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Abstract One of the challenges of modern information retrieval is to rank the most
relevant documents at the top of the large system output. This calls for choosing the
proper methods to evaluate the system performance. The traditional performance
measures, such as precision and recall, are based on binary relevance judgment and
are not appropriate for multi-grade relevance. The main objective of this paper is to
propose a framework for system evaluation based on user preference of documents.
It is shown that the notion of user preference is general and flexible for formally
defining and interpreting multi-grade relevance. We review 12 evaluation methods
and compare their similarities and differences. We find that the normalized distance
performance measure is a good choice in terms of the sensitivity to document rank
order and gives higher credits to systems for their ability to retrieve highly relevant
documents.
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1 Introduction

The evaluation of information retrieval (IR) system performance plays an impor-
tant role in the development of theories and techniques of information retrieval
(Cleverdon 1962; Mizzaro 2001; Jarvelin and Kekalainen 2000; Kando et al. 2001;
Sakai 2003; Yao 1995). Traditional IR models and associated evaluation methods

B. Zhou (B) · Y. Yao
Department of Computer Science, University of Regina,
Regina, Saskatchewan, Canada S4S 0A2
e-mail: zhou200b@cs.uregina.ca

Y. Yao
e-mail: yyao@cs.uregina.ca



228 J Intell Inf Syst (2010) 34:227–248

make the binary relevance assumption (Cleverdon et al. 1966; van Rijsbergen 1979;
Buckley and Voorhees 2000; Rocchio 1971). That is, a document is assumed to be
either relevant (i.e., useful) or non-relevant (i.e., not useful). Under this assumption,
the information retrieval problem is implicitly formulated as a classification problem.
Consequently, classical system performance measures, such as precision, recall,
fallout, etc., are related to the effectiveness of such a two-class classification. In
modern IR systems, users can easily acquire a large number of relevant documents
for a query which exceed the number they want to examine. It is therefore important
for a system to assign weights to the retrieved documents and provide a ranked list
to the user. In other words, documents that are more relevant are ranked ahead
of documents that are less relevant. This requires us to reconsider relevance as a
continuous value rather than a dichotomous one. Many studies show that documents
are not equally relevant to users, some documents are more relevant, and some
documents are less relevant, relevance has multiple degrees (Cox 1980; Cuadra and
Katter 1967; Mizzaro 2001; Jacoby and Matell 1971; Jarvelin and Kekalainen 2000;
Kando et al. 2001; Tang et al. 1999). For example, given a user who wants to study
different information retrieval models, the classical book by van Rijsbergen (1979)
is more relevant than a paper that only mentions the vector space model once.
Given a user who wants to know the general definition of cognitive informatics, the
explanation from Wikipedia might be more useful than a research paper that focuses
on resolving a specific issue in cognitive informatics. To better identify user needs
and preference, we should consider non-binary relevance judgments. In this case,
the traditional IR evaluation measures are no longer appropriate. This calls for the
effectiveness measures that are able to handle multiple degrees of relevance.

Two possible interpretations of non-binary relevance may exist. One view treats
relevance as a relative notion. The relevance of a document is defined in comparison
with another document. That is, some documents are more relevant than others. The
second view treats relevance as a quantitative notion. One may associate a grade or
a number to indicate the degree of relevance of a document. While the former has
led to the notion of user preference of documents, the latter led to the notion of
multi-grade relevance. It has been shown that multi-grade relevance can be formally
defined in terms of user preference (Wong et al. 1988; Wong and Yao 1990; Yao
1995). Therefore, user preference may be used as a primitive notion based on which
a new theory of information retrieval can be built. The main objective of this paper
is to propose a framework for IR system evaluation based on user preference of
documents. We compare 12 evaluation methods through theoretical and numerical
examinations. We hope that our work can bridge the gap between the IR system
evaluations based on binary and non-binary relevance, and provide evidence for
choosing suitable evaluation methods.

The rest of the paper is organized as follows. In Section 2, we analyze multi-grade
relevance judgments and user preference relations. In Section 3, some commonly
used traditional IR system evaluation methods based on binary relevance are re-
viewed. In Section 4, a general evaluation strategy based on non-binary relevance
is proposed. The main methodologies of 12 multi-grade evaluation methods are
analyzed in Section 5. We analyze the similarities and differences between these
methods in Section 6. Some practical issues and possible solutions in using multi-
grade evaluation are discussed in Section 7. The findings of this study are given in
Section 8.
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2 Multi-grade relevance and user preference

The term relevance judgments indicate users’ decision on whether a document
satisfies their information needs of a specific topic. In the series of studies of
relevance proposed by Cuadra and Katter (1967), 5 relevance-related aspects have
been identified. One of these aspects is the interpretation of relevance judgments
that is fundamental to the development of IR system evaluation. The difficulty in
using binary relevance is that it cannot adequately express the continuous nature of
relevance. We investigate two non-binary relevance interpretations in this section.

2.1 Multi-grade relevance judgments

The multi-grade relevance judgments provide an alternative interpretation on why
an IR system should rank documents. When the two-valued relevance judgments are
used, an IR system ranks documents based on the probability ranking principle (Fuhr
1989; Robertson 1977; van Rijsbergen 1979). That is, the system ranks documents
according to their probability of being relevant. With multi-grade relevance, we have
an utility ranking principle. Documents are ranked based on their utilities to users,
which are represented by the multi-grade relevance judgments.

Over the years, many types of multi-grade relevance judgments have been intro-
duced. In the experimental study of Katter (1968), relevance judgments are classified
into category, ranking, and ratio scales. The category rating scales have been used by
many evaluation methods, in which the relevance judgments is expressed by numbers
from a finite, predetermined scale ranging typically from 2 to 11 points.

