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Abstract In this paper we show how to achieve a more effective Query By Example
processing, by using active mechanisms of biological vision, such as saccadic eye
movements and fixations. In particular, we discuss the way to generate two fixation
sequences from a query image Iq and a test image It of the data set, respectively, and
how to compare the two sequences in order to compute a similarity measure between
the two images. Meanwhile, we show how the approach can be used to discover and
represent the hidden semantic associations among images, in terms of categories,
which in turn drive the query process.

Keywords Animate vision · Image retrieval · Image indexing

1 Introduction: Is Mona Lisa a portrait or a landscape?

In the framework of Content-Based Image Retrieval (CBIR), Query By Example
(QBE) is considered a suitable and promising approach because the user handles an
intuitive query representation.
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However, a hallmark all too easily overlooked is that when the user is performing
a query, he is likely to have some semantic specification in mind, e.g. “I want to see
a portrait,” and the portrait example provided to the query engine is chosen to best
represent the semantics. The main problem of such approach is that it is not always
easy to translate the sematic content of a query in terms of visual features, there is an
inherently weak connection between the high-level semantic concepts that humans
naturally associate with images and the low-level features that the computer is relying
upon (Colombo et al. 1999; Djeraba 2003).

As pointed out by Santini et al. (2001), image databases mainly work within the
framework of a syntactical description of the image (a scene composed of objects,
that are composed of parts, etc.), and the only meaning that can be attached to an
image is its similarity with the query image; namely, the meaning of the image is
determined by the interaction between the user and the database.

The main issue here is that perception indeed is a relation between the perceiver
and its environment, which is determined and mediated by the goals it serves (i.e.,
context) (Edelman 2002). Thus, considering for instance Leonardo’s Mona Lisa
(Fig. 1): should it be classified as a portrait or a landscape? Clearly, the answer
depends on the context at hand. In this perspective, it is useful to distinguish between
the “What” and “Where” aspects of the sensory input and to let the latter serve as
a scaffolding holding the would-be objects in place (Edelman 2002). Such distinction
offers a solution to the basic problem of scene representation - what is where - by
using the visual space as its own representation and avoids the problematic early
commitment to a rigid designation of an object and to its crisp segmentation from
the background (on demand problem, binding problem) (Edelman 2002). Consider

Fig. 1 The “What–Where”
similarity space: the “Where”
dimension (corresponding to
the image location) and the
two “What” dimensions
(similarity to a face image and
to a landscape image) are
shown. Switching to one
“What” dimension or to the
other one, depends on the
context/goal provided, here
represented by a face example
and a landscape example
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again Fig. 1 and let Mona Lisa represent one target image It. An ideal unconstrained
observer would scan along free viewing the picture by noting regions of interest of
either the landscape and the portrait, mainly relying on physical relevance (color,
contrast, etc...). However this is unlikely in real observations, since the context
(goals) heavily influences the observation itself.

For example, in a face detection context, the goal is accomplished when, along
visual inspection, “those” eye features are encountered “here” above “these” mouse
features. On the other hand, when a landscape context is taken into account, the tree
features “there” near river features “aside” may better characterize the Mona Lisa
image. Clearly, in the absence of this active binding between “What” and “Where”
features, the Mona Lisa picture can either be considered a portrait or a landscape;
per se, it has no meaning at all.

Such dynamic binding is accomplished in natural vision through a sequence of eye
movements (saccades), occurring three to four times each second; each saccade is
followed by a fixation of the region of the scene, which has been focused on the high
resolution part of the retina (fovea). An example of a human scanpath recorded with
an eye-tracking device is provided in Fig. 2.

The computational counterpart of using gaze shifts to enable a perceptual-motor
analysis of the observed world is named, after Ballard’s seminal paper (Ballard 1991),
Animate Vision.

The main contribution of this work is in the introduction of a novel representation
scheme in which the “What” entities are coded by their similarities to an ensemble of
reference features, and, at the same time, the “Where” aspects of the scene structure
are represented by their spatial distribution with respect to the image support
domain. This is obtained by generating a perceptual-motor trace of the observed
image, which we denote Information Path (IP). Thus, the similarity of a query image
Iq to a test image It of the data set can be assessed within the “What+Where” (WW)
space, or equivalently by comparing their IPs (animate matching). In this sense we
agree with (Santini et al. 2001) that the meaning that can be attached to an image is its
similarity with the query image. In fact, by providing a query image, we can “shape”
the WW space by “pinning features to a corkboard,” which, in some way, corresponds

Fig. 2 A scanpath example
representing the sequence of
the observer’s fixation points
recorded while “free-viewing”
the image
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to shape the geometric structure of the feature space. In computer vision terms, we
are exploiting “top–down” information to perform the matching.

Clearly, the approach outlined above assumes the availability of a context, and
of a representation of such context in order to drive the perceptual actions in
the WW space. There is a wealth of research in neurophysiology and in psychology
(Fryer and Jackson 2003) showing that humans interact with the world with the
aid of categories. When faced with an object or person, an individual activates a
category that according to some metric best matches the given object, and in turn
the availability of a category grants the individual the ability to recall patterns of
behavior (stereotypes, (Fryer and Jackson 2003)) as built on past interactions with
objects in a given category. In these terms, an object is not simply a physical object
but a view of an interaction. The approach of grouping somehow similar images
together and use these groupings (prior context) to filter out a portion of the non-
relevant images for a given query is very common in the literature and allows to
improve retrieval results (Newsam et al. 2001).

In the proposed system, we functionally distinguish these basic components: (1)
a component which performs a “free-viewing” analysis of the images, corresponding
to “bottom–up” analysis mainly relying on physical features (color, texture, shape)
and derives their IPs, (2) a WW space in which different WW maps may be organized
according to some selected categories (any image is to be considered the support
domain upon which different maps (IPs) can be generated according to viewing
purposes), (3) a query module (high level component) which acts upon the WW
space by considering “top–down” information, namely, context represented through
categories, and exploits animate matching to refine the search. A functional outline
of the system is depicted in Fig. 3.

The paper is organized as follows. In Section 2 we briefly discuss background
and related work on image indexing and retrieval problem. In Section 3, the way
to map an image into the WW space is presented. In Section 4, we show how to
represent context in the WW space via categories. We first discuss in general terms
how categories can be clustered from a probabilistic standpoint, and in order to
achieve a balanced solution of the clustering procedure a variant of the Expectation-
Maximization algorithm (BEM, Balanced EM) is introduced. In Section 5 the animate
query process is presented, relying on the Balanced Cluster Tree (BCT) represen-
tation of categories and the animate image matching procedure. The experimental

Fig. 3 A functional view of
the system at a glance
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protocol and related results, are discussed in Section 6. Concluding remarks are given
in Section 7.

