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Abstract Developing a satisfactory and effective method for auto-annotating images
that works under general conditions is a challenging task. The advantages of such a
system would be manifold: it can be used to annotate existing, large databases of im-
ages, rendering them accessible to text search engines; or it can be used as core for im-
age retrieval based on a query image’s visual content. Manual annotation of images is
a difficult, tedious and time consuming task. Furthermore, manual annotations tend
to show great inter-person variance: considering an image, the opinions about what
elements are significant and deserve an annotation vary strongly. The latter poses a
problem for the evaluation of an automatic method, as an annotation’s correctness
is greatly subjective. In this paper we present an automatic method for annotating
images, which addresses one of the existing methods’ major limitation, namely a
fixed annotation length. The proposed method, PATSI, automatically chooses the
resulting annotation’s length for each query image. It is held as simple as possible
and a build-in parameter optimization procedure renders PATSI de-facto parame-
ter free. Finally, PATSI is evaluated on standard datasets, outperforming various
state-of-the-art methods.
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1 Introduction

Images are a common element of everyday life in our visually oriented world. They
accompany other information bearers or speak for themselves. Appreciated for their
expressiveness and aesthetic values, they are one of the most powerful means of
transporting information—"A picture is worth a thousand words”, to quote a popular
proverb. No technique could take their role in inter-human communication, no
computer grasp the dense, highly subjective information encoded in a picture. As
a complex idea can be conveyed with just a single still image, they’re made use of
and sought for in all areas where communication is essential.

To utilize their power, suitable images must be found that transport the intended
meaning. This often requires tedious and time-consuming browsing of large image li-
braries. In the more narrow domain of a highly specialized archive the required effort
might be acceptable, but normally it is not. The widest domain generally accessible
and at the same time the most unstructured is the Internet. Manual browsing is here
practically impossible. As the size of digitally available image stocks continuous to
grow and their usage becomes more and more frequent and wide-spread, the need
of efficient, reliable and robust image retrieval solutions becomes more pressing.

Traditional Internet image search engines deploy Text-Based Image Retrieval
(TBIR), an approach relying on meta-data. Meta-data, gained for example by ex-
amining the text surrounding an image embedded in a document, is used to establish
a relevance measure for a textual search query. Well explored, with fast indexing
and retrieval architectures speaking for it, this method suffers from the often low
semantic coherence between the image and the surrounding text. Furthermore TBIR
cannot work with images for which no or only weak meta-data is available.

Content-Based Image Retrieval (CBIR) aims towards more relevant search re-
sults by analysing the actual image content and lifting the exclusive dependence on
meta-data. One approach is query-by-example, where a query image is presented
to the search engine which then produces a number of similar images. Another
proposition is semantic retrieval which aims to name semantic concepts appearing
in an image. This can be either achieved by directly associating each semantic term
of the query with an explicit object or class in the images or to annotate the images
with a number of relevant keywords. The first, straightforward approach would
require to design and implement an algorithm for each distinguishable semantic
term. Beside the method’s tremendous complexity, a semantic term is an abstract
class and the concrete objects associated with it differ not only between cultures but
also individuals (see Eakins et al. (2004) for an interesting discussion on subjective
perception and user needs in image retrieval). This proves to be an insurmountable
problem.

The second approach utilizing image annotation is more practicable. Therefore
our study concerns CBIR on the base of annotations. The main contributions of the
automatic image annotation method proposed in this paper (called PATSI—Photo
Annotation Through Similar Images) are (i) it automatically chooses the length of
an annotation assigned to a query image and (ii) its parameters are automatically
optimized. The PATSI method’s main advantages in comparison to other known
approaches are specified in the next section.

This paper is organized as follows. The next section presents related approaches
and underlines the PATSI method’s important novelty. Section 3 describes our
annotation method with detailed explanations of its phases, the proposed transfer
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functions and distance measures plus how it handles the automatic image annotation
challenges. A short discussion on the evaluation measures is provided in Section 4.
Next, in Section 5, the parameter optimization method is described in detail. Sec-
tion 6 presents experimental results where we compare results obtained from our
method to other existing state-of-the-art annotation methods. Finally we discuss the
results in Section 7, summarize PATSI’s advantages and weaknesses and give an
outlook to the future.

2 Related approaches

CBIR can be approached by annotating images, in which case a few relevant key-
words are assigned to each image to constitute its meta-data. Such the image content
is taken into account, while the highly developed TBIR search engines can still be
employed. Drawbacks are firstly that only a few semantic terms are used to describe
the whole image, which does not begin to do the rich expressiveness justice. Secondly
a term often refers only to a limited area, while being assigned globally to the picture.
This leads to an often weak correspondence between keywords and image con-
tent. Nevertheless, the results’s relevance can be expected to increase significantly
compared to traditional TBIR and the challenges connected with this approach
are conquerable, rendering it the most chosen path in the recent years.

Labels, i.e. collections of semantic terms attached to an image, can be created
manually. This way human perception of the images characteristics is well repre-
sented and explicit, speaking labels are created. But the tedious, costly and often
error-prone process of manual labelling renders it unsuitable for all but the smallest,
seldom extended collections. A method to automatically assign keywords to images
is required. Achieving this through direct, explicit object recognition is mostly
inapplicable for the reasons mentioned above.

Treating automatic image annotation as an classification task for every semantic
term from a closed set introduces machine learning to the problem. Large image
collections, often weakly annotated training data (Carneiro et al. 2007) and the
always present semantic gap, characterizing the difference between the visual and
textual object representations, present themselves as major challenges.

The majority of studies in the automatic image annotation field use machine
learning techniques to learn statistical models from annotated images and apply them
to generate annotations for unseen images. These methods can be divided into two
main categories: probabilistic modelling methods and classification methods. Some
interesting methods belonging to the first category are: Hierarchical Probabilistic
Mixture Model (HPMM) by Hironobu et al. (1999), Translation Model (TM) by
Duygulu et al. (2002), Supervised Multi-class Labelling (SML) by Carneiro et al.
(2007), Continuous Relevance Model (CRM) by Lavrenko et al. (2003), and Multiple
Bernoulli Relevance Models (MBRM) by Feng et al. (2004). The last is an extension
of CRM. Based on the Bernoulli Relevance Models, it outperforms the other meth-
ods as reported in Feng et al. (2004). CRM by Lavrenko et al. (2003) and MBRM by
Feng et al. (2004) are used as a reference baseline by many researchers working in
the image annotation area. Methods of the second category employ trained classifiers
to find correlations between the words and the annotated image’s visual features.
We can mention here Bayes Point Machine (Chang et al. 2003), Support Vector
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Machine (Cusano et al. 2004) and Decision Trees (Kwasnicka and Paradowski 2008)
which all estimate the visual features distributions associated with each word. Some
authors try to refine the annotation results by reducing the difference between the
expected and resulting word count vectors (Kwasnicka and Paradowski 2006), by
using Word-Net which contains semantic relations between words (Jin et al. 2005) or
by word co-occurrence models coupled with fast random walks (Llorente et al. 2009),
an interesting approach exploiting the recent advances in graph processing.

A family of baseline methods proposed by Makadia et al. (2008) share the
assumption that visually similar images are likely to share the same annotations. The
annotation process then relies on transferring labels from a number of the nearest
neighbours.

The weighted nearest neighbour model was adopted by Verbeek et al. (2010) in
the TagProp image annotation system. Keyword relevance in TagProp is predicted
by taking a weighted sum of the most similar images’ annotations in an annotated
training set. Verbeek et al. (2010) propose an optimization process which allows to
obtain a distance between visual features that corresponds to the textual distance
between annotations.

