
J Intell Inf Syst (2009) 33:239–260
DOI 10.1007/s10844-008-0070-7

Relaxing RDF queries based on user
and domain preferences

Peter Dolog · Heiner Stuckenschmidt ·
Holger Wache · Jörg Diederich

Received: 17 April 2008 / Accepted: 22 May 2008 /
Published online: 30 June 2008
© Springer Science + Business Media, LLC 2008

Abstract Research in cooperative query answering is triggered by the observation
that users are often not able to correctly formulate queries to databases such that
they return the intended result. Due to lacking knowledge about the contents and
the structure of a database, users will often only be able to provide very broad
queries. Existing methods for automatically refining such queries based on user
profiles often overshoot the target resulting in queries that do not return any
answer. In this article, we investigate methods for automatically relaxing such over-
constrained queries based on domain knowledge and user preferences. We describe a
framework for information access that combines query refinement and relaxation in
order to provide robust, personalized access to heterogeneous resource description
framework data as well as an implementation in terms of rewriting rules and explain
its application in the context of e-learning systems.

P. Dolog (B)
Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, 9220 Aalborg, Denmark
e-mail: dolog@cs.aau.dk

H. Stuckenschmidt
Universität Mannheim - Institut für Informatik,
A5, 6, 68159 Mannheim, Germany
e-mail: heiner@informatik.uni-mannheim.de

H. Wache
School of Business, University of Applied Sciences
Northwestern Switzerland (FHNW),
Riggenbachstrasse 16, CH-4600 Olten, Switzerland
e-mail: holger.wache@fhnw.ch

J. Diederich
Forschungszentrum L3S, Leibniz Universität Hannover,
Appelstraße 9a, 30167 Hannover, Germany
e-mail: diederich@L3S.de

240 J Intell Inf Syst (2009) 33:239–260

Keywords Query relaxation · User modeling · Preferences · ECA rules

1 Introduction

Cooperative query answering is triggered by the observation that users are often
not able to correctly formulate queries to databases that return the intended result.
This is even more the case for semantic web systems based on resource description
framework (RDF) for the following reasons:

– The underlying data often comes from different sources. The internal structure
of these sources is not always known.

– There is no fixed integrated schema. Each source can have its own schema,
sources may make partial use of different available schemas.

– Authors of data are not forced to stick to a given schema and often use different
conventions to represent the same information.

With the increasing popularity of RDF as a representation language in domains
such as medicine (Stuckenschmidt et al. 2004) or e-learning (Dolog et al. 2004, 2008)
this problem becomes more pressing. We have to make sure that people will be able
to formulate meaningful queries. If this is not the case, we have to find ways to still
provide the user with the intended results. Cooperative query processing aims at
supporting the user by automatically modifying the query in order to better fit the
real intention of the user. The specific problem that we address in this work is the
situation where the content of the information as well as the RDF-based metadata
do not have the expected format.

As a motivating example, we use the domain of e-learning. In open e-learning
environments such as the one described in Dolog et al. (2004, 2008), learning mate-
rials from different authors and different sources are made available online through
an RDF-based infrastructure. In particular, each learning resource is described by a
combination of different metadata providing details about type, format, and content
of the material as well as information about required expertise. In order to capture
this metadata, different metadata schemas including standards like Dublin Core1 and
LOM2 as well as domain ontologies like the ACM topic hierarchy3 are used (Brase
2005). In addition, information about the expertise of the user is needed to decide
whether the material meets the user’s level of expertise. The result is a rather
complex metadata schema that needs to be queried in order to retrieve relevant
material. Due to this complexity, the corresponding query is normally created by the
system based on user input and known preferences. An example of such a complex
query in the SeRQL query language is shown in Fig. 1.4

1http://dublincore.org/schemas/rdfs/.
2http://kmr.nada.kth.se/el/ims/md-lomrdf.html.
3http://www.cs.vu.nl/∼heiner/public/SW@VU/classification.daml.
4Namespaces have been omitted for the sake of readability.

http://dublincore.org/schemas/rdfs/
http://kmr.nada.kth.se/el/ims/md-lomrdf.html
http://www.cs.vu.nl/~heiner/public/SW@VU/classification.daml

J Intell Inf Syst (2009) 33:239–260 241

Fig. 1 Query extended with
user preferences

SELECT * FROM
{Resource} subject {Subject}, {Resource} title {Title},
{Resource} description {Description}, {Resource} language {Language},
{Resource} requires {} subject {Prerequisite},
{User} type {user}, {User} hasPerformance {Performance},
{Performance} learning_competency {Competence}

WHERE
Subject Like "inferenceengines" and Prerequisite = Competence and
Language = de and User = user42

The query asks for learning resources in German about the subject “inferenceen-
gines” that meet the previous knowledge of the user – in particular, it claims that
the subject of required units should be contained in the competence of the current
user (user42). When we apply this query to real data, however, it does not return any
result despite the fact that there are a number of suitable resources. The problem in
this case are irregularities in the way the data is described. In particular, not all the
authors of resource metadata stick to the conventions that come with the metadata
schema – a situation that we encounter quite often on the semantic web. For the
purpose of this article, we will not systematically analyze the different problems we
identified in the dataset but restrict ourselves to two typical examples that we will use
to illustrate our approach in the remainder of the article.

The subject assigned to a course does not always correctly summarize the content.
In our test data set, for example, if the user provides the keyword “inferenceengines”
no resources are returned despite the fact that there are resources for instance about
inference implementation and tools for inference. The problem here is that in the
case of the first resource the term “inferenceengines” only occurs in the title, but
not in the subject. In the case of the second resource, the term only occurs in the
description and is mentioned neither in the subject nor in the title of the resource.
Therefore, a query for resources with the subject “inferenceengines” will return
no results.

Learning resources normally specify required expertise in terms of knowledge that
the user should have in order to be able to understand the content of the resource.
In existing data sets there are at least three different ways in which this requirement
is specified. The standard way is to refer to other learning resources that should have
been mastered before - this information can be taken from the user profile. There
are also cases, however, where required skills are given in terms of links to a topic
hierarchy or even in terms of literals containing the required skill as a string. If the
user query is now automatically expanded with links to resources mastered by the
user, these resources will not be found.

In this article, we present an approach for addressing the problems querying
heterogeneous RDF models using preference-based query relaxation. Our work is
similar to the work of Gaasterland (Gaasterland et al. 1992a, b) on cooperative query
answering in databases. In particular, we present a method for automatically relaxing
over-constrained queries based on background knowledge about the domain model
and user preferences, extending previous work in two directions:

– We base our work on a general relaxation framework that is designed to capture
the specific properties of RDF and RDF query languages.