Category rating scale is an ordinal scale. There is an ordering relationship between
documents, that is qualitative rather than quantitative. The traditional binary rele-
vance can be seen as a two category scale consisting of relevant or non-relevant. The
Text REtriveal Conference (TREC) data sets use a 3-point scale (relevant, partially
relevant and non-relevant). The NII Test Collection for IR systems (NTCIR) project
used a 4-point scale (highly relevant, relevant, partially relevant and non-relevant).
Maron and Kuhns (1970) adopted a 5-point scale (very relevant, relevant, somewhat
relevant, only slightly relevant, and non-relevant). Cuadra and Katter (1967) applied
2-, 4-, 6-, 8- and 9-point scales in their experiments. Eisenberg and Hu (1987)
employed a 7-point scale (from extremely relevant to not at all relevant), and Rees
and Schultz (1967) provided an 11-point scale. There is an ongoing debate over the
optimal number of categories of multi-grade relevance (Jacoby and Matell 1971;
Rasmay 1973; Champney and Marshall 1939; Tang et al. 1999). A general agreement
is that the optimal number of categories can vary under different situations because
people use different standards (Cox 1980).

The category rating scale is adequate to calculate multi-grade relevance in the
evaluation functions. However, there are a few problems in using the category rating
scales. First, user judgments are restricted by some fixed relevance scales. If the
numbers or the descriptions of each degree are not clearly defined, a multi-grade
relevance scale can be easily misused in the evaluation process. Second, there is
no common agreement on the optimal number of degrees of relevance, it varies
depending on people’s intuitions in different scenarios. The limitations of category
rating scale motivate a formal model to represent multi-grade relevance.
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2.2 User preference relation

Eisenberg (1988) introduced magnitude estimation as an open-ended scale where all
positive rational numbers can be used to express the different relevance degrees of
documents. Compatible with this scheme, the notion of user preference was adopted
from decision and measurement theories to represent relevance (Wong et al. 1988;
Yao 1995). Under the user preference relation, a user only provides the relative
relevance judgments on documents without referring to any predefined relevance
scales.

A user preference relation can be formally defined by a pairwise comparison
of documents (Bollmann and Wong 1987; Wong and Yao 1990; Wong et al. 1988;
Yao 1995). Given any two documents d, d′ ∈ D, where D denotes a finite set of
documents. We assume that a user is able to decide if one document is more useful
than another document. The user preference relation can be defined by a binary
relation � on D as follows:

d � d′ iff the user prefers d to d′.

If a user considers d and d′ to be equally useful or incomparable, an indifference ∼
relation on D can be defined as follows:

d ∼ d′ iff (¬(d � d′),¬(d′ � d)),

where ¬(d � d′) means that a user does not prefer d to d′. If a preference relation �
satisfies the following two properties:

Asymmetry: d � d′ ⇒ ¬(d′ � d),

Negative transitivity: (¬(d � d′),¬(d′ � d′′)) ⇒ ¬(d � d′′),

then it is a weak order (Fishburn 1970). A weak order is transitive, that is, if there is a
third document d′′, then d � d′ and d′ � d′′ imply d � d′′. A few additional properties
are (Fishburn 1970):

(a). the relation ∼ is an equivalence relation;
(b). exactly one of d � d′, d′ � d and d ∼ d′ holds for every d, d′ ∈ D;
(c). the set of all equivalence classes in D generated by the relation ∼ is denoted as

D/ ∼, the relation �′ on D/ ∼ defined by X �′ Y ⇔ ∃d, d′(d � d′, d ∈ X, d′ ∈
Y) is a linear order, where X and Y are elements of D/ ∼.

A linear order (total order) is a weak order in which any two different elements are
comparable. If � is a weak order, the indifference relation ∼ divides the document
set into disjoint subsets. Furthermore, for any two equivalence classes X and Y of ∼,
either X �′ Y or Y �′ X holds. In other words, it is possible to arrange documents
into several levels so that documents in a higher level are preferred to documents in
a lower level, and documents in the same level are indifferent (Cooper 1968).

By quantifying a user preference relation with a utility function, multi-grade
relevance can be formally defined in terms of user preference. If a preference relation
� is a weak order, there exists a utility function u such that:

d � d′ ⇐⇒ u(d) > u(d′),

where u(d) can be interpreted as the relevance value of document d.
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Example 1 Suppose a user preference relation � on D = {d1, d2, d3, d4, d5} is
specified by the following weak order:

d5 � d4, d5 � d1, d5 � d2, d5 � d3, d4 � d1, d4 � d2, d4 � d3.

The indifference relation ∼ divides D into three subsets {d5}, {d4} and {d1, d2, d3},
and they can be arranged into three levels:

d5 � d4 �
d1

d2

d3

The utility function u(d) quantifies this document ranking as follows:

u1(d5) = 0.2, u1(d4) = 0.1, u1(d1) = u1(d2) = u1(d3) = 0.0.

In this case, the user preference relation is able to represent a 3-point category rating
scale including relevant (d5), partially relevant (d4), and non-relevant (d1, d2, d3)
documents.

If we use a 5-point category rating scale, another utility function may be used as:

u2(d5) = 0.4, u2(d4) = 0.2, u2(d1) = u2(d2) = u2(d3) = 0.0,

which provides a measurement of user preference relation � including very relevant
(d5), somewhat relevant (d4), and non-relevant (d1, d2, d3) documents. Although
u1 and u2 use different absolute values, they preserve the same relative order for
document pairs.

From the above example, we can see that given a user preference relation, we
can represent any degree of multi-grade relevance. On the other hand, some existing
multi-grade relevance scales can be easily interpreted in terms of user preference
relation. Compared to a category rating scale, the user preference relation is easier
for users to make their judgments, as it is not restricted to a predefined scale, and is
rich enough to represent any degrees of relevance.

3 Traditional IR system evaluation

The six evaluation criteria suggested by Cleverdon provide a foundation for design-
ing IR system evaluation methods (Cleverdon et al. 1966):

(1). The coverage of the collection;
(2). System response time;
(3). The form of the presentation of the output;
(4). User efforts involved in obtaining answers to a query;
(5). Recall;
(6). Precision.