The simple method presented in Makadia et al. (2008) outperforms most of
the more complex approaches and questions the need for sophisticated algorithms.
Makadia method’s drawback is on the one hand the dependency on manually set
parameters, such as the neighbourhood size, and on the other hand the annotation
length’s restriction to a fixed, predetermined size. Both influence the resulting
annotations quality. Particularly the latter directly effects the quality measures: in
general shorter annotations lead to higher precision and lower recall and vice versa
(see Section 4 for a short discussion on the evaluation measures).

An annotation transfer step very similar to Makadia et al. (2008) has been recently
proposed by Medvet et al. (2011) to assign text-mined names to faces. They extend
the original approach by weighting the considered name based on the nearest images
distance to the query image and then transfer the name only if the weight surpasses
a threshold.

We propose a simple method for Photo Annotation Through Similar Images
(PATSI) based on the hypothesis that similar images should share a large part of the
annotations inspired by Makadia et al. (2008). We incorporate the nearest neighbour
approach and keep our method as simple as possible. Contrary to them we also
address the problems occurring from a fixed annotation length by using weighted
annotation and selecting terms with weights values greater than a threshold for
transfer. We select a more general and simple transfer function than Makadia et al.
(2008)’s transfer schema and such following Medvet et al. (2011)’s proposition. For
further simplification we use only a single distance measure and a single feature
set. Our method is designed towards solving the problem of choosing the assigned
annotation’s appropriate length—it is our methods’s main advantage and novelty,
neither addressed in Makadia et al. (2008) (who use fixed annotation length) nor
in Medvet et al. (2011) (who face only a binary decision problem). Additionally we
propose a transfer parameter optimization method which automatically tunes the
resulting word count associated with the image, eliminating the need of manually
setting the parameters, and such rendering our method de-facto parameter free.
On top of this we investigate a number of interesting and representative transfer
functions and PATSISs sensitivity to a variety of distance measure and feature sets.
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High accuracy obtained by the proposed approach on the standard benchmark
image datasets in conjunction with the method’s simplicity and generality and its
computational efficiency make it a perfect candidate for a baseline in the field of
automatic image annotation.

3 Automatic PATSI with variable annotation length

Automatic image annotation is the task of assigning a number of words w from
a closed vocabulary W = wy, ..., wi (sometimes also referred to as dictionary) to a
formerly unseen query image Q which meaningfully describe the semantic concepts
in Q. All assigned words together form the new annotation ap of Q, where each
word w; € W is a natural language term naming a semantic concept. The goal
is to obtain an informative description of Q that ideally conveys all (relevant)
semantic concepts present in the image. This formulation leads directly to the main
challenge that automatic image annotation, image retrieval, possibly the whole field
of computer vision (according to Tousch et al. 2012) faces: the semantic gap. Defined
by Smeulders et al. (2000) as the "lack of coincidence between the information that
one can extract from the visual data and the interpretation that the same data has for
a user in a given situation’, the semantic gap names the struggle to model the barely
understood human visual perception! (Michalak et al. 2011). The task is further
complicated by the high subjectivity of an annotations relevance. The importance
of a semantic concept present in an image, how to call it and at which abstraction
level to name it cannot be solved universally, but depends on the situation and the
user as well as his cultural background.

Researchers show a tendency to take a pragmatic approach towards the semantic
gap and mainly concentrate on developing some practical albeit domain-limited
solutions. Popular approaches are the learning and modelling of word to image (or
word to image region) connections and including the user in the retrieval loop (see
Smeulders et al. (2000); Datta et al. (2008) for two excellent surveys).

User interaction is impractical to implement into PATSI, as automatic image
annotators have to work unsupervised. The proposition to build word-models or
train classifiers is popular but faces the problem that which part of an image a
keyword describes is generally unknown and hard to discover (Datta et al. 2008)
despite advances in automatic image segmentation (e.g. colour segmentation used
in Aoun et al. (2011), EM-algorithm-based in Carson et al. (2002), normalized cut
criteria in Shi and Malik (2000)) or implicit relation modelling (e.g. Carneiro et al.
2007). Recently another approach has been suggested by Makadia et al. (2008) and
picked up by Medvet et al. (2011), that we adopted and extended in this paper.

PATSI is build on the assumption that similar images share large parts of their
annotations (Stanek et al. 2010a, b). Such we essentially perform image retrieval by
example with a subsequent annotation transfer step. We rely on the transfer method
to punish outliers and promote often appearing keywords (see Section 3.3 for an
example).

INot just the mechanical part, but with all its implications and subjectivity.
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It remains the problem of defining image similarity for the retrieval task. We
decided to employ only simple features and distance measures to emphasize the
performance of our annotation transfer. We performed a number of experiments
comparing different features and distance measures, whose descriptions and results
can be found in Section 6. The good results obtained support our decision.

According to Datta et al. (2008) most CBIR systems perform feature extraction in
a preprocessing step. The same holds for PATSI, which can be divided into a learning
phase, in which the annotators knowledge is assembled, and a processing phase of
image retrieval and annotation transfer. Both are laid down in detail in the remainder
of this section. In Section 3.3 we describe how PATSI handles the problem of weakly
annotated databases and in the last Section 3.4 we summarize our contributions.

3.1 Learning phase

In the learning phase, knowledge is extracted from the collection of manually
annotated images in the training set D. A number of features are extracted from
eachimage I, € D and combined into a feature vector F,. The set K of tuples (Fy, a,)
containing the feature vectors and the associated manual annotation constitutes the
annotator knowledge.

The learning phase is only executed once, but can be repeated if the annotator
should be adapted to a new or significantly altered training set. As a novelty in
PATSI, the learning phase in succeeded by an additional parameter optimization
step presented in Section 5 and rendering our method de-facto parameter-free.

3.1.1 Image features

Features are image descriptors that convey relevant information. The ideal feature:

1. detects and highlights all landmarks that serve the detection of and differentia-
tion between semantic concepts,

2. compresses, i.e., is by magnitudes smaller than the images pixel representation
and

3. does not loose any relevant information in the process.

These three requirements often contradict each other and are very hard to satisfy. No
information about the task at hand (What is sought?) and/or the user (Who seeks?)
is available at feature extraction time to determine what is relevant and what not.
This arises from the semantic gap discussed above. Furthermore different keywords
(e.g. mountain; merry) describe different concepts (e.g. landmark; mood), each of
which is composed of a number of criteria (e.g. colour, shape and position; facial
expression and situation). It is highly unlikely for a single feature to capture the
numerous semantic concepts, except for the most restricted vocabularies.

Popular features in image retrieval include colour (Chatzichristofis and Boutalis
2008a; Goodrum 2000; Huang et al. 1997), texture (Chatzichristofis and Boutalis
2008b; Zhang et al. 2000; Haralick et al. 1973), interesting points (e.g. Lowe 2004)
and shape. They can be categorized by which image part they are extracted from.
Usual approaches are, global, local from a regular grid and local from presegmented
image’s regions (Mikolajczyk et al. 2005).
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Our focus lies on simplicity, so we refrain from complex pre-segmentation. Instead
we concentrate on simple and often employed features extracted either globally or
on a local grid.

We perform an investigation of PATSI’s performance in conjunction with various
features and feature-combinations. Their description including relevant references
can be found in Section 6.3. A detailed discussion of their characteristics is beyond
the scope of this work. The interested reader is referred to the comparison papers
Deselaers et al. (2008a); Grigorescu et al. (2002).

3.2 Processing phase

While PATSI’s learning phase is similar to many methods in literature, the processing
phase contains some novelties. It is triggered by presenting a query image to the
annotator. Figure 1 shows this phase’s graphical representation.