– We explicitly link the relaxation process to an explicit model of user preferences
and domain characteristics that can be used to guide the relaxation process.

242 J Intell Inf Syst (2009) 33:239–260

In the following, we provide an overview of a general approach for relaxing
RDF queries using rewritings that we proposed in previous work. In Section 3, we
introduce a generic model for representing domain and user knowledge that provides
the basis for guiding the relaxation process which is discussed in detail in Section 5.
We also discuss the introduced model in the context of related work in Section 5.
Section 4 discusses how to elicit knowledge about a user and a domain. We briefly
describe a prototypical implementation of the system in Section 6 and conclude with
a discussion of achievements and open problems.

2 Relaxation by rewriting

A possible solution to provide users with meaningful results is to successively relax
the constraints imposed in the (extended) query. Different techniques for relaxing
queries have been proposed in the database area. Gaasterland et al. (1992a) provide a
unifying view on different relaxation techniques in terms of replacing subexpressions
in the query.

2.1 The rewriting framework

We proposed in previous work (Dolog et al. 2006) a rule-based query rewriting
framework for RDF queries independent of a particular query language. The frame-
work is based on the notion of triple patterns (RDF statements that may contain
variables) as the basic element of an RDF query and represents RDF queries in
terms of three sets: triple patterns that must be matched (mandatory patterns), triple
patterns that may be matched (optional triple patterns), and conditions in terms of
constraints on the possible assignment of variables in the query patterns.

Rewritings of such queries are described by transformation rules Q
R→ Q′ where

Q is the original query and Q′ the rewritten query. Rewriting rules consists of
three parts:

– A matching pattern represented by an RDF query in the sense of the description
above. Normally the matching pattern is a part of the original query Q.

– A replacement pattern also represented by an RDF query in the sense of
the description above. The replacement pattern replaces the matched pattern
resulting in Q′.

– A set of conditions in terms of special predicates that restrict the applicability of
the rule by restricting possible assignments of variables in the matching and the
replacement pattern.

A rewriting is performed in the following way: First it is checked if a rule is
applicable for a query. The matching pattern needs to match a given query Q in
the sense that the mandatory and optional patterns are subsets of the corresponding
parts of Q. Furthermore, the predicates in the conditions of the rewriting rule have to
be satisfied. If a rule is applicable for a query then the matched patterns are removed
from Q and replaced by the corresponding parts of the replacement pattern resulting
in Q′.

J Intell Inf Syst (2009) 33:239–260 243

2.2 Query rewriting model

Our rewriting approach relaxes the over-constrained query based on rules, which
has the advantage that we start with the strongest possible query that is supposed
to return the “best” answers to satisfy most of the conditions. If the returned result
set is either empty or contains unsatisfactory results, the query is modified either by
replacing or deleting parts of it, or in other words, relaxed. The relaxation should
be a continuous step by step, (semi-)automatic process, to provide a user with the
possibility to interrupt further relaxations. Before we investigate concrete relaxation
strategies in the context of our example domain, we first give a general definition of
the framework for rewriting an RDF query.

Each resource is annotated with an RDF description which can be seen as a set
of triples (Hayes 2004). A query over these resources consists of triple patterns and
a set of conditions that restrict the possible variable bindings in the patterns. Each
triple pattern represents a set of triples. The corresponding abstract definition of a
query focuses on the essential features of queries over RDF; several concrete query
languages are based on these ideas including SeRQL (Broeskstra and Kampman
2004) which we use in our examples in Fig. 1.

Definition 1 (RDF Query) Let T be a set of terms, V a set of variables, RN a set of
relation names, and PN a set of predicate names. The set of possible triple patterns
T R is defined as T R ⊆ 2(T ∪V)×(RN∪V)×(T ∪V). A ground triple (pattern) is a triple
pattern which does not contain any variable. A query Q is defined as 〈MQ, OQ, PQ〉
with MQ and OQ ∈ T R and PQ ⊆ P . MQ is the set of mandatory patterns (patterns
that have to be matched by the result), OQ is a set of optional patterns (patterns that
contribute to the result but do not necessarily have to match the result), and P is the
set of predicates. A predicate has a name in PN and is defined over T and V .

The triple patterns MQ in a query Q determine ground triples from a database.
Informally all substitutions τ are answers to Q which maps the triple patterns MQ

to existing ground triples in the database. A substitution τ is defined as a set of pairs
(Xi, Ti) and applied as usual:

Definition 2 (RDF Answers) A substitution τ is a set of pairs (Xi, Ti) with Xi ∈V
and Ti ∈ T ∪ V . τ(S) is generated from S where each appearance of Xi is
replaced by Ti for each (Xi, Ti) ∈ τ . A substitution τ is valid for a RDF query
Q = 〈MQ, OQ, PQ〉 if

– M = τ(MQ) where M is a set of ground triples from the database and
– τ(PQ) are satisfied.

A valid substitution τ may be extended to optional patterns OQ, i.e. τ(OQ) may also
be equal to some ground triple in database. All valid substitutions constitute answers
to the query Q.

244 J Intell Inf Syst (2009) 33:239–260

Using these abstract definitions, the query in Fig. 1 without language preference
on German and prerequisites on competences matched with the user’s learner
performance would be represented as

MQ = {(Resource, subject, Subject),

(Resource, title, Title)

(Resource, description, Description)}
OQ = {}
PQ = {like(Sub ject, “inf erenceenines“)}

where Resource, Subject, Title, Description ∈ V , as well as subject, title, description,
“inferenceengines” ∈ T and like ∈ PN .

Based on the abstract definition of an RDF query, we can now define the notion
of a rewriting rule and rewriting process as such. We define rewriting in terms of
rewriting rules that take as input parts of a query, in particular triple patterns and
conditions, and replace them by different elements.

In our work, we employ the principle of rewriting rules that are inspired by ECA-
rules (event-condition-action rules) (Ceri 1992) for continuous relaxation of user
queries. A rewriting rule formally consists of three parts: a pattern, a replacement and
some conditions. The pattern corresponds to the event, i.e. in our case an occurrence
of particular triple patterns or predicates in a query. The replacement contains the
terms which will substitute the matched pattern in a query; the replacement can
be seen as the action in the ECA principle. Conditions constrain the rewriting and
determine when a particular rule can be fired because the rewriting rule can only be
applied if the conditions are satisfied. These conditions can be used to define certain
relaxation strategies. In particular, we will see later that conditions can be based on
user preferences or background knowledge about the domain.

Definition 3 (Rewriting Rule) A rewriting rule R is a 3-tuple 〈PA, RE, CN〉 where
PA and RE are RDF queries according to Definition 1 and CN is a set of predicates.

