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Abstract Fuzzy Description Logics (fuzzy DLs) are extensions of classic DLs that
are capable of representing and reasoning with imprecise and vague knowledge.
Though reasoning algorithms for very expressive fuzzy DLs have been developed
and optimizations have started to be explored, the efficiency of such systems is still
questionable, and the study of tractable languages is an interesting open issue. In this
paper we introduce a tractable fuzzy extension of EL++. We present its syntax and
semantics together with a reasoning algorithm for the fuzzy concept subsumption
problem to which other problems can be reduced.

Keywords Fuzzy description logics · Fuzzy EL++ · Tractable description logics ·
Fuzzy concrete domains

1 Introduction

Description Logics (DLs) are a class of knowledge representation languages with
well-defined semantics and decidable reasoning algorithms which are widely used in
a variety of knowledge-based applications on the Semantic Web (Baader et al. 2003).
Unfortunately, there are occasions where classical DL formalisms fail to accurately
represent the concepts that appear in a domain of interest. This is particularly the
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case when domain knowledge is inherently imprecise or vague. Concepts like that of
a “near” destination (Berners-Lee and Hendler 2001), a “high Quality” audio system
(McGuinness 2003), “many” children, a “faulty” reactor (Horrocks and Sattler 1999),
“soon” and many more, require special modeling features. To bridge this gap fuzzy
DLs have been introduced, which constitute an extension of classic DLs capable of
representing and reasoning with vague and imprecise knowledge. Fuzzy DLs have
already attracted the interest of researchers from other communities and have been
used in numerous domains like multimedia and information retrieval applications
(Meghini et al. 2001; Simou et al. 2008; Dasiopoulou et al. 2008) to provide ranking
degrees, ontology alignment (Ferrara et al. 2008), matchmaking (Ragone et al. 2009)
and many more.

Over the recent years, many expressive fuzzy DL languages have been studied,
like fuzzy SHIN (Stoilos et al. 2007), fuzzy ALCF(D) (Straccia and Bobillo
2007) and fuzzy SROIQ (Bobillo et al. 2007), while implementation efforts of the
introduced algorithms resulted in systems like FiRE,1 fuzzyDL2 and DELOREAN.3

The previously mentioned systems are based on fuzzy extensions of worst-case
exponential algorithms and although optimizations for them have also been studied
recently (Simou et al. 2010; Haarslev et al. 2007), their scalability is still questionable
as no evidence of any large-scale experimental evaluation has been presented. As a
consequence, like in the case of classical DLs, much interest has emerged about the
development of sound and complete inference algorithms for tractable, i.e. of at most
polynomial complexity, fragments of fuzzy DLs.

To meet this objective, various approaches based on different classic DL systems
have been proposed. Straccia (2006) introduced a fuzzy extension of the DL-Lite
(Calvanese et al. 2007) language, while Pan et al. (2007) presented the very first
scalable system based on fuzzy-DL-Lite which is able to answer expressive fuzzy
conjunctive queries over millions of data. On the other hand several works have
also been conducted around the EL family of DLs (Baader et al. 2005). First Vojtáš
presented a fuzzy extension of EL (Vojtáš 2007) while Stoilos et al. (2008) examined
a fuzzy extension of the tractable language EL+.

The fuzzy EL+ DL presented in Stoilos et al. (2008) has many interesting
properties since it extends concept axioms with degrees of truth, thus allowing for
fuzzy concept inclusion. Nevertheless, the proposed language provides a sound and
complete algorithm only for the problem of fuzzy concept subsumption, which makes
it inappropriate for representing assertional knowledge. In other words, fuzzy EL+

can only be used for classification purposes since reasoning on knowledge bases that
share individuals, which is the case in most real life applications, is not supported.
Furthermore, it lacks the ability to reason with datatype properties that are widely
used in real life applications. By using them one can model statements like “Paul is
180 cm height” or “John smokes more than 15 cigarettes per day”. In Example 1
we illustrate the expressive power of fuzzy EL++ using a medical application
scenario.

1http://www.image.ece.ntua.gr/~nsimou/FiRE/
2http://faure.isti.cnr.it/~straccia/software/fuzzyDL/fuzzyDL.html
3http://webdiis.unizar.es/~fbobillo/delorean.php

http://www.image.ece.ntua.gr/~nsimou/FiRE/
http://faure.isti.cnr.it/~straccia/software/fuzzyDL/fuzzyDL.html
http://webdiis.unizar.es/~fbobillo/delorean.php
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Table 1 Cytology, colposcopy and histology classification

ASSIST0CytologyResult, These results indicate women that are essentially healthy.
ASSIST0ColposcopyResult,
ASSIST0HistologyResult

ASSIST1CytologyResult, These results indicate women that need to be followed-up
ASSIST1ColposcopyResult, earlier than usual and do not mandate ablation or
ASSIST1HistologyResult excisional treatment of the altered cervical epithelium.

ASSIST2CytologyResult, These results indicate women who cytologically are found
ASSIST2ColposcopyResult, to have CIN-3, women who have satisfactory colposcopy
ASSIST2HistologyResult with high grade lesions, and women who had LLETZ or

cone biopsy and histologically proved high grade cervical
lesions but not stromal invasion.

ASSIST3CytologyResult, These results indicate women with invasive cervical cancer.
ASSIST3ColposcopyResult,
ASSIST3HistologyResult

Example 1 In the context of the ASSIST project4 an ontology about cervical cancer
is constructed (Mitkas et al. 2008; Falelakis et al. 2009). The diagnosis of cervical
cancer is based mainly on three types of examination, namely cytology, colposcopy,
and histology. Each patient may have one or more of these examinations that have
one of the results presented in Table 1. According to the findings of the examinations
each woman is characterized by some severity index. Each woman with a severity
index 0 is considered healthy while each woman with a severity index 3 has invasive
cervical cancer.

∃hasCytologyResult.ASSIST0CytologyResult �
∃hasSeverityIndex.ASSIST0SeverityIndex

Unfortunately the crisp EL++ language does not allow to express the fact that
the findings of a histology examination are more important than those of a cytology
examination. This can be achieved if we adopt a fuzzy version of EL++ to provide
ranking degrees w.r.t. the confidence about the results of each examination—similar
approaches have been proposed for multimedia retrieval, information retrieval, and
ontology alignment applications (Meghini et al. 2001; Simou et al. 2008; Dasiopoulou
et al. 2008; Ferrara et al. 2008). For example the following fuzzy concept inclusions

〈∃hasCytologyResult.ASSIST0CytologyResult �
∃hasSeverityIndex.ASSIST0SeverityIndex, 0.6〉

〈∃hasHistologyResult.ASSIST0HistologyResult �
∃hasSeverityIndex.ASSIST0SeverityIndex, 0.8〉

can be used to express the fact that the histology examination is more important,
regarding the diagnosis about the severity index results, than the Cytology exami-
nation. Another advantage in using EL++, instead of fuzzy EL+, to represent our

4http://assist.iti.gr/

http://assist.iti.gr/
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knowledge, is that it also provides for nominals and concrete domains. Nominals
allow to relate our terminological knowledge to some assertional knowledge, i.e.
information concerning different patients. For example we can assert that patient137
has a cytology examination with an ASSIST0 result:

(∃hasCytologyResult.ASSIST0CytologyResult)(patient137) ≥ 1

On the other hand concrete domains allow to represent numerical information about
patients. For example the assertion

�15 (smokesCigarettesPerDay)(patient137) ≥ 1

indicates that patient137 smokes more than 15 cigarettes per day.

Motivated by the above scenario, in this paper we study a fuzzy extension of
the EL++ language. Similar to fuzzy EL+, fuzzy EL++ allows for concept inclusion
axioms extended with degrees of truth (Straccia 2005b). Additionally though, it
allows for nominals, the bottom concept, and fuzzy concrete domains which add
extra expressiveness. The main contributions of this paper can be summarized as
follows:

– It presents the syntax and the semantics of fuzzy EL++ which is more expressive
than fuzzy EL+ due to nominals, the bottom concept, and fuzzy concrete
domains.

– It studies and presents the reduction of the most common inference services of
fuzzy DL systems to the fuzzy concept subsumption problem. It is important to
note at this point that such kind of reduction has not been studied in the fuzzy
DL literature before.

– It investigates fuzzy p-admissible concrete domains for the fuzzy EL++

language—i.e. fuzzy concrete domains that can be integrated to the fuzzy EL++

language without affecting its polynomial time complexity.
– It presents a reasoning algorithm for the problem of fuzzy concept subsumption

in fuzzy EL++ along with a detailed proof of its soundness and completeness.
– It investigates on the complexity of the algorithm.

The main objective of this paper is not to present a language that is more
expressive than previously presented fuzzy DL languages “most of the expressive
features appearing in this paper have already been presented in the literature”.
It rather studies the interaction between expressiveness and complexity in order
to introduce a fuzzy DL language that is expressive enough to be used in real
world applications and at the same time retains its polynomial complexity reasoning
algorithm.

The rest of the paper is organized as follows. Section 2 briefly introduces the DL
EL++ and provides some preliminaries about the notion of a fuzzy set and how set
theoretic and logical operations are extended to the fuzzy set framework. Section 3
introduces the syntax and semantics of the fuzzy EL++ language, presents the most
common inference problems, and how these are reduced to the problem of fuzzy
concept subsumption. Section 4 provides an investigation on the semantics of fuzzy
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concrete domains and on how they can be embedded into the fuzzy EL++ language.
In Section 5 we present in detail the reasoning procedure for deciding fuzzy concept
subsumption w.r.t. a fuzzy EL++ ontology and we provide the proofs for soundness,
completeness, and the complexity of the proposed algorithm. Finally, in Section 6 we
review related work on other fuzzy EL languages and fuzzy concrete domains, while
Section 7 concludes the paper.

2 Preliminaries

2.1 The EL++ language

In the current section we briefly introduce the Description Logic EL++ which we will
extend in the next sections.

The signature of EL++ (Baader et al. 2005) consists of disjoint sets of concept
names (unary predicates) NC, role names (binary predicates) NR, and individuals
(constants) NI . EL++ concepts (or concept descriptions) are defined using the
constructors presented in the upper part of Table 2 where a and b denote individuals,
r, r1, . . . , rk and s denote role names and C, D denote arbitrary concepts.

An EL++ ontology O is a pair 〈A, C〉, where A is an assertional box (ABox)
and C is a constraint box (CBox). An EL++ ABox is a finite set of concept and
role assertions, while an EL++ CBox is a finite set of general concept inclusions
(GCIs) and role inclusions (RIs). The syntaxes of both ABox and CBox are shown
in Table 2.

The semantics of an EL++ ontology are given via an interpretation I = 〈�I, ·I〉.
The domain �I is a non-empty set of objects and the interpretation function ·I maps
each concept name A ∈ NC to a subset AI of �I , each role name r ∈ NR to a binary
relation rI on �I , and each individual name a ∈ NI to an element aI ∈ �I . An
interpretation I is a model of an ontology O = 〈A, C〉 if it is a model of A and C.
I is a model of an ABox A (CBox C) iff every concept and role assertion in A (GCI
and RI in C) satisfy the semantics of EL++ concept descriptions shown in the third
column of Table 2.

Table 2 Syntax and semantics of EL++

Name Syntax Semantics

Top � �I

Bottom ⊥ ∅
Nominal {a} {aI }
Conjunction C � D CI ∩ DI

Existential restriction ∃r.C
{

x ∈ �I | ∃y ∈ �I : (x, y) ∈ rI ∧ y ∈ CI}

Concrete domain p( f1, . . . fk) for p ∈ PD j
{

x ∈ �I | ∃y1, . . . , yk ∈ �D j :
f Ii (x) = yi for 1 ≤ i ≤ k, (y1, . . . , yk) ∈ pD j

}

GCI C � D CI ⊆ DI

RI r1 ◦ . . . ◦ rk � s rI1 ◦ . . . ◦ rIk ⊆ sI

Concept assertion C(a) aI ∈ CI

Role assertion r(a, b) (aI , bI ) ∈ rI
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EL++ with concrete domains Numerical information is expressed in DLs with the
aid of “concrete domains” (Baader et al. 2005). A concrete domain D is a pair
〈�D,PD〉 with �D a set of concrete objects (values) and PD a set of predicate names,
where each p ∈ PD is associated with an arity n > 0 and an extension pD ⊆ (�D)n.

Example 2 The concrete domain of rational numbers Q = 〈Q,PQ〉, presented in
Baader et al. (2005), has as domain the rational numbers and contains unary
predicates such as �Q, =q, >q and binary predicates such as =, +q (where q ∈ Q).
Intuitively a conjunction of the form:

(=3)(x) ∧ (+5)(x, y)

indicates that x = 3 and that x + 5 = y. It is obvious that such a conjunction is
satisfiable and also the following holds:

(=3)(x) ∧ (+5)(x, y) |= (=8)(y).

To provide a link between EL++ and some arbitrary concrete domain, Baader
et al. introduce a set of feature names NF . The syntax and semantics of EL++

concrete domains are illustrated in Table 2, where p denotes a predicate of some
concrete domain D j, f1, . . . , fk are feature names, and an interpretation function
·I maps each feature name f ∈ NF to a partial function fI from �I to �D. For
example using the EL++ syntax we may assert that “John is 30 years old” as follows:
=30 (hasAge)(John). The DL EL++ may be equipped with a number of concrete
domains D1, . . . ,Dn such that �Di ∩ �D j = ∅ for i �= j.

2.2 Fuzzy sets

In this section we briefly introduce fuzzy set theory and fuzzy logic (Klir and
Yuan 1995).

