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Abstract The major aim of recommender algorithms has been to predict accurately
the rating value of items. However, it has been recognized that accurate prediction
of rating values is not the only requirement for achieving user satisfaction. One other
requirement, which has gained importance recently, is the diversity of recommen-
dation lists. Being able to recommend a diverse set of items is important for user
satisfaction since it gives the user a richer set of items to choose from and increases
the chance of discovering new items. In this study, we propose a novel method which
can be used to give each user an option to adjust the diversity levels of their own
recommendation lists. Experiments show that the method effectively increases the
diversity levels of recommendation lists with little decrease in accuracy. Compared
to the existing methods, the proposed method, while achieving similar diversification
performance, has a very low computational time complexity, which makes it highly
scalable and allows it to be used in the online phase of the recommendation process.

Keywords Recommender systems ·Collaborative filtering ·
Recommendation diversity ·Clustering

1 Introduction

Recommender systems help users find items of interest (e.g., movies, books, or
restaurants.) based on various information such as explicit ratings of users on items,
past transactions, or item content. Many successful techniques have been developed
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up until today (Ricci et al. 2011; Adomavicius and Tuzhilin 2005; Billsus and Pazzani
1998; Breese et al. 1998) and these techniques have been applied to different domains
such as music (Chen and Chen 2005), movies (Golbeck 2006), travel (Shih et al.
2011), e-commerce (Rosaci and Sarnè 2012), and e-learning (Bobadilla et al. 2009).
The success of a recommender algorithm is typically measured by its ability to accu-
rately predict ratings of items. The accuracy of predictions is no doubt an important
property of recommender algorithms. And naturally, most of the research in rec-
ommender systems have focused on improving accuracy. However, there are other
factors which play valuable roles in user satisfaction. One such factor, which gained
importance recently, is the diversity of recommendation lists (Smyth and McClave
2001; Castells et al. 2011; Hurley and Zhang 2011). For example, think of a system
which suggests movies to its users. The system might be very accurate, that is, it might
predict the user ratings on items very well. However, if the recommendation list of a
user consists of one type of movies (e.g., only science fiction movies), it might not be
very satisfactory. A good system should also recommend a diverse set of movies to
its users (e.g., movies from different genres). However, there is a trade-off between
accuracy and diversity. That is, most of the time diversity can only be increased at the
expense of accuracy. But this decrease in accuracy might be preferable if the user
satisfaction increases. Moreover, this trade-off can be implemented as a tunable pa-
rameter which users can adjust according to their needs. In this way users themselves
decide how much to sacrifice accuracy for an increase in diversity. This also lets users
experiment with the recommendations produced by the system and to discover a
diverse set of items.

In this paper we will describe a novel method (named ClusDiv) which can be used
to increase the diversity of recommendation lists with little decrease in accuracy.
Our idea basically is to cluster items into groups and build the recommendation
list by selecting items from different groups, such that, recommendation diversity
is maximized without decreasing accuracy too much. The details of ClusDiv will be
explained in subsequent sections. In summary, the main strengths of ClusDiv are
as follows:

– ClusDiv is applied after unknown ratings are predicted by the prediction algo-
rithm. So, real world recommender systems can use ClusDiv without altering
their existing prediction algorithms.

– In order for a recommender system to allow users to adjust the diversity levels of
their recommendation lists, the online time complexity of the recommendation
algorithm should be very low. ClusDiv has a very low online (and also offline)
time complexity, which makes it highly scalable.

– ClusDiv naturally involves a tunable parameter which users can use to adjust the
diversity levels of their own recommendation lists. They can do this adjustment
independent of other users.

– No content information (such as the genre or the director of a movie) about
items is necessary. Rating information about items is enough to diversify the
recommendation lists.

The paper is organized as follows: in Section 2, we discuss related work on
diversity in recommender systems. In Section 3, we describe ClusDiv in detail. In
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Section 4, we give experimental results and evaluate them. Finally, in Section 5, we
conclude the paper and point out new directions for research.