2 Related works

Traditionally, CBIR addresses the problem of finding images relevant to the users’
information needs from image databases, based principally on low-level image global
descriptors (color, texture and shape features) for which automatic extraction meth-
ods are available. In the past decade, systems for retrieval by visual content have been
presented in the literature proposing visual features that, together with similarity
measures, could provide an effective support of image retrieval (see Smeulders et al.
(2000) for details). More recently, it has been realized that such global descriptors
are not suitable to describe the actual objects within the images and their associated
semantics. For these reasons, two main approaches have been proposed to cope
with this deficiency: firstly approaches have been developed whereby the image is
segmented into multiple regions, and separate descriptors are built for each region;
secondly, the use of “salient points’ has been suggested.

Following the first approach, different systems like PICASSO (Del Bimbo et al.
1998), SIMPLIcity (Wang et al. 2001) and Blobworld (Carson et al. 2002) have
been developed. PICASSO exploits a multi-resolution color segmentation (Del
Bimbo et al. 1998), in SIMPLIcity the k-means algorithm is used to cluster regions,
while in Blobworld regions (blobs) are segmented via the EM algorithm. Exploited
features relate to color, texture, location, and shape of regions and, the matching is
accomplished through a variety of ways: using specific color distances (Del Bimbo
et al. 1998), quadratic or euclidean distances (Carson et al. 2002) and integrated
region matching through wavelet coefficients (Wang et al. 2001). All these systems
have the problem of linking the segmented region to the actual object that is being
described.

The second approach avoids the problem of segmentation altogether by choosing
to describe the image and its contents in a different way. By using salient points or
regions within an image, in fact, it is possible to derive a compact image description
based around the local attributes of such points. It has been shown that content-
based retrieval based on salient interest points and regions performs much better
than global image descriptors (Hare and Lewis 2004, 2005; Sebe et al. 2003). In
particular, in (Sebe et al. 2003) different operators, based on wavelet transform, are
used to extract the salient point, from which region descriptors used to retrieval are
built, while in Hare and Lewis (2004, 2005) salient point descriptors are evaluated
using the peaks in a difference of Gaussian pyramids.

Our system follows the second approach avoiding the problem of early segmen-
tation and exploits color, texture and shape features in the principled framework of
animate vision, according to which is the way that features are dynamically organized
in the WW space (Section 3) that endows them with information about the context.

It is worth recalling that the use of context/semantics is also taken into account
by Wang et al. (2001), in the form of categories, by Colombo et al. (1999), Corridoni
et al. (1999), in terms of color-induced sensations in paintings and clearly addressed
by Santini et al. (2001), through a mechanism of similarity tuning via relevance
feedback. Differently from Santini et al. (2001) and more similarly to Wang et al.
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(2001), we allow for the possibility of providing the database with a preliminary
context represented in terms of the likelihood to belong to a finite number of pre-
specified categories.

To these purposes traditional data mining approaches, such as naive Bayes,
decision-tree and SVM, can be exploited in order to classify a given image respect
to its semantic belonging category. An interesting discussion of these methods is
reported in Fan et al. (2005).

In our case, category discovery is obtained through a variant of the Expectation-
Maximization algorithm, aimed at obtain clusters with equal number of similar
images (Balanced EM, see Section 4). Such approach has the advantage to provide
a means for an efficient indexing, relying on the Balanced Cluster Tree (BCT)
representation of categories. The adoption of such representation avoids the well-
know problems due to the fact that non-balanced partitions and the inferred index
structure are not efficient in terms of time and space (Yu and Zhang 2003).

Models presented in the indexing literature are based on the key concept of
proximity or similarity searching. The most promising approaches rely upon the idea
of metric space, in which a similarity function is introduced by means of a distance
function. In metric spaces, three types of queries are of interest: range queries
retrieve all elements that are within distance r to the object; nearest neighbor
queries retrieve the closest elements to the object; k-nearest neighbor queries
retrieve the k closest elements to the object. The range query is widely adopted and
it has been proved that the nearest neighbor query may be built over the range query
concept.

Approaches relying on metric spaces are, for example, the BKT proposed by
Burkhard and Keller (1973), the FQT of Baeza-Yates et al. (1994), the FQA of Chavez
et al. (2001), the metric tree introduced by Uhlmann (1991) called VPT. Recently,
the M-tree data structure (Ciaccia et al. 1997) has been demonstrated to be very
efficient, providing dynamic capabilities and good I/O performance while requiring
few distance computations. But it is well accepted that the majority of such tech-
niques degrade rapidly as the dimensions of considered data space increase. Most
index structures based on partition split a data set independent of its distribution
patterns and have either a high degree of overlapping between bounding regions at
high dimensions or inefficient space utilization.

To build an efficient index for a large data set with high dimensions, the overall
data distributions or patterns should be considered to reduce the affects of arbitrary
insertions and the clustering represents a suitable approach for discovering data
patterns. To this reason the emerging techniques try to incorporate a clustering
representation of the data into the classical indexing structures. To this purpose, Yu
and Zhang (2003) have shown that cluster structures of the data set can be helpful
in building an index structure for high dimensional data, which supports efficient
queries. Indexing structure can be shaped in the form of a hierarchy of clusters and
subclusters obtained via k-medoids. In the same vein, we propose a Balanced Cluster
Tree, for performing range queries, but obtained via the balanced variant of the EM
algorithm, which in turn takes advantage of animate query refinement (Section 5).

Eventually in (Section 6), we address the problem of evaluating the proposed
system, which, due to its grounding in natural vision principles, requires figures of
merit that go beyond the classic recall and precision measures (Corridoni et al. 1999;
Hare and Lewis 2004; Santini 2000).
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3 Mapping an image into the WW space

In most biological vision systems, only a small fraction of the information registered
at any given time reaches levels of processing that directly influence behavior and,
indeed, attention seems to play a major role in this process.

Visual attention is likely to be captured by salient points of the image. Each eye
fixation attracted by such points, defines a focus of attention (FOA) on the foveated
region of the scene, and the FOA sequence is denoted a saccadic scanpath (Noton
and Stark 1990). According to scanpath theory, patterns that are visually similar,
give rise to similar scanpaths when inspected by the same observer under the same
viewing conditions (current task or context). In other terms a scanpath respect the
properties of distinctiveness and invariance. that are requested to a salient points
based technique (Sebe et al. 2003).

In general, the generation of a scanpath under free viewing conditions, can be
accomplished in three steps:

1. selection of interesting regions;
2. features extraction from the detected regions;
3. search of the next interesting region.