Let � be a (possibly infinite) set of elements. Any classical (crisp) subset S of
� can be defined with the aid of a characteristic function χS : � → {0, 1}, such that
χS(x) = 1 if x ∈ S, and χS(x) = 0 otherwise. On the other hand, a fuzzy subset A of
� is defined using a (so-called) membership function μA : � → [0, 1] denoting that
x belongs to A to a certain degree. Similarly, an n-ary fuzzy relation R over the
sets �1, . . . , �n is defined by a mapping μR : �1 × . . . × �n → [0, 1]. For instance,
TallHuman(John) = 0.8 implies that John belongs to the (fuzzy) set TallHumans to
a degree of 0.8, i.e. that he is quite tall. Similarly, hasFriend(John, Mary) = 0.9 states
that Mary is a close friend of John.

2.2.1 Fuzzy set theoretic operations

The classical set theoretical and logical operations (complement, union, and so
on) are extended in fuzzy set theory by using special mathematical functions (Klir
and Yuan 1995). More precisely fuzzy complement, fuzzy intersection, fuzzy union,
and fuzzy implication correspond (respectively) to an unary operation of the form
c : [0, 1] → [0, 1], a binary operation of the form i : [0, 1] × [0, 1] → [0, 1] (called
t-norm), a binary operation of the form u : [0, 1] × [0, 1] → [0, 1] (called t-conorm),
and a binary operation J : [0, 1] × [0, 1] → [0, 1].



J Intell Inf Syst (2012) 39:399–440 405

Table 3 Popular families of fuzzy operators

Family i(a, b) u(a, b) c(a) J (a, b)

Zadeh min(a, b) max(a, b) 1 − a max(1 − a, b)

Łukasiewicz max(a + b − 1, 0) min(a + b , 1) 1 − a min(1 − a + b , 1)

Product a · b a + b − a · b

{
1, a = 0

0, a > 0

⎧
⎨

⎩

1, a ≤ b
b
a

, a > b

Gödel min(a, b) max(a, b)

{
1, a = 0

0, a > 0

{
1, a ≤ b

b , a > b

In order to produce meaningful results, these functions must satisfy certain
mathematical properties. For example, fuzzy complement must satisfy the following
axiomatic requirements c(0) = 1, c(1) = 0, and c must be a monotonically decreasing
function. The reader is referred to Klir and Yuan (1995) for a comprehensive
introduction to fuzzy set theoretic operations. In Table 3 some popular families of
fuzzy operators are presented.

Finally, given two binary fuzzy relations R1 : �1 × �2 → [0, 1] and R2 :
�2 × �3 → [0, 1], their sup-t composition is defined as follows:

[
R1 ◦i R2

]
(a, c) = sup

b∈�2

{
i(R1(a, b), R2(b , c))

}

where i is a t-norm. Due to the associativity property of sup-t composition, i.e.
(R1 ◦i R2) ◦i R3 = R1 ◦i (R2 ◦i R3), we can extend the operation to any number of
fuzzy relations, i.e. [R1 ◦i R2 ◦i . . . ◦i Rn](a, b).

3 The fuzzy EL++ language

3.1 Syntax and semantics

In this section we present the syntax and semantics of a fuzzy extension of the EL++

language. Since the semantics we propose are based on the operators of the Gödel
logic, we may as well call the proposed language fG-EL++. Our extension follows
in principle the syntax and semantics of fuzzy DLs previously presented in Straccia
(2001) and Stoilos et al. (2007).

Like classical (crisp) EL++, the language of fG-EL++ consists of concept names
NC, role names NR and individuals NI . As usual individuals represent the objects
of our universe, concept names represent fuzzy sets of individuals, and role names
represent binary fuzzy relations between individuals of our universe.

The abstract syntax of concepts and roles is the same as their EL++ counterparts;
however their semantics is based on fuzzy interpretations. A fuzzy interpretation
I = 〈�I , ·I〉 consists of a domain �I which is a non-empty set of objects and a
fuzzy interpretation function ·I which maps: (i) each a ∈ NI to an element aI ∈ �I ,
(ii) each A ∈ NC to a membership function AI : �I → [0, 1], (iii) each r ∈ NR to a
membership function rI : �I × �I → [0, 1]. For example, for some interpretation I ,
if x ∈ �I then AI(x) gives the degree that the object x belongs to the fuzzy concept
A, e.g. AI(x) = 0.8.
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Fuzzy EL++ allows to inductively define complex concept descriptions using the
same constructors as the classic EL++ language. As with classical EL++ the semantics
of concept descriptions are inductively defined. They are presented in the upper part
of Table 4 for each x ∈ �I . They are based on the Gödel fuzzy theoretic operation
functions defined in Section 2.2. For example, since the min function is used for
conjunction, we have that (C � D)I(x) = min(CI(x), DI(x)). We chose to interpret
nominals in a standard way, i.e. {a} is interpreted as the singleton crisp set that
contains exactly the object aI , thus {a}I(x) = 1 if x = aI , 0 otherwise. For different
choices the reader is referred to Bobillo et al. (2006).

The terminological knowledge of a fuzzy EL++ ontology is expressed by a set
of fuzzy general concept inclusions (fuzzy GCIs) and role inclusion axioms (RIs),
called a constraint box (CBox) C (Baader et al. 2005). A fuzzy GCI is an axiom of
the form 〈C � D, d〉, where d ∈ (0, 1] and C, D are concept descriptions (see also
Straccia 2005b). A role inclusion axiom is an axiom of the form r1 ◦ . . . ◦ rk � s, where
r1, . . . , rk, s ∈ NR.

The semantics of fuzzy GCIs and RIs are given in the middle part of Table 4 where
x, y ∈ �I and the operator ◦min corresponds to the sup-min composition described in
Section 2.2. An interpretation I is a model of a CBox C iff, for each GCI and RI in C,
the conditions described in the middle part of Table 4 are satisfied. For example, let
the CBox C = {〈A � B � D, 0.7〉, r1 ◦ r2 � s}, and let the interpretation I such that
�I = {x, y, z}, AI(x) = 0.3, BI(x) = 0.2, DI(x) = 0.5, rI1 (x, y) = 0.4, rI2 (y, z) = 0.3
and sI(x, z) = 0.3. It can be easily verified that I satisfies our CBox.

Fuzzy EL++ also allows for an assertional box (ABox) A, i.e. a finite set of concept
and role assertions that are used to describe a snapshot of our world. The syntax and
semantics of concept and role assertions are described in the bottom part of Table 4,
where a, b ∈ NI , C ∈ NC, r ∈ NR and d ∈ [0, 1]. Using such expressive means we
can say, for example, that Tall(John) ≥ 0.8 and f riend(John, Mairy) ≥ 0.5, while
an interpretation I that satisfies both assertions is the following: �I = {x, y},
JohnI = x, MairyI = y, TallI(x) = 0.9, f riendI(x, y) = 0.7.

We point out that the language studied in Stoilos et al. (2008) is not able to capture
such assertional knowledge due to the absence of nominals.

Table 4 Syntax and semantics of fuzzy EL++

Name Syntax Semantics

Top � �I (x) = 1

Bottom ⊥ ⊥I (x) = 0

Nominal {a} {a}I (x) =
{

1 if x = aI

0 otherwise

Conjunction C � D (C � D)I (x) = min(CI (x), DI (x))

Existential restriction ∃r.C (∃r.C)I (x) = supy∈�I
{

min(rI (x, y), CI (y))
}

GCI 〈C � D, d〉 min(CI (x), d) ≤ DI (x)

RI r1 ◦ . . . ◦ rk � s
[
rI1 ◦min . . . ◦min rIk

]
(x, y) ≤ sI (x, y)

Concept assertion C(a) ≥ d CI (aI ) ≥ d

Role assertion r(a, b) ≥ d rI (aI , bI ) ≥ d
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Finally, we say that an interpretation I is a model of a fuzzy ontology O = 〈A, C〉
iff it is, at the same time, a model of A and C.

Example 3 Providing a detailed version of the ontology presented in Example 1 we
have that:5

C = {〈∃hasCytologyResult.ASSIST0CytologyResult �
∃hasSeverityIndex.ASSIST0SeverityIndex, 0.6〉,

〈∃hasColposcopyResult.ASSIST0ColposcopyResult �
∃hasSeverityIndex.ASSIST0SeverityIndex, 0.7〉,

〈∃hasHistologyResult.ASSIST0HistologyResult �
∃hasSeverityIndex.ASSIST0SeverityIndex, 0.8〉 . . . }

A = { (∃hasCytologyResult.ASSIST0CytologyResult)(patient137) ≥ 1 ,

(∃hasHistologyResult.ASSIST0HistologyResult)(patient138) ≥ 1 }
The first fuzzy GCI implies that if a patient has a cytology result of type
ASSIST0 then this patient also has an ASSIST0 severity index with a degree of
at least 0.6 (i.e. this patient participates with a degree of at least 0.6 in concept
∃hasSeverityIndex.ASSIST0SeverityIndex). In a similar manner, the other two
GCIs state that the colposcopy and histology examination results imply degrees 0.7
and 0.8 respectively. Hence patient137 has an ASSIST0 severity index with a degree
of at least 0.6 because of her cytology result, while patient138 belongs to the same
concept with a degree of at least 0.8 because of her histology result.

In the specific scenario one can say that the degrees can be subsequently inter-
preted as degrees of confidence by the medical personnel. More specifically the
concept

∃hasSeverityIndex.ASSIST0SeverityIndex

provides a ranking between the individuals participating in it. The higher the degree
of participation an individual has on this concept, the higher is the confidence that
this individual is healthy. Therefore since our ontology implies that

O |= (∃hasSeverityIndex.ASSIST0SeverityIndex)(patient137) ≥ 0.6

O |= (∃hasSeverityIndex.ASSIST0SeverityIndex)(patient138) ≥ 0.8

the medical personnel has a 0.6 confidence degree that patient137 is healthy and a
0.8 confidence degree that patient138 is healthy.

Other applications that adopt fuzzy DLs in order to provide ranking degrees
have been proposed for multimedia, information retrieval, and ontology alignment
applications (Meghini et al. 2001; Simou et al. 2008; Dasiopoulou et al. 2008; Ferrara
et al. 2008).

The presence of nominals makes fuzzy EL++ much more expressive than fuzzy
EL+ since it allows the representation of assertional knowledge for a large ontology
containing patients or any other kind of information. Furthermore nominals along
with the bottom concept allow to express the unique name assumption, i.e. that two

5The weight related to each concept subsumption was proposed by medical experts.
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individuals cannot correspond to the same object in �I , as follows: 〈{a} � {b} � ⊥, 1〉.
Finally, the bottom concept also allows to express disjointness between complex
concept descriptions as follows: 〈C � D � ⊥, 1〉.

3.2 Fuzzy DL inference problems

In this section we present the most common inference problems addressed by fuzzy
DLs and prove how each one can be reduced to the fuzzy concept subsumption
problem.

Let C be a fuzzy EL++ CBox, A a fuzzy EL++ ABox, and O a fuzzy EL++

ontology. The most common inference problems addressed by fuzzy DL systems are
the following:

Concept satisf iability A concept C is satisfiable w.r.t. C, iff there exists a
model I of C such that CI(x) > 0 for some x ∈ �I .

Fuzzy concept subsumption A concept C is fuzzily subsumed by a concept D,
to a degree of d ∈ (0, 1], w.r.t. C, written 〈C �C
D, d〉, iff for every model I of C and x ∈ �I it
holds that min(CI(x), d) ≤ DI(x). We often abuse
notation and write 〈C �O D, d〉 if the ABox of the
ontology is empty. We also write O |= 〈C � D, d〉
as an equivalent form of 〈C �O D, d〉.

Ontology consistency We say that O = 〈A, C〉 is consistent iff it has at
least one model.

Instance problem An individual a ∈ NI is an instance of a concept
C with a degree greater or equal than d, w.r.t. an
ontology O, iff in each model I of O it holds that
CI(aI) ≥ d.

Greatest lower bound problem The greatest lower bound (GLB) problem for a
crisp concept assertion C(a) is to find the largest
degree d such that CI(aI) ≥ d holds for every
model I of O.

As the following Lemma suggests all inference problems can be reduced in linear
time to the fuzzy concept subsumption problem:

Lemma 1 Let O = 〈A, C〉 be a fuzzy EL++ ontology, with A the fuzzy EL++ ABox
and C the fuzzy CBox, and let C a fuzzy EL++ concept. All inference problems of
fuzzy DLs can be reduced to fuzzy concept subsumption as follows:

– Concept satisf iability: concept C is satisf iable w.r.t. C if f 〈C ��C ⊥, 1〉.
– Instance problem: in order to solve the instance problem our algorithm replaces

each assertion in A with a fuzzy GCI between a nominal and a concept. Hence-
forth, instance checking can be reduced to fuzzy concept subsumption between a
nominal and a concept. Let the set CA def ined as follows:

CA := {〈{a} � C, d〉 | C(a) ≥ d ∈ A}
⋃

{〈{a} � ∃r.{b}, d〉 | r(a, b) ≥ d ∈ A}.
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An individual c is an instance of C, to a degree at least d, w.r.t. O, if f 〈{c} �C∪CA

C, d′〉 for some d′ ≥ d.
We must point out that our algorithm when calculating concept subsumption
between a nominal {c} and a concept D, it calculates the greatest degree d such
that O |= 〈{c} � D, d〉. Therefore simultaneously solves the GLB problem.

– Ontology consistency: O is consistent if f 〈� ��C∪CA ⊥, 1〉, where CA is as before.

Consequently, like in the case of crisp EL++, we will only focus in solving the fuzzy
concept subsumption problem.

4 Extending fuzzy EL++ with fuzzy concrete domains

Fuzzy concrete domains allow us to represent and reason about “fuzzy concrete
qualities”. The need for fuzzy arithmetic and subsequently fuzzy concrete domains
emerges from a variety of applications (mechanical, geotechnical and biomedical
engineering). For an extensive presentation of the theory of fuzzy arithmetic and
an extensive view on its applications the reader may refer to Hanss (2005).