2 Related works

It has been a while since researchers in recommender systems research realized that
prediction accuracy is not the sole property a successful recommender system needs
to have. For example, McNee et al. (2006) argues that the evaluation of recommender
systems should move beyond the conventional accuracy metrics. Herlocker et al.
(2004) discusses novelty and serendipity as important dimensions in evaluating
recommender systems. The notions of novelty and serendipity are closely related
to diversity, since, increasing the diversity of a recommendation list increases the
chance of recommending novel and serendipitous items to the user.

Several strategies have been proposed to address the problem of diversity. Bradley
and Smyth (2001) and Smyth and McClave (2001) propose a greedy selection
algorithm. In this method, the items are first sorted according to their similarity to
the target query, and then the algorithm begins to incrementally build the retrieval
set (or the recommendation list if we use the terminology of recommender systems
research) such that both similarity and diversity are optimized. This is achieved as
follows: in the first iteration, the most similar item to the target query is put in the
retrieval set, in the next iteration the item which has the maximum combination of
similarity to the target query and diversity with respect to the retrieval set already
built is selected. Iterations continue until the desired retrieval set size is achieved.
As noted in Smyth and McClave (2001), this greedy selection algorithm is quite
inefficient, so the authors proposed, in the same paper, a bounded version of the
greedy selection algorithm. In this version, the algorithm first selects the most similar
b number of items to the target query, and then the greedy selection method is
applied to this set of items instead of the entire set of items. As b approaches n (the
number of items), the complexity of this bounded version approaches the complexity
of the greedy selection method. Another optimization-based method is proposed in
Zhang and Hurley (2008) and Hurley and Zhang (2011). Here the authors represent
the trade-off between similarity and diversity as a quadratic programming problem.
Then they offer several solution strategies to solve this optimization problem. They
also introduce a control parameter which determines the importance of the level
of diversification in the recommendation lists. As the authors have reported, they
achieve near-identical results in terms of similarity vs. diversity results with the
bounded greedy selection method proposed in Smyth and McClave (2001), and the
time-efficiency of their algorithm is slightly worse. In order to show the effectiveness
of ClusDiv, we will compare it only with the bounded greedy method proposed
in Smyth and McClave (2001), since the other method proposed in Hurley and
Zhang (2011) has similar levels of diversification performance and has slightly worse
computational time complexity. We will see in Sections 4.5 and 4.6 that ClusDiv is
much faster than the bounded greedy method, while achieving similar diversification
performance.

Zhang and Hurley (2009) uses a clustering approach to better diversify recom-
mended items according to the taste of users. To do this, they cluster items in the
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user profile and recommend items that match well to these individual clusters rather
than the entire user profile. ClusDiv also clusters items into groups. However, as
will be discussed in detail below, it clusters all the items in the system rather than
just the items in the user profile. That is, the aim of ClusDiv is not to recommend
items which match users’ tastes, but rather to recommend a diverse set of items while
maintaining accuracy as much as possible. This gives users the opportunity to meet
serendipitous items.

Ziegler et al. (2005) defines a similarity metric based on classification taxonomies
according to which the intra-list similarity is calculated. The authors propose a heuris-
tic algorithm for diversification of recommendation lists based on this similarity
metric. Similar to other studies, the proposed method increases diversity with some
negative effects on accuracy. One important contribution of this work is to show
empirically that overall user satisfaction increases with diversified recommendation
lists. This result supports the claim that the accuracy of recommendation lists is not
the only requirement for user satisfaction, but other properties, such as being able to
suggest diverse items are also important.

Boim et al. (2011) states that most of the recommendation algorithms implement
some kind of threshold parameter to balance the trade-off between diversity and
accuracy. They think that threshold parameters are problematic because their tuning
for a particular dataset is time consuming and is no longer effective when the data
changes. So, they propose a diversification method which does not involve threshold
parameters. Our method also involves a threshold parameter, however, as we will
explain in detail, this parameter is tuned by the user (not by the system administrator)
and can be tuned online according to the taste of the user. So, it is not needed to be
tuned for a particular dataset.