In the first step the query image Q (Fig. 1 step @) is processed to extract the
feature vector from this image. Then a distance measure is applied to compute the
distances between a query image and all images from the data set. The k nearest
neighbours (i.e., the k images nearest to the query image) are kept, the others are
dismissed. This set of size k is sorted in ascending order by distance i.e., the rank 1 is
assigned to the nearest image, rank k to the furthest one.

Now a transfer function is applied to the keywords associated with each of these
selected k images. Taking into account rank and/or distance to the query image,
the transfer function assigns to every keyword a numeric value called transfer value
(t-value). The same keywords’ transfer values are summed up, thereby the keywords
appearance’s frequency is taken into account. Finally, every keyword whose transfer
value passes a threshold t is transferred to the query image. The resulting annotations
length is not fixed, but depends on the selected threshold value ¢ and varies for each
query image. In this our approach differs from known methods such as Makadia et al.
(2008); Carneiro et al. (2007) or even Medvet et al. (2011) who also employ transfer
functions.

1_1: annotation

I._2: annotation t
I_n: annotation
e ¢
{ PATSI Annotator
A 4 A 4 {keyword, t-value)
: keyword, t-value H
: distance order & reduce  transfer (keyword, t-value) pass P
: measure = to size k function threshold t £ |

.,
annn

I

Fig.1 Graphical representation of PATSIs processing phase
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In a post-processing step the query image features and annotation can be added
to the annotator knowledge. This increase of the annotator knowledge does not
lead to any dictionary change and therefore the learning phases does not need to
be repeated.

PATSI’s performance depends on the two parameters k and ¢, which values have
to be carefully tuned. Their optimal values not only depends on the features/distance
measure combination employed, but also on the training dataset. The majority of
methods from literature (e.g. Makadia et al. 2008; Carneiro et al. 2007; Medvet et al.
2011; Wichert 2008; Boccignone et al. 2008) depend on one or more parameters
which are manually tuned to the task at hand. As a step towards overcoming this
limitation and towards a working system, we present an optimization method for the
PATSI parameters in Section 5.

3.2.1 Distance measure

Similarity between images is an abstract concept. The human perception of similarity
involves subjectivity and its function is largely unknown. Mathematical similarity, on
the other hand, is clearly defined and restricted. A distance measure d(-), the inverse
of a similarity measure, is a positive function such that its value is greater when two
images are farther apart. d(I,, I,) between any two images I, I, has to meet the
following conditions that define a metric:

d(l,, 1)) =0 <= I, =1I,, (1)
d(ly, Iy) = d(ly» L) (2)
d(Iy, I) = d(Iy, 1)) + d(Iy, I) ®)

That is, it yields the value O only for identical images, is symmetrical and satisfies
the triangle inequality. These conditions imply that for all pairs of different images
d(I, I,) returns a positive value:

d(e, 1) >0« I, # I, 4)

A similarity function essentially maps a pair of images to a real value.

PATSI does not compute the distances between the images directly, but rather
over their feature vectors F, and F,.

Mathematical models strive to capture the human subjective similarity perception,
but the semantic gap forces a discrepancy between the computed and personally
perceived similarity. In our experiments we compare a number of popular distance
measures which are described in Section 6.3, to determine which serve best to narrow
the gap.

3.2.2 Similarity space

Choosing the feature set and the distance measure is not independent and some
combinations are not feasible. For a more compact notation and to emphasize the
their strong connection, we refer to the conjunction of a feature set and a distance
measure as similarity space (SS). The SS used in an annotator has to be chosen care-
fully, as this decision greatly effects the resulting annotations’ quality. In Section 6.3
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we therefore provide an exhaustive comparison of different feature set/distance
measure combinations.

The current version of PATSI does not allow the combination of different distance
measures. It would be interesting to further investigate in this direction, especially
as Makadia et al. (2008) report a significant gain in F-score with their Joint Equal
Contribution method. Some ideas on how to combine different SSs into one transfer
process are presented in the conclusion Section 7.

3.2.3 Transfer function

Our goal is to predict an unseen query image’s keywords, on the basis of annotations
found in the image neighbourhood. The classical k-nearest neighbour classification
is frequently used (Makadia et al. 2008; Medvet et al. 2011): the frequency of a
keywords appearance in the query image neighbourhood decides about whether
or not it is transferred. In PATSI we incorporate information about the relative
distances between the query image and neighbours by assigning weights. This way
keywords describing the near images, contribute more than the ones of remote im-
ages. To calculate the weight we use a defined transfer function (TF). In this paper we
concentrate on two classes of possible TFs that we believe to be the most promising:
distance based and ranked based. The first utilizes directly the distance between
images, while the second makes use of the rank ranging from 1 to the neighbourhood
parameter k.

From the class of the distance based TFs we select the following four for further
investigation:

1 _
PO =1 (©6)
' do, n*
£(0, 1) =e 2D, (7
40, 1) = e QD7 ®)

where d(Q, I) is a distance value measured between the query image Q and one of
its neighbours /. The TFs plots are displayed in Fig. 2.

In function ' (Fig. 2a) the weights assigned to the keywords are inversely
proportional to the distance between the query and the neighbouring images. Both
¢! and ¢* put the highest emphasis on the nearest neighbours, while minimizing the
impact of further ones. The smoothed descend of #* leads to more weight for distant
images’ annotations. The same is true for the TF #*, which additionally treats the
nearest neighbours almost equally. This can balance out small errors in the distance
measure. The range of values returned by this class of TFs is highly dependent on the
applied distance measure and therefore sensitive to parameter tuning.

With ranked based TFs we propose a second family of TFs which give more
deterministic weights, as their range depends only on the value of k. Such they are
more robust against changes of t and k. The rank based TFs are inspired by Makadia
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Fig. 2 Distance based transfer functions

et al. (2008)’s findings (presented in their work in Table 3b), who evaluated the
individual neighbour images in isolation resulting in a nearly linear drop in F-score
with increasing image rank. Within this class we propose four transfer functions:

1

1 _
rQ.D= oD ©)
0. n=— (10)
P = rank(Q, I)?’
r3(Q, D= (k—i-l)—li;ank(Q, I)’ (11)
2 _
A0, 1) = (k+ 1)* — rank(Q, I)’ (12)

k2

where rank(Q, I) describes the rank of image [ in the query image Q’s neighbour-
hood, ordered increasingly by the distance values d(Q, I); k is the neighbourhood’s
size (a method parameter). The discrete function graphs are displayed in Fig. 3.
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Fig. 3 Ranked based transfer functions

TFs ! and r* do not take the neighbourhood size k into account and assign
fast decreasing weights with higher rank. r? is linearly decreasing, while r* assigns
sufficiently high weights even to high ranked images for them to contribute to the
query image Q’s resulting annotation. r! is the TF most similar to the nearest images’
individual scores observed by Makadia et al. (2008) and indeed performed best in the
experiments.

Our distance based TF ¢! is equal to the one employed by Medvet et al. (2011).
None of our TFs is directly comparable with Makadia et al. (2008)’s approach, as
their TF does not assign weights to the annotation word, but rather establishes a
ranking from which the first n keywords are selected. Two factors determine their
ranking: (i) the local frequency (which in our notation can be represented as a TF
with a fixed return value of 1 independent of ranking and distance) and (ii) the
keyword co-occurrence in the training dataset. The TFs proposed by us are more
flexible and simpler, as they do not access knowledge form the training database.
Interestingly Makadia et al. (2008) also report having evaluated ¢' as a TF, but
dismissed it due to inferior results.
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3.3 Weakly annotated databases

Automatic image annotation faces the problem of weakly labeled databases. Fol-
lowing Carneiro et al. (2007) a training set is weakly labeled if (i) the absence of a
word in an image’s annotation does not necessarily mean that the connected semantic
concept is not present in the image, and (ii) the image’s region which corresponds to
a word in the image’s annotation is not known. PATSI’s proposed transfer step is
implicitly addressing both of these problems. This is best explained with an example.
Figure 4 shows images of an annotation transfer. The query image (Fig. 4a) and three
of its nearest neighbours (Fig. 4b—d) are displayed. The first problem can be observed
in the third neighbours annotation, from which the word sky is missing while the
semantic concept is clearly present. But since PATSI takes the whole neighbourhood
of k images into account, it is very likely that the annotation word appears in the
remaining neighbours’ annotations as indeed in this example. How PATSI treats
the second problem is also visible in this example. The semantic concept sky is
normally associated with the pixels in the images’s upper part. Our method has no
explicit knowledge of this relation, but in the k nearest neighbours the associated
annotation word sky is likely to appear in a number of images’ annotations. Since
each appearance of sky contributes to its weight, it will pass the threshold ¢ and be
transfered to the query image. The other annotation word present in the neighbour
images like grass, tree, etc. will appear more rarely and subsequently will not pass the
threshold ¢.