Of these criteria, precision and recall were most frequently used and still are the
dominant approach to evaluate the performance of information retrieval systems.
Let L denote the size of the document collection, let R denote the number of relevant
documents for a query, and let N denote the number of documents in the ranked
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output. Precision is defined as the proportion of retrieved documents that are actually
relevant which can be expressed as:

precision =
∑n

i=1 di

n
,

where di is a variable representing the relevance level of the ith document in the
ranked output to a certain query. In the binary relevance case, the possible relevance
values of di are either 1 representing relevant, or 0 representing non-relevant, so the
sum of di is the number of relevant documents up to the top n (n ≤ N) of the ranked
output. Recall is the proportion of relevant documents that are actually retrieved
which can be expressed as:

recall =
∑n

i=1 di

R
.

Many alternatives to precision and recall have been suggested. The fallout mea-
sure is the proportion of non-relevant documents that are retrieved, written as:

fallout = n − ∑n
i=1 di

L − R
.

F-measure (van Rijsbergen 1979) combines recall and precision in a single measure:

F = 2 ∗ (recall ∗ precision)/(recall + precision).

The average precision combines precision, relevance ranking, and recall. It is defined
as “the mean of the precision scores obtained after each relevant document is
retrieved, using zero as the precision for relevant documents that are not retrieved”
(Buckley and Voorhees 2000):

average precision = 1

R

N∑

n=1

rel(dn)

∑n
i=1 di

n
,

where rel(dn) is a function, such that rel(dn) = 1 if the document is relevant and
rel(dn) = 0 otherwise. Another measure, R-precision, was found useful in many IR
experiments. It is the precision at R, which can be expressed as:

R-precision = 1

R

R∑

i=1

di.

Some other efforts have also been made for IR system evaluation. Cooper (1968)
suggested that the primary function of an IR system is to save its users efforts of
discarding irrelevant documents. Based on this principle, he proposed an expected
search length measure which is defined as the number of irrelevant documents a user
must scan before the desired number of relevant documents can be found.

The traditional binary evaluation methods play a dominant role in the history of
IR system evaluation. Each of these measures captures some important but distinct
aspects of the IR system performance, and they are complementary to each other.
The basic principles underlying these measures are similar: the total number of
documents in the collection have been divided into four groups, the documents
that are retrieved and relevant, the documents that are retrieved but not relevant,
the documents that are not retrieved but relevant, and the documents that are not
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retrieved and not relevant. By checking the distribution of these four groups of
documents, different perspectives of IR system performance can be evaluated by
different measures, but all of these measures are based on a dichotomous relevance
assumption, and ignore the variability and continuous nature of relevance.

4 A general evaluation strategy based on multi-grade relevance

The first generation of IR systems is based on the Boolean model. Each document
in the collection has been indexed by a set of terms, and it will be retrieved only if
the terms exactly match the terms in the query. As a result, the retrieved results
are either too many or too few unranked documents. The later models such as
vector space model and probabilistic model assign a weight to each document in
the collection based on the match between the query and documents. The retrieved
results are partially matched ranked documents. The changes in information retrieval
techniques have resulted in the transformation of IR system evaluation from binary
relevance to continuous relevance and from binary retrieval to ranked retrieval. In
spite of the successes of the traditional IR system evaluation methods, it is time to
reconsider the evaluation strategy based on non-binary relevance. This will meet the
evaluation needs of the current IR systems, and will provide satisfying evaluation
results.

Ideally, a modern IR system is supposed to have the following two features.
First, it should be able to return as many relevant documents as possible, and these
retrieved documents should be ranked in a decreasing order based on their relevance
degrees to a certain query, that is, the more relevant documents should always be
ranked ahead of the less relevant documents. Second, it should be able to retrieve
the few most relevant documents to a certain query. Among the large numbers
of retrieved documents, the most useful ones are those which ranked higher and
appear in the first few pages. Therefore, an evaluation method based on non-binary
relevance should be able to credit the IR systems having the above features and
distinguish them among the others. It should have the following three properties:

(a). The ability to evaluate document rank orders;
(b). The ability to give higher credits to IR systems that can retrieve the few most

relevant documents;
(c). The flexibility of adapting to different multi-grade relevance interpretations.

Let us analyze these properties individually and find out how they can be consid-
ered in an evaluation function. For property (a), the document rank order provided
by the user judgments is considered as the ideal ranking (i.e., user ranking) and
the document rank order provided by the IR systems is considered as the system
ranking. The IR system evaluation is based on the comparison of these two rankings.
The more similar they are, the better the IR system. Generally speaking, there are
two ways to compare two rankings. First, they can be compared by the ratio of the
sums of their performances. The result ranges from 0.0 to 1.0 where 1.0 indicates the
best rank, and 0.0 indicates the worst. Second, they can be compared by a distance
function, where a smaller distance indicates a better performance. Compared to
the IR system evaluation based on binary relevance, we can see that the general
evaluation strategy based on multi-grade relevance is shifted from the distribution



234 J Intell Inf Syst (2010) 34:227–248

of relevant, non-relevant, retrieved and not retrieved documents to the comparison
of ideal ranking and system ranking. For property (b), in order to differentiate the
few most relevant documents from large numbers of partially relevant documents,
the degrees of relevance need to be quantified in the evaluation function. The more
relevant documents should be given more weight. For property (c), since there is no
general agreement on which relevance expression or scale should be used for multi-
grade evaluation, it is important to design a method that is compatible with different
relevance interpretations. Moreover, since the number of degrees of relevance varies,
it is necessary for the evaluation method to have the flexibility to support any multi-
grade scale of relevance. According to the analysis of these three properties, we can
state the multi-grade evaluation methods in two general expressions, written as:

IR system performance = performance of system ranking
performance of ideal ranking

, (1)

or,

IR system performance = 1 − distance function, (2)

where the distance function measures the distance between system ranking and ideal
ranking. The abstractions of all the multi-grade evaluation methods analyzed in the
next section belong to one of the above equations, although the details of each
method vary.

5 Evaluation methods based on multi-grade relevance

In this section, we review the main methodologies of 12 existing multi-grade eval-
uation methods, and examine how they embody the properties analyzed in the
last section. For a better understanding, we interpret these methods in a unified
framework where we know both the actual relevance degrees of documents (i.e.,
user relevance judgment) and the relevance predicted by an IR system.