Conditions are the same constructs which are already introduced for queries.
Conditions consist of predicates which constrain possible results. Patterns and re-
placements formally have the same structure as queries. They also consist of a set
of triples and predicates. But patterns normally do not address complete queries
but only a subpart of a query. Using this definition we can specify a rewriting rule
that extends the simple query in Fig. 1 with the language preference of the example
user user42.

PA = ({(Resource, title, Subject)},∅, ∅)

RE = ({(Resource, title, Subject),

(Resource, language, Language)},∅,

{(Language = X)})
CN = {languagePref erence(User, X)}

J Intell Inf Syst (2009) 33:239–260 245

where languagePref erence is a predicate which looks in the user profile of a user
User for the language preference. User is a variable which will be bound to the id
of the current user sending the query, e.g., user42. While this example contained a
rule for refining a query, we will see later that we can use the same mechanism for
defining relaxations on a query.

In general a rewriting rule is applicable to all queries which contain the pattern as
a part. The pattern does not have to cover the whole query. Normally it addresses
some triples as well as some predicates in the query. In order to write more generic
rewriting rules, the pattern must be instantiated which is done by a substitution.

Definition 4 (Pattern Matching) A pattern PA of a rewriting rule R is applicable to
a query Q = 〈MQ, OQ, PQ〉 if there are subsets M′

Q ⊆ MQ, O′
Q ⊆ OQ and P′

Q ⊆ PQ

and a substitution θ with 〈M′
Q, O′

Q, P′
Q〉 = θ(PA).

In contrast to term rewriting systems (Baader and Nipkow 1998) the definition of
a query as two sets of triples and predicates simplifies the pattern matching, i.e. the
identification of the right subpart of the query for the pattern match. A subset of
both sets has to be determined which must be syntactically equal to the instantiated
pattern. Please note that due to set semantics, the triples and predicates in the pattern
may be distributed over the query. Now we will define how the new rewritten query
is constructed with the help of the rewriting rule and pattern matching.

Definition 5 (Query Rewriting) If a rewriting rule R = 〈PA, RE, CN〉

– is applicable to a query Q = 〈MQ, OQ, PQ〉 with subsets M′
Q ⊆ MQ, O′

Q ⊆ OQ,
P′

Q ⊆ PQ and substitution θ

– θ(CN) is satisfied,

then the rewritten query QR = 〈MR
Q, OR

Q, PR
Q〉 can be constructed with MR

Q =
(MQ \ M′

Q) ∪ θ(MRE), OR
Q = (OQ \ O′

Q) ∪ θ(ORE) and PR
Q = (PQ \ P′

Q) ∪ θ(PRE)

with RE = 〈MRE, ORE, PRE〉.

Informally speaking, if the pattern matches a query and the conditions are satisfied
then the matched pattern is substituted by the replacement. Applying the above
rewriting rule to the basic query we get the following refined query:

MQ = ({(Resource, subject, Subject),

(Resource, title, Title)

(Resource, description, Description),

(Resource, language, Language)},)
OQ = ∅
PQ = {like(Subject, “inf erenceengines“),

(Language = “de“)} (1)

246 J Intell Inf Syst (2009) 33:239–260

According to the rewriting rule, the triple (Resource, title, Subject) which is
matched by PA of the rule is replaced by (Resource, title, Subject), (Resource,
language, Language) and PQ is extended by (Language = “de“). Note that the
language preference of user42 is German because of the satisfied constraint lan-
guagePreference(user42, “de”) and “de” means German. Similarly, the query can be
rewritten further to add learner performance constraints. Note also that a similar
process is applied in the query relaxation process. Rewriting rules will then contain,
for example, a pattern on subject replaced with a pattern on title.

2.3 Using rewritings

In general, rewriting is a very powerful approach to manipulate over-constrained
queries. By replacing parts of a query, we can realize four types of actions and
subsequently arbitrary combinations of these actions:

– Making Patterns optional—this provides a query which considers a situation that
some of the resources do not have all the metadata annotations expected. For
example, some resources might not have a subject, hence, the corresponding part
of the query has to be made optional. A query then gives also results where the
particular predicate relaxed to an optional predicate does not occur;

– Replacing Value—this provides a query where a particular predicate value is
replaced with another value or a variable. This can be useful to find resources
that do not directly match the user interest, but are concerned with a broader or
related topic. Taxonomies may be used to provide siblings, more general terms,
and so on;

– Replacing Patterns/Predicate—this provides a query where a particular triple
resp. predicate in restrictions is replaced by another triple resp. predicate. A
domain knowledge is employed for this purpose. In the case of our example, if a
subject query is not satisfied, it may be replaced by a title query with similarity
measures;

– Deleting Patterns/Predicate—this provides a query where a particular predicate
is deleted from a query completely.

As such, these operations are independent of the application domain and the user
preferences. The connection to the domain and the user can be made using a set of
predicates in the condition of the rewriting rules that link the manipulation to specific
aspects of the domain and the user model. In the following, we discuss two predicates
for including information about the domain and the user into the rewriting process.

domain-preferred-over(X,Y) This predicate indicates that due to the special na-
ture of the domain a certain relation or value is a
better choice for retrieving results than another one.
We can use this to relax queries by replacing a highly
preferred value by a less preferred one that is more
likely to deliver a result even if this result may be
less exact.

user-preferred-over(X,Y,U) This predicate is defined in the context of a specific
user U and indicates that the user considers a certain
relation more important or prefers a certain value

J Intell Inf Syst (2009) 33:239–260 247

over another one. We can use this predicate to relax
queries by replacing highly preferred values by less
preferred ones or for deciding which of the predi-
cates in a query can be relaxed more easily, because
the user considers it less important.

In order to make the relaxation smooth, we consider these predicates to be
non-transitive.5 The concrete implementation depends on the representation of the
domain and the user profile. In the following, we discuss the implementation and
use of an abstract user and domain model based on semantic web technologies and
explain how rewriting conditions can be checked based on these models using an
RDF query.

3 Environment, preference and domain model

In order to include knowledge about the domain of interest and the preferences of
the user into the query relaxation process, we have designed a general scheme for
representing relevant knowledge independent of a concrete application. This general
scheme exploits the meta-modeling capabilities of RDF to define aspects of the world
we can take into account in the rewriting process (compare Fig. 2).

The schema follows an idea, that each environment can be generated according
to an application domain schema used by the application. Rather than directly
representing domain knowledge or user preferences it provides metaclasses that can
be instantiated by existing representation schemes for information resources such
as Learning Object Metadata (LOM) (Nilsson 2001) as well as metadata schemas
like the Dublin Core standard (The Dublin Core Metadata Initiative 2008), and
taxonomies and ontologies used for predicate values in the information resource
schemas such as the ACM computing classification system (CCS) (Assosiation
of Computing Machinery 2002).

