
J Intell Inf Syst (2011) 36:217–247
DOI 10.1007/s10844-010-0128-1

Outlier detection by example

Cui Zhu · Hiroyuki Kitagawa · Spiros Papadimitriou ·
Christos Faloutsos

Received: 9 February 2007 / Revised: 14 May 2010 / Accepted: 20 July 2010 /
Published online: 10 August 2010
© Springer Science+Business Media, LLC 2010

Abstract Outlier detection is a useful technique in such areas as fraud detection,
financial analysis and health monitoring. Many recent approaches detect outliers
according to reasonable, pre-defined concepts of an outlier (e.g., distance-based,
density-based, etc.). However, the definition of an outlier differs between users or
even datasets. This paper presents a solution to this problem by including input from
the users. Our OBE (Outlier By Example) system is the first that allows users to
provide examples of outliers in low-dimensional datasets. By incorporating a small
number of such examples, OBE can successfully develop an algorithm by which to
identify further outliers based on their outlierness. Several algorithmic challenges
and engineering decisions must be addressed in building such a system. We describe
the key design decisions and algorithms in this paper. In order to interact with users
having different degrees of domain knowledge, we develop two detection schemes:

C. Zhu (B)
College of Computer Science, Beijing University of Technology,
Beijing, 100124, People’s Republic of China
e-mail: cuizhu@bjut.edu.cn

H. Kitagawa
Graduate School of Systems and Information Engineering,
Center for Computational Sciences, University of Tsukuba,
Tsukuba, Ibaraki 305-8577, Japan
e-mail: kitagawa@cs.tsukuba.ac.jp

S. Papadimitriou
IBM T.J. Watson, Hawthorne, NY, USA
e-mail: spapadim@us.ibm.com

C. Faloutsos
Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: christos@cs.cmu.edu

218 J Intell Inf Syst (2011) 36:217–247

OBE-Fraction and OBE-RF. Our experiments on both real and synthetic datasets
demonstrate that OBE can discover values that a user would consider outliers.

Keywords Outlier detection · Outlier example · Data mining · Machine learning

1 Introduction

Outlier detection in large datasets is one important procedure in data mining. It has
many applications, including fraud detection, financial analysis, and health monitor-
ing. Methods for finding rare events or “exceptional” objects in large datasets are
increasingly drawing attention.

Different scientific communities define outliers differently, and such criteria can
include outliers based on distribution (Barnett and Lewis 1994), distance (Knorr
and Ng 1998), density (Breunig et al. 2000). Consequently, several approaches have
been proposed. A fundamental issue, however, is that the notion of what an outlier
is varies depending on the user, the problem domains, and even the datasets. For
example, different users might have a different idea of what constitutes an outlier,
the same user might view or define outliers differently based on how the data are
arranged, and different datasets do not conform to any specific rules in all cases.

We look at objects that can be represented as low-dimensional, numerical tuples.
Such datasets are prevalent in many applications. From a general perspective, as
stated by Hawkins (1980) and Knorr and Ng (1997), an object is, intuitively, an
outlier if it differs significantly from its neighbors. Of course, differing definitions
of a neighborhood, what constitutes a difference, and whether or not the difference
is significant will produce different sets of outliers. In the art of outlier detection,
the most used measurements of difference are distance (Knorr and Ng 1998), density
(Breunig et al. 2000), and their combination (Papadimitriou et al. 2003). The scale
(i.e., radius) of the neighborhood is determined, implicitly or directly, by parameters
that are supposed to be provided by users.

Example The following example might help to clarify the problem. Consider the
dataset in Fig. 1. This dataset has a large sparse cluster, a small dense cluster, and
some clearly isolated objects. By looking at the figure as a whole, only the circle dots
appear to be outliers. In other words, when we examine wide-scale neighborhoods
(i.e., by using a large radius, such as that covering nearly the entire dataset), only
the isolated objects have very low neighborhood densities. However, the objects on
the periphery of the large cluster (triangle dots) can also be regarded as outliers by
using a smaller radius, as can the objects on the fringe of the small cluster (cross
dots) by using a smaller radius. In this way, different objects are regarded as outliers
depending on neighborhood scale or size.
This scenario is intuitive from the user’s perspective. In most circumstances, users
are experts in their problem domain but not in outlier detection. It is difficult for
a user to decide the definition of an outlier before proceeding, but the user often
has an idea or even examples of what would constitute an outlier. In the field of
fraud detection, known cases of fraudulent activity or a novel form of fraudulent
behavior are discovered by accident. These example outliers might describe the
user’s intentions, such as wanting to determine the characteristics of outliers similar

J Intell Inf Syst (2011) 36:217–247 219

Fig. 1 Different kinds of
outliers in a dataset

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10 20 30 40 50 60 70 80 90 100 110

y

x

Dataset

to the examples. Existing systems do not offer a direct way to incorporate such
examples into the discovery process in a way that will discover more or future
outliers.

This paper proposes Outlier By Example (OBE) method to do precisely that: to
discover the so-called outlierness of any given point in a dataset at an appropriate
scale, by using a small number of examples, and according to the distance- and
density-based definition of an outlier. We are faced with several challenges in making
this approach practical, the following being the most important. (1) What features
best capture outlierness? These features should capture the important characteristics
concisely and be efficiently computed. (2) The method should clearly require little
user input and effectively use a small number of positive (i.e., outlier) examples.
Further, it should not require negative (i.e., normal) examples. (3) Given these
requirements, can we design methods to detect outliers by using only a handful
of positive examples and unlabeled data? This paper describes the key algorithmic
challenges and design decisions in detail.

We make the following contributions in this paper: (1) We introduce example-
based outlier detection. (2) We demonstrate its intuitiveness and its feasibility. (3)
We propose the OBE method, which is the first method to provide a solution to this
problem. In order to deal with the different degrees of the users’ domain knowledge,
we have developed two schemes for the use of OBE. (4) We evaluate OBE by using
both real and synthetic data with several small sets of outlier examples provided by
users. Our experiments demonstrate that OBE can successfully incorporate these
examples in the discovery process and detect outliers based on their outlierness
characteristics.

Preliminary results have been reported by Zhu et al. (2004). However, this paper
includes an analysis of OBE and proposes a new scheme (the OBE-RF), which
detects outliers by using relevance feedback but which does not require the user to
define the outlier fraction parameter. This paper also compares the OBE-RF with
the OBE-fraction, which was proposed by Zhu et al. (2004). In addition, further
experiments and observations regarding OBE’s properties are presented.

The remainder of the paper is organized as follows: Section 2 discusses related
work on outlier detection. Section 3 discusses the measurement of outlierness and

220 J Intell Inf Syst (2011) 36:217–247

the different properties of outliers. Section 4 details the OBE framework and its two
schemes. Section 5 reports the extensive experimental evaluation of both synthetic
and real datasets. We further outline several issues regarding the application of OBE
in Section 6. Section 7 concludes the paper.

2 Related work

In essence, outlier detection techniques traditionally employ unsupervised learning
processes. Several existing approaches can be broadly classified into the following
categories:

(1) Distribution-based approaches These are the classical methods used in statistics
(Rousseeuw and Leroy 1987; Barnett and Lewis 1994). The user uses a statis-
tical distribution to model the data points. Then, points that deviate from the
model are flagged as outliers. However, these approaches are unsuitable for
moderately high-dimensional datasets. It is difficult to determine which, if any,
model fits an arbitrary dataset without prior knowledge of the data distribution.

(2) Depth-based approaches This computes the different layers of k-d convex hulls
and flags objects in the outer layer as outliers (Johnson et al. 1998). It avoids
the requirement of fitting a distribution to the data, but still suffers from the
dimensionality curse.

(3) Clustering approaches Many clustering algorithms detect outliers as by-
products (Jain et al. 1999). Since the main objective of these methods is
clustering, they are not optimized for outlier detection.

(4) Distance-based approaches Distance-based outliers were originally proposed
by Knorr and Ng in several papers from Knorr and Ng (1997) to Knorr and
Tucakov (2000), and was improved by Ramaswamy et al. (2000) and Angiulli
and Pizzuti (2005). Knorr and Ng defined a DB(β, λ)-outlier as a point p
if at least β points in the dataset are further than λ from p. However, λ is
difficult to determine and the method is sensitive to changes in λ. Another
intuitive definition of distance-based outlier that can rank detected outliers was
introduced by Ramaswamy et al. (2000). Given k and n, the top n points that
have the maximum distances from their kth nearest neighbors are considered
outliers. By using the same parameters of k and n, Angiulli and Pizzuti (2005)
modified the definition of outlier by using the sum of the distances to the kth
nearest neighbors as a measure of isolation. In general, the three definitions are
based on a single, global criterion in terms of parameters β and λ or k and n.
Thus, as pointed out in Breunig et al. (2000), these methods cannot cope with
datasets having both dense and sparse regions. This is referred to as the multi-
density problem.

(5) Density-based approaches To avoid the multi-density problem, Breunig et al.
(2000) introduced a local outlier factor (LOF) for each object, indicating its
degree of outlierness. LOF depends on the local density of its neighborhood,
where the neighborhood is defined as the distance to the MinPtsth nearest
neighbor. However, LOF fails to deal with the multi-granularity problem.
When there are clusters of various numbers of points, the method is unexpect-
edly sensitive to the MinPts value (Papadimitriou et al. 2003).