To this aim, a pre-attentive image representation, undergoes specialized process-
ing through the “Where” system devoted to localize a sequence of regions of
interest, and the “What” system tailored for analyzing them. Attentive mechanisms
provide tight integration of these two information pathways, since in the “What”
pathway, feature extraction is performed, while being subjected to the action of the
“Where” pathway and the related attention shifting mechanism, so that uninteresting
responses are suppressed. In this way, the “Where” pathway allows to collect saliency
points simulating human attentive inspection of an image.

In our system, the “Where” pathway is implemented by following the image
pyramidal decomposition proposed by Itti et al. (1998). It linearly computes and
combines three pre-attentive contrast maps (color, brightness, orientation) into a
master or saliency map, which is then used to direct attention to the spatial location
with the highest saliency through a winner take-all (WTA) network (attention shifting
stage). The region surrounding such location represents the current FOA, say Fs.
By traversing spatial locations of decreasing saliency, it is then possible to observe a
motor trace (scanpath) representing the stream of foveation points for an image Ii,
namely:

scanpath = 〈Fis(ps; τs)〉s=1,2,...,Nf (1)

where ps = (xs,ys) is the center of FOA s, Nf is the number of explored FOAs (such
parameter is set before the scanpath generation), and the delay parameter τs is the
observation time spent on the FOA before a saccade shifts to Fs+1, provided by the
WTA net.

An inhibition mechanism avoids that a winner point is thoroughly reconsidered in
the next steps. Figure 4 summarizes the process to obtain from an input image the
related scanpath.
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Fig. 4 The implementation of “Where” pathway. From left to right: the input image; the three
conspicuity maps, representing intensity, color, orientation contrasts represented as grey level maps
(brighter points are more conspicuous); the saliency map (SM) obtained by linear composition of
the previous ones; eight steps of the attention shifting mechanism in which the most salient location
“wins,” determines the setting of the FOA, and undergoes inhibition (darker points in the maps) in
order to allow competition among other less salient locations; the output scanpath

Note that from the “Where” pathway two dynamical features are derived: the
spatial position ps of each FOA and the fixation time τs. As demonstrated by massive
experiments, the obtained scanpaths are compatible with those generated by an
eye-tracker, underlying the consistent of scanpath theory.

In the “What” pathway, information is extracted from each FOA, related to color,
texture and shape. In particular, for each FOA Fis, the “What” pathway extracts two
specific features: the color histogram hb(Fis) in the HSV representation space and the
edge covariance signature �Fis of the image wavelet transform considering only a first
level decomposition (|�| = 18) (Mallat 1998).

Eventually, for each considered image Ii the “flow” of such features, namely the
Information Path IPi is generated:

IPi = {IPis} = {(Fis(ps; τs),hb(F
i
s),�Fis)} (2)

where s = 1, . . . ,Nf; an IP is thus a map, a visuomotor trace, of the image in the WW
space.

Note that the process described above obtains an IP as generated under free-
viewing conditions (i.e., in the absence of an observation task), which is the most
general scanpath that can be recorded. Clearly, according to different viewing
conditions an image may be represented by different maps in such space; such
“biased” maps can be conceived as weighted IPs, or sub-paths embedded in the
context-free one.
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4 Endowing the WW space with context: category representation

An observer will exhibit a consistent attentive behavior while viewing a group of
similar images under the same goal-driven task. This stems from the fact that we can
categorize objects in categories, where each category represents a stereotyped view
of the interaction with a class of objects (Fryer and Jackson 2003). Thus, in our case
an image category, say Cn, can be seen as a group of images from which, under the
same viewing conditions, similar IPs could be generated.

4.1 Balanced EM learning of category clusters

We use a probabilistic framework in order to allow the association of each image
(represented through its Information Path IPi) to different categories Cn,n =
1, · · · ,NC , and to this end we assume that an initial image set and the associated cat-
egory classification have been pre-selected, through a supervised process (Duygulu
et al. 2002). An efficient solution, for a very large database, is to subdivide/cluster the
images belonging to a given category Cn into subgroups called category clusters, Cln
where l ∈ [1, . . . ,Ln] is the cluster label.

Note that each IPi can be thought of as a feature vector so that the goal of
clustering (MacKay 2003) is to assign a label l to the different IPs (images).

In a probabilistic setting we consider that the generic Information Path IP is an
observed random variable whose values are generated by some cluster identified
through a random variable Z ; we do not know in principle which cluster generates
the observed data thus, Z is an unobserved or hidden random variable. The sto-
chastic dependencies between variables are given by a set of parameters �. Namely,
consider a generative model that produces a data set IP = {IP1, · · · ,IPN} consisting
of N independent and identically distributed (i.i.d.) items, generated using a set of
hidden clusters Z = {zi}Ni=1 such that the likelihood can be written as a function
of �:

p(IP|�) =
N∏

i=1

p(IPi|�) =
N∏

i=1

∑

zi

p(IPi,zi|�) (3)

In order to use such model to perform clustering, parameters � must be
learned. Maximum Likelihood (ML) learning seeks to find the parameter set-
ting �∗ that maximizes p(IP|�) or the log-likelihood L(�)= log p(IP|�)=∑N

i=1
log

∑
zi

p(IPi,zi|�).
In variational approach (MacKay 2003; Neal and Hinton 1998) to ML learning,

the issue of maximizing L(�) with respect to � is simplified by introducing an
approximating probability distribution q(Z) over the hidden variables. It has been
shown that any q(Z) gives rise to a lower bound on L(�) (MacKay 2003; Neal and
Hinton 1998). By using a distinct distribution q(zi) for each data point, and via
Jensen’s inequality:

L(�) =
N∑

i=1

log
∑

zi

p(IPi,zi|�) ≥
N∑

i=1

∑

zi

q(zi) log
p(IPi,zi|�)

q(zi)
= F(q, �) (4)
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The lower bound F(q, �) is identified after (Neal and Hinton 1998) as the
(negative) free energy:

F(q,�) = Eq
[
logp(IP,Z|�)

] + H(q) (5)

where Eq [] denotes the expectation with respect to q and H(q) = −Eq
[
logq(Z)

]
is

the entropy of the hidden variables.
It is easy to show that:

L(�) = F(q,�) + KL(q||p) (6)

where KL(q||p) = −∑N
i=1

∑
zi
q(zi) log p(zi|IPi,�)

q(zi)
is the Kullback–Leibler diver-

gence (MacKay 2003) between q and the posterior distribution p(Z|IP,�).
Clearly F(q,�) = L(�) when KL(q||p) = 0, that is when q(Z) = p(Z|IP,�).
A method for ML learning is the Expectation-Maximization (EM) algorithm

(Dempster et al. 1977; MacKay 2003; Neal and Hinton 1998). EM alternates between
an E step, which infers posterior distributions over hidden variables given a current
parameter setting, and an M step, which maximises L(�) with respect to � given the
statistics collected from the E step. Such a set of updates can be derived using the
lower bound F. At each iteration t, the E step maximises F(q, �) with respect to each
of the q(zi):

q(t+1)(zi) ← arg max
q

F(q,�(t)),i = 1, · · · ,N (7)

and the M step maximizes F(q,�) with respect to �:

�(t+1) ← arg max
�

F(q(t+1), �) (8)

The E step achieves the maximum of the bound by setting q(t+1)(zi) =
p(IPi,zi|�(t)). It has been shown (Dempster et al. 1977; MacKay 2003; Neal and
Hinton 1998) that the EM algorithm estimates the parameters so that L(�(t)) ≤
L(�(t+1)) is satisfied for a sequence �(0), �(1), · · · ,�(t), �(t+1), · · · , which implies
that the likelihood increases monotonically and equality holds if and only if some
maximum is reached.