An environment concept can be, for example, linked to a field on a user interface
form where the user can type a search term or it can be filled in with a class from
a taxonomy. Such a generic environment schema provides us with the flexibility
to describe any user environment which is based on schemas. For example, an
environment concept can model a field on an entry form which is used to enter a
subject term which a user is searching for in the metadata. Such a field will be an
instance of the EnvironmentProperty class pointing to a “dc:subject” predicate
of the Dublin Core schema. An example of combined class and predicate instances
would be a predicate “dc:subject” with a class from a taxonomy like ACM CCS as
its value.

Another advantage of such a generic environment schema is that we can re-
fer to environment concepts from user preferences. Figure 3 depicts a schema
for environment user preferences. Each user can express his level of prefer-
ence for any environment concept. This is reflected by the EnvironmentItem

5Transitivity is ensured by the rewriting procedure itself; it does not need to be considered for the
predicates themselves.

248 J Intell Inf Syst (2009) 33:239–260

Fig. 2 A schema for generic
environment

EnvironmentConcept

EnvironmentProperty

EnvironmentPredicateConceptValue

Subject
Predicate

Instance rdf:Property

EnvironmentClass

Subject
Term

Instance rdf:Class

EnvironmentPredicateLiteralValue

SubjectLiteral Any

isa isa

isa isa isa

LanguagePredicateLanguageConcept

isa

SubjectTerm Instance Language

SubjectPredicate Instance LangProp

property of the EnvironmentUserPreference class. This is a generic defini-
tion of an environment preference through an EnvironmentConcept class as
a domain for EnvironmentItem attributes. Classes for environment preferences
are further specialized according to which environment concept class is used
to describe them. For example, an environment class for representing language
predicates LanguagePredicateLanguageConcept from Fig. 3 is used as a do-
main for the EnvironmentItem property of LanguagePreference. Note, that
this class inherits and overloads properties from EnvironmentProperty as well as
EnvironmentClass.

The level of a user preference can be expressed as a value from a metric.
This is modeled by the MesuredPreference as a subclass of a user prefer-
ence. The values from preference measures can be used to order them, i.e., to
deduce the ordering relations between preference instances which is modeled by
the hasImportanceOver relation. Another alternative is to deduce preference
relations from usage logs as we describe in the next section.

Besides the user preferences, we also consider a schema for a user’s background.
This is represented by the learning performance and the skills gained from learning.
We use our schema for such a learner’s learning performance (Dolog and Schäfer
2005) where the learning performance is described by a relation to learning com-
petences, portfolios created and certificates gained during/from learning activities
which have been connected to the learning performance.

To show a concrete instance of the environment preferences of a user, let us now
consider a situation where a user John whose id is user42, (cf. Fig. 1) prefers the

Fig. 3 A schema for
environment user preferences UserPreference

hasImportanceOver Instance* UserPreference

hasImportanceOver

EnvironmentPreference

EnvironmentItem Instance EnvironmentConcept

MeasuredPreference

PreferenceRankingMetric Instance Metric

PreferenceRankingValue Any

MeasuredEnvironmentPreference

LanguagePreference

EnvironmentItem Instance LanguagePredicateLanguageConcept

isa

isa

isa

isa
isa

isa

J Intell Inf Syst (2009) 33:239–260 249

Fig. 4 An excerpt of instance
examples for environment user
preferences

User42Id1

UserName = JohnLearner

FirstName = John

LastName = Learner

EIdcLanguageDe

SubjectPredicate = dc:language

SubjectTerm = lang:de

User42LPDe

EnvironmentItem = EIdcLanguageDe

user42

hasIdentification = User42Id1

hasPerformance =

User42P1

User42P2

hasPreference = User42LPDe
User42P1

learning_competency = acmccs:I.2.4.1

User42P2

learning_experience_identifier = kbs:praedikatenlogik.pdf

learning_competency =

acmccs:I.2.3.2

acmccs:I.2.8.0

hasIdentification

hasPerformance

hasPerformance

hasPreference

EnvironmentItem

German language. In addition, he has attended two lectures, one on predicate logic
and one on modal logic. An instance reflecting this situation described according
to the environment user preference schemas is depicted in Fig. 4. His profile points
to two performance objects: User1P1, and User1P2. The User1P1 is a performance
record from a modal logic lecture where the user learned about the modal logic
concepts (I.2.4.1 of ACM CCS), where User1P2 is a record from the predicate logic
lecture where the user learned about inference engines (I.2.3.2 of ACM CCS) and
backtracking (I.2.8.0 of ACM CCS). The user42 profile also points to one prefer-
ence object: User1LPDe. This is a language preference referring to the German
language (lang:de).

3.1 Preference based user interface and query generation

The user and environment preferences are utilized for the user interface and an
initial query generation as well. Figure 5 shows an example of a group of related
fields described in RDF and generated from the user preferences together with
additional descriptions of those fields. There is a group of related fields for a user
input on a learning goal (topic) field. There are two options a user always has: typing
a free text and selecting from a taxonomy. This is reflected by two fields within
the environment concept group. The free text can be typed in three distinct fields

Fig. 5 An excerpt of a user
interface environment for
query composition

envX Env. concept
group 1

...

subject literal

subject
concept

hasGroup

hasConcept

hasConcept

Type in
the concept
names ...

description Subject (free text):
label

dc:subject LIKE

operator

3cardinality

predicate

true

preferencepredicate

preference

operator

Subject
(from taxonomy):

label

1

cardinality

ACM CCS

source taxonomy

hasGroup

250 J Intell Inf Syst (2009) 33:239–260

(cardinality). Query related descriptions are predicate, operator, and preference.
‘Query predicate’ gives a restriction field to which a user input is being applied.
‘Operator’ (such as LIKE) gives a comparison operator to be applied for matching
the user input with the predicate. ‘Preference attribute’ is given to specify whether a
user can express his interest/preference utility for further query processing and query
relaxation. Similarly to the free text subject field, a selection from the taxonomy field
points to query-related attributes and a cardinality (in this case just ‘1’). Furthermore,
it points to a default taxonomy to be used for concept generation.

A number of heuristics are used to produce such descriptions from the environ-
ment and user preferences. For example, the LIKE operator is usually generated in
interface descriptions for text fields. A range operator is generated for time and date
fields. For free text attributes, a triple of user interface fields is generated and one
indented list is generated for taxonomical attributes. Taxonomies are suggested from
pruning of resource data. If there is more than one taxonomy used in the resource
data, a list with the used taxonomies is generated from which a user can select his
preferred one. A user can store his own environment model with own preference
values. There is always a default environment which is usually used for novice users.