Finally, we would like to mention the work in Gollapudi and Sharma (2009), where
the authors propose an axiomatic approach to characterize and design diversification
systems. They provide a set of natural axioms, which a diversification system is
expected to satisfy, and show that all of these axioms cannot be satisfied by a
diversification algorithm. They indicate that the choice of axioms from this set helps
in characterizing diversification objectives independent of the algorithms used.

3 Clustering-based diversification

In this section we will describe ClusDiv in detail. But prior to this, we first describe
the diversity measure we use.

3.1 Diversity measure

There can be different metrics for measuring different dimensions of diversity in
a recommendation system. One possible metric for measuring the diversity of a
recommendation list of a particular user is described in Hurley and Zhang (2011)
and Smyth and McClave (2001). This metric measures the diversity as the average
dissimilarity of all pairs of items in a user’s recommendation list. Let I be the set of
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Table 1 Mean and standard
deviations (SD) of pairwise
similarities of items in the
datasets

Mean SD

MovieLens 0.077 0.075
Jester 0.154 0.170
Book-Crossing 0.019 0.031

all items, and U be the set of all users, then the diversity of a recommendation list of
a particular user, D(L(u)), can be defined as follows:

D(L(u)) = 1
N(N − 1)

∑

i∈R

∑

j∈R, j�=i

d(i, j), (1)

where L(u) ∈ I is the recommendation list of user u ∈ U and N = |L(u)|. d(i, j) is the
dissimilarity of items i, j ∈ I , which is defined as one minus the similarity of items i
and j.

Although this is a reasonable metric, we think that it has two problems. One
is due to the sparse nature of the recommender system datasets. These datasets
typically have lots of missing ratings (Ahn 2008). For example the sparsity of the
MovieLens1 (1M) dataset is about 95.75 %. This means that there are many missing
ratings. Generally some default value is set for these missing ratings (Breese et al.
1998). For example, if cosine similarity measure is used, these missing ratings are
generally set to 0 (Desrosiers and Karypis 2011). However, using a default value
for the missing ratings creates a difficulty for measuring diversity using the formula
in (1). For example, suppose that you use a default value of 0 for the missing ratings.
If you use cosine similarity (as we did in the experiments described in this paper)
then similarity values between items will be very close to 0, and, therefore, diversity
values will be very close to 1. This does not create a problem for rating predictions
because what is important most of the time is the relative (not absolute) values of the
similarities. However, recommendation lists whose diversity values are close to 1 will
look superficially very diverse. In other words, the diversity value generated using the
formula in (1) will be dominated by the default values used for the missing ratings
and will be misleading.

The second problem with (1) is that it conceals the difficulty of the diversification
problem. Independent of the diversification method used, some datasets are inher-
ently more difficult with respect to diversification. Table 1 shows the mean and
standard deviations of the pairwise similarities of items in the datasets that we
use in this study (using cosine as the similarity metric and 0 as the default value
for missing ratings). Standard deviations of pairwise similarities show that Jester2

dataset has the highest variance, Book-Crossing3 dataset has the lowest variance,
and MovieLens dataset’s variance is in between. This shows that among these three
datasets, Book-Crossing dataset is the one which is most difficult to diversify, since,
pairwise similarities of items in it has the lowest variance.

1http://www.grouplens.org/node/73/
2http://goldberg.berkeley.edu/jester-data/
3http://www.informatik.uni-freiburg.de/∼cziegler/BX/

http://www.grouplens.org/node/73/
http://goldberg.berkeley.edu/jester-data/
http://www.informatik.uni-freiburg.de/~cziegler/BX/
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We think that the best way to resolve these issues is to use z-scores of the diversity
values, which we call z-diversity, instead of using absolute diversity values defined
by (1). Formally z-diversity of a recommendation list is defined as:

Z D(L(u)) = D(L(u)) − D(I)

SD(I)
, (2)

where I is the set of all items in the dataset, and D(L(u)) and D(I) are the
diversity of items in L(u) and I , respectively. SD(I) is the standard deviation of
the dissimilarities of all pairs in I as defined below:

SD(I) =
√√√√ 1

N(N − 1)

∑

i∈I

∑

j∈I, j�=i

(d(i, j) − D(I))2,

where N = |I| and D(I) is the diversity of items in I . d(i, j) is the dissimilarity of
items i, j ∈ I , which is defined as one minus the similarity of items i and j. As we
point out above, we use cosine similarity for measuring the similarity between two
items and use a default value of 0 for the missing ratings.