Here we choose to model our clusters through a Finite Gaussian Mixture (FGM)
(MacKay 2003) where each Information Path IPi is generated by one among Ln
clusters, each cluster being designed as a multidimensional Gaussian distribution
N (IPi; ml, �l), described by parameters θl = {ml, �l}, the mean vector and the
covariance matrix of the l-th Gaussian, respectively. Thus the likelihood function
related to the Information Path IPi has the form of the finite mixture:

p(IPi|�) =
Ln∑

l=1

αlN (IPi; ml, �l) (9)

where {αl}Lnl=1 are the mixing coefficients, with
∑Ln

l=1 αl = 1 and αl ≥ 0 for all l.
The complete generative model p(IP,Z|�) for the FGM can be defined as follows.

Denote � = {α, m, �} the vector of all parameters, with α = {αl}Lnl=1, m = {ml}Lnl=1,
� = {�l}Lnl=1. The set of hidden variables is Z = {zi}Ni=1 where each hidden variable
zi related to observation IPi, is a 1-of-Ln binary vector of components {zil}Lnl=1,
in which a particular element zil is equal to 1 and all other elements are equal to
0, that is zilε{0, 1} and

∑
l zil = 1. In other terms, zi indicates which Gaussian
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component is responsible for generating Information Path IPi, p(IPi|zil = 1, θl) =
N (IPi; ml, �l). Then the complete data likelihood is given as:

p(IP,Z|�) =
N∏

i=1

p(zi|α)p(IPi|zi, m, �) =
N∏

i=1

Ln∏

l=1

αl
zilN (IPi, ml, �l)

zil
. (10)

By using the expression in (10) to compute the free energy via (5) and performing
the maximization according to (7) and (8), then exact estimation equations for the
and steps can be derived (Dempster et al. 1977; MacKay 2003). :

h(t)
il = p(l|IPi, θ (t)

l ) = α
(t)
l p(IPi|l, θ

(t)
l )

∑Ln
l=1 α

(t)
l p(IPi|l, θ

(t)
l )

(11)

α
(t+1)
l = 1

N

N∑

i=1

hil, m(t+1)
l =

∑N
i=1 h

(t)
ilIP

i

∑N
i=1 h

(t)
il

,

�
(t+1)
l =

∑N
i=1 h

(t)
il

[
IPi − m(t+1)

l

] [
IPi − m(t+1)

l

]T

∑N
i=1 h

(t)
il

(12)

where hil = q(zil = 1) = p(zil = 1|IPi,�) denotes the posterior distribution of
the hidden variables given the set of parameters � and the observed IPi.

In principle, once ML learning is completed and the parameters � of the FGM
model recovered, the images Ii of a given category Cn can be partitioned in clusters
Cn = {C1

n, C2
n, . . . , CL

n

n }, where each image Ii, represented through IPi, is assigned to
the cluster Cln with the posterior probability p(l|IPi, �).

Such straightforward procedure has some drawbacks when exploited for a very
large database. On the one hand the labeling of the image bears a computational cost
which is linear in time with the number of clusters Ln in the category. On the other
hand, for retrieval purposes, such solution is not efficient with respect to indexing
issues, since the clusters obtained are in general unbalanced (do not contain the same
number of images). Thus, we introduce a variant of the EM algorithm which provides
a balanced clustering of the observed data, so that clusters can be organized in a
suitable data structure, namely a balanced tree.

The goal is to constrain, along the E step, the distribution of the hidden variables
so as to provide a balanced partition of the data, and then perform a regular M step.
An example to visualize the difference between unbalanced and balanced clustering
results is provided in Fig. 5.

To this end, we modify the E step as follows. First, posterior probabilities hil
are computed through (11); then the procedure assigns N/L data samples to one of
the L clusters with probability 1, by selecting the first N/L samples with higher hil
probability with respect to the cluster.

For instance, for L = 2, this gives a {N/2,N/2} bipartition that maximizes the
free energy. Eventually, the given partition provides the hard estimate qil ∈ {0, 1}.
Interestingly enough the algorithm introduces a sort of classification within the E step
in the same vein of the CEM algorithm (Celeux and Govaert 1992).
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Fig. 5 Clustering results from a set of images: balanced clustering with BEM (right) vs. EM
unbalanced clustering (left)

The Balanced EM algorithm (BEM) is summarized in Fig. 6.
The algorithm terminates when the convergence condition |L(�(t+1))−L(�(t))|<ε

is satisfied. In the experimental Section an example of log-likelihood maximization
and convergence behavior of the algorithm will be provided (cfr. Fig. 13).

Fig. 6 Balanced EM algorithm
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More formally, it is worth noting that the approximating distribution q obtained
in this way, still provides a monotonically increasing likelihood. In fact, optimal
balanced partitioning would require to solve, for the E-step the constrained
optimizazion problem: maxq F(q,�) subject to

∑L
l=1 qil = 1, ∀i,

∑N
i=1 qil = N

L ,∀l,
and qil ∈ {0, 1},∀i,l.

Unfortunately this is an NP-hard integer programming problem, but the two
substeps of the E-step, 1) the unconstrained computation of hiland 2) the mapping
hil → qil through the assignment of N/L data samples to one of the L clusters, by
selecting the first N/L samples with higher hil, alltogether provide a greedy heuristics
to achieve a locally optimal solution (Zhong and Ghosh 2003).

Most important, the q distribution obtained via hard-assignment still increases the
log-likelihood. In general, when the distribution of the hidden variables is computed
according to the standard E-step then q = p gives the optimal value of the function,
which is exactly the incomplete data log-likelihood F(p,�) = logp(IP|�). For any
other distribution q �= p over the hidden variables, F(q,�) ≤ F(p,�) = logp(IP|�),
but still L(�(t)) ≥ L(�(t+1)) will hold and the likelihood monotonically increase at
each step t of the algorithm.