5.1 Spearman’s rank correlation coefficient

Spearman’s rank correlation coefficient (1904) is the Pearson’s correlation between
ranks. Although it was not originally designed for measuring IR system performance,
it has been used by many IR experimental studies for comparing rank correlations.
A rank correlation is a number between −1.0 and +1.0 that measures the degree of
association between two rankings xi and yi. The following formula can be applied to
compute the Spearman’s rank correlation coefficient when there are no ties between
ranks:

ρ = 1 − 6
∑

(xi − yi)
2

N(N2 − 1)
,

where (xi − yi) measures the difference between the ranks of corresponding values
xi and yi, and N is the total number of documents in the ranked output. A positive
value of the measure implies a positive association between two rankings, a negative
value implies a negative or inverse association, and two rankings are independent
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Table 1 Data table:
Spearman’s rank correlation
coefficient

Docs UR Rank IRS Rank Difference between (xi − yi)
2

the ranks: (xi − yi)

d1 0.6 1 0.5 2 −1 1
d2 0.1 5 0.6 1 4 16
d3 0.3 4 0.4 3 1 1
d4 0.5 2 0.3 4 −2 4
d5 0.4 3 0.2 5 −2 4

when the value is 0.0. The classic Pearson’s correlation coefficient between ranks has
to be used if tied ranks exist (Myers and Arnold 2003).

Example 2 Table 1 contains relevance scores of five documents given by user ranking
(UR) and system ranking (IRS), respectively. Ranks are archived by giving “1” to the
largest score, “2” to the second largest score and so on. The smallest score gets the
lowest rank. The second last column shows the difference in the ranks: The rank of
IRS is subtracted from the rank of UR. Calculating the coefficient using the formula
above, we get:

ρ = 1 − 6 ∗ (1 + 16 + 1 + 4 + 4)

5 ∗ (52 − 1)
= −0.3,

which indicates a negative association between user ranking and system ranking.

5.2 Kendall tau rank correlation coefficient

Kendall Tau Rank Correlation Coefficient (Kendall 1938) is another popular mea-
sure for rank consistency comparison. The basic principle behind this measure is
based on the number of agreeing versus contradictory pairs between ranks. It can
be computed by the following formula in absence of tied pairs:

Tau = C+ − C−
1
2 N(N − 1)

,

where the denominator is the total number of pairs in a rank containing N docu-
ments, and the numerator is the difference between the number of agreeing (C+)
and contradictory (C−) pairs. Similarly to Spearman’s rank correlation coefficient,
the value of this measure also lies between −1.0 and 1.0 with −1.0 corresponding
to the largest possible distance (obtained when one order is the exact reverse of
the other order) and +1.0 corresponding to the smallest possible distance (obtained
when both orders are identical). If tied pairs exist on ranks, the following measure,
called Kendall Tau-b (Kendall 1945; Stuart 1953) can be used for the computation of
associations between ranks:

Tau-b = C+ − C−
√

(C+ + C− + TY)(C+ + C− + TX)
,

where TX is the number of pairs not tied on rank X, and TY is the number of pairs
not tied on rank Y. Another measure called Kendall Tau-c (Kendall 1945; Stuart
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1953) is used as a variant of Kendall Tau-b for nonsquare tables. It can be computed
by the following formula:

Tau-c = (C+ − C−)
[
2m/

(
N2(m − 1)

)]
,

where m is the number of rows or columns of the table, whichever is smaller.

Example 3 Suppose there are only four relevant documents for a given query, the
user ranking gives the following order: UR = (d1, d3, d2, d4), and an IR system
ranks the documents as: IRS = (d1, d3, d4, d2). The user ranking is composed of the
following 6 ordered pairs:

{(d1, d3), (d1, d2), (d1, d4), (d3, d2), (d3, d4), (d2, d4)} ,

and the system ranking is composed of the following 6 ordered pairs:

{(d1, d3), (d1, d4), (d1, d2), (d3, d4), (d3, d2), (d4, d2)}.
The set of agreeing pairs between the user ranking and system ranking is:

{(d1, d3), (d1, d2), (d1, d4), (d3, d2), (d3, d4)},
and the set of contradictory pairs is:

{(d2, d4)}.
We can compute the Kendall rank correlation coefficient between UR and IRS as:

Tau = 5 − 1
1
2 ∗ 4 ∗ (4 − 1)

= 0.67,

which indicates a high level association between user ranking and system ranking.

5.3 Sliding ratio and modified sliding ratio

The sliding ratio was proposed by Pollack (1968). In this method, the ranked system
output is compared against the ideal ranking. Relevance score di(i = 1, ..., n) is
assigned to each ith ranked document in the output list. Different from the binary
relevance case, the possible values of di ranges from 0.0 to 1.0 where 0.0 represents
non-relevant, 1.0 represents the highest relevant level, and each intermediate value
represents different relevant levels in between. For example, if a 3-point scale is
chosen, the possible scores of di are 0.2, 0.1, and 0.0 indicating the relevance degree
as highly relevant, relevant, and non-relevant, respectively. The overall ranking is
quantified by the sum of di. The sliding ratio of the system ranking and ideal ranking
is defined as:

sr =
∑n

i=1 di
∑n

i=1 dI(i)
,

where dI(i) is the relevance score of the ith ranked document in the ideal ranking.
In a good rank order, the ith document should always be ranked ahead of the jth

document if di ≥ d j. Unfortunately, the sliding ratio is not sensitive to the document
rank order.
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Example 4 Suppose we use a 4-point scale, and there are only five relevant docu-
ments whose relevance scores are 0.1, 0.1, 0.2, 0.2 and 0.3. These documents should
be ideally ranked as:

dI(1) = 0.3, dI(2) = 0.2, dI(3) = 0.2, dI(4) = 0.1, dI(5) = 0.1.