This metric does not have the two problems mentioned above. Since the diversity
values are given as z-diversity values, they will not be very close to 1 even though the
missing ratings are set to 0 and will give a better idea about the increase in diversity.
Secondly, as we mention above, if the standard deviation of pairwise similarities of
items in a dataset is low, then giving the diversity values as defined in (1) will lead
us to underestimate the success of the diversification algorithm. However, if we use
the z-diversity values as defined in (2), then this will help us evaluate the algorithm’s
performance better by showing the increase in diversity values independent of the
variance of the pairwise item similarities in the dataset. Apart from solving these two
problems, giving the diversity values as z-diversity also makes it easier to analyse
the performance of algorithms, such as the random method, which we will discuss
in Section 4.5.

3.2 ClusDiv

In this section we will describe ClusDiv in detail. Similar to many recommendation
algorithms, ClusDiv has offline and online phases. In the offline phase, apart from
model building, we build N (where N is the size of the recommendation list L(u))
item clusters C = {C1, C2, . . . , Cn}. The item clusters are built using the standard
k-means clustering algorithm (Tan et al. 2005). Items are clustered based on their
ratings given by the users of the system. No content information about items is used.
However, if content information about items is available and if it is possible to define
similarities between items based on this content information, then one can also use
these similarities in clustering items.

At the heart of our algorithm lies the construction of cluster weights (CW). CW is
a matrix whose (u, i)th entry, CWui, holds the number of items which cluster Ci will
contribute to the recommendation list of user u. Users have their own CWu vector.
So, for example, if CWui = 5, then it means that cluster Ci will contribute 5 items
(those which have the highest-predicted ratings in Ci) to the recommendation list of
user u. It follows that the sum of cluster weights for any user should be equal to N
(the recommendation list size).
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Algorithm 1 ClusterWeights
Input: topNu: top-N list of user u, C: Item clusters
Output: CWu: Cluster weights of user u.

1: CWui = |Ci ∩ topNu|
2: for all Ci ∈ C do
3: while |Ci| > threshold do
4: c = argmin

j
|CWuj|

5: CWuc = CWuc + 1
6: CWui = CWui − 1
7: end while
8: end for

Algorithm 1 computes the cluster weights for a particular user. It takes two
parameters: the top-N recommendation list for the target user u, which is generated
by the prediction algorithm, and the set of clusters C = {C1, C2, . . . , Ck}.

In line 1 we initialize cluster weights. Each cluster weight CWui is assigned the
number of items in Ci, which are also in topNu. In other words, for each user u
initially the set of items contributed by clusters is exactly the same as the topNu

recommendation list generated by the prediction algorithm. This guarantees that it is
always possible to get exactly the same recommendation list generated by the original
prediction algorithm, as we will explain below. In line 2, the algorithm begins to
distribute the cluster weights of those clusters whose weights are larger than a given
threshold. The threshold value allows us to control the trade-off between accuracy
and diversity. As threshold gets larger, the user gets more accurate but less diverse
results and as it gets smaller, the user gets more diverse but less accurate results. In
the extreme case if threshold is equal to N then the recommendation list generated
by the prediction algorithm is not altered at all. The algorithm distributes the weights
of clusters whose weights are larger than the threshold value to other clusters which
have the smallest weights as shown in lines 3–7 of the algorithm. If more than one
cluster is found in line 4, one of them can be chosen randomly without affecting
the performance of the algorithm. In this way, the algorithm tries to distribute the
weights to different clusters as much as possible in order to increase the diversity of
the resulting recommendation list.

Other more complex methods can be used in order to distribute cluster weights.
For example, to distribute the weight from a source cluster, one can select those
clusters which are far away from the source using a suitable metric to measure the
distance between clusters. The rationale underlying this approach is that if we choose
items from distant clusters, then we can get more diversified recommendation lists.
Or a combination of this approach and the one described in Algorithm 1 can be used.
We have also tried these approaches but we get no significant changes in the results.
So, in order not to increase the complexity of the algorithm without getting significant
improvements, we decide to present the simplest version of the algorithm here.