This model is utilized in an initial query construction process as well. The descrip-
tions like predicate, operator, and taxonomy are utilized when constructing the query
restrictions. The preference values for attributes serve as an input to the relaxation
process. Furthermore, the user preference model also contains information on
projection predicates. Before the query is submitted to the relaxation service, other
preferences stored in the user profile are considered as well for the initial query
construction together with preference values (if available).

3.2 User preferences and user modeling

There are two major areas of related work for preference models: preferences in
databases and CP-Nets. Pioneering work on preferences in databases and their
formal models have been provided in Chomicky (2003), Kießling (2002). The prefer-
ences there are defined as partial orders over domains of attributes from a database
schema. Preferences can be composed by different set operators such as union
and intersection and so on. The composition creates another preference relation
depending on the operator used to compose the preferences.

Another area where preferences have been considered is artificial intelligence.
Conditional ceteris paribus represented as a network (Boutilier et al. 1999) or its
extensions (Brafman et al. 2005) are used to describe preference dependencies over
predicates. They describe how certain predicates with their values depend on the
other predicates leading to different outcomes based on the preference predicates.

In our rewriting approach we combine benefits of both approaches. We allow
for explicit representation of preference relation over RDF property domains. As
in RDF schema properties are also defined as resources, we can consider similar
relations over properties/predicates as well, thus providing a unified model describing
preference relations over both predicates as well as domains. In the next section
we show how both, preference relations over predicates as well as domains can be
learned from RDF queries in existing systems.

In addition, we integrate such preference models with user profiling. User pro-
files contain preferences as its one dimension. Besides that, different aspects of

J Intell Inf Syst (2009) 33:239–260 251

user context and history are useful in our context such as learning performance
and experience. These aspects differ from preferences as they actually represent
knowledge about past user actions relevant for the environment and a user task.
Formally, they can form relations or nets similar to preferences but with different
semantics. We also argue that preferences and user profiles strongly depend on the
environment. Therefore, we provide a generic environment model where preferences
can be embedded and related to schemas and ontologies of a problem domain
provided through the environment.

Preferences in databases have been integrated with traditional query languages
in preference queries. The preference queries were studied in the context of rela-
tional algebra (Chomicky 2003; Kießling 2002; Lacroix and Lavency 1987) or data-
log (Kießling and Güntzer 1994; Köstler et al. 1995). The preference query languages
provide several operators which are understood by engines implementing them.
We adopt a different approach. As the combination of preferences and different
aspects of user profiles depend on the context and environment, we rather argue
for a more flexible approach, i.e., that rewriting rules, preferences, and user relevant
dimensions are configured when an environment is deployed. Furthermore, the rules
as well as the user profiles are continuously updated by learning preferences over
selected domain and environment models. Our approach implements the preferences
and user profiles by query rewriting at a level above a query language engine. This
enables flexibility in the query language, the preference relations and the user profile
as well as within the query engine.

Our approach relates to reasoning employed in CP-nets. However, while the main
target of CP-net reasoning is to answer whether an outcome is preferred over another
one based on the reasoning on ceteris paribus, our approach tries to improve the
outcome by modifying a query.

4 Preference elicitation

An essential requirement for our approach to be useful in practice is the ability to
deduce preferences as a basis for rewriting rules. As described above, we distinguish
between user and domain preferences. The elicitation of user preferences is an active
field of research as many personalization techniques rely on correct user models.
We have positioned our work with respect to the major techniques proposed in the
literature. Finding and representing domain preferences is a less well investigated
problem and deserves more attention. In the following, we discuss the elicitation of
domain preferences in the context of a concrete target domain. On top of that, there
has been a proposal for query relaxation based on the RDF Schema data model, that
can also be used as a generic preference model for applications where neither domain
nor user preferences are available.

4.1 Domain preferences

In a recent article Hurtado and others have proposed a general query relaxation
approach for RDF data based on the semantics of RDF schema (Hurtado et al.
2008). In particular, they propose a number of relaxation patterns for RDF query
languages. These relaxation patterns are defined in terms of triple patterns and

252 J Intell Inf Syst (2009) 33:239–260

can therefore directly be implemented in our approach. Besides general relaxation
patterns for RDF that are similar to the general rewriting possibilities mentioned
previously (dropping triples) and relaxations adopted from earlier research on
databases (breaking join dependencies) the authors also propose ontology-based
relaxation patterns that take the schema and therefore the nature of the domain
into account. In Hurtado et al. (2006) the following schema-based relaxations
are mentioned:

Type relaxation: replacing a triple pattern (a, rdf:type, b) with (a,
rdf:type, c), where (b, rdfs:subClassOf, c) follows
from the model. For example, the triple pattern
(?X, type, ConferenceArticle) can be relaxed to
(?X, rdf:type, Article) and then to (?X, rdf:type,
Publication).

Predicate relaxation: replacing a triple pattern (a, p, b) with (a,
q, c), where (p, rdfs:subPropertyOf, q) follows
from the model. For example, the triple pat-
tern (?X, proceedingsEditorOf, ?Y) can be re-
laxed to (?X, editorOf , ?Y) and then to (?X,
contributorOf, ?Y).

Predicate to domain relaxation: replacing a triple pattern (a, p, b) with (a, rdf:type,
c), where (p, rdfs:domain, c) follows from the
model. There are no domain declarations in Fig. 1.

Predicate to range relaxation: replacing a triple pattern (a, p, b) with (b, rdf:type,
c), where (p, rdfs:range, c) follows from the model.
For example, the triple pattern (?X, editorOf, ?Y)
can be relaxed to (?Y, rdf:type, Publication).

We consider these relaxations to be typical examples of domain preferences that
can be used in our setting. The implementation of these patterns as rewriting rules is
straightforward.

It turns out that following schema-based relaxation rules is often not enough
in practical applications as not all relevant preferences have a direct relation to
the schema. Useful relaxations often rather depend on the nature of user queries
typically posed to the system. In order to get a better idea of the impact of the nature
of user queries on domain preferences, we analyzed the problem of eliciting domain
preferences for the REASE system (Diederich et al. 2007). REASE is a repository
of learning resources for the domain of semantic web technologies. The system has
been developed in the context of the Networks of Excellence KnowledgeWeb and
REWERSE. It currently has more than 700 registered users. The system allows
the user to pose keyword-based queries similar to search engines like Google.
Internally, learning resources are represented by RDF metadata descriptions based
on a complex schema. Details of the schema can be found in Brase (2005). This
provides us with a certain degree of flexibility for mapping user queries onto the
metadata description that we can exploit in the relaxation.