3.4 Summary

As in Carneiro et al. (2007)’s Supervised Class Labeling we represent images as
collections of independent feature vectors. But contrary to them we do not use these
to build a probability model in the learning phase. Instead we follow the simpler
method of Makadia et al. (2008) in treating automatic image annotation as an image
retrieval problem with an additional final step of annotation transferring. We profit
from their approach’s algorithmic and computational simplicity while addressing
their most pressing shortcomings, namely (i) the fixed parameter length and (ii) their
method’s sensitivity to the parameters k and n, by introducing a threshold based
annotation transfer system.

i - g T \\ .'" f5
(a) Query image: sky  (b) Neighbour 1: sky,  (c) Neighbour 2: sky, (d) Neighbour 3: clouds,
grass,tree ocean snow, person

Fig. 4 Example of annotation transfer through shared similarity. The word sky appears in two of
the neighbour images and is therefore likely to pass the threshold ¢ and to be transfered to the query
image. The other annotations receive only marginal weights and are subsequently not transferred
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While our proposition such solves the problem of the fixed annotation length,
we still depend on the neighbourhood size k and the threshold ¢. Hence, as second
novelty, we propose parameter optimization algorithm to determine near-optimal
values for both k and ¢. This approach is described in detail in Section 5.

To investigate PATSI’s modularity and quality, we conducted an exhaustive
number of experiment. In Section 6.1 various TFs are tested, Section 6.3 compares a
large number of SSs and in Section 6.4 we evaluate PATSI against a number of state-
of-the-art algorithms from literature on freely available benchmark datasets where it
lies equal with the best methods.

4 Evaluation measures

To rate the quality of our method and to compare it to others we require an
evaluation measure. With precision and recall we use two well-known and often
employed (Makadia et al. 2008; Carneiro et al. 2007; Nowak et al. 2011; Nowak and
Huiskes 2010; Stanek et al. 2010a) measures of annotation relevance. Precision is the
fraction of all retrieved words that are relevant, while recall is the fraction of relevant
words that are retrieved. They are defined as

.. [relevant — words| N |retrieved — words|
precision =

[retrieved — words]|
and

|[relevant — words| N |retrieved — words|

recall =
|relevant — words|

A maximum precision value means no false positives, while a maximum precision
value means no false negatives. Combined into the F-score, their harmonic mean,
they constitute a meaningful measure of an annotations quality against a ground truth

precision * recall
F —score =2 x

precision + recall

It should be pointed out, that these metrics are not ideal. As described in more detail
by Tousch et al. (2012) they measure the gap between an ideal ground-truth and the
actual annotation, counting errors between categories without taking their semantic
relationship into account. A confusion between man and woman weights the same
as between man and aeroplane. Furthermore synonyms such as cop and policeman
and categories such as manChuman are not taken into account. Last years ImageClef
challenge (Nowak et al. 2011) is among the first regarding the vocabularies taxonomy
in their evaluation, in their case the Flicker Tag Similarity was used to denote
similarity between words.

5 Parameter optimization
The quality of an annotation produced by PATSI for a given transfer function and

similarity space depends on the number of neighbours k taken into account as well
as on the threshold value ¢. The graph in Fig. 5 details this dependency by showing
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Fig. 5 Comparative graphs of precision, recall and F-score quality measures on MGV 2006 database

the annotation quality (measured once by each precision, recall and F-score) as a
function ¢ of k£ and .

Unfortunately, this function’s shape varies strongly for different choices of TF and
SS. A general solution for ¢ (¢, k) that is valid for all combinations of TFs and SSs
cannot be found. ¢7f ss(t, k) has to be optimized for a fixed choice of a TF and a SS.
We propose an optimization method that yields not the optimal, but sufficiently good
values k* and ¢* for a given choice of TF and SS. It can be executed in the training
phase and such is not increasing the processing phase’s computational complexity.

Finding k* and ¢* can be treated as an optimization problem over ¢rr ss(t, k)
in a time-critical environment and proves to be a non-trivial task. ¢rr ss(t, k) is a
non-linear dependency with a number of local maxima and a discrete domain of k.
Furthermore, the annotation process’ evaluation is very costly and should therefore
be executed very rarely. Linear solvers are not applicable, non-linear solvers cannot
work with the discrete k domain. This could be overcome by a prior approximation
of ¢rr ss(t, k), but tests have shown that it leads to an unacceptable high error. A
standard brute-force approach requires too many calls to the transfer annotator. To
reduce this number we propose the iterative refinement algorithm. Figure 6 presents
the method’s schema.

The search for the near-optimal #* and k* consists of three steps:

1. Initially a broad, regular grid is laid over the search space (the function’s surface

in Fig. 5¢) and ¢7r ss(t, k) is queried for each point where the grid lines intersect
(visualized in Fig. 6 by big crosses).
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2. The points for which ¢rr ss(t, k) yielded the highest F-scores from the previous
step are used as centers for a number of new, smaller regions. A finer grid than in
the step before is superimposed on these areas and again ¢rr ss(¢, k) is triggered
for the intersection points.

3. If the stop condition is not reached, repeat step 2, otherwise terminate and return
the (¢, k) pair that produced the highest F-score as the near-optimal solution ¢*
and k*.

The notation used in Fig. 6 corresponds to the variables of the formal Algorithm
formulation 1. Initially the optimization method requires a number of parameters:

— The initial region on which to search the optimal values, defined by its bound-
aries k_tok, and¢_tot,.

— The grid’s initial granularity along the threshold axis ;.

—  The divider which determines the grid’s refinement in each iteration step.

Algorithm 1 PATSI optimization with iterative refinement algorithm

Require: 7, —initial threshold step
k_ — minimal neighbours bound
k4 — maximal neighbours bound
{_ — minimal threshold bound
t, —maximal threshold bound
M — number of interesting areas to further investigate
divider — threshold grid’s refinement in each step
stop_condition — stop when minimal improvement is less than this
1: Prepare points on the grid
P={t,klk_-<k<kink—k modl=0At_<t<t,  At—t_ modt =0}
2: repeat
3 S={kt, ¢k, 1)k, 1) e P}
4:  obtain $* where
S CSAIS | =MABscs. Y c< Y AIS|=15

(a,b,c)eS* (a',b',c')eS
55 P= |J (koK —1<k<kK+1Ak—K+1 mod1=0Ar—t,<1<
(k',t',c)eS*
I
!+t At—1t +1t;, mod =0
tih tih divider )
6: ty = L

divider
7. € = |max, ((k,t,¢) € $*) — min. ((k, t,c) € §%)|

8: until stop_condition > €
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— The number of each rounds maxima M to consider in the next iteration step.
— Astop_condition causing the algorithm to terminate if the last iterations gain was
less than this value.