In the rest of this section (i) we revise the syntax and semantics of fuzzy concrete
domains, initially introduced in Straccia (2005a), (ii) we introduce the notion of
conjunction, disjunction, solution, and implication on a fuzzy concrete domain, (iii)
we adapt the syntax and semantics of the concrete domain constructor introduced
for the crisp EL++ language (Baader et al. 2005) for the fuzzy case, (iv) we introduce
a set of restrictions on the expressiveness of fuzzy EL++ fuzzy concrete domains in
order to ensure the language’s polynomial complexity.

4.1 Fuzzy concrete domains

Straccia (2005a) first studied fuzzy concrete domains in the fuzzy DL ALC(D).
According to Straccia, a fuzzy concrete domain D is a pair 〈�D, �D〉 where �D is
a set and �D is a set of fuzzy predicate names. Each fuzzy predicate p ∈ �D with a
predefined arity n has an interpretation pD : (�D)n → [0, 1], which is an n-ary fuzzy
relation over �D.

For a concrete domain D a conjunction of m formulae with degrees has the
following form:

m∧

i=1

pi(Xi) ��i di (1)

where pi ∈ �D is a concrete domain predicate, Xi is a vector of variable names with
the same arity as pi, ��i∈ {≤,<, =,>, ≥}, di ∈ (0, 1], and 1 ≤ i ≤ m.

We say that (1) is satisfiable, iff there exists a mapping δ from variable names to the

elements of our concrete domain δ :
(⋃m

i=1 Xi

)
→ �D, such that p

D j

i (δ(Xi)) ��i di

holds6 for every formula in the conjunction. We call the mapping δ a solution for

6For a variable vector X = 〈x1, . . . , xk〉, δ(X) is a shortcut for 〈δ(x1), . . . , δ(xk)〉.
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the conjunction, denoted as δ |= ∧m
i=1 pi(Xi) ��i di. In any different case we say that

the conjunction is unsatisfiable. A conjunction of fuzzy concrete domain predicates
implies a disjunction of fuzzy concrete domain predicates i.e.

m∧

i=1

pi(Xi) ��i di |=
n∨

i=m+1

pi(Xi) ��i di

iff for every solution δ of the conjunction we have that δ |= pl((Xl)) ��l dl for some
m + 1 ≤ l ≤ n.

Example 4 The concrete domain F ′′ = 〈Q,�F ′′ 〉 defined on the set of rational
numbers contains the unary predicate �q and the binary predicate �+q for every
q ∈ Q. The two predicates can be defined based on some monotonic, continuous,
increasing function such as the following:

fq(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 , x < q − 10
x − q + 10

10
, q − 10 ≤ x ≤ q

1 , q < x

.

Based on the previous membership functions the two predicates are interpreted as
follows: �D

q (x) = fq(x) and �+
D
q (x, y) = fq(x − y).

The formula �+q(x) is used to indicate that the variable x is fuzzily superior to
the value of q, while the formula �+q(x, y) is used to indicate that the variable x is
fuzzily superior to the addition of the variable y and the value of q. The membership
function f20, illustrated in Fig. 1, gives a value of 0 to every x ∈ Q lesser than 10,
a value of 1 to every x ∈ Q greater than 20, and a value in-between to every other

Fig. 1 The �15 and the �20
membership functions
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x ∈ Q. Therefore an assertion of the form �20 (x) ≥ 1 (respectively �+20(x, y)) in-
dicates that δ(x) ≥ 20 (respectively δ(x) ≥ 20 + δ(y)) for every solution δ of the
previous assertion.

4.2 Fuzzy EL++ with concrete domains

Knowledge related to some fuzzy concrete domain is embodied into a fuzzy EL++

ontology via the fuzzy concrete domain constructor. As it can be seen in Table 5,
the fuzzy concrete domain constructor we propose has the same syntax as its crisp
counterpart presented in Baader et al. (2005). As a result, in order to provide
a link between the DL and some fuzzy concrete domain, a set NF of feature
names is introduced. The concept description p( f1, . . . , fk) presented in Table 5
is constructed by a predicate of some concrete domain D and the feature names
f1, . . . , fk. Intuitively the predicate p, along with some degree d ∈ [0, 1] dictates the
relation between the features f1, . . . , fn.

Example 5 Suppose that we have the predicate �20 defined in Example 4 and the
feature name smokesCigarettesPerDay. A concept inclusion of the form

〈�20 (smokesCigarettesPerDay) � HeavySmoker, 1〉

indicates that someone that smokes more than 20 cigarettes per day is a heavy
smoker. Likewise a concept assertion of the form

�15 (smokesCigarettesPerDay)(John) ≥ 1

states that John smokes more than 15 cigarettes per day.

As usual, the DL fuzzy EL++ may be equipped with a number of concrete domains
D1, . . . ,Dn such that �Di ∩ �D j = ∅ for 1 ≤ i < j ≤ n. If we want to stress out the use
of particular concrete domains D1, . . . ,Dn, we write fuzzy EL++(D1, . . . ,Dn) instead
of fuzzy EL++.

In order to handle feature names, an interpretation I is extended by mapping each
feature name f ∈ NF to a partial function fI : �I → ⋃

1≤i≤n �Di . The extension
of ·I in order to interpret the concrete domain concept description is presented in
Table 5.

Table 5 Syntax and semantics of the concrete domain constructor for fuzzy EL++

Name Syntax Semantics

Concrete p( f1, . . . , fk) p( f1, . . . , fk)I (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d if ∃y1, . . . , yk ∈ �D j such that

f Ii (x)=yi for 1≤i≤k and

pD j(y1, . . . , yk) = d

0 otherwise
domain for p ∈ PD j
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Example 6 A possible interpretation for Example 5 is the following: �I = {JohnI},
smokesCigarettesPerDayI(JohnI) = 15, HeavySmokerI(VI) = 0.5. The previous
interpretation is a model since:

(�15 (smokesCigarettesPerDay))I(JohnI) = 1

(�20 (smokesCigarettesPerDay))I(JohnI) = 0.5

and therefore the ABox and the CBox are satisfied.

Unfortunately, unrestricted use of fuzzy concrete domains may lead to some
non polynomial or even undecidable language. For example, it is obvious that the
language fuzzy EL++

(D), where D is some language of exponential complexity, is a
language of at least exponential complexity. Even worse, as shown in Lutz (2003),
combining decidable description logics and decidable concrete domains may even
lead to undecidable languages.

In order to ensure that our language is of polynomial complexity, we must impose
a set of restrictions on the expressiveness of the concrete domain. These restrictions,
that are an adaptation for the fuzzy case of those presented in Baader et al. (2005),
result in two different categories of fuzzy p-admissible concrete domains: loose fuzzy
p-admissible concrete domains and strict fuzzy p-admissible concrete domains.

Loose fuzzy p-admissible concrete domains are more expressive than strict. Due
to their expressiveness, their utilization must be limited in order to ensure a sound,
complete, and polynomial algorithm. Therefore, a concept p( f1, . . . , fk) is only
allowed in concept inclusions of the form:

〈{a} � p( f1, . . . , fk), d〉 (2)

〈p( f1, . . . , fk) � C, d〉 (3)

where {a} is some nominal in our ontology and C can be some arbitrary concept
description as long as neither it, nor some of its subconcepts, is a concrete domain
expression. On the other hand, strict fuzzy p-admissible concrete domain concepts
may be used in any part of a concept inclusion since their limited expressiveness
ensures that the fuzzy EL++ language will remain sound, complete, and terminating.

Definition 1 (Loose Fuzzy p-admissible Concrete Domain) A concrete domain D is
loosely fuzzy p-admissible if it has the following properties:

1. Satisfiability and implication in D are decidable in polynomial time.
2. D is convex, i.e. if a conjunction of atoms of the form pi(Xi) ≥ di implies a

disjunction of such atoms, then it also implies one of its disjuncts.

The admissibility restrictions imposed on loose fuzzy p-admissible concrete do-
mains are an immediate extension of the restrictions presented in Baader et al.
(2005). The restriction of a polynomial time algorithm for deciding satisfiability
and implication in D is obviously needed in order to ensure that the resulting
language will be of polynomial complexity. The convexity restriction ensures that
fuzzy concrete domains won’t introduce non-determinism to our language that
ultimately would lead to a language of non polynomial complexity. The concrete
domain presented in Example 4 without the presence of �+q predicates is loosely
fuzzy p-admissible as proved in Proposition 1 in the Appendix.
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Example 7 In this example we will present a fuzzy concrete domain that does not
satisfy Condition 2 of Definition 1 and we will show how it can introduce non
determinism to our language. Suppose that we have the concrete domain � =
〈Q, ��〉 where Q corresponds to the set of rational numbers and �� contains only the
unary predicates �0.5, �1,�1.5 whose membership functions are depicted on Fig. 2.

Suppose now that we have a formula with degree of the form �1 (x) ≥ 0.5. The
previous inequality along with the membership function of the �1 predicate imply
that every solution δ of the previous conjunction maps the variable name x to some
element in [0.5, 1.5]. With similar arguments we also have that each solution δ′ of
�0.5 (x) ≥ 0.5 maps x to some element in [0, 1], while each solution δ′′ of �1.5 (x) ≥
0.5 maps x to some element in [1, 2]. Therefore it can be verified that

�1 (x) ≥ 0.5 |=�0.5 (x) ≥ 0.5
∨

�1.5 (x) ≥ 0.5

applies, while �1 (x) ≥ 0.5 |=�0.5 (x) ≥ 0.5 and �1 (x) ≥ 0.5 |=�1.5 (x) ≥ 0.5 don’t
apply. Therefore the presented concrete domain is non-convex.

Suppose now that we have an EL++ ontology of the form

O = {〈{a} ��1 ( f ), 0.5〉, 〈�0.5 ( f ) � C, 1〉, 〈�1.5 ( f ) � D, 1〉, }

where f is some feature name. According to the previous findings we can conclude
that for every model I of O either I |= 〈{a} � C, 0.5〉 holds or I |= 〈{a} � D, 0.5〉
holds, while neither O |= 〈{a} � C, 0.5〉 nor O |= 〈{a} � D, 0.5〉 hold. Therefore the
corresponding language is non-deterministic and consequently of non-polynomial
complexity.

We proceed to define strictly fuzzy p-admissible concrete domains that are a more
restrictive subset of loosely fuzzy p-admissible concrete domains.

Fig. 2 The �0.5, �1, and �1.5 membership functions
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Definition 2 (Strict Fuzzy p-admissible Concrete Domain) A concrete domain D is
strictly fuzzy p-admissible, if it is loosely fuzzy p-admissible and has the following
properties for some conjunction conj := ∧m

i=1 pi(Xi) ≥ di:

1. If the implications conj |= p(X) ≥ d, conj �|= p(X) > d apply, then the implica-
tions conj′ |= p(X) ≥ min(e, d), conj′ �|= p(X) > min(e, d) will also apply for any
degree e ∈ (0, 1] and the conjunction

conj′ :=
m∧

i=1

pi(Xi) ≥ min(di, e).

2. If the conjunction conj is unsatisfiable, then the conjunction conj′ is also unsat-
isfiable for every e ∈ (0, 1].

3. If the implications conj |= p(X) ≥ d, conj �|= p(X) > d apply, then d appears in
the conjunction conj.

4. If the implications conj |= p(X) ≥ d and conj �|= p(X) > d apply, then it also
applies that conj′′ |= p(X) ≥ d, conj′′ �|= p(X) > d for the conjunction:

conj′′ :=
∧

p′(X
′
)≥d′ appears in conj and d′≥d

p′(X ′) ≥ d′.

The previously mentioned admissibility restrictions were imposed by the proof
process—they are used throughout the soundness, completeness, and complexity
proofs—and thus it is difficult to give an intuitive explanation of each one of them.
Nevertheless, the main intuition underlying these restrictions is that they prevent the
production of new degrees. The production of new degrees along with the presence
of fuzzy p-admissible concrete domain concepts in GCIs could lead our algorithm
even to non termination. In Example 11 in the Appendix we show how the absence
of these restrictions may alter the performance of our algorithm.

Having in mind the latest work of Baader and Peñaloza (2011) which proves that
even inexpressive fuzzy DLs become undecidable with the addition of arbitrary t-
norms in GCIs, it is interesting to investigate if the same applies with the presence
of arbitrary concrete domains (even of polynomial complexity) since they both may
introduce an arbitrary number of new degrees to an ontology O.

We give an example of a fuzzy concrete domain that confines to the previously
mentioned restrictions:

Example 8 We can formulate a fuzzy concrete domain F ′ = 〈S × [0, 1], �F ′ 〉 where
S is an arbitrary set of elements and �F ′

contains a predicate =q for every q ∈ S.
Therefore the interpretation of =q (i.e. =D

q ) is a mapping =D
q : S × [0, 1] → [0, 1]

defined as follows for every element α ∈ S × [0, 1]:

=D
q (α) =

{
d if α = 〈q, d〉
0 otherwise

For example the conjunction

=5 (x) ≥ 0.3∧ =5 (x) ≥ 0.5∧ =8 (y) ≥ 0.6.

has a solution δ such that δ(x) = 〈5, 0.5〉, δ(y) = 〈8, 0.6〉.
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5 Reasoning in the fuzzy EL++ language

Since all reasoning problems of fuzzy EL++ can be reduced to fuzzy concept
subsumption, it suffices to develop an algorithm for this problem only. The proposed
algorithm, similar to that presented in Baader et al. (2005), is performed in two steps.
Initially an ontology O is normalized and then an algorithm for deciding subsumption
is applied over the normalized ontology.

5.1 Normal form of a fuzzy EL++ ontology

Given an ontology O, the set of basic concept descriptions of O, denoted as BCO , is
the smallest set of concept descriptions that contains the top concept �, all concept
names and nominals in O, and all subconcepts of the form p( f1, . . . , fk) appearing
in O. Similarly, RO denotes the set of all role names in O, and the set [0, 1]O is
the subset of [0, 1] containing only the degrees appearing in O, i.e. [0, 1]O = {d | d ∈
[0, 1] and 〈C � D, d〉 ∈ O}. Since our algorithm focuses on the fuzzy concept sub-
sumption problem and therefore works on an empty ABox according to Lemma 1,
we won’t consider the ABox A for degrees.