This property indeed holds for the case at hand, where q is obtained via
a hard assignment. In fact, for q a partition of IP1, · · · ,IPN is defined where
for each IPi, there exists a label l(1 ≤ l ≤ L) such that q(l|IPi,�) = 1. Thus
q(l|IPi, �) logq(l|IP i

, �) = 0 for all 1 ≤ l ≤ L and 1 ≤ i ≤ N (since 0 log 0 = 0,
(MacKay 2003)). Hence H(q) = 0 and from (5) the following holds:

F(q,�) = Eq
[
logp(IP,Z|�)

] ≤ F(p,�) = logp(IP|�), (13)

which shows that the expectation over q lower bounds the likelihood of the
data. Further, it has been shown (Banerjee et al. 2003) that for the choice
q = 1, if l = arg maxl′ p(l|IPi,�) and q = 0 otherwise, Ep

[
logp(IP,Z|�)

] ≤
Eq

[
log p(IP,Z|�)

]
holds too, so that together with (13) shows that q is a tight lower

bound.
This proofs that at each step, L(�(t+1)) ≥ L(�(t)) until at least a local maximum

is reached, for which L(�(t+1)) = L(�(t)) . Hence, |L(�(t+1)) − L(�(t))| → 0 ensuring
convergence of the BEM algorithm.

4.2 Balanced cluster tree representation

By means of BEM procedure, each category can be represented in terms of clusters by
mapping the cluster space onto the tree-structure shown in Fig. 7a, which we denote
Balanced Cluster Tree (BCT).

Given a category Cn a BCT of depth ϒ is obtained by recursively applying the
balanced EM algorithm, considering at each step υ = 0, · · · , ϒ − 1 as input of BEM
procedure the set of clusters/sub-clusters generated in the previous step.

Each tree node of level υ + 1 is associated with one of the discovered clusters
at the υ-th iteration of the BEM algorithm. New discovered clusters are recursively
partitioned until each category cluster contains a number of IPs lower than a fixed
threshold cf, representing the desired filling-coefficient (capacity) of tree leaves.

This induces a coarse-to-fine representation, namely Cn(υ) = {C1
n(υ),C2

n(υ), . . . ,

CLnn (υ)}υ=0,··· ,ϒ−1. The category sub-tree level can be calculated as levυ = logLυ (
Nn
cf

),
Nn being the number of category indexing objects, and Lυ the number of clusters
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Fig. 7 a A 2-D representation of a BCT, b Range Query inside a given category Cn: only the clusters
which distance from the query object d(IPq, Cln ) is less than the query radius r(IPq) are visited

generated at υ-th BEM recursive application. In particular, as shown in Fig. 7,
the root node is associated with the whole category Cn, and the tree main-
tains a certain number of entry points for each node dependent on the num-
ber Lυ of wanted clusters for each tree-level; we represent the non-leaves node
{C1

n(υ),C2
n(υ), . . . , CLnn (υ)}υ=0,··· ,ϒ−1, at level υ by using the parameters ml

n(υ), and,
the cluster radius |�l

n(υ)|, whereas leaves contain the image pointers.
Formally, we can define BCT = {ρ(υ), ι} where the tree-nodes (“pivots,” “routing

nodes”) and the leaves of our structure are ρ = 〈m, |�|,Ptr〉 and ι = 〈〉, respec-
tively. Here, (m, |�|) are the features representative of the current routing node,
Ptr is the pointer to the parent tree-node and  is the set of pointer to the images
on the secondary storage system. In this manner, the procedure to build our tree can
be outlined by algorithm in Fig. 8 by setting υ = 1 and Ptr = Ptr(rootCn).

Fig. 8 BCT building algorithm
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At this point to perform the category assignment process, we can obtain the
probability, at level υ, that a test image It belongs to a category Cn as P(Cn(υ)|IPt) 
P(IPt|Cn(υ))P(Cn(υ)), which, due to independency of clusters guaranteed by the EM
algorithm, can be reformulated as:

P(Cn(υ)|IPt)  P(Cn(υ))

Ln∏

l=1

p(IPt|Cln (υ)) (14)

The category discovery process can be carried out by comparing the image map IP
with the category clusters in the WW space at a coarse scale (υ = 1) and by choosing
the best categories on the base of belonging probabilities of the image to the database
categories obtained by (14).

Eventually, each image It is associated to probabilities of being within given cate-
gories as 〈It = P(C1|IPt), · · · ,P(Cn|IPt)〉. On the other hand, given the category Cn
to which the image belongs, the search of the images can be performed by exploiting
the BCT structure.

5 The animate query process

The Animate query process is where the association between the scanpath of
the query image and that of the test image becomes evident. Such association is
performed at two levels: the query vs. category level, which results in a selection
of group of similar test image conditional on categorical prior knowledge; the query
vs. most similar test image level, by exploiting attention consistency between query
and test images.

More precisely, given a query image Iq and the dimension of the desired results
set, the Tk most similar images are retrieved in the following steps:

– map the image in the WW space by computing the image path under free viewing
conditions, Iq �→ IPq;

– discover the best K < NC categories that may describe the image by using (14), but
substituting Iq for It;

– for each category Cn among the best K discovered, by traversing the BCT asso-
ciated to Cn, retrieve the NI target images It within the category at minimum
distance from the query image;

– refine results by choosing the TK images most similar to the query image by
performing a sequential scanning of the previous set of KNI images and evaluating
the similarity A(IPt,IPq) between their IPs.

Thus, in order to perform step 3 we need to efficiently browse the BCT, while step
4 requires the specification of the similarity function A ∈ R+ used to refine the results
of the query process. Such two issues are addressed in the following.

5.1 Category browsing using the BCT

When a query image Iq is proposed, the BCT representing category Cn can be
traversed for retrieving the NI target images It, by evaluating the similarity between
IPq and clusters Cln (υ) at the different levels υ of the tree.
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Recall that each cluster Cln (υ) is represented through its mean and covari-
ance, respectively ml

n(υ), �l
n(υ). To this end, it is possible to define the distance

d(IPq, Cln (υ)) as the distance between IPq and the cluster center ml
n(υ) weighted

by covariance �l
n(υ) (Smeulders et al. 2000):

d(IPq, Cln (υ)) = e−(IPq−ml
n(υ))T�l

n (υ)
−1

(IPq−ml
n(υ)) (15)

It is easy to verify that such distance indeed is real-valued, finite and nonnegative
and satisfies symmetry and triangle inequality properties, so that d is a metric on
the information path space and the pair (IP,d) is a metric space. In other terms the
BCT is a metric balanced tree and, as such, is suitable to support operations of classic
multidimensional access methods (Ciaccia et al. 1997).