Firstly an initial set of points P is collected over the grid of granularity ¢, x 1
with the boundaries k_ to k4 and t_ to t;. ¢rF ss(t, k) is evaluated once for each
point (k,t) € P to form the set S of triples (k, t, ¢ (¢, k)). Next we extract the subset
S* from S, containing only the M triples with the highest values for ¢ (¢, k). These
points constitute the regions to investigate in the next iteration step. A finer grid
is superimposed on the M new areas and new sets of P, S and $* are computed as
before. These steps are repeated until the relative improvement € is lower than the
stop_condition value.

The approach’s complexity can be reduced by introducing a buffer to store the
already queried function values and thus omitting some of the costly function calls, as
the investigated areas often overlap. This is evaluated in the experiment Section 6.2.
Furthermore, when working on large databases, the method can be applied to a
smaller, however still representative subset of the database, which further reduces
the number of required function calls.

The proposed solution comes with a drawback: it requires a number of parameters
to be set, which is contrary to our stated goal of a parameter free annotator. But
during our experiments in Section 6.2 we show that the parameter optimization
procedure is fairly robust to its own initial parameters and that the same is not
true for PATSI with respect to the selection of ¢ and k. The iterative refinement
parameters can therefore be fixed independently from the PATSI configuration.

6 Experimental study of the PATSI method

The experiments were planed with a number of research questions in mind and seek
to investigate our method’s most important characteristics.

Deciding on the most suitable transfer function is crucial for the annotator
performance. The first Section 6.1 is therefore dedicated to experiments testing the
performance and attributes of the eight transfer functions proposed in Section 3.2.3.
Beside our main goal of automatically deciding the annotation length, we also strive
for PATSI to be as simple, automatized and efficient as possible. In Section 5 we
introduced an iterative refinement algorithm to obtain semi-optimal values for the
PATSI parameters ¢ and k. This method is computational expensive and depends
itself on a number of parameters. In Section 6.2 we therefore verify the need for
optimizing the neighbourhood k and the threshold ¢ and investigate the algorithm’s
robustness to its initial parameters. Furthermore we plan and execute experiments
investigating the performance of various similarity spaces in conjunction with PATSI.
The settings and results of this exhaustive feature and distance measure comparison
can be found in Section 6.3. Such prepared with a good choice of the TF, the SS
and parameters optimized by the iterative refinement procedure, we test PATSI on
a number of popular benchmark databases and compare its performance against a
number of state-of-the-art automatic image annotation algorithms in Section 6.4.

If not otherwise stated, all experiments were performed with the same evaluation
framework: To evaluate the resulting annotations’ quality, the three evaluation met-
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Table 1 Properties of MGV MGV 2006
2006 training dataset -
Number of images 751
Dictionary size 74
Mean annotation length 5.0
Mediana of annotation length 5.0
Std. dev. of annotation length 1.28
Min. and max. annotation length 2,9)

rics precision, recall and F-score were employed, as they are described in Section 6.
To obtain expressive results, 4-fold cross validation is applied and the average F-
score value is calculated. Generally the experiments were conducted using the MGV
dataset (Paradowski 2008; Kwasnicka and Paradowski 2008), whose details can be
found in Table 1. It is of acceptable size to allow for fast but still representative
experiment execution. Beside the low computational complexity, it shows good
results and is well annotated.

A result obtained with PATSI on this dataset are presented in Fig. 7. In the
current version of PATSI, the query image (Fig. 7a) gets the words blue, cloud,
green, meadow, outside, sky, tree, desert, forest, mountain assigned. If image f would
be rightly annotated with meadow and image c with cloud, the threshold ¢ could be
raised to exclude forest and mountain. Using a taxonomy to exploit the association
between forest with tree would furthermore allow the exclusion of desert, leading to
a ideal annotation.

(a) query image (b) blue,desert,green, (c) blue,forest,green, (d) blue,mountain,out-
out-side,sky,tree meadow,outside,sky  side,sky

_—

(e) blue,cloud,lake,meadow, (f) blue,cloud,green, (g) blue,earth,outside,
mountain,outside,sky mountain,outside,sky  sky,tree

—— |

(h) meadow,outside (i) blue,cloud,forest, (j) blue,desert,outside,
plane,runway green,meadow,outside, sky
red

Fig. 7 Example run of PATSI with query image (a) and its nine nearest neighbours (b-g). The
annotations blue, cloud, green, meadow, outside, sky, tree form the ground-truth of the query image
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6.1 Comparison of the proposed transfer functions

In this section we investigate the transfer function’s influence on the annotation
quality. We test the TFs defined in Section 3.2.3, which are all shaped such that more
similar images exercise a stronger influence the resulting annotation. The experi-
ments are performed on the MGV image dataset, CEDD feature set (Chatzichristofis
and Boutalis 2008a) and Minkowski L2 distance measure. Figures 8 and 9 show
the variations in the resulting F-score for each of the TF for different k and ¢
combinations.

The peaks are of similar height i.e., the highest achievable qualities do not
differ greatly between the TFs. The only exception is the e~ transfer function’s
performance, the evaluation of e s subsequently stopped. But the global maxima’s
position differs greatly between the functions. We therefore apply the proposed
iterative optimization method to find good values for k* and #x. Next, we used
these values to train the PATSI annotator. To obtain more representative results,
we applied leave-one-out instead of 4-fold cross-validation approach during this
experiment. For a simple comparison such as this, the type of cross-validation is of no
relevance. In Table 2 we present the kx and #* obtained by the optimization method
and the resulting F-score for each TF.

The distance based TFs perform overall poorer than the rank based TFs. This
could be because they strongly rely on the distance measure employed and a single
distance measure is unlikely to capture more than a subset of semantic concepts. One
can suppose that assuming an ’ideal’ distance measure, the distance based would
outperform the rank based TFs. For now we recommend rank based TFs, as they
stress the number of similar images rather than their actual distance from the query
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Fig. 8 F-score of annotations obtained with different transfer functions (distance based transfer
functions given by (5)—(7)), MGV data set, CEDD feature set, and Minkowski L2 distance measure
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Fig. 9 F-score of annotations obtained with different transfer functions (rank based transfer
functions given by (9)-(12)), MGV data set, CEDD feature set, and Minkowski L2 distance measure

image, and are therefore able to smooth out errors induced by the distance measures.
This assumption is supported by the experimental results, placing the rank based
above the distance based TFs.

Comparing the four proposed TFs from the rank based group, we can observe that
their performance does not differ greatly. We chose 1/r for its slightly better results,
simplicity and the greatest number of similar images taken into account.

6.2 Evaluation of the optimization procedure

The optimization procedure’s target is to yield semi-optimal values for ¢ and k. We
treat the annotators quality as measured by its F-score as a function of t and k whose

Table 2 Evaluation of transfer

- Transfer function kx tx F-score
functions -
Distance based
L 7 0.18 0.35804
% 23 0.06 0.32253
e 94 0.1 0.07238
Rank based
1 19 0.73 0.38107
% 7 0.15 0.35877
Ehor 10 13 037517
d = distance, r = rank, (k+1)2—r
k = neighbourhood size k2 7 241 0.3732
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global maxima we seek. The shape of the function to be optimized is presented in
Fig. 10. Figure 10a presents the 3D shape of F-score as a function of k and ¢, where the
five highest points are marked by small crosses. Figure 10b shows the same function
as its gradient (a bird’s eye perspective).

Observing this figure and the graphs presented in Figs. 8 and 9, it can be seen that
although the function appears linear, it is in fact non-linear and, due to the discrete
domain of the neighbourhood size k, half-discrete and half-continuous. The functions
show some deep descends, so that even small changes in ¢ and/or k can lead to sudden
drops in the annotators performance. Such the values for ¢ and k strongly influence
the F-score and are difficult to set manually.