After we generate the cluster weights of a user u, we build the recommendation
list of u as follows: we go over the items in the recommendation list of u from top
to bottom and take an item to the top-N list of u if the weight of the cluster which
that item belongs to is larger than zero and subtract one from that cluster weight. We
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continue to go over the recommendation list in this fashion until all cluster weights
are zero. When all the cluster weights are zero, the final recommendation list is ready.

4 Experimental results and evaluation

In this section we describe the experimental methods we use and present the results
we get. We also give a performance analysis of ClusDiv.

4.1 Testing procedure

For evaluating accuracy we measure the recall performance. We use a similar
methodology given in Cremonesi et al. (2010). We randomly sub-sample 2 % of
ratings in order to create a probe set. The rest of the ratings is put into the training
set. Test set, T, is formed by selecting all 5-star ratings in the probe set. After the
model is trained on the training set recall is measured as follows:

For each item i rated 5-stars by user u in the test set:

– Select randomly 300 items unrated by user u.
– Predict the ratings of these 300 items and the test item i.
– Form a top-N recommendation list by selecting the N items from the list of 301

items, which have the highest predicted ratings. If the test item i occurs among
the top-N items, then we have a hit, otherwise we have a miss.

Recall is then defined as follows:

Recall(N) = #hits
|T|

This testing methodology assumes that all randomly selected 300 items are non-
relevant to user u. As stated in Cremonesi et al. (2010), this assumption tends to
underestimate the true recall.

4.2 Prediction algorithms

In our experiments, we use three different collaborative filtering algorithms: item
and user-based collaborative filtering (Desrosiers and Karypis 2011; Deshpande
and Karypis 2004; Konstan et al. 1997; Linden et al. 2003; Luo et al. 2012) and
SVD (Koren and Bell 2011; Funk 2006; Bell et al. 2007). Although there are many
variations, the basic methodologies of these algorithms can be stated as follows: in
item-based collaborative filtering, for predicting the rating of a user u on an item i
first most similar k items to item i, which are rated by user u, are found. Then the
rating is predicted by taking the average ratings of those k items. In the user-based
case, for predicting the rating of a user u on an item i, this time, first the most similar
k users to user u, which have rated item i, are found. Then the rating is predicted by
taking the average ratings given to item i by those k users.

In SVD the rating matrix is factorized into a product of two lower ranked matrices,
which are known as user-factors and item-factors. Each row of the user-factors matrix
represents a single user, and similarly each row of the item-factors matrix represents
a single item. Prediction of a rating by a user u on an item i is done by taking the
dot-product of the corresponding rows of the factor matrices.
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4.3 Datasets

We test and evaluate ClusDiv on the following commonly used three datasets:
MovieLens Dataset: this dataset contains 1,000,000 integer ratings (from 1 to 5) of

6,040 users on 3,900 movies.
Book-Crossing Dataset: contains 1,149,780 integer ratings (from 1 to 10) of

278,858 users on 271,379 books. Due to memory limitations, we reduced this dataset
by selecting those users which rated more than or equal to 20 items and those items
which were rated by more than or equal to 10 users. The reduced dataset contains
60,133 ratings, 6,358 users, and 2,177 items. We have not used the implicit ratings
provided in the dataset.

Jester Joke Dataset: contains 620,000 continuous ratings (−10.00 to +10.00) of
24,938 users who have rated between 15 and 35 on 101 jokes. Again, due to memory
limitations, we reduced this dataset by selecting randomly 5,000 users. The reduced
dataset contains 123,926 ratings.

The mean and standard deviations, given in Table 1, are calculated using the
reduced Book-Crossing and Jester datasets and the original Movielens dataset.

4.4 Diversity analysis

In this section we give the diversity results we get as a function of the threshold value
for all three datasets. As we point out above, there is a trade-off between diversity
and recall performance. That is, most of the time, diversity can only be increased
with some loss in recall performance. So, in Figs. 1, 2 and 3, we show diversity values
alongside the recall values.