J Intell Inf Syst (2011) 36:217–247 221

(6) LOCI The multi-granularity deviation factor (MDEF), proposed by
Papadimitriou et al. (2003), can cope with the multi-density and multi-
granularity problems successfully. MDEF measures the outlierness of objects
in neighborhoods of a defined scale. Their algorithm, LOCI, examines the
MDEF values of objects in all ranges and flags as outliers those objects whose
MDEF values deviate significantly from the local average in neighborhoods
of the defined scale. Significant deviation is determined by using a threshold
value of kσ in their work. However, even though the definition of MDEF can
capture outlierness in various scales, the user must examine these differences
manually to identify outliers of personal interest.

A recently introduced method called StrOUD (Barbará et al. 2006), which is
based on transductive confidence machines, processes every point in a new dataset
separately and decides individually which point is an outlier according to an existing
clustering model. To detect outliers in a dataset, it treats the data as both the
training and the testing sets. When doing so, this method is similar to that proposed
by Angiulli and Pizzuti (2005), which is based on distance. In Section 5, we show
experimental comparisons between StrOUD, LOF, and the method proposed in this
paper. The comparisons demonstrate the ability of our method to address the multi-
density and multi-granularity problems and to detect outliers with varying degrees of
outlierness by using user-supplied examples.

To deal with the curse of high dimensionality, a different technique was proposed
by Aggarwal and Yu (2001), where outliers are found by studying the behavior of
projections from the dataset. The most sparse low-dimensional cubes in the data are
found by using a GA algorithm, and all objects in these cubes are reported as outliers.
Based on this notion of outliers in sparse low-dimensional cubes, Zhu et al. (2005)
proposed the method that seeks to find a subspace, where user examples are isolated
from the majority. Objects that are also isolated in the same subspace are reported
as outliers.

Another outlier detection method was developed by Yamanishi and Takeuchi
(2001), in which a supervised learner and an unsupervised learner are combined. In
their method, outliers are first detected by using SmartSifter (Yamanishi et al. 2000),
which is based on a probabilistic model of the information source. Those detected
outliers are then used to create labeled data for supervised learning of the outlier-
filtering rules. Consequently, their labeled data are not provided by users. However,
we detect outliers of interest by learning directly from user-provided examples.

In summary, most of all existing methods are designed to detect outliers based on
prescribed criteria for outliers and require the users to set the parameters. To the best
of our knowledge, ours is the first proposal for outlier detection in low-dimensional
datasets by using user-provided examples.

3 Measuring outlierness

To understand user intentions and the outlierness of interest, the first step is
to measure outlierness. It is crucial to select features that concisely capture the
important characteristics.

As we have seen, the practical and popularly used definition of outliers in low-
dimensional datasets is based on distance, density, or both. Among the several

222 J Intell Inf Syst (2011) 36:217–247

measurements of outlierness (i.e., DB(β, λ)-outlier, LOF, and MDEF), MDEF can
cope with both the multi-density and the multi-granularity problems. Therefore, we
employ MDEF in OBE to measure the outlierness of objects in neighborhoods of
different scales (i.e., radii).

A detailed definition of the multi-granularity deviation factor (MDEF) is given
in Papadimitriou et al. (2003). Here we describe basic terms and notation. Let the
r-neighborhood of an object pi be the set of objects within distance1 r of pi. Let
n(pi, αr) and n(pi, r) be the numbers of objects in the αr-neighborhood (counting
or local neighborhood) and the r-neighborhood (sampling neighborhood) of pi,
respectively.2 Let n̂(pi, r, α) be the average, over all objects p in the r-neighborhood
of pi, of n(p, αr).

Definition (MDEF) For any pi and α, the multi-granularity deviation factor
(MDEF) at radius (or scale) r is defined as follows:

MDEF(pi, r, α) = n̂(pi, r, α) − n(pi, αr)
n̂(pi, r, α)

. (1)

Intuitively, the MDEF at radius r for a point pi is the relative deviation of its
local neighborhood density from the average local neighborhood density in its r-
neighborhood. Thus, an object whose neighborhood density matches the average
local neighborhood density will have an MDEF of 0. In contrast, outliers will have
MDEFs far from 0.

In this paper, MDEF values are examined (or sampled) over a wide range of
sampling radii r, rmin ≤ r ≤ rmax, where rmax is the maximum distance of all object
pairs in the given dataset and rmin is determined based on the number of objects in
the r-neighborhood of pi. For each pi in the dataset, let rmin,i denote the distance
to its nb th nearest neighbor. In our experiments, rmin is the minimum of all objects’
rmin,i. In other words, we do not examine the MDEF value of an object until the
number of objects in its sampling neighborhood reaches nb ,3 which should be a
reasonable number that effectively avoids the introduction of statistical errors in
the MDEF estimates. We completed experiments by varying nb from 5 to 30 to
determine rmin, and found that the proposed method is insensitive to nb . In this
paper, all experimental results are obtained when nb is 20.

Following are some examples that can illustrate MDEF. Figure 2 shows a dataset
composed of two main groups: a large, sparse cluster and a small, dense one, both
following a Gaussian distribution. There are also a few isolated points. Figure 2 also
shows the MDEF plots for four objects in the dataset.

– Consider the point in the middle of the large cluster, NM, (at about x = 70,
y = 68). The MDEF value is low at all scales: compared with its neighborhood,
whatever the scale, the local neighborhood density is always similar to the
average local density in its sampling neighborhood. Consequently, the object can
always be regarded as a normal object in the dataset.

1The Euclidean distance measure is used to compute MDEF values in OBE.
2The value of α should be between 0 and 1. In all experiments, we set α = 0.5 as in Papadimitriou
et al. (2003).
3MDEF(pi, r, α) = 0 until n(pi, r) = nb.

J Intell Inf Syst (2011) 36:217–247 223

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10 20 30 40 50 60 70 80 90 100 110

y

x

Dataset

LC
SC
OO
NM

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

M
D

E
F

r

MDEF Plots

LC
SC
OO
NM

Fig. 2 Illustrative dataset and MDEF plots

– In contrast, for the other three objects (i.e., LC, SC and OO), there exist
situations in which the MDEF values are very large, sometimes even approaching
1. This shows that they differ from their neighbors according to some scales. The
greater the MDEF value, the stronger the degree of “outlier-ness.”
Even though the three objects in Fig. 2 can all be regarded as outliers, they still
differ in that they exhibit outlierness at different scales.

– The MDEF value of the outlier in the small cluster, SC, (at about x = 23, y = 24),
reaches its maximum at radius r of about 5. It then starts to decrease rapidly until
reaching 0, where it remains at 23–45. The MDEF value then increases again
but only to the degree of 0.6. This change in MDEF values indicates that the
object is significantly abnormal compared with objects in the very small local
neighborhood (objects in the small cluster).

– On the other hand, the outlier of the large cluster, LC, (at about x = 70, y = 93),
exhibits strong outlierness in the range of r = 10 to 30, then becomes more and
more ordinary as we take a broader view.

– For the isolated outlier, OO, (at about x = 47, y = 20), its MDEF value stays
at 0 to almost r = 22, indicating that it is an isolated object. It then immediately
displays a high degree of “outlier-ness.”

4 Proposed method (OBE)

4.1 Overview

Our method of detecting outliers by example, denoted as OBE, is intended to be
used for low-dimensional datasets, where the degree of outlierness is measured based
on MDEF at various scales. OBE learns from user-provided outlier examples and
discovers scales of interest to the users. Interesting outliers are detected as objects
that display outlierness at the same scale, just as do the provided examples.

To this end, the first step is to extract an object’s outlierness at different scales.
This is accomplished by using the outlying feature-extraction step of OBE. Outlying-
feature extraction, however, is only the beginning of the process. To detect outliers
of interest, it is important to concentrate on a suitable neighborhood of interest.
The selection of the neighborhood of interest is not trivial. OBE learns from outlier

224 J Intell Inf Syst (2011) 36:217–247

examples to estimate the appropriate scales. The crucial point is how OBE can
learn from a small number of outlier examples and not require negative data (i.e.,
normal objects). The outlier-detection step of OBE addresses the problem by using
an iterative SVM classifier.

The following section provides an overview of the SVM classifier. Details of the
OBE method and its two schemes are then explained.

4.2 Overview of SVM

As a binary classification algorithm, support vector machines (SVM) is a standard
tool for machine learning and data mining. It has demonstrated outstanding per-
formance in many domains of classification problems, such as text categorization
(Joachims 1998), image classification (Goh et al. 2001), and biosequence analysis
(Markowetz 2003). Interest is growing in SVM classifiers in the learning and applica-
tion communities.

SVM possesses several important properties, the most important of which are
listed below.

– Maximization of margin. This property can be illustrated by using a linear SVM,
which is its simplest form. A linear SVM is a hyperplane that separates the two
sets of positive and negative training data by using a maximum margin in the
feature space. The margin (m) implies the distance from the hyperplane (i.e.,
class boundary) to the nearest positive and negative objects in the feature space.
The objects closest to the separating hyperplane are called support vectors. An
example of a simple problem that is linearly separable is shown in Fig. 3.

– The distance from the hyperplane to an object approximates the relative strength
of the properties that distinguish positive objects from negative ones. For in-
stance, a strong negative object should be located far from the class boundary on
the negative side in the SVM feature space. Conversely, the positive or negative
property of an object within the margin is ambiguous and the object is difficult
to classify.