Recall that a viable search technique is the range query (Ciaccia et al. 1997), which
returns the objects of our distribution that have a distance lower than a fixed range
query radius r(IPq) with respect to the query object IPq. In such approach the tree-
search is based on a simple concept: the node related to the region having as center
ml

n(υ) is visited only if d(ml
n(υ),IPq) ≤ r(IPq) + r(ml

n(υ)), where r(ml
n(υ)) is the

radius of the analyzed region.
The range query algorithm starts form the root node and recursively traverses all

paths which cannot be excluded from leading to objects because satisfying the above
inequality. The r(IPq) value is usually evaluated in an experimental way (Ciaccia
et al. 1997). In Fig. 7b an example of a range query is shown.

For a given tree level υ >= 1, clearly, it is not convenient to have a fixed
value of r(IPq), which rather should depend on the distribution of cluster centers
surrounding the query object, at a certain level of the BCT (cfr. Fig. 7).

Thus, for each level, we consider the maximum and the minimum distances
between the query object and each cluster center, dqmin(υ) and dqmax(υ), respectively.
Denote for simplicity, ml = ml

n(υ) the center of the l-th cluster of category n,
l = 1, . . . ,Ln, surrounding the query point, and dl the distance between the latter
and cluster l. By increasing the radius through discrete steps, j = 1, 2, . . . , within
the interval [dqmin(υ),dqmax(υ)] and counting the number of clusters occurring within
the area spanned by the radius, aj = {#ml|dl ≤ rj}, a step-wise function:

w = {a1,a2, . . . ,ak} (16)

is obtained, where normalization a j = aj
maxj aj

constrains w to take values within the
interval [0, 1]. Each w value is thus related to the number of BCT nodes we want
to explore for a given query object. In other terms, given a query object IPq, by
choosing a value sq, which specifies the span of the search, we can automatically
decide, at each level of the BCT, the range query radius at that level by using the
inverse mapping w �→ r; for instance, by setting sq = 1 exploration is performed on
all cluster nodes available at that level. We have experimentally verified that such
mapping is well approximated by a sigmoid function, namely: 1

1+exp(−ς ·(sq−.5))
, where

ς = 0.2 provides the best fit.
A possible procedure to exploit range query is reported by algorithm in Fig. 9.
Eventually, it is worth remarking that, for what concerns the tree updating

procedures, a naive strategy would simply re-apply the classification step of BEM
algorithm. However, a more elegant and efficient solution is to exploit the category
detection step to assign the new item to category Cn and then exploit an on-line,
incremental version of the BEM algorithm to update the related tree; the incremental



J Intell Inf Syst (2008) 31:53–84 69

Fig. 9 Range query algorithm

procedure updates the sufficient statistics of the expected log-likelihood only as a
function of the new data item inserted in the database, which can be done in constant
time (Neal and Hinton 1998; Yamanishi et al. 2004).

5.2 Refining results using attention consistency

For defining the similarity function A, we rely upon our original assumption, the IP
generation process performed on a pair of similar images under the same viewing
conditions will generate similar IPs, a property that we denote attention consistency.
In Fig. 10 two similar images with respective IPs are shown.

Hence, the image-matching problem can be reduced to an IP matching; in fact,
experiments performed by Walker-Smith et al. (1997), provide evidence that when
observers are asked to make a direct comparison between two simultaneously
presented pictures, a repeated scanning, in the shape of a FOA by FOA comparison,
occurs (Walker-Smith et al. 1997). Thus, in our system, two images are similar if
homologous FOAs have similar color, texture and shape features, are in the same
spatial regions of the image, and are detected with similar times. The procedure, is
a sort of inexact matching, which we have preliminary experimented in Boccignone
et al. (2005) for video segmentation and denoted Animate Matching.

It is summarized in Fig. 11.
Given a fixation point F t

r(pr; τr) in the test image It belonging to category Cn,
the procedure selects the homologous point Fqs(ps; τs) in the query image Iq among
those belonging to a local temporal window, that is τs ∈ [s− H,s+ H]. The choice is
performed by computing a local similarity Ar,s for the pair Ftr and Fqs:

Ar,s = αaA
r,s
spatial + βaA

r,s
temporal + γaA

r,s
visual (17)

Fig. 10 Similar images
with similar IPs
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Fig. 11 Animate matching
between two images
represented as IPs in the WW
space

where αa, βa, γa ∈ [0, 1], and by choosing the FOA s as s = arg max{Ar,s}. In other
terms, the choice of the new scanpath is top–down driven by category semantics, so
as to maximize the similarity of the query image with the category itself; the analyzing
scanpath results to be a sub-path of the original free-viewed one. Such “best fit” is
retained and eventually used to compute the consistency A(IPt,IPq) as the average
consistency of the first N′

f consistencies:

A = 1

N′
f

N′
f∑

f=1

Ar,s
f , (18)

where N′
f <= Nf, is the subset of image FOAs used for performing the matching

procedure.
Right-hand terms of (17), namely Ar,s

spatial, Ar,s
temporal, Ar,s

visual, account for local
measurements of spatial temporal and visual consistency, respectively. The former
two are easily computed as 1 − dr,s where dr,s, generically represents the �1 dis-
tances either between (pr,ps) or (τr, τs) pairs, respectively.

Visual content consistency is given from the weighted mean Ar,s
visual = μAr,s

col+
(1 − μ)Ar,s

tex, where, similarly, color and texture consistencies Ar,s
col,A

r,s
tex are ob-

tained as 1 minus the �1 distance between color histograms and between texture
covariances.

The matching method above described has been widely tested on a random
sample of 500 images from our image database, providing evidence of robustness
with respect to physical variations of the image, in terms of increasing brightness and
contrast variation, noise, translations and rotations.

An example of IP variation due to the image alterations is reported Fig. 12.
Moreover such testing stage has been useful to set, by means of ROC curves, the

optimal values of all parameters for the animate matching step. In particular, the
value of N′

f = 15 was chosen both for the matching effectiveness and the importance
of earliest FOAs. The local temporal window used in the image matching algorithm
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Fig. 12 An example of information path changing due to image alterations: (1,1) Original image;
(1,2) Brighten 10%; (1,3) Darken 10%; (2,1) More Contrast 10%; (2,2) Less Contrast 10%; (2,3)
Noise Adding 5%; (3,1) Horizontal Shifting 15%; (3,2) Rotate 90; (3,3) Flip 180

was set to the fixed size 4, as an experimental trade-off between retrieval accuracy
and computational cost. Eventually, for what concerns the setting of equation
parameters, considering again (17), we simply use αa = βa = γa = 1/3, granting
equal informational value to the three kinds of consistencies, and, similarly we set
μ = 0.5.