Figure 1a depicts the change in diversity against the threshold values for the
MovieLens dataset. We see that as we decrease threshold, that is, as we force the
algorithm to use more clusters, diversity values increase for all the three prediction
algorithms. The largest increase in diversity is in the SVD method. The reason for this
is apparent. The top-20 list generated using the SVD method has a lower initial diver-
sity compared to other methods. Also, the z-diversity value is below 0, which means
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that the diversity of the list is below the mean diversity of the dataset, which makes it
easier to increase the diversity. On the other hand, the top-20 lists generated by item-
based and user-based methods already have diversities above the mean diversity of
the dataset. So, the increase in diversity for these methods is more limited. As also
expected, for all three prediction methods, the maximum diversities achieved have
similar values. This shows that ClusDiv, whatever the initial diversity values are,
carries the diversity values to a similar level. This is because as the threshold values
decrease, recommendation lists are forced to be generated from similar number of
clusters.

Figure 2a shows the diversity as a function of threshold for the Book-Crossing
dataset. Here again we see that as the threshold decreases, diversity increases.
For Book-Crossing dataset, all the prediction algorithms initially generate recom-
mendation lists with negative z-diversities, that is, initially the diversities of the
recommendation lists are below the mean diversities of the datasets. But as shown in
Fig. 2a, ClusDiv manages to increase the diversity for all prediction algorithms.
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Fig. 3 Jester: a diversity and b recall results of ClusDiv
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Diversity results for the Jester dataset is shown in Fig. 3a. Here again diversity
values increase as the threshold decreases for all prediction algorithms. Since there
are only 101 items in the Jester dataset, we build a recommendation list of size 10,
and, hence, build 10 item clusters instead of 20.

For all datasets, as we decrease threshold, recall values also decrease as expected.
For practical purposes, large and small threshold values seem not to be usable.
Large threshold values cause little or no change in diversity, and small threshold
values, while having the largest increase in diversity, have low recall values. But
there are enough threshold levels between the extremes, which can give users enough
flexibility to adjust the diversity vs. accuracy trade-off according to their tastes. Note
that the tuning of the threshold parameter is not system wide, users can adjust their
own parameters independent of other users.

4.5 Comparison

In this section we compare the diversification performance of ClusDiv with two
other methods. Although the primary aim of ClusDiv is to be a fast diversification
algorithm, it is also important to see its diversification performance relative to other
methods.

One simple and intuitive technique, which might be used to increase the di-
versity of recommendation lists, is to incorporate some randomization into the
recommendation process. This technique, which we call random method, in order
to increase the diversity of a top-N recommendation list, ranks the items according
to their predicted ratings and selects N items randomly from B top ranked items,
where B > N. In the experiments that follow, we always take the value of N (the
recommendation list size) to be equal to 20.

Figures 4, 5 and 6 show the diversity and recall values as a function of B for all
three datasets. Diversity values are z-diversity values as defined in (2) averaged over
all the users. As expected, for all datasets, the recall values decrease as we increase
B. This is because we are leaving some items which have the highest predicted
ratings and including some items whose predicted ratings are lower. However, the
diversity results are interesting. For example, for the MovieLens dataset, random
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Fig. 4 MovieLens: a diversity and b recall results of random method



12 J Intell Inf Syst (2014) 42:1–18

-1

-0.5

0

 0.5

1

0  50  100  150  200  250  300

B

Svd
Item-based
User-based

0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

0  50  100  150  200  250  300

B

Svd
Item-based
User-based

Z
-d

iv
er

si
ty

(a) Diversity

R
ec

al
l

(b) Recall

Fig. 5 Book-Crossing: a diversity and b recall results of random method

method either causes a small increase (in the case of SVD) or decrease (in the case
of item and user-based methods) in diversity as shown in Fig. 4. For the other two
datasets we see some small increases in diversity values. The explanation of these
diversity curves can be given as follows. As we increase the size of the set B, the
diversity values of the recommendation lists tend to approach the average diversity
of the dataset. Since we are showing the z-diversity values, the diversity values of
the recommendation lists tend to approach 0. This explains the shape of the diversity
curves in Fig. 4. The diversity curves in Fig. 5 can also be explained in the same
way, they tend to approach 0. For the Jester dataset the situation is a bit different,
even though the initial recommendation lists have positive z-diversity values, they
still continue to increase slightly. But if you continue to increase the value of B (as
we did but do not show here), they also converge to zero. The initial increase in
the diversity values probably is the result of some property of the dataset. But the
important point to draw from these results is that contrary to first impressions, the
random method is not effective in increasing the diversity values of recommendation
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lists, and moreover, if the initial diversities are above the average diversity of the
dataset, then it may even lead to a decrease in the diversity values.