A fuzzy EL++ ontology O is in normal form, iff all fuzzy GCIs in O are in one of
the following forms (where C1, C2 ∈ BCO , D ∈ BCO ∪ {⊥} and d ∈ (0, 1]):

〈C1 � D, d〉 〈C1 � ∃r.C2, d〉 〈C1 � C2 � D, d〉 〈∃r.C1 � C2, d〉
and all RIs are in either the form r1 � s, or r1 ◦ r2 � s, for r1, r2, s ∈ RO.

As in the case with classical EL++ (Baader et al. 2005), a fuzzy EL++ ontology O
can be normalised by exhaustively applying the rules of Table 6 where Ĉ, D̂ �∈ BCO
are concept descriptions, u denotes a new role name, and A a new concept name.

Example 9 For example suppose that our ontology O contains only a GCI of the
form 〈∃r.(A � B) � C � D, 0.3〉.
– Application of rule NF3 replaces the initial GCI with two GCIs of the form:

〈A � B � E1, 1〉 and 〈∃r.E1 � C � D, 0.3〉 where E1 is a new concept name.
– Application of rule NF5 replaces the GCI 〈∃r.E1 � C � D, 0.3〉 with two GCIs of

the form 〈∃r.E1 � E2, 1〉 and 〈E2 � C � D, 0.3〉 where E2 is a new concept name.
– Application of rule NF7 replaces the GCI 〈E2 � C � D, 0.3〉 with two GCIs of

the form 〈E2 � C, 0.3〉 and 〈E2 � D, 0.3〉.

Table 6 Normalization rules for fuzzy EL++

NF0 〈Ĉ � Ê, 0〉 → ∅
NF1 r1 ◦ . . . ◦ rk � s → r1 ◦ . . . ◦ rk−1 � u, u ◦ rk � s
NF2 〈C � D̂ � E, d〉 → 〈D̂ � A, 1〉, 〈C � A � E, d〉
NF3 〈∃r.Ĉ � D, d〉 → 〈Ĉ � A, 1〉, 〈∃r.A � D, d〉
NF4 〈⊥ � D, d〉 → ∅
NF5 〈Ĉ � D̂, d〉 → 〈Ĉ � A, 1〉, 〈A � D̂, d〉
NF6 〈B � ∃r.Ĉ, d〉 → 〈B � ∃r.A, d〉, 〈A � Ĉ, 1〉
NF7 〈B � C � D, d〉 → 〈B � C, d〉, 〈B � D, d〉
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Therefore the initial CBox C = {〈∃r.(A � B) � C � D, 0.3〉} is transformed to the
normalized CBox

C ′ = {〈A � B � E1, 1〉, 〈∃r.E1 � E2, 1〉, 〈E2 � C, 0.3〉, 〈E2 � D, 0.3〉.}

where E1, E2 are newly introduced concept names.

Lemma 2 Fuzzy subsumption w.r.t. a fuzzy EL++ ontology O can be reduced in
linear time to fuzzy subsumption w.r.t. a normalized fuzzy EL++ ontology O′.

5.2 A subsumption algorithm for fuzzy EL++

In this section we present the algorithm for deciding fuzzy concept subsumption w.r.t.
to a normalized ontology O. Initially we reduce the problem of fuzzy concept sub-
sumption between two concept descriptions C and D to fuzzy concept subsumption
between a newly introduced nominal and a newly introduced concept name.

Lemma 3 Let O be a fuzzy EL++ ontology and C and D fuzzy EL++ concepts. Then
〈C �O D, d〉, if f 〈{o} �O′ B, d〉, where o is a new individual name, B a new concept
name not appearing in BCO and

O′ = O ∪ {〈{o} � C, 1〉, 〈D � B, 1〉}.

Our reasoning algorithm works by saturating the input axioms using the rules
in Table 7. The rules are applied over a normalized ontology O and produce new
axioms of the form 〈C � D, d〉, 〈C � ∃r.D, d〉 where r ∈ RO and C, D ∈ BCO . These
new axioms are added to the saturated ontology OSAT which contains, explicitly,
fuzzy concept subsumptions implied in O. This means that if 〈C � D, d〉 ∈ OSAT then
〈C �O D, d〉. The rules in Table 7 have the form

U1, . . . , Un

W
: V

where U1, . . . , Un are concept inclusions in OSAT, W is the concept inclusion that will
be added in each rule application to OSAT, and V is either a concept/role inclusion in
O, or a fuzzy concrete domain condition. The notation adopted by our algorithm is
similar to the one presented in Kazakov (2009), rather than the one in Baader et al.
(2005) and Stoilos et al. (2008).

The saturation rules are performed in the following sequence. Initially rules I1,
I2 are applied and then the algorithm proceeds with the application of the other
completion rules described in Table 7 until no rule can add any further information.
By the semantics of concept inclusion, if both 〈C �O D, d1〉, 〈C �O D, d2〉 hold, it
suffices to keep only the concept inclusion with the maximum degree (similar for
concept inclusions of the form 〈C �O ∃r.D, d〉). For the same reason, a rule adding
a concept inclusion 〈C � D, d1〉 to OSAT won’t be applied if OSAT already contains
〈C � D, d2〉 and d2 ≥ d1.

In Table 7 we use the relation � (see rule CR6) between a nominal and a concept.
The definition of this relation is similar to the one in Baader et al. (2005) adapted to
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Table 7 Saturation Rules for Fuzzy EL++ Ontologies

I1 〈C � C, 1〉
I2 〈C � �, 1〉

CR1
〈C � C′, d1〉

〈C � D, min(d1, d2)〉 : 〈C′ � D, d2〉

CR2
〈C � C1, d1〉, 〈C � C2, d2〉
〈C � D, min(d1, d2, d3)〉 : 〈C1 � C2 � D, d3〉

CR3
〈C � C′, d1〉

〈C � ∃r.D, min(d1, d2)〉 : 〈C′ � ∃r.D, d2〉

CR4
〈C � ∃r.E, d1〉, 〈E � C′, d2〉

〈C � D, min(d1, d2, d3)〉 : 〈∃r.C′ � D, d3〉

CR5
〈C � ∃r.E, d1〉, 〈E � ⊥, d2〉

〈C � ⊥, 1〉 : d1 > 0 and d2 > 0

CR6
〈C � {a}, 1〉, 〈E � {a}, 1〉, 〈{b} � E, d1〉, 〈E � D, d2〉

〈C � D, min(d1, d2)〉

CR7
〈C � p1(F1), d1〉, . . . , 〈C � pm(Fm), dm〉

〈C � ⊥, 1〉 :
m∧

i=1
pi(Fi) ≥ di is unsatisfiable

CR8a
〈C � p1(F1), d1〉, . . . , 〈C � pm(Fm), dm〉

〈C � p(F), d〉 :
m∧

i=1
pi(Fi) ≥ di |= p(F) ≥ d and

(i) each predicate p1, . . . , pm ∈ �D ,
(ii) D is some strict fuzzy p-admissible concrete domain

CR8b Rule CR8b is identical to rule CR8a with the only
difference that C can only be a nominal {a} ∈ BCO and D is some loose
fuzzy p-admissible concrete domain

CR9
〈C � pi(Fi), di〉, 〈C � p j(F j), d j〉

〈C � ⊥, 1〉 : pi ∈ �Di , p j ∈ �D j , i �= j and

(i) there exists some feature f appearing in both Fi, F j,
(ii) di > 0 and d j > 0.

CR10
〈C � ∃r.D, d〉
〈C � ∃s.D, d〉 : r � s

CR11
〈C � ∃r1.D, d1〉, 〈D � ∃r2.E, d2〉

〈C � ∃s.E, min(d1, d2)〉 : r1 ◦ r2 � s

CR12
〈C � {a}, d〉
〈C � {a}, 1〉 : where d > 0

membership degrees. For {a}, E ∈ BCO we say that 〈{a} � E, d〉 when one of the
following conditions holds:

– Either there exist concepts {C1, . . . , Ck+1} ⊆ BCO and roles {r1, . . . , rk} ⊆ RO,
such that: (i) 〈Ci � ∃ri.Ci+1, di〉 ∈OSAT for every 1 ≤ i ≤ k, (ii) min(d1, . . . , dk) = d,
(iii) C1 = {a} and Ck+1 = E; or

– E is some nominal {b} ∈ BCO and d = 1. I.e. we have that 〈{a} � {b}, 1〉 for
every pair of nominals {a}, {b} ∈ BCO .

Additionally, in rules CR7, CR8a, CR8b, CR9, F and F1 . . . , Fm correspond to
vectors of feature names, while in rules CR7, CR8a, CR8b we consider that all the
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predicates belong to the same concrete domain p1, . . . , pm ∈ �D, and that every
concept inclusion 〈C � pi(Fi), di〉 concerning the particular concrete domain is taken
into account. Finally rules CR8a, CR8b will only be applied if the resulting concept
inclusion 〈C � p(F), d〉 contains some concept p(F) ∈ BCO.

Theorem 1 (Correctness) Let O be a fuzzy EL++ ontology in normal form and let
OSAT be obtained from O by exhaustively applying the rules of Table 7 until no new
information is added to OSAT. For every nominal {o} ∈ BCO and concept B ∈ BCO,
O |= 〈{o} � B, d〉 if and only if one of the following two conditions holds:

S1 〈{o} � B, d′〉 ∈ OSAT for some d′ ≥ d,
S2 there exists some nominal {a} ∈ BCO such that 〈{a} � ⊥, d〉 ∈ OSAT and d > 0.

Example 10 Based on Example 3 we construct the ontology O = 〈∅, C ∪ CA〉 and
then normalize it. The application of the Rules I1, I2, CR3,CR4 will be performed
adding to the saturated ontology OSAT the following concept inclusions:

〈{patient137} � ∃hasSeverityIndex.ASSIST0SeverityIndex, 0.6〉
〈{patient138} � ∃hasSeverityIndex.ASSIST0SeverityIndex, 0.8〉

Lemma 4 Fuzzy concept subsumption between a nominal {o} and a concept B ∈ BCO
w.r.t. some normalized fuzzy EL++ ontology O can be decided in polynomial time.

The following Theorem is an immediate consequence of Lemmata 2, 3 and 4.

Theorem 2 (Complexity) Fuzzy concept subsumption between fuzzy EL++ concepts
can be decided in polynomial time.

6 Related work

There have been many works on extending the EL language with fuzzy set theory.
Peter Vojtáš proposed a fuzzy extension of the EL language for performing queries
containing several vague concepts of user’s preferences (Vojtáš 2007). The proposed
language differs from usual fuzzy DL languages in that it interprets conjunction
using fuzzy aggregation functions rather than t-norms. Also roles are not interpreted
as fuzzy binary relations, bur rather as crisp (classical) ones. Stoilos et al. (2008)
proposed a fuzzy extension of the EL+ language, using the operators of Gödel
logic, which they named fG-EL+. The language introduced in this paper is an
extension of the one presented in Stoilos et al. (2008), with nominals, the bottom
concept, and fuzzy concrete domains. The language fG-EL+, was used by Feng et al.
(2010), for computing logical differences between ontologies. Finally, Vanekov et al.
propose in Vaneková and Vojtáš (2010) a fuzzy EL (D) language which extends
the language presented in Vojtáš (2007) with the aggregation constructor @U , the
top-k constructor, and fuzzy concrete domains. The aggregation constructor allows
to define the degree of some concept based on some aggregation function and the
degrees of a set of concepts. The top-k constructor allows to select from a concept
C only the k individuals with the highest degrees, while the proposed concrete
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domain allows for linguistic variables such as goodPrice etc. that are based on some
membership function.

The main differences between our language and the language presented
in Vaneková and Vojtáš (2010) which also allows for fuzzy concrete domains are
the following: The language presented in Vaneková and Vojtáš (2010) provides for
the aggregation @U and the top-k constructor while it considers only for crisp roles.
On the other hand, the language we propose supports for nominals, the bottom
concept, role composition and fuzzy roles. Another difference is that the language
presented in Vaneková and Vojtáš (2010) due to the presence of the aggregation @U

and the top-k constructor is non-monotonic in contrast to our language that preserves
monotonicity. Finally we should notice that the complexity of the language presented
in Vaneková and Vojtáš (2010) has not yet been studied.

Regarding fuzzy concrete domains, our work is based on works of Straccia and
Bobillo. In Straccia (2005a), Straccia first introduced the notion of a fuzzy concrete
domain, D = 〈�D,�D〉, where �D is the interpretation domain and �D is the set
of fuzzy concrete domain predicates. In order to provide a link between fuzzy
concrete domains and the DL fuzzy ALC(D), Straccia provides the constructors
∀T.D, ∃T.D where T is a concrete role and D is either some unary fuzzy concrete
domain predicate d, or its negation ¬d. Reasoning in ALC(D), is performed by
reduction to bounded mixed integer programming (bMIP) (Hahnle 2001). The
work is extended by Bobillo and Straccia (2009b) with the additional constructors
(≥ t n), (≤ t n), (= t n), where t is some concrete feature name and n some value in
the interpretation domain �D. Finally Bobillo and Straccia (2009a) further extend
the language ALC(D) with mathematical operations either between real numbers, or
between fuzzy membership functions such as fuzzy numbers. The proposed language
allows to define new membership functions. For example we can define the datatype
that is the result of adding the membership functions of two different triangular
functions.

Even though the expressive power of the language proposed by Bobillo and
Straccia is appealing, fuzzy EL++ cannot embody arbitrary fuzzy concrete domains
that do not comply with the restrictions presented in Definitions 1 and 2. In fact,
in Example 7 we showed how fuzzy EL++ expanded with a simple concrete domain
on the rational numbers and fuzzy predicates based on the triangular membership
function can change the complexity of the fuzzy EL++ language to non-polynomial.
Therefore the main contribution, w.r.t. previous work on fuzzy concrete domains, is
that our paper presents the admissibility restrictions that ensure that the fuzzy EL++

language retains its polynomial complexity.