The REASE system already has a limited form of relaxation built into the
search engine that has been designed based on extensive experiments for optimizing
search results. In particular, each user query is evaluated against different metadata

J Intell Inf Syst (2009) 33:239–260 253

Table 1 Variation of query
terms in the REASE system
(from Diederich et al. (2007))

Query term Percentage Hits

Problem solving method[s] 27% 2 / 2
psm[s] 22% 0 / 2
Problem solving methods psm 9% 2 / 2
Problem solving methods 7% 2 / 2

(advanced search)
‘Problem solving method[s]’ 6% 1 / 2
Problem solving 5% 2 / 2

fields using different weights for computing the aggregated result. In particular, the
following metadata fields are used as a target for user queries

1. Title (with weight 1)
2. Description (with weight 0.7)
3. MainContributorNames (with weight 0.3)
4. OtherContributorNames, EducationalObjectives, AdditionalInformation, Cur-

riculum and Prerequisites: (with weight 0.1)

These empirically determined weights impose a preference relation over the
different properties of a learning resource, that can be used in our system. Further, in
the user study reported in Diederich et al. (2007) we analyzed the use of variations of
search terms and the impact on the completeness of query results. Table 1 shows the
result for the case of users searching for information about problem-solving methods.
The analysis shows that users prefer the search terms ‘problem solving methods’
and ‘psms’ where the second search term will not return any result. We can use the
information from the analysis and rewrite the query replacing the abbreviation ‘psms’
by the complete search term that is known to return results. Similar observations
could be made for other search terms such as ‘species’ (searches for the different
sublanguages of the web ontology language that are sometimes also referred to as
‘layers’). This principle can be generalized by building a domain specific thesaurus as
a basis for rewriting search terms.

In summary, since neither rewriting queries based on term lists and thesauri nor
the schema-based rewriting of queries are new, the real benefit of our method is its
ability to integrate different concrete approaches such as the ones mentioned into
a common framework. In highly heterogeneous environments the combination of
these different approaches is a real benefit that should not be underestimated.

5 Processing rewritings

In previous work (Dolog et al. 2006) we presented the theoretical foundations of
rewriting RDF queries based on sets of triple patterns. In the following, we describe
the concrete implementation of this rewriting approach in SWI PROLOG. We chose
SWI PROLOG as a basis for the implementation because the declarative nature
of PROLOG allows a straightforward implementation of rewriting systems. SWI
PROLOG is especially suited because its semantic web library contains many useful
functions for manipulating RDF data and RDF queries.

254 J Intell Inf Syst (2009) 33:239–260

5.1 Rewriting queries

As a first step in the rewriting approach, the refined user query (cf. Fig. 1) is
translated into a PROLOG representation. This is done by using the functional-
ity provided by the PROLOG-based SeRQL query engine provided within SWI
PROLOG. After this translation, the query mostly consists of a list of predicates
of the form rdf(Subject, Relation, Object) that represent the FROM part
of the query and a list of predicates of the form serql_compare(Operation,
Argument1, Argument2) which represent the WHERE part of the query. These
lists of predicates correspond to mandatory patterns6 and conditions in our rewriting
approach mentioned in Section 2.1. Based on this representation, we can now
also define rewriting rules in terms of special PROLOG predicates containing an
identifier, a matching and a replacement pattern as well as conditions. The rewriting
rules are applied to the PROLOG representation of the query. The resulting
relaxed query is translated back into SeRQL using the corresponding functionality of
SWI PROLOG.

The following rule is an example which makes use of the predicates introduced
in Section 2.3. We can write generic rewriting rules that are guided by information
from the environment and user model introduced in Section 3. Below we have an
example of such a generic rule. This rule looks for relations in query patterns that
are mentioned in the user model and replaces the corresponding relation name by a
less preferred relation based on information about domain preferences with respect
to relations.

’Generic-Domain-Preference’ @@
pattern(where([rdf(Subject, Relation, Object)]),

from([]))
==> replace(where([rdf(Subject, Relation, Object),

rdf(Subject, LessPreferredRelation,
Object)]),

from([]))
&& (domain_preferred_over(Relation,

LessPreferredRelation)).

This rule is used to solve the problem in example 1, where the preferred relation is
‘subject’ while the less preferred one is ‘title’. The explicit representation of both,
a user model and a meta-model of the domain presented in Section 3 provides
us with a basis for computing the special predicates user-preferred-over and
domain-preferred-over and using them to guide the query rewriting process.
In particular, we can define these predicates in PROLOG using elements from the
SWI RDF library to directly refer to the RDF-based representation of the user and
environment model.

As the relations ‘subject’ and the relation ‘title’ are in the user_preferred_over
relation with respect to our example user, the original query will be rewritten and
the pattern {Resource} subject {Subject} will be replaced by {Resource}
title {Subject}. A second rewriting rule can be used to modify the value of

6Currently optional patterns are not supported by the implementation, but the same machinery can
be used to also include them into the rewriting.

J Intell Inf Syst (2009) 33:239–260 255

‘Subject’ in such a way that the query verifies if the title contains the value of the
‘Subject’ variable as a substring. The combination of these two generic rewriting rules
solve the problem in example 1.

5.2 Control strategy

As mentioned above, the main problem of the rewriting approach to query relaxation
is the definition of an appropriate control structure to determine in which order the
individual rewriting rules are applied to queries. Different strategies can be applied
to deal with the situation where multiple rewritings of a given query are possible.
Examples are:

– User Interaction (Motro 1990): possible rewritings are presented to the user who
decides in which direction to proceed

– Heuristic Search (Stojanovic 2003; Stuckenschmidt 2004): The best rewriting is
determined based on the similarity of the resulting query with the original one.

– Divide and Conquer (i.e., Skylining) (Kießling and Köstler 2002; Lacroix and
Lavency 1987): The best results of all possible combinations of rewritings
are returned.

In the current version of the system we have implemented a simple version of
skylining. In particular, we interpret the problem of finding relaxed queries as a
classical search problem. The search space is defined by the set of all possible queries.
Each application of a rewriting rule R on a query Q is a possible action denoted

as Q
R→ Q′. A query represents a goal state in the search space if it does have

answers. In the current implementation we use breath-first search for exploring this
search space. Unlike classical search, however, the method does not stop when a
goal state is reached. Instead, each goal state is explored and the results of the
corresponding query are returned together with the relaxed query itself. As each goal
state represents the best solution to the relaxation problem with respect to a certain
combination of rewritings, the goal states form a skyline for the rewriting problem.
The second difference to classical search is that we do not allow the same rule to be
applied more than once with the same parameters in each branch of the search tree,
because they only increase the complexity of query answering (Gutierrez et al. 2004).