Therefore the use of our proposed optimization method is justified. In this
section we perform some experiments to show the methods independence from its
parameters. Furthermore we compare the performance of different approaches.

During the execution of the iterative refinement an already queried point is often
requested again in a later iteration step, so that using a buffer to store the calculated
performed annotations (performing annotation requires a lot of time) can reduce the
computational complexity. In addition, for the k lie close to the assumed range, it is
impossible to find a sufficient number of neighbours to get the given threshold (¢ set
at that point). To verify the above point of view, in our experiments we measure the
number of function calls (responsible for computation complexity) with no buffering,
with buffer, and with buffering combined with omitting some k values (near the
border of the search space). Therefore the results of the experiments are collected as
a real, overall, and cleaned. Overall is a number of annotation calls according to the
proposed algorithm (without using any buffers). Real is a number of the annotations
with caching calculations (for every pairs ¢ and k the annotation is calculated only
once). Cleaned is a number of annotations using caching and omitting such k for
which too small number of neighbours exist (k is close to the border and the sum of
transfers cannot exceed a given ).

The main question to the experiments is: does a fixed set of optimization proce-
dure parameters is suitable for different dataset, distance measure and feature set
combinations? In the previous section we have decided to use — transfer function

rank
so this function was employed together with Minkowski L2 distance measure. Two

Vrank target function : grid

1/rank target function : gradient map

F-score

5 maxima

(neighbours)

0.
0.
rating 0,
0.
0.

1.5 2

) 0 05 1 15 2 25 3 3s
(threshold) 35 4
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(a) F-score values on a grid (b) gradient representation of the same F-score

Fig. 10 F-score of annotation in the optimization procedure (MGV2006, CEDD, Minkowski L.2)
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feature sets were used in experiments: CEDD (Chatzichristofis and Boutalis 2008a)
and FCTH (Chatzichristofis and Boutalis 2008b).

6.2.1 Sensitivity of the optimization procedure on the initial area of the search space

We defined three scenarios:

Area l: Starting with a very small initial area (the optimization procedure is
forced to increase the bounds of searching).

Areall:  Start with a huge area (it strongly increases the amount of annotation
transfers, that have to be calculated).

AreaIIl: Tune the search on a small area where the highest F-scores are expected.

These settings let to the results displayed in Table 3. Investigating a very wide area,
as it is done in II, is computationally clearly inefficient. The resulting quality is even
lower than with the tuned area (case III), while a number of required annotations
is roughly five times higher. Starting with a very limited area, as in I, reduces the
number of required annotation transfers significantly. For the given examples the
results are also acceptable regarding F-score measure. But firstly, the low number of
neighbours means that only very few similar images are considered for selecting their
annotation to transfer. This can lead to a low recall, violating the target of a balanced
recall and precision measures. Furthermore, the high quality cannot be assured for
other annotator configurations, as the shape of the target function will be the same,
but the position of the plateau of the highest values might differ. Starting with a
sufficiently big area (case III) is the most suitable approach and can be expected to
lead to good results for all possible annotator configurations.

6.2.2 Sensitivity of the optimization procedure on the divider

Influence of the divider on the optimization procedure was tested using two scena-
1ios.

Divider I: A low divider (only a slightly smaller area is considered in each iteration

step).
Divider IT: A higher divider (a considered area decreasing more rapidly in each

iteration step).

Table 3 Varied initial areas for the optimization algorithm on MGV 2006 dataset

Initial area Performance in queries Results
Threshold Neighbours Cleaned Real Overall F-score t* k*
CEDD
1 [0.99,1.01] [1,1] 40 50 55 0.34588 0.35 3
I [0.1, 10] [2,50] 1188 1786 1921 0.36014 0.745 19
111 [0.7,1] [5,23] 209 209 301 0.36599 0.633 10
FCTH
1 [0.99,1.01] [1,1] 65 81 94 0.33439 0.43 4
11 [0.1, 10] [2,50] 1170 1768 1869 0.34465 0.643 20
111 [0.7,1] [5,23] 236 236 343 0.34151 0.541 24
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Table 4 Varied initial dividers for the optimization algorithm on MGV 2006 dataset

Performance in queries Results

Initial divider Cleaned Real Overall F-score r* k*
CEDD

1 2 299 299 434 0.36014 0.745 19

11 3 414 414 481 0.36116 0.528 19
FCTH

1 2 287 287 399 0.34465 0.643 20

11 3 324 314 358 0.34237 0.666 28

Received results are presented in Table 4. The resulting qualities using different
initial dividers are similar in F-score, k*x and #+. The computational complexity is
slightly lower for I, therefore it is the setting of choice.

6.2.3 Sensitivity of the optimization procedure on the initial threshold value
Here we defined three scenarios.

Initial threshold resolution I: A very low initial threshold (a finer scanning of the
area in each iteration step).

Initial threshold resolution II: A medium initial threshold (a balance between the
costs and efficiency of the scanning).

Initial threshold resolution III: A high initial threshold (only broad scanning of the
area in each iteration step).

The results are collected in Table 5. The resulting qualities using different initial
thresholds are similar in F-score, k*x and rx. As we expected, a broader scan (case
III) leads to a reduced number of necessary annotations. With case II, the best
value found takes into account a few more neighbours than in III, while the gain
in computational efficiency of III compared with II is only marginal. Therefore case
I1 is the setting chosen.

It can be noted that the settings of the optimization procedure parameters, while
sometimes strongly influencing the performance, seem to have only a low impact on
the resulting quality caused by receiving better kx and #x values. It can be assumed
that the optimization procedure with the selected moderate settings will lead to good

Table 5 Varied initial thresholds for the optimization algorithm on MGV 2006 dataset

Performance in queries Results
Initial threshold Cleaned Real Overall F-score r* k*
CEDD
1 0.1 600 601 650 0.36511 0.531 13
11 0.64 299 299 434 0.36014 0.745 19
111 1.0 149 164 257 0.36663 0.506 7
FCTH
1 0.1 617 618 669 0.34888 0.578 11
11 0.64 287 287 399 0.34465 0.643 20
111 1.0 183 198 308 0.34888 0.579 11
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results for all annotator configurations using ﬁ as transfer function. This comes
together with a relatively low computational complexity. We can say that our target
of obtaining initial parameters for the optimization method that are invariant to
the annotators configuration has been reached. PATSI can therefore be treated as

a parameter free method.

6.3 PATSI results with different similarity spaces

Recall that the term Similarity Space (SS) denotes a combination of a distance
measure and a feature set. Although research on CBIR has been performed since
years, the features most suitable for the task are still unknown (Deselaers et al.
2008b). In this section we present a number of distance measures and feature
sets to investigate their performance with PATSI in all possible combinations. The
experiments were conducted on the MGV dataset with 4-fold cross-evaluation.

The following six types of features were considered:

1. From MPEG-7 standard Chang et al. (2001) we use following image descriptors
calculated for the whole image:

—  Fuzzy Color Histogram—125 dimensions,

— JPEG Coeftficient Histogram—192 dimensions,

— General Color Layout—18 561 dimensions,

— Color and Edge Directivity Descriptor (CEDD)Chatzichristofis and
Boutalis (2008a)—120 dimensions,

— Fuzzy color and texture histogram (FCTH)Chatzichristofis and Boutalis
(2008b)—192 dimensions.

2. Tamura features—first three from six texture features corresponding to human
visual perception (Tamura et al. 1978):

— coarseness—size of the texture elements,
— contrast—contrast stands for picture quality,
— directionality—texture orientation.

Tamura features is 16-dimensional vector.