7 Conclusions and future work

In this paper we have presented a fuzzy extension of the DL language EL++, creating
fuzzy EL++. We first described its syntax and semantics, while then we showed how
each inference problem of fuzzy DLs, i.e. concept satisfiability, ontology consistency
and instance checking, can be reduced to the fuzzy concept subsumption problem.
Subsequently, we have developed a tractable algorithm for deciding the fuzzy
subsumption problem. Compared to previous approaches our language supports
nominals, the bottom concept, and fuzzy concrete domains. Nominals allow for
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reasoning w.r.t. assertional knowledge (which cannot be done in e.g. fuzzy-
EL+), while the presence of the bottom concept allows to express disjointness
between concepts (e.g. 〈C � D � ⊥, 1〉), and together with nominals, to express
difference between individuals (e.g. 〈{a} � {b} � ⊥, 1〉). Moreover, the fuzzy concrete
domains of fuzzy EL++ allow the representation of concrete qualities of real-world
objects such as their weight, temperature, and spatial extension. Finally, we provided
detailed proofs of the correctness of the presented reasoning algorithm.

Regarding future work, we plan to extend the semantics of the fuzzy EL++

language to allow for arbitrary t-norm operators for interpreting conjunction. Having
in mind the latest work of Baader and Peñaloza (2011), which proves undecidability
for a specific family of fuzzy DL languages extended with arbitrary t-norms, it is
interesting to investigate if the same will apply for the fuzzy EL++ language. If such
is the case, it is interesting to examine decidable and polynomial sublanguages of
the fuzzy EL++ language extended with general t-norms. Finally, we also want to
consider more expressive, but still tractable, logics than EL++. Such logics have also
been investigated in the literature (Baader et al. 2008) and they allow for constructors
such as domain and range restrictions on roles.

Appendix: Proofs

Proof of Lemma 1

Concept satisf iability The claim follows easily by observing that if C is satisfiable,
then there exists a model I of C and x ∈ �I such that CI(x) > 0, therefore CI(x) >

⊥I(x). Thus I is a counter-model for 〈C �C ⊥, 1〉. Similarly if 〈C ��C ⊥, 1〉, then there
exists a model I of C and x ∈ �I such that CI(x) > ⊥I(x) = 0, the concept C is
satisfiable.

Instance problem The case follows easily by observing that I is a model of C ∪ CA iff
it is also a model of A w.r.t. C. More precisely, 〈{a} � C, d〉 is just a syntactic variant of
C(a) ≥ d (similarly with role assertions). More precisely, for I satisfying 〈{a} � C, d〉
we have CI(x) ≥ min({a}I(x), d) for every x ∈ �I , thus also CI(a) ≥ min({a}I(a), d),
and by the semantics of nominals also CI(a) ≥ min(1, d) = d.

Ontology consistency It suffices to prove that O is inconsistent iff 〈� �C∪CA ⊥, 1〉
holds:

Suppose 〈� �C∪CA ⊥, 1〉 holds. Then for every model I we must have that
�I(x) ≤ ⊥I(x) for every x ∈ �I . Obviously, I must be not-empty, thus there exists
c ∈ �I such that �I(c) ≤ ⊥I(c). Moreover, by the definition of interpretations
we have �I(c) = 1 and ⊥I(c) = 0, thus it follows that 1 ≤ 0, leading to absurd.
Therefore O has no model.

For the opposite direction. Suppose that O is inconsistent. Since an inconsistent
ontology entails all axioms we therefore have 〈� �C∪CA ⊥, 1〉. ��

Example 11 In this example we want to show how the presence of, even simple,
loosely fuzzy p-admissible concrete domains in fuzzy GCIs may affect the time
performance of our algorithm.
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Suppose that we have the concrete domain � = 〈Q,��〉 where Q corresponds to
the set of rational numbers and �� contains only the predicates �20, �20.5 as defined
in Example 4. Suppose now that we also have the following ontology O:

O = {〈{a} ��20 ( f ), 0.5〉, 〈�20 ( f ) � ∃r.C, 1〉, 〈C ��20.5 ( f ), 1〉, 〈C � {a}, 1〉}
and the admissibility restriction on Rule CR8a does not apply. At some point of the
execution of the algorithm we will have the following application of rules:

...

CR3
〈{a} ��20 ( f ), 0.5〉
〈{a} � ∃r.C, 0.5〉 : 〈�20 ( f ) � ∃r.C, 1〉

CR6
〈{a} � {a}, 1〉, 〈C � {a}, 1〉, 〈{a} � C, 0.5〉, 〈C ��20.5 ( f ), 1〉

〈{a} ��20.5 ( f ), 0.5〉

CR8
〈{a} ��20.5 ( f ), 0.5〉
〈{a} ��20 ( f ), 0.6〉 : �20.5 ( f ) ≥ 0.5 |=�20 ( f ) ≥ 0.6

CR3
〈{a} ��20 ( f ), 0.6〉
〈{a} � ∃r.C, 0.6〉 : 〈�20 ( f ) � ∃r.C, 1〉

...

The implication �20.5 ( f ) ≥ 0.5 |=�20 ( f ) ≥ 0.6 can be derived from the �20.5,�20

membership functions presented in Fig. 3. As it can be seen, these rules will be
repeatedly applied until the algorithm reaches 〈{a} � ∃r.C, 1〉 while the number of
repetitions of the rule application depends on the form of the �20.5,�20 membership
functions.

Fig. 3 The �20 and �20.5
membership functions
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Therefore without the strict p-admissibility restrictions our algorithm becomes
non-polynomial.

Proposition 1 The concrete domain presented in Example 4, without the presence of
�+q predicates, is loosely fuzzy p-admissible.

Sketch Proof The corresponding concrete domain contains an unary predicate �q

for every q ∈ Q defined on the fq function presented in Example 4. The fq function
maps elements of Q to the [0, 1] interval. We build another function gq : [0, 1] → Q

as follows:

gq(x) =
{

−∞ , x = 0
x · 10 − 10 + q , x ∈ (0, 1]

and it can be verified that fq(gq(x)) = x for every x ∈ (0, 1]. Suppose now that we
have the following conjunction of formulae with degrees:

k∧

i=1

�qi (xi) ≥ di

Each conjunct of the form �qi (xi) ≥ di can be transformed to some inequality xi ≥
gq(di). Therefore we end up with a system of inequalities which can be reduced to the
concrete domain of rational numbers presented in Baader et al. (2005). The latest has
been proved to be a convex concrete domain for which satisfiability and implication
are decidable in polynomial time.

We now examine why the corresponding concrete domain will lose its convexity
when it allows for conjuncts of the form �+qi(xi, yi) ≥ di. These conjuncts can also
be transformed to inequalities x ≥ gq(di) + y and therefore the initial problem is
reduced to solving a system of inequalities. Unfortunately it is easy to show by
a counter example that the corresponding concrete domain is non-convex. For
example x ≥ 10 and y ≥ 10 imply that either x ≥ y + 0 or y ≥ x + 0 holds, but none
of the previous two disjuncts will always apply. ��

Proof of Lemma 2 The linear time complexity of the normalization process is an
immediate consequence of the fact that the normalization algorithm is identical to
the one presented for the crisp EL++ language (Baader et al. 2005).

For the other part it suffices to prove that each model of O′ is also a model of O
and each model of O can be extended to a model of O′ by appropriately interpreting
new concept and role names. The proof is by induction on each of the substitutions
performed by the rules. We will only present the case of rule NF2.

Let I ′ be a model of O′. Then, for every x ∈ �I ′
, we have D̂I ′

(x) ≤ AI ′
(x) and

min(CI ′
(x), AI ′

(x), d) ≤ EI ′
(x), thus min(CI ′

(x), D̂I ′
(x), d) ≤ EI ′

(x) and therefore
I ′ is also a model of O.

Let now I be a model of O. We create an interpretation I ′ that is identical to I
with the difference that AI ′

(x) = D̂I(x) for every x ∈ �I . Since A is new, it only
appears in the concept inclusions 〈D̂ � A, 1〉 and 〈C � A � E, d〉. It can be easily
verified that both concept inclusions are satisfied by I ′. Therefore I ′ is a model
of O′. ��
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Proposition 2 For every strictly fuzzy p-admissible concrete domain D and arbitrary
number dω ∈ (0, 1) the following holds: If δ is a solution for the conjunction conj,
then there also exists a solution δ′′ such that (i) pD(δ′′(X)) = 1 if pD(δ(X)) > dω and
(ii) pD(δ′′(X)) = pD(δ(X)) if pD(δ(X)) ≤ dω for every predicate p ∈ �D.

Proof Based on the mapping δ we build two new conjunctions as follows:

conj′ :=
∧

if pD(δ(X))=d

p
(
X

) ≥ d

conj′′ :=
∧

if pD(δ(X))=d and d≤dω

p
(
X

) ≥ d
∧ ∧

if pD(δ(X))=d and d>dω

p
(
X

) ≥ 1.

Obviously every solution of conj′′ is also a solution of conj. Therefore if δ′′ is a
solution for conj′′ it is also a solution for conj.

We first prove that conj′′ has at least one solution. Based on Property 2 of
Definition 2 we can easily show that if there exists no solution for conj′′, then there
exists no solution for conj which is absurd since we have already assumed that δ is a
solution for conj.

It remains to prove that there exists a solution of the form δ′′ for conj′′. We assume
the opposite: Suppose that S′′ is the (possibly infinite) set of solutions of conj′′ then
there exists no solution δ′′

j ∈ S′′ that corresponds to δ′′. This implies that for every

solution δ′′
j there exists some predicate pj and a vector of variables X j such that (i)

pD
j (δ′′

j (X j)) = d j and (ii) pj(X j) ≥ d j does not appear as a conjunct in conj′′. We
create a set S′′

p as follows: for every solution δ′′
j in S′′ the set S′′

p contains an inequality

pj(X j) ≥ d j such that conditions (i) and (ii) apply. The latest implies that

conj′′ |=
∨

p j(X j)≥d j∈S′′
p

p j(X j) ≥ d j

and Property 2 of Definition 1 (convexity) ensures that

conj′′ |= pλ(Xλ) ≥ dλ

for some element pλ(Xλ) ≥ dλ appearing in S′′
p.

Case dλ > dω 1 We consider the number d+
ω that is slightly larger than dω and we

create the conjunctions:

1. conj′d+
ω

by replacing every degree d in conj′ with min(d, dω),
2. conj′′d+

ω
by replacing every degree d in conj′′ with min(d, dω).

It can be verified that the two conjunctions are identical. Since conj′′ |= pλ(Xλ) ≥ dλ,
Property 1 of Definition 2 ensures that conj′′d+

ω
|= pλ(Xλ) ≥ min(dλ, d+

ω ) = d+
ω . Since

conj′d+
ω

and conj′′d+
ω

are identical we also have that conj′d+
ω

|= pλ(Xλ) ≥ d+
ω . The latest

implies that pD
λ (δ(Xλ)) > dω and by construction of conj′′ we have that pλ(Xλ) ≥ 1

appears in conj′′ which contradicts the assumption that no solution δλ corresponds
to δ′′.
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Case dλ ≤ dω 2 In a similar way than before, we show that pλ(Xλ) ≥ dλ will appear
in conj′′, which also contradicts our assumption.

Therefore we have that there exists a solution δ′′. ��

Proof of Lemma 3 Let 〈C �O D, d〉, we need to show that 〈{o} �O′ B, d〉 holds.
Since O′ extends O, every model I ′ of O′ is also a model of O. Therefore 〈C �O′

D, d〉 and since O′ contains 〈{o} � C, 1〉, 〈D � B, 1〉, it can be easily verified that
〈{o} �O′ B, d〉 holds.

For the opposite direction we will show the contrapositive, i.e. that 〈C ��O D, d〉
implies 〈{o} ��O B, d〉.

If 〈C ��O D, d〉 then there exists an interpretation I s.t. CI(ω) > DI(ω), d >

DI(ω) for some ω ∈ �I . We build an interpretation I ′ that is identical to I with the
following differences: (i) AI ′

(x) = 1 if AI(x) > DI(ω) for every x ∈ �I and concept
name A, (ii) pI ′

(F)(x) = 1 if pI(F)(x) > DI(ω) for every x ∈ �I and concept
p(F) where p is a predicate belonging to some loose fuzzy p-admissible concrete
domain (Proposition 2 ensures that such an interpretation can be constructed).
(iii) rI

′
(x, y) = 1 if rI(x, y) > DI(ω) for every x, y ∈ �I and r ∈ RO , (iv) oI = ω

and BI(x) = DI(x) for every x ∈ �I .
If the interpretation I satisfies a concept inclusion of the form 〈�1 � �2, d〉,

where �1, �2 are concept descriptions, it can be verified that I ′ also satisfies the
particular concept inclusion (the same applies for role inclusions). Therefore I ′ is
a model of O and since by construction of I ′ it also satisfies the concept inclusions
〈{o} � C, 1〉, 〈D � B, 1〉 , it is also a model of O′. The latest finishes our proof since
min({o}I ′

(ω), d) = min({o}I ′
(oI ′

), d) = d, DI ′
(ω) = DI(ω), and d > DI(ω). ��

Proof of Lemma 4 In the following | · | denotes the cardinality of a set. We also use
the standard notion of big-O from computational complexity, denoted by O. The
polynomial complexity of the algorithm is a result of the following properties.

– At each step of the algorithm the maximum number of concept inclusions in
the saturated ontology is bounded by |BCO|2. This is due to the fact that for
two inclusions 〈C � D, d〉 and 〈C � D, d′〉 only the one with the higher degree
is kept. On the other hand the number of concept inclusions of the form 〈C �
∃r.D, d〉 is bounded by |RO| · |BCO|2. Since each concept and role inclusion,
in its normal form, contains at most 3 concept and roles we can conclude that
|BCO| and |RO| have sizes O(|O|). Therefore there are at most O(|O|3) concept
inclusions in the saturated ontology.