– Linear or nonlinear transformation of the input space to the feature space can
be accomplished by using kernel methods. Advanced kernel methods, such as
polynomial and Gaussian kernels, can be used to transform the input space
to another high-dimensional feature space when the training data cannot be

Fig. 3 An illustration
of a linear SVM in a
two-dimensional space

M

M

Support Vectors

J Intell Inf Syst (2011) 36:217–247 225

separated linearly. Linear kernels are fast, but nonlinear kernels have better
accuracy for some specific problems (Tax and Duin 1999). In our experiments,
polynomial kernels generally have superior performance. A discussion of the
choice of kernels for outlier detection is given in Section 6.

– The optimal hyperplane is completely defined by using support vectors. That
is, a hyperplane built from the entire set of training data is the same as that
built from the picked support vectors only. This property is quite helpful where
a plentiful supply of training data is difficult to obtain and where support vectors
are all that are available. Other learning methods, such as probabilistic methods
(e.g., Fisher’s linear discriminant analysis) or decision trees, do not possess this
advantage and potentially require sufficient training data.

4.3 Outlying feature extraction step

The purpose of this step is to map all objects from the input space into the MDEF-
based feature space, where the MDEF plots of objects capturing the degree of
outlierness, as well as the scales at which the outlierness appears, are represented
by vectors. Let D be the set of objects. In the MDEF-based feature space, each
object is represented by a vector: Oi = (mi0, mi1, . . . , min), Oi ∈ D, where mij =
MDEF(pi, r j, α), 0 ≤ j ≤ n, r0 = min{rmin,k | pk ∈ D}, and rn = rmax, r j = rn−r0

n j +
r0.4 Here, n denotes the number of sampling radii.5

In the context of outlier detection, there might exist some objects that are such
strong outliers that they might be highlighted by all users (i.e., the circle objects in
Fig. 1, which nearly all users would consider to be outliers). We call these outstanding
outliers. After all objects are projected onto the MDEF-based feature space, we can
discover outstanding outliers.

Outstanding outliers The set of outstanding outliers is defined by {Oi|max_M(Oi) >

kσ , Oi ∈ D}, where max_M(Oi) = max{mij | j = 0, 1, · · · , n} and kσ is a threshold.
An outstanding outlier is one that exhibits an extremely high degree of outlierness

at some scales, as measured by kσ . From the definition of MDEF, kσ should be
less than 1 but should be large enough to identify accurately any outstanding
outliers. A kσ threshold that is not sufficiently high will result in some objects being
mislabeled as outstanding outlying. When these mislabeled outstanding outliers are
incorporated into positive training data in the following outlier-detection step, they
might counteract the ability of the model to detect outliers at the desired scales. In all
of our experiments, we set kσ = 0.99, which is sufficiently high for most applications.

In the MDEF-based feature space, we can also filter out false outlier examples, if
any, that have low MDEF values in all ranges. Based on the MDEF conditions, these
objects do not show outlying features at any scale and are therefore not outliers.

We obtain the positive training data by combining the user-supplied outlier
examples and the outstanding outliers.

4More precisely, if rj ≥ rmin,i, then mij = MDEF(pi, r j, α), otherwise mij = 0.
5We completed experiments by varying the number of n from 50 to 400. The results showed that
OBE is insensitive to n. In all our experiments of OBE, n = 100.

226 J Intell Inf Syst (2011) 36:217–247

4.4 Outlier detection step

So far, the positive training data, as well as the entire, unlabeled dataset, are available
to us. The next step is to find an efficient, effective algorithm to discover the hidden
outlier concepts that the user has in mind.

We use an SVM classifier to learn the outlierness of interest to the user and then to
detect outliers that match this outlierness in MDEF-based space, where the features
of outlierness on all scales are characterized. Traditional classifier construction needs
both positive and negative training data. However, it is too difficult and also a burden
for users to provide negative or normal data for outlier detection. Most objects fall in
the category of negative data and it is unreasonable to expect users to examine them.

However, OBE addresses this problem and can learn merely from the positive
examples and the unlabeled data (i.e., the remaining objects in the dataset). The
algorithm shown here uses the maximal margin feature of SVMs. In this sense, the
algorithm generally resembles PEBL (Yu et al. 2002), which also learns from positive
and unlabeled data. However, in PEBL the hyperplane for separating positive and
negative data is set as close as possible to the set of given positive examples. In
OBE, the positive examples are merely examples of outliers, and it is not desirable
to set the hyperplane as in PEBL. Another difference between OBE and PEBL is
that strong negative data are determined by taking the characteristics of MDEF into
consideration.

To learn from the positive examples and unlabeled data, OBE constructs initial
negative training data in the MDEF-based feature space by extracting the most-
normal objects from the unlabeled data. Then, by using an iteration of learning
and detection, the hyperplane for separating positive and negative objects is pushed
progressively towards the desired position, where the separated positive objects
are the outliers of interest. In OBE, the final separating hyperplane is decided by
using two schemes to deal with differing degrees of domain knowledge. The first
scheme (OBE-Fraction) sets the final hyperplane based on the fraction of the desired
outliers. The second (OBE-RF) judges the position of the final hyperplane by using
relevance feedback and interaction with the users.

4.4.1 Detection by using fraction parameters

Aside from the outlier examples, the scheme for detection outliers by using the
fraction parameter (OBE-Fraction) uses as the input the fraction of outliers to be
determined. The fraction is used to determine the iteration termination conditions in
the detection step. OBE-Fraction consists of the following five sub-steps.

Strong negative data extraction All objects are sorted in descending order according
to max_M(Oi). The objects at the bottom of the list have low MDEF values at
all scales. According to the characteristics of MDEF, these objects can always be
regarded as normal objects in the dataset. Thus, from the objects at the bottom of
the list, we select the same number of (strong) negative training data as the number
of positive training data. Let the set of strong negative training data be NEG. Also,
let the set of positive training data be POS.

Training Train an SVM classifier by using POS and NEG.

J Intell Inf Syst (2011) 36:217–247 227

Testing Use the SVM to divide the dataset into a positive set P and a negative
set N.

Updating Replace NEG with N, the negative data obtained in the testing sub-step.

Iteration By iterating from the training sub-step to the updating sub-step, we obtain
progressively more negative data and these negative data gradually push the SVM’s
hyperplane towards POS. When the ratio of classified positive objects in P converges
to the fraction specified by the user, we terminate the iteration. The objects in the
final P are reported to the user as detected outliers.

Figure 4 summarizes the overall procedure of the scheme.

4.4.2 Detection by using relevance feedback

In some cases the fraction of outliers is difficult to determine beforehand. We
therefore developed a scheme called OBE-RF, which detects outliers without the
need for prior input of the outlier fraction parameters. To discover more outliers
in response to user intentions, we integrate the iteration of classification by using
a relevance-feedback technique, which enables the user to refine preferences by
specifying relevant and non-relevant outliers (or normal objects). Based on user
feedback information, the system attempts to guess the user’s intentions regarding
outliers and the strength of outlier-ness the user wants.

The OBE-RF procedure is as follows:

Classif ication Starting with the positive and strong negative training data, conduct
iterations from the training sub-step to the updating sub-step until the difference
in the size of P between two iterations is less than ε. Accordingly, at the end of
this phase the hyperplane for separating positive and negative objects is set as close
as possible to the set of positive training data. Therefore, the objects classified as
positive are those displaying stronger outlier-ness characteristics than the examples.

Fig. 4 Overall procedure for OBE-fraction

228 J Intell Inf Syst (2011) 36:217–247

Fig. 5 The feedback procedure in OBE-RF

Feedback To detect more outliers, it is desirable that some valuable queries, or
promising outliers, be found and be determined by users as relevant or non-relevant
outliers.

OBE chooses promising outliers at the negative side by using a heuristic method.
First, the object near the middle of the negative margin is raised as a query. Although
this object has been classified as negative by the SVM in the previous classification
sub-step, it still exhibits some outlier-ness characteristics that are similar to those of
the positive training data. The system then progressively selects the next object as a
question to users based on the answers to previous queries. Specifically, if a yes or
outlier answer is given, OBE proceeds to find the next question for potential outliers
by taking an additional step, moving farther from the hyperplane on the negative
side. The next question will determine the object whose distance from the hyperplane
is nearest to the distance of the previous yes feedback plus S.6 Conversely, if the
answer is no, OBE steps back to select an object at the middle of the previous
no-answered query and the previous yes-answered query (or the hyperplane itself
when there are no yes queries). In this way, OBE raises a number m of queries
by stepping forward or backward heuristically based on previous feedback. The
feedback procedure is shown in Fig. 5.

The yes answers, or positive feedbacks, are new outlier examples, whereas objects
receiving no answers are negative data. Thereafter, these new outlier examples and
negative data are incorporated into the training data.

Convergence Iterate the classification and feedback sub-steps until the answers for
all queries are no. The hyperplane constructed at the end of the iteration will be close

6 S is the pace of stepping forward. For simplicity, we set S = 1 in our experiments.

J Intell Inf Syst (2011) 36:217–247 229

to the desired hyperplane, which filters out all of the interesting outliers from the
normal objects. The positive objects separated by the last hyperplane are reported to
the user as all detected outliers.

Figure 6 shows the OBE-RF procedure.