Suppose a rank predicted by an IR system IRS1 is:

d1 = 0.3, d2 = 0.2, d3 = 0.1, d4 = 0.1, d5 = 0.0.

The value of sliding ratio between ideal ranking and IRS1 is sr = 7/9 = 0.78.
However, suppose there is another IR system IRS2 that gives a different rank:

d1 = 0.1, d2 = 0.1, d3 = 0.2, d4 = 0.3, d5 = 0.

Obviously IRS1 performs better than IRS2 in terms of document rank order, but
according to the sliding ratio measure, the performance is the same for both systems
(sr = 0.78).

To solve this problem, Sagara (2002) has proposed the modified sliding ratio that
takes the document ordering into account, and it is defined as:

msr =
∑n

i=1
1
i di

∑n
i=1

1
i dI(i)

.

That is, when a highly relevant document is ranked at the bottom of the output list, its
contribution to the whole system performance drops. By using the modified sliding
ratio, IRS1 (msr = 0.90) performs better than IRS2 (msr = 0.57).

5.4 Cumulated gain and its generalizations

The cumulated gain proposed by Jarvelin and Kekalainen (2000) is very similar to
the idea of sliding ratio. It assumes that the user scans the retrieved document list,
and adds a relevance score each time he finds a relevant document. The cumulated
gain is defined as:

cg =
n∑

i=1

di.

Jarvelin and Kekalainen (2000) also take the document ordering into considera-
tion by adding a discounting function after the b th ranked document in the output,
which progressively reduces the document relevance score as its rank increases. The
discounted cumulative gain is defined as dcg = ∑

b<i≤n
di

logb i for i > b and dcg =
∑

1≤i≤b di otherwise. This idea is similar to the modified sliding ratio, except that
the latter uses divisions instead of logarithms which makes the reduction steep.

Suppose dcgI is the discounted cumulated gain of an ideal ranking, the normal-
ized discounted cumulated gain at document cut-off r is defined as (Jarvelin and
Kekalainen 2002):

ndcg = 1

r

r∑

n=1

dcg
dcgI

.
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5.5 Generalizations of average precision

Weighted average precision was introduced by Kando et al. (2001) as an extension of
average precision in order to evaluate multi-graded relevance. The average precision
has been widely used in IR experiments for evaluating binary relevance. Since the
average precision is based on binary relevance, the possible relevance scores of di

are either 1 representing relevant, or 0 representing non-relevant. The sum of di is
the number of relevant documents up to the nth ranked document.

The weighted average precision extends the average precision by assigning multi-
grade relevance scores to di. The sum of di is the cumulated gain cg, and the
cumulated gain of an ideal ranking up to the nth ranked document is denoted by
cgI . The weighted average precision is defined as:

wap = 1

R

N∑

n=1

rel(dn)
cg
cgI

.

However, in the case of n > R, the cumulated gain of the ideal ranking cgI becomes
a constant after the Rth ranked document, so it cannot distinguish between two
systems when one of the systems has some relevant documents ranked at the bottom
of n.

Example 5 Suppose there are five documents in the ranked output (n = 5), and three
relevant documents to a query (R = 3). If we use a 4-point scale, the sequence of
relevance in an ideal ranking is:

(0.3, 0.2, 0.1, 0.0, 0.0).

The first IR system IRS1 retrieved only one highly relevant document and gives a
rank as:

(0.0, 0.0, 0.2, 0.0, 0.0).

The second system IRS2 also retrieved one highly relevant document and ranks the
documents as:

(0.0, 0.0, 0.0, 0.0, 0.2).

It is obvious that IRS1 performs better than IRS2 in terms of document rank order.
However, according to the weighted average precision, their performance scores are
the same (wap = (2/6)/3 = 0.11).

Sakai proposed the Q-measure (2004) in order to address this problem. In
Q-measure, the relevance score or gain value di is replaced by the bonused
gain bgi = di + 1 if di > 0 and bgi = 0 otherwise. The cumulated bonused gain is
defined as:

cbg =
n∑

i=1

bgi.
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Q-measure is defined as:

Q = 1

R

N∑

n=1

rel(dn)
cbg

cgI + n
.

The denominator (cgI + n) always increases after the Rth ranked document instead
of remaining constant. In the above example, the performance of IRS1 evaluated by
the Q-measure is: Q = (3/(6 + 3))/3 = 0.11, and the performance of IRS2 is: Q =
(3/(6 + 5))/3 = 0.09. IRS1 performs better than IRS2 according to Q-measure.

5.6 Average gain ratio

In information retrieval experiments, one of the important properties that needs to
be evaluated is how well the few most relevant documents are retrieved, but most
evaluation methods treat them as same as the partially relevant documents. Since
the amount of the partially relevant documents are usually much larger than the
most relevant ones, most evaluation methods are affected by how well the partially
relevant documents are retrieved. The average gain ratio (Sakai 2003) is designed
for giving more credit to systems for their ability to retrieve the most relevant
documents. The relevant score or gain value is adjusted as:

d′
l(i) = dl(i) − Rl

R
(dl(i) − d(l−1)(i)),

where l denotes the relevance level, dl(i) denotes the relevance score for finding an
l-relevant document at rank i, and Rl denotes the number of l-relevant documents.
For example, if we use a 4-point scale, the possible values for dl(i) are 0.3, 0.2,
0.1, 0.0. Suppose there are 10 relevant documents, but a system only retrieved one
highly relevant document at the first ranking position and the rest are non-relevant
documents. According to the adjusted relevance score: d′

l(i) = 3 − (3 − 2) ∗ 1/10 =
2.9. By employing this value to weighted average precision, the average gain ratio is
defined as:

agr = 1

R

N∑

n=1

rel(dl(n))
cg′

cg′
I
,

where cg′ and cg′
I denote the cumulated gain and the cumulated gain of an ideal

ranking calculated by d′
l(i), respectively.

5.7 Normalized distance performance measure

The normalized distance performance measure (Yao 1995) is adopted from the
distance function between two rankings used by Kemeny and Snell (1962). It
measures the distance between user ranking �u and system ranking �s by examining
the agreement and disagreement between these two rankings, which is similar to the
idea of Kendall tau rank correlation coefficient.