3. Auto Color Correlogram features defined in (Goodrum 2000; Huang et al.
1997)—256 dimensions

4. Gabor texture features (Zhang et al. 2000)—60 dimensions

5. Statistical colour and edges information of image regions (5-by-5 and 20-by-20
grid) in two colour spaces RGB and HSV:

— xandy coordinates of the segment centre—2 dimensions,

— the mean value of colour in each channel of the colour space—3 dimensions,

— standard deviations of colour changes in each channel for a given colour
space—3 dimensions,

— mean eigenvalues of colour Hessian in each channel for a given colour
space—3 dimensions.

6. CoOccurance Matrix (Haralick et al. 1973) calculated for each segment of 5-by-5
and 20-by-20 segmentation—21 dimensions.
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Table 6 Evaluation of distance measure and local feature set combinations

Distance Features Precision Recall F-score
Cosine hsv/dev 0.2862725 0.3777475 0.32543
CoOccuranceMatrix 0.1869675 0.2736875 0.222115
xy/rgb/dev/hes 0.2887575 0.320405 0.302915
xy/hsv/dev/hes 0.2935 0.36891 0.326575
hsv/dev/hes 0.28504 0.3717225 0.3224325
rgb 0.2537375 0.302795 0.275145
rgb/dev/hes 0.2670425 0.3495275 0.3009725
hsv 0.272935 0.305805 0.28786
rgb/dev 0.2637025 0.3467275 0.29778
Minowskil2 hsv/dev 0.256685 0.355055 0.296665
CoOccuranceMatrix 0.1973575 0.26986 0.2231
xy/rgb/dev/hes 0.2896725 0.29585 0.292305
xy/hsv/dev/hes 0.257225 0.35584 0.297305
hsv/dev/hes 0.257225 0.35584 0.297305
rgb 0.2643425 0.285675 0.274505
rgb/dev/hes 0.2896725 0.29585 0.292305
hsv 0.2485225 0.3456775 0.28878
rgb/dev 0.283145 0.300085 0.29075
Minowskill hsv/dev 0.342625 0.37346 0.3570425
CoOccuranceMatrix 0.190515 0.299885 0.2322825
xy/rgb/dev/hes 0.30654 0.306565 0.3045675
xy/hsv/dev/hes 0.337825 0.38379 0.359095
hsv/dev/hes 0.34391 0.3819575 0.36166
rgb 0.2587375 0.33588 0.2917025
rgb/dev/hes 0.2999625 0.316095 0.3061425
hsv 0.30599 0.3791275 0.3368775
rgb/dev 0.311385 0.313525 0.3121075
Correlation hsv/dev 0.2610375 0.350125 0.298755
CoOccuranceMatrix 0.1852525 0.264855 0.2178775
xy/rgb/dev/hes 0.27289 0.3263425 0.2955575
xy/hsv/dev/hes 0.2819825 0.34359 0.308305
hsv/dev/hes 0.2700475 0.34293 0.3017975
rgb 0.268855 0.2915275 0.2775225
rgb/dev/hes 0.2836325 0.3165125 0.29856
hsv 0.2483675 0.3366125 0.283445
rgb/dev 0.2682975 0.322935 0.291995
k1 CoOccuranceMatrix 0.05934 0.25594 0.0951
rgb 0.136465 0.3539925 0.195195
rgb/dev/hes 0.1310725 0.3807725 0.1926425
hsv/dev/hes 0.1823825 0.298395 0.22593
rgb/dev 0.1357975 0.3683475 0.19679
js CoOccuranceMatrix 0.0576525 0.2781 0.0952825
rgb 0.1369 0.44401 0.20411
rgb/dev/hes 0.1682025 0.3455425 0.220285
hsv/dev/hes 0.1693175 0.3231575 0.221815
rgb/dev 0.1484025 0.409405 0.21037
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For the experiments we differ between global features (take from the Lire
Package by Lux and Chatzichristofis (2008))

Auto Color Correlogram
CEDD

FCTH

Fuzzy Color Histogram
General Color Layout
Jpeg Coefficient Histogram
Gabor

Tamura

NN R WD

Table 7 Evaluation of distance measure and global feature set combinations

Distance Features Precision Recall F-score
Cosine cedd 0.3289175 0.35534 0.341555
GeneralColorLayout 0.151765 0.3024625 0.1977775
Gabor 0.0899975 0.25198 0.1310075
Tamura 0.1734525 0.27898 0.2121925
JpegCoefficientHistogram 0.2486975 0.3395125 0.282435
AutoColorCorrelogram 0.212885 0.31262 0.25317
fcth 0.282625 0.40072 0.33133
fuzzyColorHistogram 0.20783 0.271075 0.2324675
Minowskil2 cedd 0.329165 0.36847 0.347475
GeneralColorLayout 0.1553375 0.2808125 0.1995
Gabor 0.0935425 0.2586125 0.1369275
Tamura 0.176785 0.32527 0.2288475
JpegCoefficientHistogram 0.2549675 0.31469 0.280865
AutoColorCorrelogram 0.20977 0.3400225 0.2586875
fcth 0.3037425 0.364405 0.330335
fuzzyColorHistogram 0.2031825 0.300225 0.24129
Minowskill cedd 0.3161275 0.3662125 0.33805
GeneralColorLayout 0.159835 0.3580725 0.2205675
Gabor 0.0976975 0.2820875 0.14506
Tamura 0.18575 0.2981875 0.22849
JpegCoefficientHistogram 0.2430325 0.36182 0.2905975
AutoColorCorrelogram 0.230605 0.2916075 0.25615
fcth 0.29227 0.3994575 0.337125
fuzzyColorHistogram 0.1778075 0.304465 0.224205
Correlation cedd 0.3228425 0.362165 0.3411125
GeneralColorLayout 0.1423775 0.2994125 0.19219
Gabor 0.089965 0.25981 0.131615
Tamura 0.1939625 0.258 0.2209275
JpegCoefficientHistogram 0.2475275 0.334825 0.2824825
AutoColorCorrelogram 0.2137975 0.310405 0.252855
fcth 0.29422 0.3952575 0.3372625
fuzzyColorHistogram 0.22045 0.260525 0.238385
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and a number of local features in different combinations that were extracted from a
grid:

1. colour means in RGB colour space

colour means in RGB + colour deviations

colour means in RGB + dev. + mean eigen value in colour hessian

colour means in RGB + dev. + mean eigen value in colour hessian with x/y
coordinates

colour means in HSV colour space

colour means in HSV + colour deviations

colour means in HSV + colour deviation + mean eigen value in colour hessian
colour means in HSV + colour deviation + mean eigen value in colour hessian
with x/y coordinates

9. Cooccurance Matrix (Haralick et al. 1973)
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Fig. 11 F-score of distance measures with local features grouped by distance measures. The number
refers to the corresponding local feature set in the listing at the beginning of Section 6.3
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To obtain a SS these were combined with a number of distance measures, namely:

—  Metric Space:

1.  Minowski L1,
2. Minowski L2,
3. Correlation,
4. Cosine.

— Probabilistic Space:

5. Kullback Leibler (one directional),
6.  Jehnsen Shannon (two directional).

Note that Kullback Leibler (KL) and Jehnsen Shannon (JS) were only applied to
some local and no global features. All together a number of 79 SSs were tested. Their
evaluations are shown in Table 6 for local and Table 7 for global features. The highest
value of all is written in italics.

For better perception and easier comparison, the results are also presented in two
sets of bar graphs, once grouped by distance measure (Figs. 11 and 12), and once by
feature sets (Figs. 13 and 14).