It is worth remarking that in our case traditional graph-matching algorithms are
not particularly suited to the animate matching problem. Indeed here, we have to
account for the presence of a temporal, sequential activity which is inherent to the
animate/attentive comparison between two images (Walker-Smith et al. 1997). Also,
the procedure we have conceived avoids the computational complexity typical of
inexact graph matching algorithms.

6 Experimental results

Retrieval effectiveness is usually measured in the literature through recall and preci-
sion measures (Djeraba 2003). For a given number of retrieved images (the result set
rs), the recall R = |rl ∩ rs|/|rl| assesses the ratio between the number of relevant
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images within rs and the total number of relevant images rl in the collection,
while the precision P = |rl ∩ rs|/|rs| provides the ratio between the number of
relevant images retrieved and the number of retrieved images. Unfortunately, on
the one hand, from a bare practical standpoint, when dealing with large databases
it is difficult to estimate even approximately (Wang et al. 2001) the recall, and, in
particular, the number of relevant results that have to be retrieved. On the other
hand and most important, the concept of “relevant result” is often ill-defined or, at
least problematic (see Corridoni et al. (1999) and Santini et al. (2000) for an in-depth
discussion).

More generally, it is not easy to evaluate a system that takes into account prop-
erties like perceptual behaviors and categorization, since this necessarily involves
comparison with human performance. This entails in our case the evaluation of the
matching relying upon attention consistency and categorization capabilities along
the query step. To this end, we consider the following issues: (1) consistency of
image similarity proposed by the matching with respect to human judgement of
similarity; (2) categorization performance with respect to recall and precision figures
of merit; (3) semantic relevance; (4) categorization performance with respect to
human categorization. Eventually, performance in terms of retrieval efficiency has
also been taken into account.

Another interesting measure to evaluate the performances of an image retrieval
system is the ANMRR (Average and Normalized Mean Retrieval Rank), provided by
MPEG-7 together with an image testing collection (MPEG-7 1999). However, the
number and quality of those images is not satisfying for IR evaluation. Furthermore,
the ANMRR metrics cannot cover all aspects of the evaluation problem, for it mainly
focuses on the rank of the retrieval result. For these reasons, we have chosen to
perform our experiments on a different data set and decided to exploit the evaluation
criteria discussed above in order to obtain a more effective assessment and significant
comparison with other approaches in the literature.

6.1 Experimental setting

Our image database consists of about 50,000 images collected from three main
data sets: the small COREL Archive (1,000), the University of Washington Ground
Truth Dataset (860) and a personal collection of images from the Internet and
several commercial archives (about 38,000). In particular, the COREL archive has
been used for the evaluation of categorization performance in terms of precision
(Wang et al. 2001), the Washington dataset for evaluating the semantic relevance
of systems (Hare and Lewis 2004, 2005) and our collection for computing the query
performances respect to the human categorization. Images are coded in the JPEG
format at different resolution and size, and stored, together with the related IPs,
into a commercial object relational DBMS.

The IP as provided tout court by the “What” and “Where” streams gives rise
to a high dimensional feature space spanning a 2-D subspace representing the set
of FOA spatial coordinates, a 768-D (256 for component) space which represents
the set of FOA HSV color histograms, a 1-D subspace which represents the set of
FOA WTA fire-times and a 18-D subspace which represents the set of FOA covariance
signatures of the wavelet transform. To exploit the BEM algorithm, each image
is represented more efficiently by performing the following reduction: the color
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histogram is obtained on the HSV components quantized by using 16, 8, 8 levels
for H S and V components, respectively; the covariance signatures of wavelet
transform are represented through using 18 components. Eventually the clustering
space becomes a 53Nf-D space, Nf = 20 being the number of FOAs in free viewing
conditions. The value of Nf is chosen in a experimentally way in order to ensure that
the majority of saliency regions of a set of 100 random sample images, representative
of the different database categories, are correctly detected respect to the judgment of
20 human observer (the human judgments on the various images are collected using
an eye-tracker).

The different BCTs related to each category have been joined by means of a root
node that represents the whole space of images; thus, each node of the first tree level
contains the images related to a given database category. For what concerns the BCT
building step, at each level υ > 1 of the tree (we assume the root node related to
level 0), a number L = 3 was used in the recursive application of BEM algorithm due
to efficiency and effectiveness aims in the retrieval task. Moreover, for each category
sub-tree the total number of level levwas chosen considering a leaf filling coefficient
c = 15.

Note that we assume L fixed, in that we are not concerned here with the problem of
model selection, in which case L may be selected by Bayesian information criterion
(BIC,(MacKay 2003)). At BCT level υ = 1, a characterization (in terms of mean
and covariance) of each category is not available, so for determining the distances
between query object and clusters in the range query process, mean and covariance
of the whole category IP distribution are considered.

For what concerns the BEM algorithm, non uniform initial estimates were chosen
for α

(0)
k , μ

(0)

l , �
(0)
l parameters; {m(0)

l } were set in the range from minimal to maximal
values of IPi in a constant increment; {�(0)

l } were set in the range from 1 to max{IPi}
in a constant increment; {α(0)

l } were set from max{IPi} to 1 in a constant decrement
and then normalized,

∑
l α

(0)
l = 1. We found that convergence rate is similar for

both methods, convergence being achieved after t = 300 iterations (with ε = 0.1).
Figure 13 shows how the incomplete data log-likelihood log p(IP|�) as obtained

Fig. 13 Behavior of the
convergence criterion
�log = | logL(t+1) − logL(t)|
(left) and of the log-likelihood
logp(IP|�) vs. number of
iterations of the BEM
algorithm compared with
standard EM
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by the BEM algorithm is non-decreasing at each iteration of the update, and that
convergence is faster than with classic EM.

6.2 Matching effectiveness

This set of experiments aims at comparing the ranking provided by our system using
the proposed similarity measure (attention consistency A) with the ranking provided
by a human observer. To such end we have slightly modified a test proposed by
Santini (2000) in order to obtain a quantitative measure of the difference between
the two performed rankings (“treatments,” (Santini 2000)) in terms of hypothesis
verification on the entire image dataset.

Consider a weighted displacement measure defined as follows (Santini 2000).
Let q be a query on a database of N images that produces n results. There is one
ordering (usually given by one or more human subjects ) which is considered as the
ground truth, represented as Lt = {I1, . . . ,In}. Every image in the ordering has also
associated a measure of relevance 0 ≤ S(I,q) ≤ 1 such that (for the ground truth),
S(Ii,q) ≥ S(Ii+1,q), ∀i. This is compared with an (experimental) ordering Ld =
{Iπ1 , . . . ,Iπ1}, where {π1, . . . , πn} is a permutation of 1, . . . , n. The displacement
of Ii is defined as dq(Ii) = |i− πi|. The relative weighted displacement of Ld is
defined as Wq =

∑
i S(Ii,1)dq(Ii)

�
, where � = � n2

2 � is a normalization factor. Relevance
S is obtained from the subjects asking them to divide the results in three groups: very
similar (S(Ii,q) = 1), quite similar (S(Ii,q) = 0.5) and dissimilar (S(Ii,q) = 0.05).