The distance between two rankings is defined with respect to the relationships
between document pairs: two rankings agree on a pair of documents d, d′ ∈ D if both
of them rank d and d′ in the same order; they contradict each other if one ranking
ranks d higher and the other ranking ranks d′ higher; they are compatible with each
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other if one ranking ranks d or d′ higher and the other ranking has d and d′ tied. The
numbers of agreeing pairs C+, contradictory pairs C−, and compatible pairs C0 can
be defined as:

C+ = | �u ∩ �s |,
C− = | �u ∩ �c

s | = | �c
u ∩ �s |,

C0 = | �u ∩ ∼s | + | ∼u ∩ �s | = Cu + Cs,

where | · | denotes the cardinality of a set, and �c
s denotes converse ranking of �s,

which can be obtained by reading the original ranking backwards. Let the distance
count as 0 if two rankings agree on a document pair, count as 1 if they are compatible
on a document pair, and count as 2 if they contradict on a document pair. The
distance function between the user ranking �u and system ranking �s is defined as:

β(�u,�s) = 2 ∗ C− + 1 ∗ C0 + 0 ∗ C+ = 2C− + C0 = 2C− + Cu + Cs.

The notion of acceptable ranking (Wong and Yao 1990; Wong et al. 1988)
was suggested to be more suitable for information retrieval, and this provides the
possibility to derive a performance measure by using the distance between system
ranking and acceptable ranking. There are many acceptable rankings with respect to
�u. For the definition of a fair measure, one should choose an acceptable ranking
closest to �s, which is defined as:

�a = �u ∪(∼u ∩ �s).

The following distance-based performance measure can be derived:

dpm(�u,�s) = min�∈�u(D)β(�,�s) = β(�a, �s),

where �u(D) is the set of all acceptable rankings of �u. For ranking �a and �s, the
number of agreeing, contradictory, and compatible pairs are:

| �a ∩ �s | = |(�u ∩ �s) ∪ (∼u ∩ �s)| = C+ + Cs,

| �a ∩ �c
s | = | �u ∩ �c

s | = C−,

| �a ∩ ∼s | = | �u ∩ ∼s | = Cu.

Therefore, the distance function between �u and �s can be rewritten as:

dpm(�u,�s) = β(�a,�s) = 2C− + C0 = 2C− + Cu.

The normalized distance performance measure was also proposed to measure the
performance of every query equally. It is defined as:

ndpm(�u,�s) = dpm(�u,�s)

max�∈�(D) dpm(�u,�)
,

where max�∈�(D) dpm(�u, �) is the maximum distance between �u and all rankings.
Based on the definition of dmp, the converse ranking �c

u produce the maximum dmp
value, that is,

max
�∈�(D)

dpm(�u, �) = dpm(�u,�c
u) = 2 |�c

u|= 2 |�u|= 2C,
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where C denotes the total number of document pairs qualifying the user preference
relation in the user ranking. Combining the above results, the normalized distance
performance measure can be computed as:

ndpm(�u,�s) = dpm(�u, �s)

dpm(�u,�c
u)

= 2C− + Cu

2C
.

Example 6 Let

d1

d2
�u d3 �u

d4

d5
�u d6

be a user ranking on a set of documents D = (d1, d2, d3, d4, d5, d6), and

d1

d3
�s

d2

d5
�s d6 �s d4

be a system ranking. With respect to �u, the closest acceptable ranking to �s is
given by:

d1 �a d2 �a d3 �a d5 �a d4 �a d6.

The contradict pairs between �a and �s are (d2, d3) and (d4, d6), C− = 2. The
compatible pairs are (d1, d3) and (d2, d5), Cu = 2. The value of the normalized
distance performance measure is:

ndpm(�u,�s) = 2C− + Cu

2C
= 2 ∗ 2 + 2

2 ∗ 13
= 0.23,

and the value of the IR system performance is 1 − 3/13 = 0.77.

5.8 Average distance measure

The average distance measure (Mizzaro 2001) measures the distance between user
ranking and system ranking by examining the absolute differences between system
relevance estimation and user relevance estimation. Suppose D is the whole docu-
ment collection, for any document d ∈ D, let si denote the relevant score of the ith
document estimated by the IR system, and let ui denote the relevance score of the
ith document estimated by the user. The average distance measure is defined as:

adm = 1 −
∑

d∈D |si − ui|
|D| .

6 Comparison of multi-grade evaluation measures

In this section, the properties of evaluation methods and their connections are
examined.
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6.1 General observations

Most of these methods are based on cumulated gain (Jarvelin and Kekalainen 2000,
2002; Kando et al. 2001; Sakai 2003, 2004), in which category rating scales are being
used as their multi-grade relevance interpretation, and their evaluation functions
match the general equation (1) by using the ratio of system ranking and ideal
ranking. The basic ideas underlying these methods are very similar to the sliding
ratio method proposed back in 1968, that is, each retrieved document has been
assigned a relevance score corresponding to a predefined relevance scale, the system
ranking is quantified by the sum of relevance scores of each retrieved document, the
user ranking is quantified by the sum of relevance scores of these documents in an
ideal ranking, and the overall IR system performance is the proportion of these two
rankings. The problem with the cumulated gain measure is that it is not sensitive
to the document rank order. For example, if two IR systems retrieved the same
document set with exactly opposite rank orders, their performances evaluated by
cumulated gain measure will be the same since the sums of their relevant scores
are the same. Some efforts have been made to reduce this problem. Discounted
cumulated gain, normalized discounted cumulated gain, weighted average precision,
Q-measure and average gain ratio all take the document ordering into consideration.

Some methods are generalized directly from the methods based on binary rele-
vance in order to evaluate multi-grade relevance. The weighted average precision
extends the widely used average precision by assigning multi-grade relevance scores
to the retrieved documents. The problem of weighted average precision is that it is
incapable of evaluating documents retrieved after rank R (i.e., the total number of
relevant documents). Q-measure is proposed to address this problem by replacing
the cumulated gain with bonused gain. The average gain ratio is also generalized
from weighted average precision for the purpose of giving more credit to the systems
that can retrieve the few most relevant documents, which is a very important issue in
modern IR system evaluation.

