18). ACM.

Ng, R.T. & Han, J. (2002). Clarans: a method for clustering objects for spatial data mining. IEEE
Transactions on Knowledge and Data Engineering, 14(5), 1003–1016.

Parsaye, K. (1997). Olap and data mining: bridging the gap. Database Programming and Design, 10,
30–37.

Pio, G., Ceci, M., Loglisci, C., D’Elia, D., Malerba, D. (2012). Hierarchical and overlapping co-
clustering of mrna: mirna interactions. In L.D. Raedt, C. Bessière, D. Dubois, P. Doherty, P.

332 J Intell Inf Syst (2015) 44: –309 333

Frasconi, F. Heintz, P.J.F. Lucas (Eds.), ECAI, frontiers in artif icial intelligence and applications
(Vol. 242, pp. 654–659). IOS Press.

Pio, G., Ceci, M., D’Elia, D., Loglisci, C., Malerba, D. (2013). A novel biclustering algorithm for the
discovery of meaningful biological correlations between micrornas and their target genes. BMC
Bioinformatics, 14(Suppl 7), S8.

Sarawagi, S. (2001). idiff: Informative summarization of differences in multidimensional aggregates.
Data Mining and Knowledge Discovery, 5(4), 255–276.

Sarawagi, S., Agrawal, R., Megiddo, N. (1998). Discovery-driven exploration of olap data cubes.
In H.-J. Schek, F. Saltor, I. Ramos, G. Alonso (Eds.), EDBT, Lecture notes in computer science
(Vol. 1377, pp. 168–182). Springer.

Shanmugasundaram, J., Fayyad, U.M., Bradley, P.S. (1999). Compressed data cubes for olap aggre-
gate query approximation on continuous dimensions. In KDD (pp. 223–232).

Sheikholeslami, G., Chatterjee, S., Zhang, A. (2000). Wavecluster: a wavelet based clustering ap-
proach for spatial data in very large databases. VLDB Journal, 8(3–4), 289–304.

Stojanova, D., Ceci, M., Appice, A., Dzeroski, S. (2011). Network regression with predictive clus-
tering trees. In D. Gunopulos, T. Hofmann, D. Malerba, M. Vazirgiannis (Eds.), ECML/PKDD
(3), Lecture notes in computer science (Vol. 6913, pp. 333–348). Springer.

Stojanova, D., Ceci, M., Appice, A., Dzeroski, S. (2012). Network regression with predictive cluster-
ing trees. Data Mining and Knowledge Discovery, 25(2), 378–413.

Vens, C., Schietgat, L., Struyf, J., Blockeel, H., Kocev, D., Dzeroski, S. (2010). Predicting gene
functions using predictive clustering trees. Springer.

Watson, H.J., & Wixom, B. (2007). The current state of business intelligence. IEEE Computer, 40(9),
96–99.

Yin, X., Han, J., Yu, P.S. (2007). Crossclus: user-guided multi-relational clustering. Data Mining and
Knowledge Discovery, 15(3), 321–348.

Zhang, T., Ramakrishnan, R., Livny, M. (1996). Birch: An efficient data clustering method for very
large databases. In H. V. Jagadish, I. S. Mumick (Eds.), SIGMOD conference (pp. 103–114).
ACM Press.

Zhu, H. (1998). On-line analytical mining of association rules. M.Sc. thesis, Computing Science,
Simon Fraser University.

333J Intell Inf Syst (2015) 44: –309 333

	Effectively and efficiently supporting roll-up and drill-down OLAP operations over continuous dimensions via hierarchical clustering
	Abstract
	Introduction
	Related work
	Clustering over large databases
	Integration of OLAP and data mining

	Background
	OLAPBIRCH: combining BIRCH and OLAP
	Global clustering: the incremental DBSCAN
	Time complexity

	Experimental evaluation and analysis
	Datasets and experimental setting
	Results

	Applications scenarios
	Conclusions and future work
	References