4.5 Complexity of OBE

The algorithm of OBE’s two schemes comprises procedures for computing MDEF
values at sampling radii and iterations of the classification steps. In our experiments,
the time required for the procedure in which the classification iteration in both
schemes are accomplished is significantly less than that of the procedure used
to compute MDEF. The complexity of computing MDEF is O(N2 × (log n + n)),
where N is the dataset size and n refers to the number of sampling radii. Therefore,
O(N2 log n) is used to allocate O(N2) distances into n ranges of radii and the
computational cost of n-dimensional MDEF vectors for N objects is O(N2n). Usually,
the number of sampling radii (i.e., n), is significantly less than N.

4.6 Analysis of OBE

Fast convergence of the hyperplane of OBE Because no false-negative results are
generated in the strong negative data extraction sub-step and the algorithm of SVM
maximizes the margin in its feature space, the hyperplane of OBE approaches
its final position. The number of iterations required for convergence in OBE is
logarithmically related to the distance between the strong negatives and the final
position in the SVM’s high-dimensional feature space.

In the detection scheme employing fraction parameters, the final position is
decided by the outlier fraction parameter. For the classification sub-step used by
OBE-RF, the final position of the hyperplane is outside of but close to the positive

Fig. 6 Procedure for OBE-RF

230 J Intell Inf Syst (2011) 36:217–247

training data, so the classified outliers display stronger outlierness than the positive
training data.

Proof The intersection of the strong negative training data and the outlying objects
(i.e., false negative) is null. This is because we extract the strong negative training
data as the most-normal objects, which have the lowest MDEF values at all scales.
Let NEG0 denote the strong negative training data. Suppose the distance of NEG0

to POS in the feature space of SVM is d0. Trained from NEG0 and POS, the SVM
classifier sets the hyperplane between NEG0 and POS, which maximizes the margins
of positive and negative sides equally. Objects at the negative side of the hyperplane
become new negative training data, NEG1, and thus the distance d1 of NEG1 from
POS is half that of d0. The hyperplane of SVM trained from NEGi−1 and POS is set
repeatedly between NEGi−1 and POS with equal margins. Thus, di is always half of
di−1. Therefore, the hyperplane is pushed towards POS, and the number of iterations
will be logarithmically related to the distance of NEG0 from the final position in the
SVM feature space. ��

Convergence safety If NEG0 does not include any false negatives, and the algorithm
of SVM does not misclassify separable objects in POS (i.e., the positive training data),
the hyperplane of SVM does not trespass on the space of POS, regardless of the
number of iterations in OBE.

Proof Because OBE picks as NEG0 those objects that have the lowest MDEF values
at all scales, NEG0 is the set of the most-normal objects. POS is the positive training
data, that is, the true outlier examples and outstanding outliers. Therefore, NEG0 ∩
POS = ∅. NEGi+1 ∩ POS = ∅, if NEGi ∩ POS = ∅. This is because NEGi+1 is the set
of objects separated by a hyperplane, which is constructed from NEGi and POS, and
separable objects in POS are not misclassified as negatives. This is guaranteed in
our implementation of the SVM classifier by setting the parameter C (the penalty
imposed on the training data that fall on the wrong side of the decision boundary) as
1,000 (i.e., a very high penalty for misclassification).7 Therefore, the hyperplane of
SVM does not trespass on POS, regardless of the number of iterations in OBE. ��

For many scenarios, it is hard to say whether an object is an outlier or not.
Users are likely to argue that a particular object is more of an outlier than are
others. In OBE-Fraction, the fraction parameter is used to imply the degree of
outlierness, that is, the most-outlying objects at the scales of concern are regarded
as outliers. Therefore, we suppose the parameter of the outlier fraction is specified
as a reasonable value, so the final hyperplane decided by the fraction is outside the
space of POS and more outliers of interest are discovered. If users set the fraction
parameter too small (e.g., the space of the outliers decided by the fraction is less than
that of POS), the hyperplane converges to the POS boundary rather than to that
decided by the fraction. This occurs because it does not trespass on POS.

In the classification sub-step of OBE-RF, the hyperplane is pushed towards the
positive training data POS and is located outside the space of POS. This implies that

7In fact, in all of our experiments, instances in which the outlier examples or outstanding outliers are
misclassified as negatives were never observed.

J Intell Inf Syst (2011) 36:217–247 231

hyperplane accuracy depends on the quality of the positive training data. Within the
context of outlier detection, positive data tend to be undersampled because, usually,
only a few outlier examples are available. Thus, as observed in our experiments, the
final hyperplane in the classification sub-step is often adjacent to the space of the
outlier examples. The unlabeled objects that are outside the space of the positive
training data but are true outliers will be classified as normal by the final hyperplane
in the classification sub-step. In that case, it is better to set the hyperplane loosely
around the positive training data. We therefore set ε = |D|/1,000 in OBE-RF for a
loosely separating the hyperplane in all of our experiments.

4.7 Limitation of OBE

The OBE framework can essentially work based on any definition of outliers that
estimates the degree of outlierness at different scales or in different views. As stated
in Section 2, most existing methods measure the difference in objects based on such
parameters as distance (Knorr and Ng 1998), density (Breunig et al. 2000), and their
combinations, as is done in MDEF (Papadimitriou et al. 2003). Our OBE framework
uses MDEF because MDEF can cope successfully with the multi-density and multi-
granularity problems. These proximity-based definitions of an outlier are meaningful
in low-dimensional datasets (Knorr and Ng 1999). However, when the dimensionality
is very high and the data are sparse, it is hard to tell which one is an outlier from the
standpoint of proximity (Beyer et al. 1999). Meaningful outliers are more likely to
be defined by examining the behavior of the data in low-dimensional projections
(Aggarwal and Yu 2001). It is interesting to study detection of proximity-based
outliers in projections of high-dimensional datasets.

5 Experimental evaluation

This section describes our experimental methodology and the results obtained by
applying OBE to both synthetic and real data, which further illustrates inherent
intuition and also demonstrates the effectiveness of our method.

5.1 Datasets

We use two synthetic and two real datasets (Table 1) to evaluate OBE.

5.2 Experimental procedure

Our experimental procedure is as follows:

1. To simulate interesting outliers, we start by selecting objects that represent
outlierness at some scale. Specifically, we use discriminants of the form

∧
q(minq,

maxq, Condq, Kq), where (minq, maxq, Condq, Kq) stands for the condition
that (mij Condq Kq) holds for some j, such that minq ≤ j ≤ maxq and Condq can
be either > or <. Kq is a threshold to define the degree of outlierness, and mij

denotes the MDEF value of object i at radius j. The left and right boundaries of
the interesting rand are denoted by minq and maxq, respectively.

232 J Intell Inf Syst (2011) 36:217–247

Table 1 Description of synthetic and real datasets

Dataset Dimensionality Description

Ellipse 2 A 6,000-point ellipse following a Gaussian
distribution

Mixture 2 A 5,000-point sparse Gaussian cluster,
a 2,000-point dense Gaussian cluster, and
10 randomly scattered outliers

NYWomen 4 Marathon runner data, 2,229 women from the NYC
marathon: average pace (in minutes per mile) for
each stretch (6.2, 6.9, 6.9, and 6.2 miles)

Abalone 3 Abalone data, obtained from the UCI
(http://www.ics.uci.edu/˜mlearn/MLRepository.html)
machine learning repository, 4,177 diameter,
whole weight, and ring examinations of abalones

2. We then hide most of these outliers. In particular, we randomly sample y% of
the outliers to serve as examples that would be picked by a user.

3. Next, we detect outliers by using the OBE-Fraction and OBE-RF schemes
separately.

4. Finally, we compare the detected outliers to the simulated (target) set of outliers.
More specifically, we evaluate the success of the two OBE schemes in recovering
the hidden outlier concept by using precision/recall/F1 measurements.

OBE reports as interesting those outliers that are outstanding, as well as those
returned by the classifier. Table 2 shows all the sets of interesting outliers along
with the corresponding discriminants used as the underlying outlier concept in our
experiments. In the table, for example, the discriminant (1, 35, >, 0.9) means that
objects are selected as interesting outliers when their MDEF values are greater than
0.9 in the range of radii from 1 to 35. We always randomly sample 10% (y = 10) of
the interesting outliers to serve as user-provided outlier examples and hide the rest.
The number of examples is shown in the right-most column of Table 2.

To detect outstanding outliers, we use kσ = 0.99 for the complete synthetic and
real datasets. The number of discovered outstanding outliers is shown under the
heading “#_OOutliers” in Table 2.

For the OBE-RF scheme, we conduct the iteration in the classification sub-steps
until the difference in size of P between two iterations is less than the data size
divided by 1,000 (ε = |D|/1,000). Thus, a loosely separating hyperplane is deter-
mined as discussed in Section 4.6. We always raise four queries of objects (m = 4)
at the negative side of the hyperplane in each feedback sub-step, and terminate the
detection process when all answers are no.

We use the LIBSVM implementation (by Chang and Lin, http://www.csie.nut.
edu.tw/˜cjlin/libsvm) for our SVM classifier. We extensively compared the accuracy
of the SVM kernel on a linear, polynomial, and radial basis and found that polyno-
mial kernels consistently perform better, as described in Section 6. Therefore, here
we present the results of using polynomial kernels and the same SVM parameters.8

This makes it possible for all processes to be done automatically.

8For the polynomial kernel, we use a kernel function of (u′ ∗ v + 1)2.