Unlike cumulated gain-based methods, the normalized distance performance
measure, Spearman correlation coefficient, Kendall tau rank correlation coefficient
and average distance measure focus on measuring the distance between system
ranking and user ranking. The evaluation functions of these four methods match
the general equation (2) by using the distance function, and they are more sensitive
to the document rank order, compared with cumulated gain-based methods. The
normalized distance performance measure uses a user preference relation as its
multi-grade relevance interpretation, and the distance function is computed by
considering the relationships of document pairs of system ranking and user ranking
which is similar to the ideal of Kendall tau rank correlation coefficient. Spearman
correlation coefficient uses rank positions instead of relevance scores to calculate
the distance between two rankings. The average distance measure is still based on
category rating scales, and the distance function is calculated based on the absolute
differences between system relevance estimation and user relevance estimation of
each document in the collection. It gives wrong evaluation results in some cases. For
example, suppose that we are using a 7-point scale, and there are only three relevant
documents to a given query, the sequence of the relevance score given by the user
is (0.3, 0.2, 0.1), the sequence given by the first IR system IRS1 is (0.6, 0.4, 0.2), the
sequence given by IRS2 is (0.1, 0.2, 0.3). It is obvious that the IRS1 performs better
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in terms of document rank order (adm = 0.8), but according to the average distance
measure, the second system performs better (adm = 0.87).

6.2 Numerical comparisons

In this section, we compare these multi-grade evaluation methods by employing them
in some examples from two different perspectives. Since we already know that the
sliding ratio methods and cumulated gain method did not take the document rank
order into consideration, and the Spearman correlation coefficient and Kendall tau
rank correlation coefficient have different value range, therefore we only compare
the other 8 methods. The value of these methods lies between 0.0 and 1.0. The
minimum value 0.0 represents the worst system performance, and the maximum
value 1.0 represents the best system performance.

First, we compare these methods in terms of their sensitivities to the document
rank order. Suppose that we are using a 7-point scale, and there are only five relevant
documents to a given query. Let UR indicate the ideal ranking or user ranking,
IRS1, IRS2, IRS3, and IRS4 represent four different IR systems, respectively. Their
performance in terms of document rank order is that IRS1 is the best, IRS2 is better
than IRS3, and IRS4 is the worst. Table 2 shows the actual evaluation results by the
methods we discussed in Section 5. Let us briefly analyze these evaluation results.
All methods are able to determine that IRS1 provides the best ranking and IRS4
provides the worst. The methods based on cumulated gain give an unreasonable
evaluation results with respect to the performance of IRS2 and IRS3, because
although IRS2 provides a better ranking, the sum of the relevance score of IRS3
is larger than IRS2. If we change the relevance score of each document in IRS2 and
IRS3 so that their sums can be the same, Table 3 shows the evaluation results. All the
cumulated gain-based methods except the discounted cumulated gain (dcg) are able
to give the correct evaluation results at this time. Unfortunately, one cannot manually
adjust the relevance scores given by the IR system which are usually decided by
some retrieval algorithms automatically. Therefore, the best method in terms of the
sensitivity to document rank order is the normalized distance performance measure
(ndpm). The cumulated gain-based methods rely on the values of relevance and
are not sensitive enough to document rank order in general. The average distance
measure (adm) relies on the absolute differences of the relevance scores between
the system estimation and user estimation, it cannot provide stable evaluation results
in some cases.

Second, we compare these methods in terms of giving higher credits to the IR
systems for their abilities to retrieve highly relevant documents. This time, we are

Table 2 Evaluation results of document rank order

Docs d1 d2 d3 d4 d5 msr dcg ndcg wap Q agr ndpm adm

UR 0.6 0.5 0.4 0.3 0.1

IRS1 0.6 0.5 0.3 0.2 0.1 0.95 0.93 0.96 0.94 0.98 0.94 1.00 0.96
IRS2 0.5 0.3 0.4 0.2 0.1 0.79 0.77 0.78 0.79 0.93 0.78 0.90 0.92
IRS3 0.4 0.6 0.2 0.3 0.1 0.80 0.85 0.82 0.81 0.94 0.80 0.80 0.90
IRS4 0.1 0.2 0.2 0.4 0.5 0.43 0.54 0.34 0.40 0.80 0.36 0.05 0.70
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Table 3 Changing the relevance score of Table 2

Docs d1 d2 d3 d4 d5 msr dcg ndcg wap Q agr

UR 0.6 0.5 0.4 0.3 0.1

IRS2 0.6 0.4 0.5 0.3 0.1 0.98 0.98 0.97 0.97 0.99 0.98
IRS3 0.5 0.6 0.3 0.4 0.1 0.95 0.99 0.95 0.95 0.98 0.95

using a 4-point scale, and there are only five relevant documents to a given query.
Let IRS1, IRS2, IRS3, and IRS4 represent four different IR systems, respectively.
Their performances for giving high credits to IR systems which can retrieve more
highly relevant documents is in a decreasing order as: IRS1, IRS2, IRS3, and IRS4.
Table 4 shows the actual evaluation results. The normalized distance performance
measure (ndmp) provides the correct results again. All the cumulated gain-based
methods except discounted cumulated gain (dcg) and average gain ratio (agr) are
able to give the correct evaluation results. The average distance measure (adm) gives
higher credit to IRS2 instead of IRS1 because the absolute difference between IRS1
and UR is higher than the absolute difference between IRS2 and UR.

According to the above numerical comparison, we can conclude that in terms of
the sensitivity to document rank order and giving higher credits to the IR systems that
can retrieve more highly relevant documents, the normalized distance performance
measure gives the best evaluation results from both perspectives. The cumulated
gain-based methods satisfy the second perspective, but fail in their sensitivities to
the document rank order. The average distance measure gives unstable evaluation
results for both perspectives.