Next we compare ClusDiv with the bounded greedy (BG) method proposed in
Smyth and McClave (2001). As we explain in Section 2, this method first selects the
most similar b number of items to the target query and considers only this set of
items to build the recommendation list. In Fig. 7, we show recall as a function of z-
diversity for ClustDiv and the BG method, using three different values for b (50, 100,
200, and 400). Here we show the results for all the three datasets, using only the SVD
method (in user-based and item-based methods, we get similar results). In the case
of ClusDiv, the recall vs. z-diversity curves are generated by varying the threshold
parameter, and in the case of the BG method, the curves are generated by varying
the relative weight of similarity and diversity factors in the optimization objective
defined in Smyth and McClave (2001).

When we look at curves in Fig. 7, we see that for all the three datasets, the z-
diversity vs. recall performance of ClusDiv is as good as the BG method which is
developed primarily for optimizing diversity and recall values of the recommenda-
tion lists. The real superiority of ClusDiv emerges when the issue of time complexity
enters the scene, which we consider in the next section. Note that since there are only
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101 items in the Jester dataset, we only show the results of BG (50) and BG (100).
Also note that the maximum diversity levels achieved by the BG method is higher
than ClusDiv (significantly higher in the case of Jester and Book-Crossing datasets).
However, at these high diversity levels, recall values are very low, which means that
these diversity levels are not useful in practice, since the recommendation lists will
be very inaccurate. So, we can conclude that the recall vs. diversity performance
of ClusDiv is as good as the BG method when recall values are within acceptable
limits.

4.6 Computational complexity analysis

ClustDiv is quite efficient with respect to both time and space complexities. In the
offline phase, ClusDiv needs to build the item clusters. As we pointed out above, we
use k-means algorithm to build the clusters. The complexity of k-means is O(INmn),
where I is the number of iterations, N is the number of clusters, m is the number of
data points (number of items in our case), and n is the dimensionality of the data
points (number of users in our case). Since I can safely be bounded (Tan et al. 2005),
and K is significantly smaller than m, k-means and hence the offline clustering step
takes O(mn) time.

In the online phase, typically, a recommender system generates a recommendation
list for a particular user using the data structures built in the offline phase. After this
recommendation list for a particular user is generated, ClusDiv enters the scene and
diversifies the list as follows. First, using Algorithm 1, cluster weights of the user for
a specific threshold value are calculated. A simple amortized analysis of Algorithm 1
shows that this step takes O(N) time where N is the number of clusters and can be
assumed to take a constant time. Then we scan through the items in the recommen-
dation list from top to bottom by taking one item to the top-N list if the weight of
the cluster, which that item belongs to, is larger than zero and subtract one from that
cluster weight. We continue to scan the recommendation list until all cluster weights
are zero. So, in the worst case, diversification of the top-N list only requires O(m)

time, where m is the number of items. However, O(m) is the worst case scenario. We
expect that in practice, all cluster weights become zero much before scanning all the
items. To test this, we count the number of items scanned during the experiments.
Figure 8 shows the average number of items scanned for different datasets and for
different algorithms.

Recall that, the number of items in the datasets that we use in the experiments are
3,900 for MovieLens, 6,358 for Book-Crossing, and 101 for Jester datasets. Looking
at Fig. 8, we can say that the average number of items scanned in practice is much
less than the total number of items, even for very small values of the threshold.