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.csie.nut.edu.tw/~cjlin/libsvm
http://www.csie.nut.edu.tw/~cjlin/libsvm

J Intell Inf Syst (2011) 36:217–247 233

Table 2 Interesting outliers and their discriminants

Dataset #_OOutliers Cases

Label Description Condition #_IOutliers #_Examples

Ellipse 4 E-F Fringe (5, 30, >, 0.85) 209 21
dataset E-L Long ends (15, 25, >, 0.8) 140 14

(30, 40, >, 0.6)
E-S Short ends (5, 15, >, 0.8) 162 16

(35, 40, <, 0.6)
Mixture 13 M-A All (1, 35, >, 0.9) 163 16

dataset M-L Large cluster (15, 35, >, 0.9) 117 12
M-S Small cluster (1, 5, >, 0.9) 58 6

NYWomen 16 N-FS Very fast (800, 1400, >, 0.7) 89 9
dataset or slow

N-PF Partly fast (300, 500, >, 0.8) 123 12
(1,400, 1,600, <, 0.4)

N-SS Stable speed (100, 300, >, 0.8) 104 10
(400, 600, <, 0.3)

Abalone A-FS Very fat/slim (0.1, 0.2, >, 0.9) 97 10
dataset 8 A-HA Huge/aged (0.4, 1, >, 0.9) 68 7

#_OOutliers and #_IOutliers are numbers of outstanding outliers and interesting outliers, respec-
tively. Examples are outlier objects that are supposed to be provided by users

We report the effectiveness of OBE in discovering the hidden outliers by using
precision, recall, and F1 measurements:

Precision = # of correct positive predictions
of positive predictions

(2)

Recall = # of correct positive predictions
of positive data

(3)

F1 = 2 ∗ Precision ∗ Recall
(Precision + Recall)

. (4)

5.3 Experimental comparisons

Experimental comparisons of our OBE technique against StrOUD and LOF are
performed on all four datasets by using precision/recall/F1 measurements with
respect to the target class of outliers only (i.e., for which the user has provided
samples). To find the nearest neighbors, we test a large range of choices9 for the
parameters MinPts in LOF and K in StrOUD.

For each MinPts within the range of choices, we compute LOF values for all
objects and rank them with respect to their LOF values. On the ranked list, the
top #_IOutliers objects are flagged as LOF outliers. #_IOutliers is the number of
interesting outliers for each case and is listed under the “#_IOutliers” column of

9The large range of choices is (2, 5, 10, 20, 30, 40, 50, 60, 80, 100, 150, 200, 250, 300, 400, 500, 700, and
1,000).

234 J Intell Inf Syst (2011) 36:217–247

Table 2. That is, the number of positive predictions of LOF is exactly the same as
that of positive data. Thus the precision, recall, and F1 measurements of the LOF
method are identical. For each testing case, we select among the large range of
choices the right MinPts for LOF, which results in the best F1 measurement, and
the corresponding result is used for comparison with OBE.

For StrOUD, we suppose that there is no clustering information available and that
the data are treated as a whole (as if it all belongs to one cluster). Thus, the required
confidence level can be reflected directly by τ (δ = 1 − τ). To be comparable, we
set the τ for each case respectively as the number of interesting outliers divided by
the size of the dataset. By doing so, the number of outliers declared by StrOUD is
almost the same as that of the target outliers, and the computed precision, recall, and
F1 measures are almost equal. Also, by examining the large range of choices for K,
the best results (i.e., those with the best F1 measures) of StrOUD are selected and
compared with OBE.

To save space, only the comparison results between OBE, LOF, and StrOUD on
the Ellipse dataset are visually presented in Fig. 7a, b, and c. The experimental results
of all methods are summarized in Table 3.

5.4 Results

As Table 3 shows, the performances of the OBE-Fraction and OBE-RF schemes
are nearly comparable and OBE-RF is a little better in most cases. Thus, the
experimental results shown here are from OBE-RF schemes to demonstrate the
ability of OBE to detect outliers based on user examples.

Ellipse dataset The Ellipse dataset has three kinds of interesting outliers as well as
outstanding outliers: (i) the set of fringe outliers whose MDEF values are examined
across a wide range from 5 to 30, (ii) those mainly spread at the long ends of the
ellipse and that display outlierness in two ranges of scales (from 15 to 25 and from 30
to 40), and (iii) mainly in the short ends, which are exceptional in the range from 5
to 15, but do not show strong outlierness in the scales from 35 to 40.

Figure 7a shows the performance of the OBE-RF scheme. From top to bottom,
we show the user examples and the detected results for cases E-F, E-L and E-S (see
Table 2 for a description of the cases). Note that the features chosen can capture the
notion of fringe, long ends, and short ends. Beyond that, OBE can almost perfectly
reconstruct these hidden outlier notions.

The detailed convergence of the detected fractions and corresponding F1 mea-
surements during iterations of OBE-Fraction are shown in Fig. 8. In Fig. 8, the
detected fraction of outliers decreases and converges rapidly to that specified by
the user in all three cases. The F1 measurement improves rapidly together with
the convergence of the fraction. Note that only four iterations are needed to reach
convergence in the E-L experiment.

For comparison, the corresponding detection results of LOF in cases E-F, E-L,
and E-S are displayed from left to right in Fig. 7b. Note that a large range of choices
for the parameter MinPts is tested. All results in Fig. 7b are the best performances
of LOF (i.e., the results with the best F1 measurements) and are obtained by using
different values of MinPts. It is obvious that LOF has poor performance when
discovering objects isolated in the short ends of the Ellipse dataset.

J Intell Inf Syst (2011) 36:217–247 235

The best experimental results of StrOUD applied to the Ellipse dataset’s three
cases are summarized in Fig. 7c. Again, the best results are obtained by using
different values of K after searching the large range of choices for K. Although the
results of cases E-F and E-L are comparable to those obtained by using OBE and
LOF, StrOUD could hardly discriminate outliers that were scattered in the short
ends of the Ellipse dataset from those in the long ends.

 10

 20

 30

 40

 50

 60

 70

 80

 10 15 20 25 30 35 40 45 50 55 60 65

Y

X

User Examples

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70

Y

X

User Examples

 10

 20

 30

 40

 50

 60

 70

 80

 10 15 20 25 30 35 40 45 50 55 60 65

Y

X

User Examples

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70

Y

X

OBE Results

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70

Y

X

OBE Results

 10

 20

 30

 40

 50

 60

 70

 80

 10 15 20 25 30 35 40 45 50 55 60 65

Y

X

OBE Results

(a) Detection results of OBE-RF on the ellipse dataset. From left to right: case E-F,
case E-L, and case E-S; see Table 2 for the description of each case.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70

Y

X

LOF Results(MinPts = 400)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70

Y

X

LOF Results(MinPts = 1000)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70

Y

X

LOF Results(MinPts = 50)

(b) Detection results of LOF on the ellipse dataset. From left to right: obtained
when Min Pts is 400, 1000, and 50, respectively.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70

Y

X

StrOUD Results(k = 50)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70

Y

X

StrOUD Results(k = 1000)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70

Y

X

StrOUD Results(k = 20)

(c) Detection results of StrOUD on the ellipse dataset. From left to right: obtained
when K is 50, 1000, and 20, respectively.

Fig. 7 Detection results of OBE-RF, LOF, and StrOUD on the ellipse dataset. From left to right:
case E-F, case E-L, and case E-S; see Table 2 for the description of each case. Note that results of
LOF and StrOUD are the best after searching a large range of choices for parameters of MinPts in
LOF and K in StrOUD

236 J Intell Inf Syst (2011) 36:217–247

T
ab

le
3

R
es

ul
ts

of
O

B
E

’s
tw

o
sc

he
m

es
,L

O
F

an
d

St
rO

U
D

,o
n

al
ld

at
as

et
s

T
es

td
at

a
O

B
E

-f
ra

ct
io

n
O

B
E

-R
F

L
O

F
St

rO
U

D

P
re

c.
R

ec
.

F
1

#I
P

re
c.

R
ec

.
F

1
#F

F
1

M
in

P
ts

F
1

k

E
lli

ps
e

E
-F

90
.8

±
2.

5
93

.8
±

3.
3

92
.2

±
2.

6
7.

2
±

1.
2

91
.8

±
10

.2
97

.7
±

1.
6

94
.7

±
6.

5
6.

6
±

3.
9

98
.1

40
0

91
.0

50
da

ta
se

t
E

-L
91

.1
±

2.
4

95
.9

±
1.

6
93

.4
±

1.
0

4.
6

±
1.

0
96

.3
±

4.
2

98
.3

±
1.

7
97

.3
±

2.
7

4.
7

±
2.

4
78

.6
1,

00
0

85
.0

1,
00

0
E

-S
69

.0
±

9.
5

82
.5

±
8.

0
75

.1
±

6.
0

14
.5

±
4.

3
71

.4
±

7.
8

86
.7

±
7.

4
78

.3
±

4.
8

2.
5

±
1.

8
55

.6
50

33
.3

20
M

ix
tu

re
M

-A
83

.5
±

3.
9

90
.9

±
3.

7
87

.0
±

3.
0

4.
7

±
0.

6
85

.9
±

9.
7

92
.7

±
4.

8
89

.2
±

5.
6

5.
4

±
4.

4
93

.3
40

0
72

.2
40

da
ta

se
t

M
-L

91
.6

±
3.

8
95

.5
±

1.
6

93
.5

±
2.

4
5.

1
±

1.
6

92
.8

±
4.