7 Practical issues in using multi-grade evaluation

One difficulty with using the multi-grade evaluation is that there are still some
practical issues on how to apply these methods. In this section, we discuss some of
these critical issues and the possible solutions.

The first issue is how to acquire the user judgments for the ideal ranking. There
are two types of rankings required for the computation of multi-grade evaluation
function. The system ranking is given by the IR system via assigning weights to each
document in the collection. The ideal ranking is supposed to be provided by the
user directly and it is more subjective. There are some arguments about whether the
judgments should be acquire from the experts of the corresponding field or from
randomly selected users with common knowledge. Since most of the IR systems
are not designed just for experts, it is fair that the judgments should be given by a

Table 4 Evaluation results to retrieve highly relevant documents

Docs d1 d2 d3 d4 d5 msr dcg ndcg wap Q agr ndpm adm

UR 0.3 0.3 0.2 0.1 0.1

IRS1 0.2 0.2 0.0 0.0 0.0 0.53 0.49 0.58 0.54 0.91 0.24 0.89 0.88
IRS2 0.0 0.3 0.2 0.1 0.1 0.47 0.63 0.46 0.50 0.89 0.55 0.63 0.94
IRS3 0.0 0.0 0.2 0.1 0.1 0.24 0.33 0.16 0.24 0.84 0.25 0.19 0.86
IRS4 0.0 0.0 0.0 0.1 0.1 0.08 0.11 0.04 0.06 0.81 0.05 0.13 0.84
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group of real users. However, the judgements may vary depending on different users
opinions and scenarios in which the judgments are made. The ideal ranking may
be produced by merging different user judgments. Rank aggregation methods can
be used to combine the rankings given by different users into a new ranked list of
result (Borda 1781; Dwork et al. 2001). These methods have been primarily used by
meta-search engines. The rank aggregation function is computed by assigning scores
to entities in individual rankings or by using orders of the entities in each ranking.
In some IR experiments, the ideal ranking is obtained by merging the participating
IR system ranking results without the users participation. For example, the Text
REtrieval Conference (TREC) uses a pooling method, where each IR system submits
their ranked document list (e.g., top 1000 documents), and the ideal ranking is
generated by combining these ranking results through an automatic process.

The second issue is that some proposed methods require the user judgments over
the entire document collection, in reality, this requirement is usually infeasible. It is
important to find out how to use these methods when only partial user judgments
are given (Frei and Schsuble 1991; Fuhr 1989). The early attempt at solving this
problem can be found in Cooper’s paper (1968), where the expected search length
measure indicates the stop point of scanning the entire document list. Nowadays, the
general way of solving this problem is to ask the users to provide their judgements
on selected samples. These samples could be the top-ranked retrieved documents,
or randomly selected documents from the entire collection. In the Text REtrieval
Conference (TREC), the document selection is first done by gathering the top 1000
ranked documents retrieved by each participating IR system in a list, and then the
top n (e.g., 100) ranked documents of the list are evaluated by the invited experts or
users (Voorhees 2005). However, if there is a relevant document ranked below the
100th position, it will be treated as a non-relevant document in the computation of
evaluation functions.

The third issue is how to define the boundaries of different levels of relevance in
order to help the users make their judgments. In particular, when a relevance scale
contains more than three levels, it is difficult to define the boundaries of the middle
levels. For example, in a 4-point relevant scale (highly relevant, relevant, partially
relevant and non-relevant), what kind of criteria should be used to differentiate the
definition of relevant and partially relevant documents. In IR experiments, users are
easily misled to make their judgments due to the poorly defined notion of middle
levels of relevance. Some studies have been done with regard to this problem. Spink
et al. (1999) discovered 15 criteria used to define middle level relevant documents.
Maglaughlin and Sonnenwald (2002) revealed 29 criteria used by participants when
determining the overall relevance of a document. A general agreement is that the
more criteria a document satisfies, the higher relevance level it belongs to.

8 Conclusions

Relevance plays an important role in the process of information retrieval system
evaluation. In the past, the variability and continuous nature of relevance were paid
insufficient attention, and the traditional evaluation methods (e.g., precision and
recall) only treat relevance as a two-leveled notion. One important feature of the
modern IR system is the large amount of retrieved documents which vastly exceed



246 J Intell Inf Syst (2010) 34:227–248

the number of documents the user is willing to examine. Therefore, it is critical
for the evaluation methods to favor those IR systems which can retrieve the most
relevant documents and rank them at the top of the output list. This requires the
reexamination of the multi-grade feature of relevance and the evaluation methods
based on it.

In this paper, we reveal that multi-grade relevance can be formally defined in
terms of the user preference relation. The main methodologies of 12 multi-grade
evaluation methods, together with some commonly used traditional IR system
evaluation methods, are reviewed and compared from different perspectives. Some
interesting findings are discovered. We find that most evaluation methods are based
on cumulated gain. They are able to give higher credits to IR systems for their
abilities to retrieve highly relevant documents, but they are not sensitive enough
to document rank order. The average distance measure is not reliable because it
uses the absolute difference between system relevance estimation and user relevance
estimation. Overall, the normalized distance performance measure provides the best
performance in terms of the perspectives we are concerned with in this paper.

A general evaluation strategy based on multi-grade relevance is proposed. Some
practical issues and possible solutions are discussed. We find that the evaluation
criteria of multi-grade relevance changes compared to the traditional precision and
recall. The evaluation strategy based on multi-grade relevance is shifted from the
distribution of relevant, non-relevant, retrieved and not retrieved documents to the
comparison of system ranking and ideal ranking. The evaluation methods based on
multi-grade relevance should be able to credit the IR systems that can retrieve more
highly relevant documents, provide better document rank order, and be adaptable to
different types of relevance interpretation.

The main contributions of this paper can be summarized as follows. We identify
that multi-grade relevance can be formally defined in terms of the user preference
relation. We propose a general evaluation strategy based on multi-grade relevance.
We recommend that the normalized distance performance measure is a good choice
in terms of the perspectives we are concerned with in this paper.
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