Figure 6 illustrates the control strategy exploring the search space for the query
given in Fig. 1. The nodes in the graph represent queries—the number in square
brackets denotes the number of answers. The edges between nodes represent rewrit-
ings. There are four possible rewritings R1 to R4, where R1 relaxes the prerequisite
requirement in the query, i.e. the first rewriting rule in Section 4.1. R2 relaxes a string
comparison in a SERQL query where two strings must no longer be equal but the first
string can now be a substring of the second. R3 and R4 are two instantiations of the
generic domain-preferred rewriting; R3 replaces subject by title in the query whereas
R4 replaces title by description (cf. example 1). The search space is initialized by the
original query Q. R1 to R3 are all applied resulting in the rewriting queries Q1 to
Q3. Because none of these rewritten queries return any results, the rewriting process
proceeds with the application of R1 to R3 to the rewritten queries Q1 to Q3. The
resulting queries can be merged to Q12, Q13, and Q23 because it does not matter
in which sequence R1 and R2 are applied. Additionally R4 is now applicable to Q3

resulting in Q34 because after replacing the subject by title (by R3) the title can be

256 J Intell Inf Syst (2009) 33:239–260

Fig. 6 Search space for
example rewritings

replaced by the description. Furthermore, Q23 is a goal state because it returns one
resource as an answer to the (relaxed) query. Figure 6 shows also how Q34 is further
rewritten to the new goal states Q234 and Q1234.7 Finally we get three rewritings Q23,
Q234 and Q1234 of the original query; each of them returns one learning resource.

6 Implementation

We have implemented the relaxation approach described above using state of the
art semantic web technologies in the context of the European Research Networks
KnowledgeWeb (Realizing the Semantic Web) and Prolearn (Network of Excellence
in Professional Learning). The resulting system is an extension of the general e-
learning infrastructure described in Dolog et al. (2004) which we verified on a
repository of e-learning resources in the area of general computer science with the
resources being annotated with RDF-based metadata using the schema proposed
in Brase (2005). As the resources are provided by a large number of different authors,
the metadata descriptions that form the basis of search contain many of the problems
mentioned above which makes this data set an ideal test case for our approach. In
the following, we provide an overview of the general system architecture and explain
the prototypical search interface available on the web.

6.1 System architecture

Figure 7 shows the architecture of the implemented system. The system consists of a
central component that contains the query rewriting functionality and the relaxation
strategy. This component receives a user request in terms of a SeRQL query that has
been generated by the user interface by automatically refining the user request based
on known user preferences. This query is translated into a PROLOG representation

7The expansion of other states is omitted.

J Intell Inf Syst (2009) 33:239–260 257

Fig. 7 System architecture

using the functionality provided by the SWI-PROLOG semantic web library. The
rewriting rules which are specified in a PROLOG knowledge base are then applied
to this representation of the user query. Most of the rewriting rules contain conditions
that refer to user or environment preferences or both. The corresponding conditions
are evaluated over the corresponding RDF models that contain the environment
and user data, again making use of the PROLOG RDF interface provided by SWI
PROLOG. The result of this rewriting is a series of more general queries that are
translated back into SeRQL and are issued to a Sesame RDF repository that contains
the actual data. The results of these queries are returned to the user interface
together with the relaxed query in order to enable the user to understand the basis on
which the results were achieved. In the following we discuss the different functional
components of the system in more detail.

6.2 User interface

The prototypical search interface of the system combines user preference elicitation
with a query formulation dialog. The original version of the personalized search
described in Dolog et al. (2004, 2008) had just a query formulation for restrictions
of the subject of resources. We have extended the user interface with generating
environment based on the environment schema, a default environment for novice
users, and a user preference elicitation. A user interface of such a personalization
search environment is depicted in Fig. 8.

The default environment consists of items for specifying subject concepts, title, de-
scription, and language as query literals. Each of the attributes on the user interface
has a preference elicitation slider. The slider is used to specify a value measuring
an importance of a preference of a particular attribute to a user. Internally, these
numerical values are translated into qualitative relations describing a total order of
importance over the different aspects. With respect to Example 1 these relations
specify in which order subject, title and description are considered as a source of
information about the topic of a resource. A button for opening a dialog where a user
can specify the value preferences and their order is provided where it is appropriate
(e.g., the Subject Values Preferences button or the Language Preferences button). The

258 J Intell Inf Syst (2009) 33:239–260

Fig. 8 Prototypical search interface

source of values for subject preferences is in our case the ACM CCS taxonomy, used
also for selecting concepts on the user dialogs. We use the standard set of language
identifiers as a source for values for the language preferences. The value preference
dialog displays a tree, a graph or a set of concepts with value labels determining
the importance of the preference. When a user points to a concept, a slide bar is
drilled down to change the preference importance value. If a user needs to extend
his restrictions, he can do that by selecting from other schema attributes which are
offered when he presses the Add Attributes button. The attributes that a user filled
in within the user interface are used to construct the restriction part of queries.

7 Conclusions

In this article we addressed the problem of querying RDF data containing irregu-
larities due to multiple authorship and non-compliance to a standardized metadata
schema. We illustrated this problem using an example from the e-learning domain,
but we are convinced that the problem is a general one that is inherent in the idea
of metadata on the semantic web. We have presented an approach for successively
rewriting queries based on background knowledge. In particular, we have described
how background knowledge about different alternative representations can be used
to define generic relaxation rules that can be applied across different domains,
provided that we have a suitable environment model. We have implemented and

J Intell Inf Syst (2009) 33:239–260 259

tested the approach in the domain of e-learning using real world data about e-
learning resources in computer science.

Open questions concerned with our approach are about suitable ways of acquiring
the necessary information about user preferences as well as about the application
environment. For the case of user preferences there is a large body of work in
the area of user modeling including methods for automatically learning preferences
based on user behavior. The acquisition of information about the environment model
will probably be more of a challenge, because it is not clear whether alternative
representations of the same information can be detected by observing the user. We
have shown some strategies to acquire this information from usage logs. However,
this problem needs to be studied further.

In summary, we can say that we need more experience with real data and real
users in order to assess the effort connected with the acquisition of the knowledge
necessary to successfully apply our approach in different domains. While for the
domain of e-learning the benefits have been shown, this remains to be done in other
domains.

References

Assosiation of Computing Machinery (2002). The ACM Computer Classification System.
http://www.acm.org/class/1998/.

Baader, F., & Nipkow, T. (1998). Term rewriting and all that. New York: Cambridge University
Press.