9
97

.1
±

3.
2

94
.9

±
3.

1
3.

9
±

2.
7

90
.6

1,
00

0
97

.4
10

0
M

-S
84

.6
±

4.
7

89
.7

±
4.

2
87

.1
±

2.
9

6.
1

±
1.

3
78

.0
±

10
.1

92
.4

±
5.

6
84

.6
±

6.
1

2.
9

±
1.

8
56

.9
60

20
.9

2
N

Y
W

om
en

N
-F

S
77

.4
±

6.
2

83
.1

±
4.

1
80

.2
±

4.
7

6.
6

±
1.

0
87

.3
±

4.
9

85
.4

±
8.

3
86

.3
±

4.
8

3.
9

±
3.

2
86

.5
70

0
91

.0
40

0
da

ta
se

t
N

-P
F

69
.0

±
5.

4
72

.8
±

4.
2

70
.8

±
4.

7
8

±
1.

4
74

.9
±

3.
6

78
.1

±
7.

5
76

.5
±

4.
4

4.
2

±
3.

1
74

.0
40

0
76

.7
10

0
N

-S
S

63
.1

±
6.

7
71

.5
±

6.
6

67
.1

±
5.

4
10

.1
±

1.
8

62
.1

±
9.

9
73

.8
±

7.
7

67
.5

±
5.

6
2.

2
±

1.
2

45
.2

20
17

.4
2

A
ba

lo
ne

A
-F

S
65

.4
±

7.
6

76
.5

±
6.

8
70

.5
±

6.
5

5.
1

±
0.

8
84

.3
±

8.
9

75
.2

±
11

.0
79

.5
±

9.
7

5.
5

±
4.

6
79

.4
50

42
.2

2
da

ta
se

t
A

-H
A

51
.5

±
3.

9
61

.5
±

7.
0

56
.0

±
4.

5
7.

1
±

1.
3

71
.7

±
12

.3
67

.1
±

13
.1

69
.3

±
8.

6
2.

7
±

1.
4

72
.1

70
0

83
.0

60

P
re

ci
si

on
(P

re
c.

),
re

ca
ll

(R
ec

.)
,a

nd
F

1
sh

ow
th

e
pe

rf
or

m
an

ce
of

O
B

E
’s

tw
o

sc
he

m
es

.T
he

nu
m

be
r

of
it

er
at

io
ns

(#
I)

in
O

B
E

-f
ra

ct
io

n
an

d
fe

ed
ba

ck
s

(#
F

)
in

O
B

E
-R

F
fo

r
co

nv
er

ge
nc

e
in

th
e

de
te

ct
io

n
pr

oc
ed

ur
e

ar
e

al
so

sh
ow

n

J Intell Inf Syst (2011) 36:217–247 237

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7
 0

 20

 40

 60

 80

 100

R
at

io
 (

%
)

F
1

(%
)

of Iterations

Ellipse E-F

Detected Ratio
User Ratio

F1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4
 0

 20

 40

 60

 80

 100

R
at

io
 (

%
)

F
1

(%
)

of Iterations

Ellipse E-L

Detected Ratio
User Ratio

F1

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 3 4 5 6 7 8 9 10 11 12
 0

 20

 40

 60

 80

 100

R
at

io
 (

%
)

F
1

(%
)

of Iterations

Ellipse E-S

Detected Ratio
User Ratio

F1

Fig. 8 Convergence of outlier fractions and F1 measurements of OBE-fraction on the ellipse dataset.
From left to right: case E-F, case E-L, and case E-S; see Table 2 for the description of each case

In Fig. 7, both StrOUD and LOF can not highlight those outliers that are isolated
at the short ends of the Ellipse dataset and that appear to be meaningful, whereas
OBE can.

Mixture dataset For the mixture dataset, we mimicked three categories of interest-
ing outliers: (i) the set of outliers scattered along the fringes of both clusters, (ii) those
mainly spread along the fringe of the large cluster, and (iii) those mainly in the small
cluster. The results of the OBE-RF scheme in the three cases are shown in Fig. 9. The
details of the convergence of OBE-Fraction are in Fig. 10.The features chosen can
capture several different and interesting types of outlying objects, and OBE again
discovers the underlying outlier notion. It also converges rapidly, needing no more
than four iterations to reach convergence in the M-A experiment.

NYWomen dataset In the real dataset, we simulate three kinds of intentions for
outliers. The first group (case N-FS; see Fig. 11) is the set of consistently fast or slow
runners (i.e., the fastest 7 and most of the remaining 70 were very slow ones). The
second group of outlying runners (case N-PF; see Fig. 12) are mainly those who are at
least partly fast. In this group, we discover both the fastest 23 runners and abnormally
fast runners in one or two parts of the four stretches, although they ranked middle

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10 20 30 40 50 60 70 80 90 100 110

Y

X

User Examples

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10 20 30 40 50 60 70 80 90 100 110

Y

X

User Examples

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10 20 30 40 50 60 70 80 90 100 110

Y

X

User Examples

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10 20 30 40 50 60 70 80 90 100 110

Y

X

Detection Results

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10 20 30 40 50 60 70 80 90 100 110

Y

X

Detection Results

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10 20 30 40 50 60 70 80 90 100 110

Y

X

Detection Results

Fig. 9 Detection results of OBE-RF on the mixture dataset. From left to right: case M-A, case M-L,
and case M-S; see Table 2 for the description of each case

238 J Intell Inf Syst (2011) 36:217–247

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 1 2 3 4
 0

 20

 40

 60

 80

 100

R
at

io
 (

%
)

F
1

(%
)

of Iterations

Mixture M-A

Detected Ratio
User Ratio

F1

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 1 2 3 4 5
 0

 20

 40

 60

 80

 100

R
at

io
 (

%
)

F
1

(%
)

of Iterations

Mixture M-L

Detected Ratio
User Ratio

F1

 0

 2

 4

 6

 8

 10

 12

 1 2 3 4 5 6
 0

 20

 40

 60

 80

 100

R
at

io
 (

%
)

F
1

(%
)

of Iterations

Mixture M-S

Detected Ratio
User Ratio

F1

Fig. 10 Convergence of outlier fractions and F1 measurements of OBE-fraction on the mixture
dataset. From left to right: case M-A, case M-L, and case M-S; see Table 2 for the description of
each case

or last in the overall race. For example, the runner who ranked 1,275 in the whole
race took 47 min for the first 6.2 miles, but took 91 min for the last 6.2 miles. The
third set of interesting outliers (case N-SS; see Fig. 13) is detected when we focus
on a small scale. Although they ranked middle in the whole race, they exhibit great
outlierness compared with their local neighbors. They ran quickly when most of their
neighbors ran slowly, and vice versa. Note that in Figs. 11–13 the filled-dot objects

Stretch 1

 200

 400

 600

 800

 1000

 1200

 1400

 200 400 600 800 1000 1200
 200

 400

 600

 800

 1000

 1200

 1400

 200 400 600 800 1000 1200
 200

 400

 600

 800

 1000

 1200

 1400

 200 400 600 800 1000 1200

 200

 400

 600

 800

 1000

 1200

 200 400 600 800 1000 1200 1400

Stretch 2

 200

 400

 600

 800

 1000

 1200

 1400

 200 400 600 800 1000 1200 1400
 200

 400

 600

 800

 1000

 1200

 1400

 200 400 600 800 1000 1200 1400

 200

 400

 600

 800

 1000

 1200

 200 400 600 800 1000 1200 1400
 200

 400

 600

 800

 1000

 1200

 1400

 200 400 600 800 1000 1200 1400

Stretch 3

 200

 400

 600

 800

 1000

 1200

 1400

 200 400 600 800 1000 1200 1400

 200

 400

 600

 800

 1000

 1200

 200 400 600 800 1000 1200 1400
 200

 400

 600

 800

 1000

 1200

 1400

 200 400 600 800 1000 1200 1400
 200

 400

 600

 800

 1000

 1200

 1400

 200 400 600 800 1000 1200 1400

Stretch 4

Fig. 11 User examples (dots) and outliers (triangles) detected by OBE-RF in case N-FS of the
NYWomen dataset

J Intell Inf Syst (2011) 36:217–247 239

Stretch 1

 200

 400

 600

 800

 1000

 1200

 1400

 200 400 600 800 1000 1200
 200

 400

 600

 800

 1000

 1200

 1400

 200 400 600 800 1000 1200
 200

 400

 600

 800

 1000

 1200

 1400

 200 400 600 800 1000 1200

 200

 400

 600

 800

 1000

 1200

 200 400 600 800 1000 1200 1400

Stretch 2

 200

 400

 600

 800

 1000

 1200

 1400

 200 400 600 800 1000 1200 1400
 200

 400

 600

 800

 1000

 1200

 1400

 200 400 600 800 1000 1200 1400

 200

 400

 600

 800

 1000

 1200

 200 400 600 800 1000 1200 1400
 200

 400

 600

 800

 1000

 1200

 1400

 200 400 600 800 1000 1200 1400

Stretch 3

 200

 400

 600

 800

 1000

 1200

 1400

 200 400 600 800 1000 1200 1400

 200

 400

 600

 800

 1000

 1200

 200 400 600 800 1000 1200 1400
 200

 400

 600

 800

 1000

 1200

 1400

 200 400 600 800 1000 1200 1400
 200

 400

 600

 800

 1000

 1200

 1400

 200 400 600 800 1000 1200 1400

Stretch 4

Fig. 12 User examples (dots) and outliers (triangles) detected by OBE-RF in case N-PF of the
NYWomen dataset

are user examples while the outliers are represented by filled triangles. Descriptions
of the three cases are given in Table 2. The convergence details are shown in Fig. 14.