– Rule CR8b, that may introduce degrees that are not in [0, 1]O , can only be
applied once for each pair of nominal—ordinary predicate concept description.
Since there exist O(|O|2) such pairs in our ontology, at most O(|O|2) new degrees
can be introduced.

– None of the other rules introduces new degrees (rule CR8a does not introduce
any new degrees due to Property 3 of Definition 2). Therefore the degree d
in some concept inclusion 〈C � D, d〉 or 〈C � ∃r.D, d〉 can be altered at most
O(|O|2) times.

– From the above points we can conclude that there can be at most O(|O|5)
applications of rules CR1–CR13.
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– It takes polynomial time in the size of |O| to check if some rule is applicable. For
all rules except rules CR6, CR7, CR8 for a naive application of the algorithm
it is evident that the checks that should be made (checking for each concept
inclusion in O all fuzzy concept inclusions in OSAT) cannot be more then
O(|O| · |OSAT|) = |O|4.

– Rules CR7, CR8 can be applied in polynomial time due to Property 1 of
Definition 1.

– For rule CR6 the problem of finding if 〈{a} � D, d〉 can be solved by using a
variation of the shortest path problem (for weighted directed graphs). In Fig. 4
we see such a graph where each node corresponds to some element of BCO and
each edge from node Ci to C j has length

|dCi,C j| = inf
{

1
d

| r ∈ RO and 〈Ci � ∃r.C j, d〉 ∈ OSAT

}
.

As it can be seen in Fig. 4 edges with ∞ length are not taken into account. In
our variation of the shortest path problem we consider that the distance traveled
along two edges with lengths e1, e2 is max(e1, e2) instead of e1 + e2. Obviously if
the shortest path from some {a} ∈ BCO to D has length e we can conclude that
〈C � D, 1

d 〉. The problem of finding all the shortest paths in a graph, by using
a variation of the “FloydWarshall algorithm”, has O(|O|3) complexity (Floyd
1962). Therefore applicability check for rule CR6 also takes polynomial time. ��

Proof of Theorem 1 (Soundness) Soundness is the if direction of Theorem 1. As-
sume that the algorithm is applied to an ontology O creating a saturated one OSAT,
and let {o} and B be a nominal and a concept name such that either Condition S1 or
S2 holds. To show that 〈{o} �O B, d〉 holds, we first prove the following claim:

Claim Each concept inclusion in OSAT is satisfied by a model I of O.

Proof We show the claim using induction over the application of the completion
rules in Table 7.

Fig. 4 Reducing 〈{a} � C〉, d
to the shortest path problem
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For the base case, initially no rule is applied and OSAT is empty, so any model of
O is also a model of OSAT and the claim follows trivially.

For the induction step, we assume that at step j we have computed O j
SAT and

all subsumptions in it are satisfied. Then at step j + 1 some rule from Table 7 is
applied and a new subsumption is added to create O j+1

SAT. We make a case distinction
according to the rule that was applied to generate and add the new subsumption. For
the rest of the proof we consider that CI(x) = e.

(I1 or I2) These rules add 〈C � C, 1〉 and 〈C � �, 1〉 to OSAT for every concept
C ∈ BCC . By the semantics of every C ∈ BCC and the top concept the
claim follows trivialy.

(CR1) This implies that there is 〈C � E, d1〉 ∈ O j
SAT, and 〈E � D, d2〉 ∈ O and

the rule adds 〈C � D, min(d1, d2)〉 to O j+1
SAT. It remains to show that

DI(x) ≥ min(e, d1, d2). By IH we have that EI(x) ≥ min(e, d1) which
together with 〈E � D, d2〉 imply that

DI(x) ≥ min
(
EI(x), d2

) ≥ min(e, d1, d2).

(CR2) This implies that there are subsumptions of the form 〈C � C1, d1〉,
〈C � C2, d2〉 ∈ O j

SAT, and 〈C1 � C2 � D, d3〉 ∈ O and the rule adds
〈C � D, min(d1, d2, d3)〉 to O j+1

SAT. It remains to show that DI(x) ≥
min(e, d1, d2, d3). By IH we have CI

1 (x) ≥ min(e, d1) and CI
2 (x) ≥

min(e, d2) which together with 〈C1 � C2 � D, d3〉 give

DI(x) ≥ min
(
CI

1 (x), CI
2 (x), d3

) ≥ min(e, d1, d2, d3).

(CR3) This implies that there exists a subsumption of the form 〈C � C′, d1〉 ∈
O j

SAT, and 〈C′ � ∃r.D, d2〉 ∈ O and the rule adds 〈C′ � ∃r.D, min(d1, d2〉
to O j+1

SAT. It remains to show that (∃r.D)I(x) ≥ min(e, d1, d2). By IH we
have C′ I(x) ≥ min(e, d1) which together with 〈C′ � ∃r.D, d2〉 imply that

(∃r.D)I(x) ≥ min(e, d1, d2).

(CR4) This implies that there are subsumptions of the form 〈C � ∃r.E, d1〉,
〈E � C′, d2〉 ∈ O j

SAT, and 〈∃r.C′ � D, d3〉 ∈ O and the rule adds
〈C � D, min(d1, d2, d3)〉 to O j+1

SAT. It remains to show that DI(x) ≥
min(e, d1, d2, d3). By IH we have that (∃r.E)I(x) ≥ min(e, d1) and that
C′I(y) ≥ min(EI(y), d2) for all y ∈ �I which together with the seman-
tics of existential restrictions imply that (∃r.C′)I(x) ≥ min(e, d1, d2). The
latest inequality along with 〈∃r.C′ � D, d3〉 give

DI(x) ≥ min(e, d1, d2, d3).

(CR5) This implies that there are subsumptions of the form 〈C � ∃r.E, d1〉,
〈E � ⊥, d2〉 ∈ O j

SAT and the rule adds 〈C � ⊥, 1〉 to O j+1
SAT. It remains

to show that e = 0. By IH we have (∃r.E)I(x) ≥ min(e, d1) and ⊥I(y) ≥
min(EI(y), d2) for all y ∈ �I . The latest inequality implies that EI(y) =
0 for all y ∈ �I which together with the semantics of existential
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restrictions give that (∃r.E)I(x) = 0. Therefore, and since (∃r.E)I(x) ≥
min(e, d1) and d1 > 0, we have that

e = 0.

(CR6) This implies that there are subsumptions of the form 〈C � {a}, 1〉,
〈E � {a}, 1〉 ,〈E � D, d2〉 in O j

SAT, and 〈{b} � E, d1〉 and the rule adds
〈C � D, min(d1, d2)〉 to O j+1

SAT. It remains to show that DI(x) ≥
min(e, d1, d2). By IH we have that

{a}I(x) ≥ e (4)

{a}I(y) ≥ EI(y) (5)

DI(y) ≥ min
(
EI(y), d2

)
(6)

for every y ∈ �I . The 〈{b} � E, d1〉 condition along with the IH
imply that

(∃r1.(...∃rk.E))I(y) ≥ min
({b}I(y), d1

)
(7)

for some arbritrary sequence of roles r1, . . . , rk.

(i) If x �= aI we have that {a}I(x) = 0 which together with (4) imply
that e = 0 and therefore DI(x) ≥ min(e, d1, d2) trivially applies.

(ii) If x = aI , then by substituting in (7) y with bI we get that
(∃r1.(...∃rk.E))I(bI) ≥ d1. The latest inequality together with the
semantics of existential restrictions imply that there exists some
z ∈ �I such that EI(z) ≥ d1. The fact that EI(z) ≥ d1 along with
(5) imply that EI(aI) ≥ d1 which combined with (6) implies that

DI(aI) ≥ min(d1, d2) ≥ min(e, d1, d2).

(CR7) This implies that there are subsumptions of the form 〈C � pi(Fi), di〉 ∈
O j

SAT for 1 ≤ i ≤ m, and
∧m

i=1 pi(Fi) ≥ di is unsatisfiable and the rule
adds 〈C � ⊥, 1〉 to O j+1

SAT. It remains to show that e = 0. We proceed
by contradiction. Let e > 0, by IH we have that pI

i (Fi) ≥ min(e, d) for
all 1 ≤ i ≤ m. A mapping δ : NF → �D is built as follows: δ(Fi) =
F
I
i (x) for all 1 ≤ i ≤ m. It can be verified that δ is a solution for∧m
i=1 pi(Fi) ≥ min(e, di). But, according to Property 2 of Definition 2 and

since
∧m

i=1 pi(Fi) ≥ di is unsatisfiable the previous conjunction should
also be unsatisfiable. Therefore the assumption we have made is wrong,
implying that

e = 0.

(CR8a) This implies that there are subsumptions of the form 〈C � pi(Fi), di〉 ∈
O j

SAT for 1 ≤ i ≤ m, and
∧m

i=1 pi(Fi) ≥ di |= p(F) ≥ d and the rule adds
〈C � p(F), d〉 to O j+1

SAT. It remains to show that pI(F) ≥ min(e, d). A

mapping δ is built as before: δ(Fi) = F
I
i (x) for all 1 ≤ i ≤ m. It can be
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verified that δ |= ∧m
i=1 pi(Fi) ≥ min(e, di) and Property 1 of Definition 2

ensures that
m∧

i=1

pi(Fi) ≥ min(e, di) |= p(F) ≥ min(e, d).

Since δ is a solution for the conjunction we have that δ |= p(F) ≥
min(e, d), and by construction of δ that

pI(F)(x) ≥ min(e, d).

(CR8b) The proof for loose fuzzy p-admissible concrete domains can be per-
formed as before, keeping in mind that C will always correspond to a
nominal {a} due to the restriction presented in (3) and therefore either
CI(x) = 0 or CI(x) = 1 will hold.

(CR9) This implies that there are subsumptions of the form 〈C � pk(Fk), dk〉,
〈C � pl(Fl), dl〉 ∈ O j

SAT such that pk ∈ �Dk , pl ∈ �Dl with Dk �= Dl , and
the feature vectors Fk, Fl have a common feature f and the rule adds
〈C � ⊥, 1〉 to O j+1

SAT. It remains to show that e = 0. By IH we have that
pI

k (Fk) ≥ min(e, dk) and pI
l (Fl) ≥ min(e, dl). If e > 0, and since dk > 0

and dl > 0, it is implied by the semantics of fuzzy concrete domains that
fI(x) = y for some y ∈ �Di

⋂
�D j , contradicting the disjointness of �Di

and �D j . Thus

e = 0.

(CR10) This implies that there exists a subsumption of the form 〈C � ∃r.D, d〉 ∈
O j

SAT, and r � s ∈ O and the rule adds 〈C � ∃s.D, d〉 to O j+1
SAT. It re-

mains to show that (∃s.D)I(x) ≥ min(e, d). By IH we have (∃r.D)I(x) ≥
min(e, d) which together with r � s imply that

(∃s.D)I(x) ≥ min(e, d).

(CR11) This implies that there are subsumptions of the form 〈C � ∃r1.E, d1〉,
〈E � ∃r2.D, d2〉 ∈ O j

SAT, and r1 ◦ r2 � s ∈ O, and the rule adds 〈C �
∃s.E, min(d1, d2)〉 to O j+1

SAT. It remains to show that (∃s.E)I(x) ≥
min(e, d1, d2). By IH and the semantics of existential restrictions we
have that

sup
y∈�I

{
min(rI1 (x, y), EI(y))

} ≥ min(e, d1)

sup
z∈�I

{
min(rI2 (y, z), DI(z))

} ≥ min
(
EI(y), d2

)
.

By combining these two inequalities we get that

sup
y,z∈�I

{
min(rI1 (x, y), rI2 (y, z), DI(z))

} ≥ min(e, d1, d2)

or equivalently

sup
z∈�I

{
min((r1 ◦ r2)

I(x, z), DI(z))
} ≥ min(e, d1, d2)



J Intell Inf Syst (2012) 39:399–440 429

which together with r1 ◦ r2 � s implies that

(∃s.E)I(x) ≥ min(e, d1, d2).

(CR12) This implies that there exists a subsumption of the form 〈C � {a}, d〉 ∈
O j

SAT with d > 0 and 〈C � {a}, 1〉 is added to O j+1
SAT. It remains to show

that {a}I(x) ≥ e. By IH we have that {a}I(x) ≥ min(e, d) and since the
value of {a}I(x) is either 0 or 1, d > 0, and e ∈ [0, 1], it is implied that

{a}I(x) ≥ e.

��

If Condition S1 holds, i.e. 〈{o} � D, d′〉 ∈ OSAT for some d′ ≥ d, then by the
previous Claim DI(x) ≥ min({o}I(x), d′) ≥ min({o}I(x), d) for every model I of O.
The latest inequality implies that 〈{o} �O B, d〉. If Condition S2 holds, i.e. 〈{a} �
⊥, 1〉 ∈ OSAT for some arbritrary nominal {a} ∈ BCO , then by the previous claim
{a}I(aI) ≤ ⊥I(aI) = 0 which entails that O is inconsistent. Since an inconsistent
ontology entails all axioms we therefore have 〈{o} �O B, d〉. ��

Proposition 3 If 〈� � F, d〉 ∈ OSAT for some concept description F then for every
C ∈ BCC it holds that 〈C � F, d′〉 ∈ OSAT for some degree d′ ≥ d.

Proof Suppose that our algorithm is performed on m steps and the saturated
ontology on step j is denoted with O j

SAT (we will use OSAT as a shortcut for Om
SAT).

We prove this by induction on the smallest j such that 〈� � D, d〉 ∈ O j+1
SAT \ O j

SAT.
For the base case we initially have that O0

SAT is empty therefore our hypothesis
applies. For the induction step we make a case distinction according to the rule that
was applied to add 〈� � ∃r.D, d〉 to O j+1

SAT.