The quality achieved through the SSs differs greatly over a range from 0.095
for KL with CoOccuranceMatrix up to 0.359 for Minowski L1 with xy/rgb/dev/hes
feature set. This shows that the choice of distance measure and feature set is crucial.
But it does not suffice to simply choose the best distance measure and combine it
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Fig. 12 F-score of distance measures with global features grouped by distance measures. The number
refers to the corresponding global feature set in the listing at the beginning of Section 6.3
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Fig. 13 F-score of distance measures with local features grouped by feature sets. The number refers
to the corresponding distance measure in the listing at the beginning of Section 6.3
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Fig. 14 F-score of distance measures with global features grouped by feature sets. The number refers
to the corresponding distance measure in the listing at the beginning of Section 6.3

with the best feature set: the bar-graphs show that the performance of a distance
measure varies strongly with the feature set on which it was applied. This is especially
observable with the global features (Fig. 12). A performance of different feature sets
does not vary so much with the applied distance measure, with the notable exception
of KL and JS. This robustness is the most dominant with the global features as can
be observed in Fig. 14, where the choice of distance measure has nearly no impact on

the quality.
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Table 8 Properties of
benchmark datasets

Table 9 Evaluation of image
annotation algorithms on
MGYV 2006 dataset

The bold entries are the results
of our method (PATSI),
compared to other methods
from literature (not in bold)

Table 10 Evaluation of image
annotation algorithms on
ICPR 2004 dataset

The bold entries are the results
of our method (PATSI),
compared to other methods
from literature (not in bold)

@ Springer

MGV 2006 ICPR 2004 IAPR TC-12

Number of images 75
Dictionary size 74

1

Mean annotation length 5.0

Mediana of annotation 5.0

19805

length
Std. dev. of annotation 1.28
length
Min. and max. annotation (2,9) (1,23) (1,23)
length
Method Precision Recall F-score
FastDIM 0.24 0.16 0.19
FastDIM + GRWCO 0.34 0.34 0.34
MCML 0.32 0.24 0.27
MCML + GRWCO 0.38 0.37 0.37
CRM 0.39 0.34 0.36
PATSI 0.38 0.46 0.42
The best 20 words
FastDIM 0.58 0.53 0.51
FastDIM + GRWCO 0.59 0.61 0.60
MCML 0.61 0.59 0.60
MCML + GRWCO 0.64 0.62 0.63
CRM 0.58 0.57 0.57
PATSI 0.71 0.86 0.78
Method Precision Recall F-score
FastDIM 0.20 0.17 0.18
FastDIM + GRWCO 0.21 0.21 0.21
MCML 0.21 0.17 0.19
MCML + GRWCO 0.25 0.28 0.26
CRM 0.24 0.24 0.24
PATSI 0.27 0.34 0.30
The best 60 words
FastDIM 0.64 0.58 0.61
FastDIM + GRWCO 0.63 0.61 0.62
MCML 0.69 0.60 0.64
MCML + GRWCO 0.69 0.67 0.68
CRM 0.61 0.61 0.61
PATSI 0.82 0.94 0.88
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Table 1,1 Evaluqtion of image Method Precision Recall F-score
annotation algorithms on
IAPR TC 12 dataset RGB 0.24 0.24 0.24
HSV 0.20 0.20 0.20
LAB 0.24 0.25 0.24
Haar 0.20 0.11 0.14
HaarQ 0.19 0.16 0.17
Gabor 0.15 0.15 0.15
GaborQ 0.08 0.09 0.08
The bold . h | MBRM 0.24 0.23 0.23
e bold entries are the results
Lasso 0.28 0.29 0.28
of our method (PATSI), JEC 028 0.29 028
compared to other methods
PATSI 0.26 0.31 0.28

from literature (not in bold)

6.4 PATSI quality compared to similar methods in literature

For the evaluation process three benchmarking data sets were used: ICPR 2004
(ICPR 2004), MGV 2006 (Paradowski 2008) and IAPR TC-12 (Grubinger et al.
2006), whose characteristics are shown in Table 8.

For the MGV and ICPR datasets as the reference points we have obtained the
results presented in Kwasnicka and Paradowski (2008). For these data sets the
proposed method achieved significantly better results. The highest difference is seen
for the best annotated words, where F-score was improved by 20 percentage points
in both sets (the relative improvement over the CRM method is about 37% and 44%
for the MGV and ICPR datasets respectively) (Tables 9 and 10).

For IAPR TC 12 as the reference point we have acquired the results presented
in Makadia et al. 2008. We obtained comparable results to the Lasso and JEC
methods on that benchmark set. Lasso and JEC equally used the approach of
transferring annotation from similar images, but both of these methods combine
seven different similarity measures and feature sets, such as RGB, HSV, LAB, Haar,
HaarQ, Gabor and GaborQ. Only a combination of those measures would allow
for comparable results to PATSI. The method proposed by Makadia et al. (2008)
cannot automatically determine the annotation’s length, assuming that this is one of
the given parameters (Table 11).

7 Conclusion

The performed experiments show that the proposed PATSI method fulfills the
assumed requirements, i.e. it produces good results using single similarity measure
(in contrast to the runner-ups Lasso and JEC from Makadia et al. (2008)) and does
not require manually tuning its parameters. It is worth to underline that the PATSI
method produces annotations with variable length, as it is the most important novelty
that distinguishes PATSI from other approaches.

Every image is a collection of visual information which can be annotated by a
different number of words, because visual information can be stored in parallel.
Using automatic image annotation with a fixed annotation length does not cope with
this varying number of concepts, leading to unrealistic and limited annotations. Using
variable annotation length better reflects the reality.
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Most approaches towards automatic image annotation depend on a number of para-
meters which must be tuned manually, often by trial and error method. This makes
them unsuitable for usage on a fast investigation into the space of other configurations
as different distance measures and feature sets. PATSI with the iterative refinement
method allows to automatically determine good values for the annotator’s parameters.

Despite its good performance PATSI also shows some weaknesses. Our method’s
complexity depends on the annotator knowledge, as the query image is compared
to each image of the training database. This makes PATSI unsuitable for very large
image collections.

A second shortcoming is the closed vocabulary of PATSI. Unknown semantic
concepts cannot be annotated and every change in the vocabulary requires a re-
execution of the computationally expensive learning phase. This renders the method
unsuitable for fast-changing web applications.

Furthermore PATSI does not consider the vocabulary taxonomy. If, for example,
a query image’s nearest neighbours contain the words man and men, our annotation
transfer treats them as independent. A situation can arise, where their individual
weights are not sufficient to pass the threshold ¢, while a consideration of their
combined weight would lead to a correct transfer.

During our experiments we observed that some SSs were good at detecting and
correctly transferring some groups of keywords, while others performed better for
other groups. Different features capture different aspects of the human perception
of similarities between images. We believe that a real increase in the performance of
automatic image annotation is possible using a combination of SSs, where each SS is
responsible for a group of keywords belonging to a common similarity concept. The
presented iterative refinement procedure together with the undertaken evaluation
of a number of SSs allow for a fast investigation into their individual performances
for certain semantic groups of keywords, and to select a suitable set of SSs for a
combined approach.

Furthermore it would be interesting to study the impact of annotation word
correlation, as just recently proposed by Zhang et al. (2011). Their method exploits
correlations between the tags and the images’ visual features, making tag probability
information available that can be utilized during the annotation process. This promis-
ing method could be easily integrated with PATSI.

To decrease the computational complexity of our method, animate vision could
be employed (Boccignone et al. 2008) which would allow to concentrate only on
the image regions with the highest probability of relevance. To reduce the search
space, which can be very large for huge image databases, Wichert (2008) proposed
a hierarchical linear subspace method. Adapting this approach to other than colour-
based features could lead to an significant speed up for PATSI.

To tackle the problem of relationships between words, one of the taxonomies
described in Tousch et al. (2012) like WordNet could be employed together with
an extended evaluation measure such as proposed in Nowak et al. (2011).

Open Access This article is distributed under the terms of the Creative Commons Attribution
License which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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