Abalone dataset In the abalone dataset obtained from the UCI (http://www.ics.uci.
edu/˜mlearn/MLRepository.html) machine learning repository, we detect outliers
from three attributes: diameter, whole weight, and rings. The outliers were catego-
rized into two quite different groups. The first group (case A-FS; see Fig. 15) is the
set of abalones (containing about 90%) that are very fat or very slim. Members of the
second set of outliers have an abnormal relationship between their size (diameter and
whole weight) and rings (case A-HA; see Fig. 16). The number of rings indicates age.
In the second group, some abalones are extremely old compared with the like-sized
majority. Others, though young, are huge, displaying very large diameter and weight.
Figures 15 and 16 show the two sets of outliers in three dimensions. Furthermore, in
Figs. 15 and 16 the filled-dot objects are user examples and the detected outliers are
illustrated by using filled triangles. The two cases are described in Table 2. Figure 17
shows the convergence processes.

For all datasets, the results are summarized in Table 3. Table 3 shows the precision,
recall, and F1 measurements, including their standard deviations, for both OBE-

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html

240 J Intell Inf Syst (2011) 36:217–247

Stretch 1

 200

 400

 600

 800

 1000

 1200

 1400

 200 400 600 800 1000 1200
 200

 400

 600

 800

 1000

 1200

 1400

 200 400 600 800 1000 1200
 200

 400

 600

 800

 1000

 1200

 1400

 200 400 600 800 1000 1200

 200

 400

 600

 800

 1000

 1200

 200 400 600 800 1000 1200 1400

Stretch 2

 200

 400

 600

 800

 1000

 1200

 1400

 200 400 600 800 1000 1200 1400
 200

 400

 600

 800

 1000

 1200

 1400

 200 400 600 800 1000 1200 1400

 200

 400

 600

 800

 1000

 1200

 200 400 600 800 1000 1200 1400
 200

 400

 600

 800

 1000

 1200

 1400

 200 400 600 800 1000 1200 1400

Stretch 3

 200

 400

 600

 800

 1000

 1200

 1400

 200 400 600 800 1000 1200 1400

 200

 400

 600

 800

 1000

 1200

 200 400 600 800 1000 1200 1400
 200

 400

 600

 800

 1000

 1200

 1400

 200 400 600 800 1000 1200 1400
 200

 400

 600

 800

 1000

 1200

 1400

 200 400 600 800 1000 1200 1400

Stretch 4

Fig. 13 User examples (dots) and outliers (triangles) detected by OBE-RF in case N-SS of the
NYWomen dataset

Fraction and OBE-RF, by using polynomial kernels (as mentioned, polynomial
kernels consistently performed better in our experiments). It also shows the number
of iterations and feedbacks needed to converge in the learning step of OBE. In
Table 3, all measurements of OBE-Fraction and OBE-RF are the averages of ten
trials with different sets of user examples. In each trial, the same examples are
used for fair comparisons of the performances of the OBE-Fraction and OBE-RF

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6
 0

 20

 40

 60

 80

 100

R
at

io
 (

%
)

F
1

(%
)

of Iterations

NYWomen N-FS

Detected Ratio
User Ratio

F1

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8
 0

 20

 40

 60

 80

 100

R
at

io
 (

%
)

F
1

(%
)

of Iterations

NYWomen N-PF

Detected Ratio
User Ratio

F1

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7 8 9 10 11
 0

 20

 40

 60

 80

 100

R
at

io
 (

%
)

F
1

(%
)

of Iterations

NYWomen N-SS

Detected Ratio
User Ratio

F1

Fig. 14 Convergence of outlier fractions and F1 measurements of OBE-Fraction on the NYWomen
dataset. From left to right: case N-FS, case N-PF, and case N-SS; see Table 2 for the description of
each case

J Intell Inf Syst (2011) 36:217–247 241

Diameter

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Whole

Weight

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Rings

Fig. 15 User examples (dots) and outliers (triangles) detected by OBE-RF in case A-FS of the
Abalone dataset

schemes. The OBE-Fraction scheme detects outliers by using the outlier fraction
parameter. The OBE-RF scheme detects outliers by using relevance feedback but
does not require the fraction factor.

For comparison, Table 3 also shows the best results (i.e., the results with the
best F1 measurements) of running the LOF and StrOUD techniques on all datasets
after examining a large range of choices for the parameters MinPts in LOF and K
in StrOUD. Since the precision, recall, and F1 measurements of LOF/StrOUD are
almost equal, only the F1 measurements and the corresponding parameter values are
listed in Table 3.

By comparing the performances of the OBE-Fraction and OBE-RF schemes, we
observe that OBE-RF tends to give better performance in almost all cases except
M-S, even without the information on outlier fractions. This happens because, by
using a relevance feedback technique that enables the user to refine preferences by
specifying relevant and non-relevant outliers, the hyperplane in the OBE-RF scheme
is fitted and set as close as possible to the set of user-provided examples, including

242 J Intell Inf Syst (2011) 36:217–247

Diameter

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Whole

Weight

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Rings

Fig. 16 User examples (dots) and outliers (triangles) detected by OBE-RF in case A-HA of the
Abalone dataset

positive feedbacks. On the other hand, standard deviations of precision, recall, and
F1 measurements of OBE-Fraction are usually (26 of 33 measurements) less than
those of OBE-RF, indicating that OBE-Fraction is more stable than OBE-RF, with
information of the outlier fraction.

As for the comparison of OBE with LOF and StrOUD, OBE-RF is the best for
five of the eleven cases. Furthermore, in three cases OBE-RF performs much better
than LOF and StrOUD (e.g., for the case E-S, F1 measurements of OBE-RF, LOF
and StrOUD are: 79.3, 55.6, and 33.3%; for the cases M-S and N-SS, the results are:
84.6, 56.9, 20.9, 67.5, 45.2, and 17.4%). The results of OBE-RF rank second and are
comparable to the best of the three methods in four other cases. In only two cases was
OBE-RF the worst of those studied. However, the difference is within a reasonable
range (for the cases N-FS and A-HA, the F1 measurements of OBE-RF, LOF and
StrOUD are: 86.3, 86.5, 91.0, 69.3, 72.1, and 83.0%).

In almost all cases, OBE’s two schemes detect interesting outliers with precision,
recall, and F1 measurements reaching from 60 to 90%. In the worst case (case

J Intell Inf Syst (2011) 36:217–247 243

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5
 0

 20

 40

 60

 80

 100

R
at

io
 (

%
)

F
1

(%
)

of Iterations

Abalone A-FS

Detected Ratio
User Ratio

F1

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7
 0

 20

 40

 60

 80

 100

R
at

io
 (

%
)

F
1

(%
)

of Iterations

Abalone A-HA

Detected Ratio
User Ratio

F1

Fig. 17 Convergence of outlier fractions and F1 measurements of OBE-fraction on the Abalone
dataset. Left case A-FS, right case A-HA; see Table 2 for the description of each case

A-HA of Abalone) using the OBE-Fraction scheme, it still achieves 52% precision,
62% recall, and 56% F1. The number of iterations in the OBE-Fraction scheme is
always small (less than 15), as is the number of feedbacks (always less than seven in
the OBE-RF scheme). As for the standard deviations of all measurements of both
schemes, 64% of them are less than 5% and 94% of them are less than 10%. These
experiments demonstrate that OBE works well in detecting outliers in the MDEF
feature space, even though the number of user examples is very small.

6 Observations

This section presents several experimental observations related to the application of
OBE. Specifically, we always use the same sets of user-provided examples and all
results are an average of ten trials.

1. Possible use of non-SVM learning method in OBE
Several supervised learning methods, such as naive Bayes and Fisher’s linear
discriminant analysis (LDA), are based on probabilities within the training
data. However, in the context of outlier detection there are only few positive
training data (i.e., outlier examples). It is impossible to estimate the appropriate
probability from such a small sample. We attempted to use LDA to classify
outliers and normal objects. However, this attempt failed because outliers are
obviously not normally distributed and the pooled sample covariance matrix of
the two classes did not exist.
Other methods (e.g., decision trees, neural networks, and perception) do not
have the maximizing margin feature. As discussed in Section 4.6, SVM maximizes
the margin between the positive and negative training data. Under the assump-
tion that SVM does not misclassify separable positive (i.e., outlier) training
data,10 the final hyperplane converges to the true position, where interesting

10This is the fact in all our experiments.

244 J Intell Inf Syst (2011) 36:217–247

outliers and normal objects are separated on either side. Other methods do not
guarantee convergence of the separating hyperplane.