(CR1) This implies that there exist subsumptions of the form
〈� � C′, d1〉 ∈ O j

SAT, 〈C′ � D, d2〉 ∈ O and the rule adds 〈� �
D, min(d1, d2)〉 to O j+1

SAT. By IH we have that 〈C � C′, d′
1〉 ∈ OSAT

for all C ∈ BCO and some d′
1 ≥ d1. Non applicability of Rule

CR1 for 〈C � C′, d′
1〉 ∈ OSAT, 〈C′ � D, d2〉 ∈ O ensures that

〈C � D, d′〉 ∈ OSAT for some d′ ≥ min(d′
1, d2) ≥ min(d1, d2).

(CR7) This implies that there exist subsumptions of the form 〈� �
p1(F1), d1〉, . . . , 〈� � pm(Fm), dm〉 ∈ O j

SAT, and the conjunction∧m
i=1 pi

(
Fi

) ≥ di is unsatisfiable and the rule adds 〈� � ⊥, 1〉 to
O j+1

SAT. By IH we have that there exist subsumptions of the form
〈C � p1(F1), d′

1〉, . . . , 〈C � pm(Fm), d′
m〉 ∈ O j

SAT with d′
i ≥ di. Non

applicability of Rule CR7 for the latest subsumptions along with
the unsatisfiability of the conjunction

∧m
i=1 pi

(
Fi

) ≥ d′
i ensure that

〈C � ⊥, 1〉 ∈ OSAT.
(CR8a) This implies that there exist subsumptions of the form 〈� �

p1(F1), d1〉, . . . , 〈� � pm(Fm), dm〉 ∈ O j
SAT, and

∧m
i=1 pi

(
Fi

) ≥ di |=
p
(
F

) ≥ d and the rule adds adds 〈� � p(F), d〉 to O j+1
SAT. By

IH we have that there exist subsumptions of the form 〈C �
p1(F1), d′

1〉, . . . , 〈C � pm(Fm), d′
m〉 ∈ O j

SAT with d′
i ≥ di. Moreover,
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by the semantics of concrete domains we have that
∧m

i=1 pi
(
Fi

) ≥
d′

i |= p
(
F

) ≥ d. Therefore, non applicability of rule CR8a ensures
that 〈C � p(F), d′〉 ∈ OSAT for some d′ ≥ d.

(CR8b) This rule never adds a concept subsumption of the form 〈� � D, d〉
to OSAT, therefore there is no need to examine it.

(CR9) The proof of this rule is similar to the proof of rule CR7.
(Other Cases) All the other cases can proved similar to case CR1. ��

Proof of Theorem 1 (Completeness) Completeness is the only if direction of
Theorem 1. We want to show that O |= 〈{o} � B, d〉 implies that either Condition
S1 or Condition S2 apply. It suffices to show that if Condition S2 does not apply,
then O |= 〈{o} � B, d〉 implies that Condition S1 applies.

Step 1. We proceed in the standard way, defining a so-called canonical
model (Baader et al. 2005) for which the above holds. Suppose that the saturation
rules in Table 7 cannot be further applied and let BC−

O be the following set:

BC−
O := {

C | 〈{a} � C, d′′〉 ∈ OSAT for {a}, C ∈ BCO and d′′ > 0
}

We inductively define the relation ∼ on BC−
O as follows:

C ∼ D iff either 〈C � {a}, 1〉, 〈D � {a}, 1〉 ∈ OSAT for some {a} ∈ BCO
or C = D

It can be easily verified that ∼ is an equivalence relation, while [C] = {D | C ∼ D} is
the equivalence class of some C ∈ BC−

O .

Proposition 4 Suppose that {a}, C ∈ BCO belong to the same equivalence class
{a}, C ∈ [E]. If 〈{a} � F, d〉 ∈ OSAT then 〈C � F, d′〉 ∈ OSAT for some d′ ≥ d.

Proof Since {a}, C ∈ [E] then there exists some nominal {b} such that 〈{a} �
{b}, 1〉, 〈C � {b}, 1〉 ∈ OSAT.

If F is some concept in BCO. Since 〈C � {b}, 1〉, 〈{a} � {b}, 1〉, 〈{a} � F, d〉 ∈
OSAT and 〈{a} � {a}, 1〉 non applicability of rule CR6 ensures that 〈C � F, d′〉 ∈
OSAT for some d′ ≥ d.

If F is some concept description of the form ∃r.D where r ∈ RO and D ∈ BCO.
Suppose that our algorithm is performed on m steps and the saturated ontology on
step j is denoted with O j

SAT (we will use OSAT as a shortcut for Om
SAT). We prove this

by induction on the smallest j such that 〈{a} � ∃r.D, d〉 ∈ O j+1
SAT \ O j

SAT. For the base
case we initially have that O0

SAT is empty therefore our hypothesis applies. For the
induction step we make a case distinction according to the rule that was applied to
add 〈{a} � ∃r.D, d〉 to O j+1

SAT.

(CR3) This implies that there exists a subsumption of the form 〈{a} � C′, d1〉 ∈
O j

SAT, and 〈C′ � ∃r.D, d2〉 ∈ O and the rule adds 〈{a} � C′, min(d1, d2)〉 to
O j+1

SAT. Since {a} ∈ [C], we have proved that 〈C � C′, d′
1〉 ∈ OSAT for some

d′
1 ≥ d1. The latest along with 〈C′ � ∃r.D, d2〉 ∈ O and non applicability of
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rule CR3 ensure that 〈C � ∃r.D, d′〉 ∈ OSAT for some d′ ≥ min(d′
1, d2) ≥

min(d1, d2).
(CR10) This implies that there exists a subsumption of the form 〈{a} � ∃r.D, d〉 ∈

O j
SAT, and r � s ∈ O and the rule adds 〈{a} � ∃s.D, d〉 to O j+1

SAT. Since {a} ∈
[C], by IH we also must have that 〈C � ∃r.D, d′〉 ∈ OSAT for some d′ ≥ d.
The latest along with r � s ∈ O and non applicability of rule CR10 ensure
that 〈C � ∃s.D, d′′〉 ∈ OSAT for some d′′ ≥ d′ ≥ d.

(CR11) This implies that there exist subsumptions of the form 〈{a} � ∃r1.D, d1〉,
〈D � ∃r2.E, d2〉 ∈ O j

SAT, and r1 ◦ r2 ∈ O and the rule adds 〈{a} �
∃s.D, min(d1, d2)〉 to O j+1

SAT. Since {a} ∈ [C], by IH we also must have that
〈C � ∃r1.D, d′

1〉 ∈ OSAT for some d′
1 ≥ d1. The latest along with 〈D �

∃r2.E, d2〉 ∈ O j
SAT, r � s ∈ O, and non applicability of rule CR11 ensure

that 〈C � ∃s.D, d′〉 ∈ OSAT for some d′ ≥ min(d′
1, d2) ≥ min(d1, d2). ��

Step 2. For each concept C ∈ BCO and a concrete domain D, we build the conjunc-
tion conjC,D as follows:

conjC,D :=
∧

〈C�p(F),d〉∈OSAT and p∈�D

p(F) ≥ d.

That is conjC,D is constructed from all the fuzzy concept inclusions in OSAT that have
C in the left and a concrete domain predicate p ∈ �D on the right. A thresholded,
by some degree dthr ∈ (0, 1], form of conjC,D can be built as follows:

conjC,D,dthr
:=

∧

〈C�p(F),d〉∈OSAT and p∈�D

p(F) ≥ min(d, dthr).

We will now prove that for every C ∈ BC−
O and threshold dthr there exists a solution

δ for conjC,D,dthr
∧ conj�,D that satisfies certain properties. This solution will later be

used in order to define a link between feature names and the concrete domain in the
interpretation I that we are going to build.

Proposition 5 For each C ∈ BC−
O , each strict fuzzy p-admissible concrete domain D,

and threshold degree dthr ∈ (0, 1], there exists a solution δ for conjC,D,dthr
∧ conj�,D

such that: δ |= p(F) = d if p(F) ≥ d appears in conjC,D,dthr
∧ conj�,D. We will use the

shortcut δC,D,dthr for the specif ic solution.

Proof By not satisfaction of Condition S2 we have that 〈{a} � ⊥, 0〉 for each {a} ∈
BC−

O. By definition of BC−
O and non applicability of Rule CR5 we have that 〈C �

⊥, 0〉 ∈ OSAT for each C ∈ BC−
O . Thus rule CR7 ensures that there exists at least one

solution δ satisfying the conjunction conjC,D.

Proposition 3 ensures that each conjunct in conj�,D also appears in conjC,D with
a greater degree. Therefore and since there exists a solution for conjC,D, there also
exists a solution for conjC,D ∧ conj�,D. Since conjC,D,dthr

∧ conj�,D is more general
than conjC,D ∧ conj�,D we have that there also exists at least one solution for
conjC,D,dthr

∧ conj�,D.
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We make the hypothesis that the Proposition does not apply. Suppose that the
previous conjunction has n solutions each one denoted as δλ with 1 ≤ λ ≤ n. Since the
Proposition does not apply, for every solution δλ there exists some pλ(Fλ) such that
(i) δλ |= pλ(Fλ) = dλ and (ii) pλ(Fλ) ≥ dλ does not appear in conjC,D,dthr

∧ conj�,D.
The latest implies that

conjC,D,dthr
∧ conj�,D |=

∨

1≤λ≤n

pλ(Fλ) ≥ dλ

and Property 2 of Definition 1 (loose fuzzy p-admissible concrete domains) ensures
that conjC,D,dthr

∧ conj�,D |= pλ(Fλ) ≥ dλ for some 1 ≤ λ ≤ n.
We will consider the cases for dλ > dthr and for dλ ≤ dthr. For the first case, since

dλ > dthr, based on Property 4 of Definition 2 we conclude that conj�,D |= pλ(Fλ) ≥
dλ and non applicability of rule CR8a ensures that pλ(Fλ) ≥ dλ appears in conj�,D .

For the second case, the fact that dλ ≤ dthr along with Property 1 of Definition 2
ensure that conjC,D,dthr

∧ conj�,D,dthr
|= pλ(Fλ) ≥ dλ. The latest implication along

with Proposition 3 ensure that conjC,D,dthr
|= pλ(Fλ) ≥ dλ implying by the semantics

of fuzzy concrete domains conjC,D |= pλ(Fλ) ≥ dλ. The latest along with non applica-
bility or rule CR8a ensures that pλ(Fλ) ≥ d′

λ appears in conjC,D for some d′
λ ≥ dλ and

Property 1 of Definition 2 ensures that pλ(Fλ) ≥ dλ.
In both cases pλ(Fλ) ≥ dλ appears in conjC,D,dthr

∧ conj�,D and therefore the
hypothesis we have made is wrong and the proof has finished. ��

Proposition 6 For each nominal {a} ∈ BC−
O and each (loose or strict) fuzzy p-

admissible concrete domain D, there exists a solution δ for conj{a},D such that: δ |=
p(F) = d if p(F) ≥ d appears in conj{a},D . We will use the shortcut δ{a},D for the
specif ic solution.

The proof can be performed similar to the previous proof.

Step 3. We will now proceed to define a fuzzy interpretation I . We will later show
that this interpretation is also a model for O.

For the rest of the proof, for every C ∈ BC−
O , concept description D, and r ∈ RO,

we will use the degrees dC, dC�D, dr(C,D) as shortcuts for

dC = sup{d | 〈{a} � C, d〉 and {a} ∈ BCC}
dC�D = d if 〈C � D, d〉 ∈ OSAT

dr(C,D) = sup{d | 〈C � ∃r.D′, d〉 ∈ OSAT and D′ ∈ [D]}.

For the previous use of shortcuts, in case that 〈C � F, d〉 does not appear in OSAT for
any degree d, we will assume that 〈C � F, 0〉 ∈ OSAT for every concept F ∈ BCO or
concept description F = ∃r.D where D ∈ BCO .
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We define a fuzzy interpretation I as follows (where A ∈ BCO is a concept name,
D, D′ ∈ BCO , r is a role name in RO, {a} is a nominal in BCO , and C ∈ BC−

O ):

�I := {[C] | C ∈ BC−
O

}

aI := [{a}]

AI([C]) :=
{

d{a}�A if there exists some {a} ∈ [C]
max(min(dC�A, dC), d��A) otherwise

rI([C], [D]) :=
{

dr({a},D) if there exists some {a} ∈ [C]
max(min(dr(C,D), dC), dr(�,D)) otherwise

fI([C]) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ{a},D( f ) (i) there exists some {a} ∈ [C],
(ii) 〈{a} � p(F), d〉 ∈ OSAT for some d > 0,

f appears in F, and p ∈ �D.

δC,D,dC ( f ) (i) there exists no {a} ∈ [C],
(ii) 〈C � p(F), d〉 ∈ OSAT for some d > 0,

f appears in F, and p ∈ �D.

where the mappings δ{a},D , δC,D,dC are defined according to Propositions 5 and 6.
Since ∼ is an equivalence relation each nominal {a} belongs to exactly one equality

class, therefore aI is uniquely defined. Moreover Proposition 4 ensures that each
concept, role, and feature name interpretation is uniquely defined. Therefore the
intepretation I is well defined.

Proposition 7 For all [C] ∈ �I and D ∈ BCO ∪ {⊥}, we have that DI([C]) = d if f
one of the following two conditions holds:

T1 There exists some nominal {a} ∈ [C] and d = d{a}�D,
T2 There exists no nominal in [C] and d = max(min(dC�D, dC), d��D).

Proof We make a case distinction regarding the type of D:

D is the top concept (D = �) For every [C] ∈ �I we have that�I([C]) = 1 by the
semantics of the top concept. Since 〈� � �, 1〉 ∈ OSAT and 〈{a} � �, 1〉 ∈ OSAT for
every {a} ∈ BCO Conditions T1 and T2 trivially apply.