Boutilier, C., Brafman, R. I., Hoos, H. H., & Poole, D. (1999). Reasoning with conditional ceteris
paribus preference statements. In Proceedings of the Fifteenth Annual Conference on Uncertainty
in Artificial Intelligence (UAI-99) (pp. 71–80). Morgan Kaufmann: Stockholm.

Brafman, R. I., Domshlak, C., Shimony, S. E., & Silver, Y. (2005). TCP-nets for preferences over
sets. In IJCAI-05 Multidisciplinary Workshop on Advances in Preference Handling at Inter-
national Joint Conference on Artificial Intelligence. Edinburgh, Scottland, (July). Available at:
http://wikix.ilog.fr/wiki/pub/Preference05/WebHome/P07.pdf.

Brase, J. (2005). Usage of metadata. Phd thesis, University of Hannover.
Broeskstra, J., & Kampman, A. (2004). Serql: A second generation RDF query language. In SWAD –

Europe Workshop on Semantic Web Storage and Retrieval. Amsterdam, The Netherlands,
(November).

Ceri, S. (1992). A declarative approach to active databases. In F. Golshani (Ed.), ICDE (pp. 452–
456). Los Alamitos: IEEE Computer Society.

Chomicky, J. (2003). Preference formulas in relational queries. ACM Transactions on Database
Systems, 28(4):1–40 (December).

Diederich, J., Džbor, M., & Maynard, D. (2007). REASE: The repository for learning units about
the semantic web. New Review of Hypermedia and Multimedia, 13(2):211–237.

Dolog, P., & Schäfer, M. (2005). A framework for browsing, manipulating and maintaining inter-
operable learner profiles. In L. Ardissono, P. Brna, & A. Mitrović (Eds.), Proc. User Modeling
2005: 10th International Conference, UM 2005, LNAI, (Vol. 2715). Edinburgh: Springer (July).

Dolog, P., Henze, N., Nejdl, W., & Sintek, M. (2004). Personalization in distributed e-learning
environments. In Proc. of WWW2004 — The Thirteen International World Wide Web Conference.
New York: ACM Press (May).

Dolog, P., Stuckenschmidt, H., & Wache, H. (2006). Robust query processing for personalized
information access on the semantic web. In H. L. Larsen, G. Pasi, D. O. Arroyo, T. Andreasen, &
H. Christiansen (Eds.), Proceedings of 7th International Conference on Flexible Query Answering
Systems (FQAS 2006) (pp. 343–355), Lecture Notes in Computer Science 4027, 7–10 June 2006.
Milan, Italy: Springer.

Dolog, P., Simon, B., Klobucar, T., & Nejdl, W. (2008). Personalizing access to learning networks.
ACM Transactions on Internet Technologies. Special Issue on Distance Education, 8(2) (May).

http://www.acm.org/class/1998/
http://wikix.ilog.fr/wiki/pub/Preference05/WebHome/P07.pdf

260 J Intell Inf Syst (2009) 33:239–260

Gaasterland, T., Godfrey, P., & Minker, J. (1992a). An overview of cooperative answering. Journal
of Intelligent Information Systems, 1(2):123–157.

Gaasterland, T., Godfrey, P., & Minker, J. (1992b) Relaxation as a platform for cooperative answer-
ing. Journal of Intelligent Information Systems, 1(3/4):293–321.

Gutierrez, C., Hurtado, C., & Mendelzon, A. O. (2004). Foundations of semantic web databases.
In ACM Symposium on Principles of Database Systems (PODS). Paris, France, (June).

Hayes, P. (2004). RDF Semantics. Recommendation, W3C.
Hurtado, C., Poulovassilis, A., & Wood, P. (2006). A relaxed approach to RDF querying.

In ISWC’2006 — 5th International Semantic Web Conference, Lecture Notes in Computer Science.
Athens: Springer-Verlag (November).

Hurtado, C., Poulovassilis, A., & Wood, P. (2008) Query relaxation in RDF. Journal of Data
Semantics, 10, 31–61.

Kießling, W. (2002). Foundations of preferences in database systems. In Proceedings of 28th Interna-
tional Conference on Very Large Data Bases (VLDBO2) (pp. 311–322).

Kießling, W., & Güntzer, U. (1994). Database reasoning—a deductive framework for solving large
and complex problems by means of subsumption. In Proceedings of the 3rd Workshop on
Information Systems and Artificial Intelligence, LNCS (Vol. 777, pp. 118–138). New York:
Springer.

Kießling, W., & Köstler, G. (2002). Preference SQL - design, implementation, experiences.
In Proceedings of 28th International Conference on Very Large Data Bases (VLDB02)
(pp. 990–1001).

Köstler, G., Kießling, W., Thöne, H., & Güntzer, U. (1995). Fixpoint iteration with subsumption in
deductive databases. Journal of Intelligent Information Systems, 4, 123–148.

Lacroix, M., & Lavency, P. (1987). Preferences: Putting more knowledge into queries. In Proceedings
of the International Conference on Very Large Data Bases (pp. 217–225). Amsterdam, The
Netherlands.

Motro, A. (1990). FLEXX: A tolerant and cooperative user interface to database. IEEE Transactions
on Knowledge and Data Engineering, 2(2), 231–245.

Nilsson, M. (2001) IMS Metadata RDF binding guide. http://kmr.nada.kth.se/el/ims/metadata.html,
(May).

Stojanovic, N. (2003). On analysing query ambiguity for query refinement: The librarian agent
approach. In Conceptual Modeling – ER 2003, volume 2813 of Lecture Notes in Computer Science
(pp. 490–505). Heidelberg: Springer-Verlag.

Stuckenschmidt, H. (2004). Similarity-based query caching. In 6th International Conference on Flexi-
ble Query Answering System (FQAS), volume 3055 of Lecture Notes in Artificial Intelligence (pp.
295–306). Lyon: Springer Verlag.

Stuckenschmidt, H., van Harmelen, F., de Waard, A., Scerri, T., Bhogal, R., van Buel, J., et al.
Exploring Large Document Repositories with RDF Technology: The DOPE Project. IEEE
Intelligent Systems, 19(3), 34–40.

The Dublin Core Metadata Initiative (2008). http://dublincore.org/.

http://kmr.nada.kth.se/el/ims/metadata.html
http://dublincore.org/

	Relaxing RDF queries based on user and domain preferences
	Abstract
	Introduction
	Relaxation by rewriting
	The rewriting framework
	Query rewriting model
	Using rewritings

	Environment, preference and domain model
	Preference based user interface and query generation
	User preferences and user modeling

	Preference elicitation
	Domain preferences

	Processing rewritings
	Rewriting queries
	Control strategy

	Implementation
	System architecture
	User interface

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