2. Choice of kernel functions
SVMs provide both linear and nonlinear transformation of input space to feature
space by using various kernels. Aside from the polynomial kernel, linear- and
radial-based kernels are also frequently chosen. We extensively compare the
accuracy and stability of linear, polynomial, and radial basis SVM kernels.
Figure 18 shows the performance of the OBE-Fraction scheme by using various
kernels of SVM.
The figure reveals several points. (1) Linear kernels sometimes become very
poor in their ability to detect outliers because classifying interesting outliers in a
high-dimensional MDEF-based space is often not linearly separable. (2) Radial
kernels with rigorously chosen gamma parameters (denoted as gm in Fig. 18)
can achieve better generalization. However, the gamma parameters must be
tuned carefully for problem domains and even for cases within a dataset. (3)
Polynomial kernels always perform relatively well and are stable in all cases
of our experiments. The performance of polynomial kernels without carefully
chosen parameters is significant.
Therefore, we used polynomial kernels with the same SVM parameters in
all of the experiments in Section 5. Correspondingly, all processes were done
automatically. For some particular application domains, however, users might
employ the radial kernels in SVMs and carefully choose the gamma parameters
to get better performance of OBE. Once the best kernel and parameter are

 0

 20

 40

 60

 80

 100

E-SE-LE-F

F
1

(%
)

F1 Measurements (Ellipse)

 0

 20

 40

 60

 80

 100

M-SM-LM-A

F
1

(%
)

F1 Measurements (Mixture)

 0

 20

 40

 60

 80

 100

N-SSN-PFN-FS

F
1

(%
)

F1 Measurements (NYWomen)

 0

 20

 40

 60

 80

 100

A-HAA-FS

F
1

(%
)

F1 Measurements (Abalone)

Linear

Polynomial

RBF gm=0.3

RBF gm=0.01

Fig. 18 F1 measurements versus kernels of SVM in OBE-fraction

J Intell Inf Syst (2011) 36:217–247 245

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16 18 20

F
1

(%
)

% of User Examples

F1 Measurements (Ellipse)

E-F
E-L
E-S

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16 18 20

F
1

(%
)

% of User Examples

F1 Measurements (Mixture)

M-A
M-L
M-S

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16 18 20

F
1

(%
)

% of User Examples

F1 Measurements (NYWomen)

N-FS
N-PF
N-SS

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16 18 20

F
1

(%
)

% of User Examples

F1 Measurements (Abalone)

A-FS
A-HA

Fig. 19 F1 measurements versus % of user examples in OBE-fraction

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16

F
1

(%
)

of Queries Per Feedback

F1 Measurements (Ellipse)

E-F
E-L
E-S

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16

F
1

(%
)

of Queries Per Feedback

F1 Measurements (Mixture)

M-A
M-L
M-S

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16

F
1

(%
)

of Queries Per Feedback

F1 Measurements (NYWomen)

N-FS
N-PF
N-SS

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16

F
1

(%
)

of Queries Per Feedback

F1 Measurements (Abalone)

A-FS
A-HA

Fig. 20 F1 measurements versus # of queries raised in each feedback sub-step in OBE-RF

246 J Intell Inf Syst (2011) 36:217–247

determined, OBE can use them automatically to detect outliers for the similar
application datasets.

3. Impact of user examples
In the experiments in Section 5, we always sample 10% of the interesting outliers
to serve as user-provided examples and hide the rest. More experiments were
conducted that sampled examples from 2% to 20% (y = 2 − 20%) to determine
the influence of the number of user examples on OBE performance. The results
in Fig. 19 are obtained by using the OBE-Fraction scheme. They show that F1
measurements benefit from more examples, as one would expect, then tend to
grow more slowly with additional examples. Note that, in some cases such as the
E-L case in the Ellipse dataset, OBE performs quite well even with few examples.

4. Ef fect of the number of queries per feedback in OBE-RF
It is interesting to ask whether more queries in each feedback sub-step lead to
better performance of the OBE-RF scheme. We added experiments to answer
this question. Figure 20 shows the performance of the OBE-RF scheme when
2–15 queries (m = 2 − 15) are raised in each feedback sub-step. The results in
Fig. 20 are an average of ten trials when different user examples of 4%(y = 4%)
are sampled. The results show that the OBE-RF scheme benefits from more
queries per feedback as well.

7 Conclusion

Detecting outliers is an important but tricky problem since the exact definition of
an outlier often depends on the user and/or the dataset. We proposed to solve this
problem by using a novel approach: that of having the user provide examples of
outliers.

This paper contributes the following:

– We proposed OBE, which, to the best of our knowledge, is the first method to
provide a solution to this problem.

– We built a system and described our design decisions. Although OBE appears
simple to the user (click on a few outlier-looking record), there are many
technical challenges that needed to be resolved. We showed how to approach
them and, specifically, how to extract suitable feature vectors from our data
objects. We also illustrated how to train a classifier quickly to learn from the
(few) examples that the user provides. Two schemes, OBE-Fraction and OBE-
RF, were developed especially for different degrees of domain knowledge.

– We evaluated the two OBE schemes by using both real and synthetic data,
with several small sets of user examples. Our experiments demonstrated that
both the OBE-Fraction and OBE-RF schemes can successfully incorporate these
examples in the discovery process and detect outlierness characteristics very
similar to the given examples.

Acknowledgements This research was supported in part by the Japan-U.S. Cooperative Science
Program of JSPS, U.S.-Japan Joint Seminar (NSFgrant0318547), the Grant-in-Aid for Scientific
Research from JSPS (#15300027), and the Beijing outstanding talents training and subsidization.

J Intell Inf Syst (2011) 36:217–247 247

References

Aggarwal, C. C., & Yu, P. S. (2001). Outlier detection for high dimensional data. In Proc. SIGMOD.
Angiulli, F., & Pizzuti, C. (2005). Outlier mining in large high-dimensional data sets. IEEE Transac-

tions on Knowledge and Data Engineering, 17(2), 203–215.
Barbará, D., Domeniconi, C., & Rogers, J. P. (2006). Detecting outliers using transduction and

statistical testing. In Proc. SIGKDD conf. (pp. 55–64).
Barnett, V., & Lewis, T. (1994). Outliers in statistical data. New York: Wiley.
Beyer, K., Goldstein, J., Ramakrishnan, R., & Shaft, U. (1999). When is nearest neighbors meaning-

ful? In Proc. international conf. on database theory (pp. 217–235).
Breunig, M. M., Kriegel, H. P., Ng, R. T., & Sander, J. (2000). LOF: Identifying density-based local

outliers. In Proc. SIGMOD Conf. (pp. 93–104).
Goh, K., Chang, E., & Cheng, K. (2001). SVM binary classifier ensembles for image classification. In

Proc. International conf. on information and knowledge management (pp. 395–402).
Hawkins, D. M. (1980). Identif ication of outliers. London, UK: Chapman and Hall.
Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: A review. ACM Computing Surveys,

31(3), 264–323.
Joachims, T. (1998). Text categorization with support vector machines. In Proc. European conf.

machine learning (ECML) (pp. 137–142).
Johnson, T., Kwok, I., & Ng, R. T. (1998). Fast computation of 2-dimensional depth contours. In

Proc. KDD (pp. 224–228).
Knorr, E. M., & Ng, R. T. (1997). A unified notion of outliers: Properties and computation. In Proc.

KDD (pp. 219–222).
Knorr, E. M., & Ng, R. T. (1998). Algorithms for mining distance-based outliers in large datasets. In

Proc. VLDB (pp. 392–403).
Knorr, E. M., & Ng, R. T. (1999). Finding intentional knowledge of distance-based outliers. In Proc.

VLDB (pp. 211–222).
Knorr, E. M., Ng, R. T., & Tucakov, V. (2000). Distance-based outliers: Algorithms and applications.

VLDB Journal, 8(3–4), 237–253.
Markowetz, F. (2003). Support vector machines in bioinformatics. Ph.D. Thesis, University of

Heidelberg.
Papadimitriou, S., Kitagawa, H., Gibbons, P. B., & Faloutsos, C. (2003). LOCI: Fast outlier detection

using the local correlation integral. In Proc. ICDE (pp. 315–326).
Ramaswamy, S., Rastogi, R., & Shim, K. (2000). Efficient algorithms for mining outliers from

large data sets. In Proc. ACM SIGMOD international conference on management of data
(pp. 427–438).

Rousseeuw, P. J., & Leroy, A. M. (1987). Robust regression and outlier detection. New York: Wiley.
Tax, D. M. J., & Duin, R. P. W. (1999). Support vector domain description. Pattern Recognition

Letters, 20, 1991–1999.
Yamanishi, K., & Takeuchi, J. (2001). Discovering outlier filtering rules from unlabeled data. In

Proc. KDD (pp. 389–394).
Yamanishi, K., Takeuchi, J., Williams, G., & Milne, P. (2000). On-line unsupervised outlier detection

using finite mixtures with discounting learning algorithms. In Proc. KDD (pp. 250–254).
Yu, H., Han, J., & Chang, K. (2002). PEBL: Positive example based learning for web page clas-

sification using SVM. In Proc. KDD (pp. 239–248).
Zhu, C., Kitagawa, H., & Faloutsos, C. (2005). Example-based robust outlier detection in high

dimensional datasets. In Proc. ICDM (pp. 829–832).
Zhu, C., Kitagawa, H., Papadimitriou, S., & Faloutsos, C. (2004). OBE: Outlier by example. In Proc.

PAKDD (pp. 222–234).

	Outlier detection by example
	Abstract
	Introduction
	Related work
	Measuring outlierness
	Proposed method (OBE)
	Overview
	Overview of SVM
	Outlying feature extraction step
	Outlier detection step
	Detection by using fraction parameters
	Detection by using relevance feedback

	Complexity of OBE
	Analysis of OBE
	Limitation of OBE

	Experimental evaluation
	Datasets
	Experimental procedure
	Experimental comparisons
	Results

	Observations
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