D is the bottom concept (D = ⊥) For every [C] ∈ �I we have that ⊥I([C]) = 0 by
the semantics of the bottom concept. By not satisfaction of Condition S2 we have that
〈{a} � ⊥, 0〉 ∈ OSAT for each nominal {a} ∈ BCO , i.e. d{a},⊥ = 0. Since 〈{a} � ⊥, 0〉 ∈
OSAT for each nominal {a} ∈ BCO, due to Rule CR5 and by construction of BC−

O, it
follows that 〈C � ⊥, 0〉 ∈ OSAT, i.e. dC�⊥ = 0, for all C ∈ BC−

O. Therefore d{a}�⊥ =
dC�D = d��⊥ = 0 and Conditions T1 and T2 apply.

D is a concept name (D = A) Then the two Conditions apply by construction
of AI .
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D is some nominal (D = {c}) Rule CR12 ensures that dC�{a} is either 0 or 1 for every
concept C and nominal {a}.

For the if direction. Suppose that d{a}�{c} = 1 for some nominal {a} ∈ [C]. It
remains to prove that {c}I([C]) = 1. By definition of the [C] equivalence class we
have that [{c}] = [{a}] = [C]. Since, by construction of I , cI = [{c}] = [C] we have
that {c}I([C]) = 1. In a similar way we prove that if 〈{a} � {c}, 0〉 ∈ OSAT then
{c}I([C]) = 0.

For the only if direction. Suppose that {c}I([C]) = 1, it remains to prove that
〈{a} � {c}, 1〉 for all {a} ∈ [C]. Since {c}I([C]) = 1 by construction of I we have that
cI = [C], i.e. {c} ∈ [C], and according to Proposition 4 we have that 〈{a} � {c}, 1〉, i.e.
d{a}�{c} = 1. In a similar way we prove that if {c}I([C]) = 0 then 〈{a} � {c}, 0〉 for all
{a} ∈ [C].

In case that there exists no nominal in [C] it is easy to prove that 〈C � {c}, 0〉 ∈
OSAT and {c}I([C]) = 0.

D is some concrete domain predicate (D = p(F)) For every [C] ∈ �I and concrete

domain DI we have that p(F)I([C]) = d iff pD(F
I
([C])) = d.

If there exists some nominal {a} ∈ [C] then by construction of the interpretation

of F
I
([C]) we have that the previous equality is satisfied iff pD(δ{a},D(F)) = d where

δ{a},D corresponds to the solution presented in Proposition 6. By choice of the
solution, the latest applies iff 〈{a} � p(F), d〉 ∈ OSAT, i.e. d{a}�p(F) = d. Therefore
Condition 1 applies.

If there exists no nominal in [C] then by construction of the interpretation of

F
I
([C]) we have that the previous Equality is satisfied iff pD(δC,D,dC (F)) = d where

δC,D,dC corresponds to the solution presented in Proposition 5. By choice of the
δC,D,dC solution, the latest applies iff p(F) ≥ d appears in conjC,D,dC

∧ conj�,D . By
construction of the two conjunctions, p(F) ≥ d appears in conjC,D,dC

when d =
min

(
dC�p(F), dC

)
and p(F) ≥ d appears in conj�,D when d = d��p(F). Therefore

p(F) ≥ d appears in conjC,D,dC
∧ conj�,D iff d = max

(
min

(
dC�p(F), dC

)
, d��p(F)

)
.

Therefore Condition 2 applies. ��

Step 4. We now show that the constructed interpretation I is a model of O, i.e. each
concept and role inclusion in O is satisfied in I . We make a case distinction according
to the form of each concept and role inclusions in O:

〈C′ � D, d〉 Suppose that C′ I([C]) = e. It suffices to show that DI([C] ≥
min(e, d).
If there exists no nominal in [C] then e =
max(min(dC�C′ , dC), d��C′) according to Proposition 7.
Non applicability of rule CR1 for 〈C � C′, dC�C′ 〉 ∈ OSAT,
〈C′ � D, d〉 ∈ O ensures that dC�D ≥ min(dC�C′ , d). Non
applicability of rule CR1 also ensures that d��D ≥ min(d��C′ , d).
By Proposition 7 and the previous inequalities:

DI([C]) = max(min(dC�D, dC), d��D) ≥ min(e, d).

If there exists some {a} ∈ [C] then e = d{a}�C′ according to
Proposition 7. Non applicability of rule CR1 ensures that
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d{a}�D ≥ min(d{a}�C′ , d) = min(e, d). By Proposition 7 and the
previous inequality:

DI([C]) = d{a}�D ≥ min(e, d).

〈C1 � C2 � D, d〉 Suppose that (C1 � C2)
I([C]) = e. The latest implies that

CI
1 ([C]) = e1 ≥ e, CI

2 ([C]) = e2 ≥ e. It suffices to show that
DI([C]) ≥ min(e, d).
If there exists no nominal in [C] then according to Propo-
sition 7 we have that e1 = max(min(dC�C1 , dC), d��C1) and
e2 = max(min(dC�C2 , dC), d��C2). Non applicability of rule CR2
ensures that dC�D ≥ min(dC�C1 , dC�C2 , d) and that d��D ≥
min(d��C1 , d��C2 , d). By Proposition 7 and the previous inequal-
ities we have that

DI([C]) = max(min(dC�D, dC), d��D) ≥ min(e, d).

If there exists some nominal in [C] the proof can be performed
similarly.

〈C′ � ∃r.D, d〉 Suppose that C′ I([C]) = e. It suffices to show that (∃r.D)I([C]) ≥
min(e, d), i.e. there exists some x ∈ �I such that rI([C], x) ≥
min(e, d) and DI(x) ≥ min(e, d).
If there exists no nominal in [C] then e =
max(min(dC�C′ , dC), d��C′) according to Proposition 7. Non
applicability of rule CR3 ensures that dC�∃r.D ≥ min(dC�C′ , d)

and d��∃r.D ≥ min(d��C′ , d). By definition of the dr(C,D), dr(�,D)

degrees and the previous inequalities we have that

dr(C,D) ≥ dC�∃r.D ≥ min(dC�C′ , d)

dr(�,D) ≥ d��∃r.D ≥ min(d��C′ , d)

Finally by construction of rI and the previous inequalities we
have that

rI([C], [D]) = max(min(dr(C,D), dC), dr(�,D)) ≥
≥ max(min(dC�C′ , dC, d), min(d��C′ , d)) ≥ min(e, d)

(we consider that [D] appears in �I since as we will later
prove dD > 0 and therefore D ∈ BC−

O). It remains to show that
DI([D]) ≥ min(e, d). We will consider the following alternatives:

(i) There exists no nominal in [D]. By the values of the dC

and the dC�∃r.D degrees, and by definition of the dD degree,
it is implied that dD ≥ min(dC, dC�∃r.D) ≥ min(dC, dC�C′ , d).
Proposition 3 ensures that dD ≥ d��∃r.D. Therefore

dD ≥ max(min(dC, dC�C′ , d), d��∃r.D) ≥ min(e, d)

and since dD�D = 1 we conclude that DI([D]) ≥ min(e, d).

(ii) There exists some nominal {a} ∈ [D]. In that case
DI([D]) = d{a}�D. Similarly to the previous alternative
we can show that dD ≥ min(e, d) and therefore there
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exists some nominal {b} such that 〈{b} � D, min(e, d)〉.
Since {a} ∈ [D], then according to Proposition 4 we also
have that 〈D � {a}, 1〉 ∈ OSAT. Non applicability of rule
CR6 for 〈{a} � {a}, 1〉, 〈D � {a}, 1〉 ∈ OSAT, 〈{b} � D,

min(e, d)〉, and 〈D � D, 1〉 ∈ OSAT ensures that d{a}�D ≥
min(e, d). Therefore DI([D]) ≥ min(e, d)

If there exists some nominal in [C] the proof can be performed
similarly.

〈∃r.C′ � D, d〉 Suppose that (∃r.C′)I([C]) = e. By the semantics of existential
restrictions we have that rI([C], [E]) ≥ e and C′ I([E]) ≥ e for
some [E] ∈ �I . It remains to show that DI([C] ≥ min(e, d).
If there exists no nominal in [C] then, by construc-
tion of rI([C], [E]), we have that rI([C], [E]) =
max(min(dr(C,E), dC), dr(�,E)) ≥ e. We consider the following
alternatives:

(i) There exists no nominal in [E], dr(C,E) ≥ e, and dC ≥ e. By
definition of the dr(C,E) degree and since only E ∈ [E] we
have that dC�∃r.E ≥ e. Since C′ I([E]) ≥ e, Propositions 3
and 7 ensure that dE�C′ ≥ e. Therefore non applicability of
rule CR4 ensures that

dC�D ≥ min(dC�∃r.E, dE�C′ , d) ≥ min(e, d)

and according to Proposition 7 we have that

DI([C]) ≥ min(dC�D, dC) ≥ min(e, d).

(ii) There exists no nominal in [E] and dr(�,E) ≥ e. Working as
for the previous point we prove that d��D ≥ min(e, d) and
according to Proposition 7 we have that

DI([C]) ≥ d��D ≥ min(e, d).

(iii) There exists some nominal {a} ∈ [E], dr(C,E) ≥ e, and
dC ≥ e. By definition of the dr(C,E) degree we have that
dC�∃r.E′ ≥ e for some E′ ∈ [E]. Since C′ I([E]) ≥ e Proposi-
tions 4 and 7 ensure that dE′�C′ ≥ e. Therefore non applica-
bility of rule CR4 ensures that

dC�D ≥ min(dC�∃r.E′ , dE′�C′ , d) ≥ min(e, d).

and since dC ≥ e, Proposition 7 ensures that

DI([C]) ≥ min(dC�D, dC) ≥ min(e, d).

(iv) There exists some nominal {a} ∈ [E] and dr(�,E) ≥ e. Work-
ing as for the previous point we prove that d��D ≥ min(e, d)

and by Proposition 7 we have that

DI([C]) ≥ d��D ≥ min(e, d).

If there exists some nominal in [C] the proof can be performed
similarly.
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r � s Suppose that rI([C], [F]) = e for some [C], [F] ∈ �I . It remains
to prove that sI([C], [F]) ≥ e.
If there exists no nominal in [C] then, by construction of rI , we
have that either dr(C,F) ≥ e and dC ≥ e or dr(�,F) = e. We will
consider the following alternatives:

(i) dr(C,F) ≥ e and dC ≥ e. Then there exists some F ′ ∈ [F] such
that dC�∃r.F ′ ≥ e. Non applicability of rule CR10 ensures
that

dC�∃s.F ′ ≥ dC�∃r.F ′ ≥ e.

and by construction of sI we have that

sI([C], [F]) ≥ min(ds(C,F), dC) ≥ min(dC�∃s.F ′ , e) ≥ e.

(ii) dr(�,F) = e. Working as for the previous point we prove that
d�,∃r.F ′ ≥ e. Therefore by construction of sI we have

sI([C], [F]) ≥ ds(�,F) ≥ d��∃r.F ′ ≥ e

If there exists some nominal in [C] the proof can be performed
similarly.

r1 ◦ r2 � s Suppose that rI1 ([C], [D]) = e1 and rI2 ([D], [F]) = e2 for some
[C], [D], [F] ∈ �I . It suffices to show that sI([C], [F]) ≥
min(e1, e2).
If there exists no nominal in [C] then by construction of rI1 we
have that either dr1(C,D) ≥ e1 and dC ≥ e1, or dr1(�,D) = e1. We
will consider the following alternatives:

(i) If there exists no nominal in [D], dr1(C,D) ≥ e1, and dC ≥ e1.
Since there exists no nominal in [D] then only D ∈ [D]
and therefore dr1(C,D) = dC�∃r1.D ≥ e1. Since rI2 ([D], [F]) =
e2, by construction of rI2 and Proposition 3 we have that
dr2(D,F) ≥ e2 which implies that there exists some F ′ ∈ [F]
such that dD�∃r2.F ′ ≥ e2. Non applicability of rule CR11
ensures that

dC�∃s.F ′ ≥ min(dC�∃r1.D, dD�∃r2.F ′) ≥ min(e1, e2)

Therefore by construction of sI :

sI([C], [F]) ≥ min(ds(C,F), dC)

≥ min(dC�∃s.F ′ , e1) ≥ min(e1, e2).

(ii) If there exists no nominal in [D] and dr1(�,D) ≥ e1. Working
as for the previous point we prove that d��∃s.F ′ ≥ min(e1, e2)

and by construction of sI :

sI([C], [F]) ≥ ds(�,F) ≥ d��∃s.F ′ ≥ min(e1, e2).

(iii) There exists some nominal {a} ∈ [D], dr1(C,D) ≥ e1, and
dC ≥ e1. Then dC�∃r1.D′ ≥ e1 for some D′ ∈ [D]. Since
rI2 ([D], [F]) = e2 we have by construction of rI2 that
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d{a}�∃r2.F ′ = e2 and Proposition 4 ensures that dD′�∃r2.F ′ ≥ e2.
Non applicability of rule CR11 ensures that:

dC�∃s.F ′ ≥ min(dC�∃r1.D′ , dD′�∃r2.F ′) ≥ min(e1, e2).

and by construction of sI we have that

sI([C], [F]) ≥ min(ds(C,F), dC)

≥ min(dC�∃s.F ′ , e1) ≥ min(e1, e2).

(iv) There exists some nominal {a} ∈ [D] and dr1(�,D) ≥ e1.
Working as before we can show that d��∃s.F ′ ≥ min(e1, e2)

for some F ′ ∈ [F] and therefore by construction of sI

sI([C], [F]) ≥ ds(�,F) ≥ d��∃s.F ′ ≥ min(e1, e2).

If there exists some nominal in [C] the proof can be performed similarly.

Step 5. We have proved that I is a model of O. If O |= 〈{o} � B, d〉, then for the
interpretation I we have constructed, it applies that BI(oI) ≥ d. The latest along
with Proposition 7 imply that d{o}�B ≥ d, i.e. that 〈{o} � B, d′〉 ∈ OSAT for some
d′ ≥ d as we wanted to prove.
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