Our algorithm is also much faster than the algorithm described in Smyth and
McClave (2001). Recall that the bounded version of the greedy algorithm needs to
make N (the retrieval set or recommendation list size) sorts of a list of size O(b).
Even if we take b to be a small value such as 50, the algorithm needs to make 50 ×
20 = 1,000 iterations (if we take N = 20 as we did in our experiments). Moreover,
in each iteration, the algorithm needs to calculate the value of the quality metric over
all items currently in the recommendation list. In contrast, ClusDiv makes a simple
scan over the items.



J Intell Inf Syst (2014) 42:1–18 15

0

 10

 20

 30

 40

 50

 60

2468 10

# 
of

 It
em

s 
S

ca
nn

ed

Threshold

(c) Jester

Svd
Item-based
User-based

0

 100

 200

 300

 400

 500

 600

 700

 800

05 10 15 20

# 
of

 It
em

s 
S

ca
nn

ed

Threshold

(a) MovieLens

Svd
Item-based
User-based

0

 50

 100

 150

 200

 250

05 10 15 20

# 
of

 It
em

s 
S

ca
nn

ed

Threshold

(b) Book-Crossing

Svd
Item-based
User-based

Fig. 8 Average number of items scanned for building the recommendation lists using a MovieLens,
b Book-Crossing, and c Jester datasets as a function of threshold

We also perform several experiments to compare the time it takes to diversify
a recommendation list. In Table 2, we give the time (in milliseconds) it takes to
generate a diversified recommendation list of size N for a single user. We only show
the results on the MovieLens dataset (we get similar results in Book-Crossing and
Jester datasets). As expected, the results show that ClustDiv is much faster than

Table 2 Time (ms) to generate a diversified recommendation list for a single user

N ClustDiv BG (50) BG (100) BG (200) BG (400)

5 0.001 0.068 0.127 0.338 0.539
10 0.003 0.225 0.322 1.091 1.664
15 0.003 0.313 0.619 2.121 4.315
20 0.004 0.481 1.072 3.523 6.983
25 0.005 0.636 1.516 5.129 10.075
30 0.006 0.859 2.028 7.027 14.647
35 0.008 0.994 2.607 8.773 20.364
40 0.011 1.163 3.219 11.007 24.021
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the BG method. And as discussed in Section 4.5, this efficiency is achieved without
sacrificing recommendation quality.

The space requirement of ClusDiv is also very modest. Only O(m) additional
space is needed for storing item cluster information in the offline phase and O(N)

additional space for storing cluster weights in the online phase, where m is the
number of items, and N is the number of clusters.

5 Conclusion

In this article we have proposed a fast method for increasing the diversity of rec-
ommendation lists. As the experiments show, the method can be used to effectively
increase the diversity levels of recommendation lists with little decrease in accuracy.
One important property of our method is that it gives each user the ability to adjust
the diversity levels of their own recommendation lists, independent of other users.
As we have discussed above, the low computational time complexity of our method
allows this personalization of diversity. Note that if the proposed method would like
to be incorporated into a real world recommender system, then a mechanism needs
to be added to the user interface (e.g., a scroll bar) in order to get the desired level
of diversity from each user.

In the experiments discussed above, we use the rating patterns of items in grouping
items into clusters. However, if content information about items is available, which
can be used to define a similarity measure between items, then items can be
clustered based on content information, and our method can still be used to diversify
recommendation lists based on the content of items.

Apart from the diversity of user lists, there is another notion of diversity which
is called aggregate diversity. Aggregate diversity can be defined in different ways
but one simple and useful definition is to define aggregate diversity as the number
of distinct items recommended to all users (Adomavicius and Kwon 2011, 2012).
Aggregate diversity is especially important with respect to increasing product sales.
As a future work, we plan to investigate the effect of our method on aggregate
diversity and try to develop new methods which can be used for optimising both
the recommendation list diversity and aggregate diversity.

In the method proposed here, users are expected to manually adjust their own
diversity levels. As we mention above, this gives users flexibility in controlling the
diversity levels of their recommendation lists according to their tastes and moods.
However, some users might prefer to give the control to the system, that is, they
might prefer to let the system to decide the right level of diversity for themselves.
We believe that developing methods for automatic learning of user preferences for
diversity is an important area for future research.
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