In our experiments, on the basis of the ground truth provided by human subjects,
treatments provided either by humans or by our system are compared. The goal is to
determine whether the observed differences can indeed be ascribed to the different
treatments or are caused by random variations. In terms of hypothesis verification,
if μi is the average score obtained with the ith treatment, a test is performed in
order to accept or reject the null hypothesis H0 that all the averages μi are the
same (i.e., the differences are due only to random variations); clearly the alternate
hypothesis H1 is that the means are not equal, that is the experiment actually revealed
a difference among treatments. The acceptance of H0 hypothesis can be checked with
the F ratio. Assume that there are m treatments and n measurements (experiments)
for each treatment. Let wij be the result of the jth experiment performed with
the ith treatment in place. Define μi = 1

n

∑n
j=1 wij the average for treatment i,

μ = 1
m

∑m
i=1 μi = 1

nm

∑m
i=1

∑n
j=1 wij the total average, σ 2

A = n
m−1

∑
i=1 m(μi − μ)2

the between treatments variance, σ 2
W = 1

m(n−1)

∑
i=1 m

∑
j=1 n(wij − μi)

2 the within

treatments variance. Then, the F ratio is F = σ 2
A

σ 2
W

.
A high value of F means that the between treatments variance is preponderant

with respect to the within treatment variance, that is, that the differences in the

Table 1 Mean (μi) and variance (σ 2
i) of the weighted displacement for the three treatments (two

human subjects and system)

Human 1 Human 2 IP matching

μi 0.0209 0.0203 0.0190
σ 2
i 7.7771e−4 8.1628e−4 8.5806e−4
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Table 2 The F ratio measured
for pairs of distances (human
vs. human and human vs.
system)

F Human 1 Human 2 IP matching

IP matching 0.3021 0.7192 0
Human 2 0.0875 0
Human 1 0

averages are likely to be due to the treatments. In our case we have used eight sub-
jects selected among undergraduate student. Six students randomly chosen among
the eight were employed to determine the ground truth ranking and the other two
served to provide the treatments to be compared with that of our system. Four query
images have been used, and for each of them a query was performed in order to
provide a result set of 12 images, for a total of 48 images. Each result set was then
randomly ordered and the two students were asked to rank images in the result set
with respect to their similarity to the query image. Each subject was also asked to
divide the ranked images in three groups: the first group consisted of images judged
very similar to the query, the second group consisted of images judged quite similar
to the query, and the third of dissimilar to the query. The mean and variance of
the weighted displacement of the two subjects and of our system with respect to the
ground truth are reported in Table 1.

Then, the F ratio for each pair of distances,in order to establish which differences
were significant, was computed. As can be noted from Table 2 the F ratio is always
less then 1 and since the critical value F0, regardless of the confidence degree (the
probability of rejecting the right hypotesis), is greater then 1, the null hypothesis can
be statistically accepted. It is worth noting that the two rankings provided by the
observers are consistent with one another and the attention consistency ranking is
consistent with both.

6.3 Query performance via recall and precision

In this experiment we evaluate recall and precision parameters, following the system-
atic evaluation of image categorization performance provided by Wang et al. (2001).

Table 3 The COREL
subdatabase used for
query evaluation

ID Category name Number of images

1 Africa people and villages 100
2 Beach 100
3 Building 100
4 Buses 100
5 Dinosaurs 100
6 Elephants 100
7 Flowers 100
8 Horses 100
9 Mountains and glaciers 100
10 Food 100
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Table 4 Weighted precision of our system and comparison with SIMPLIcity system and color
histogram method (Wang et al. 2001)

Category ID Our p̄ SIMPLIcity p̄ (Wang et al. 2001) Color histogram p̄ (Wang et al. 2001)

1 0.44 0.48 0.29
2 0.42 0.31 0.29
3 0.47 0.31 0.23
4 0.60 0.37 0.28
5 0.69 0.98 0.91
6 0.45 0.40 0.39
7 0.58 0.40 0.41
8 0.49 0.71 0.39
9 0.45 0.35 0.22
10 0.53 0.35 0.21

A subset composed of ten images categories, each containing 100 pictures has been
chosen from the COREL database and described in Table 3. In particular such testing
database has been downloaded from http://www-db.stanford.edu/IMAGE/ web site
(the images are stored in JPEG format with size 384 × 256 or 256 × 384). The ten
categories reflect different semantic topics. Within such data set a retrieved image
can be considered a match respect to the query image if and only if it is in the same
category as the query. In this way it easy to estimate precision parameter within the
first 100 retrieved images for each query, and, moreover in these conditions recall is
identical to precision. In particular, for recall and precision evaluation every image
in the sub-database was tested as query image and the retrieval results obtained.

In Table 4, the achieved performances and a comparison with SIMPLIcity
system and LUV Color Histogram methods are reported for each category in terms
of average or weighted precision (p̄ = 1

100

∑100
k=1

nk
k , where k = 1...100 and nk is the

number of matches in the first k retrieved images).
For performing the previous experiment, a number of clusters equal to 3 for each

tree level, a max tree level equal to 6, a leaf fan-out equal to 15 and a range query
strategy using sq = 0.5 have been set in the BEM tree building and traversing steps.

Figure 14a shows the top 12 results related to 2 inside query cases with the number
images belonging to the same query category among the first 24 proposed ones and,
and Fig. 14b, the top 12 results related to 2 outside query cases using TK = 100.

For the inside query, the category belonging score computed from maximum
probability P(Cn|IPt) resulted to be 69.47% corresponding to Cn=“Dinosaurs” for
the top image and 92.63% corresponding to Cn=“Africa” for the bottom image.
For queries performed with outside images the maximum category belonging score
resulted to be 62.67% corresponding to Cn=“Horses” followed by 61.45% score
corresponding to Cn=“Elephants” for the top image, and 56.83% corresponding to
Cn=“Mountains” followed by a 56.33% score corresponding to Cn=“Beaches” for
the bottom image. In the latter case, note that the top query presents image with
cows and the system retrieves images from the data set by choosing “Horses” and
“Elephants” categories which are most likely to represent, with respect to other
categories, the semantics of the query.
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Fig. 14 Query results on the COREL subdatabase using either query images present within the data
set (a) or outside the data set (b)

6.4 Semantic relevance

The problem with global descriptors is that they cannot fully describe all parts of
an image having different characteristics. The use of salient regions tries to avoid
such problem by developing descriptors that do capture the characteristics of each
important part of an image. In order to test the effectiveness of retrieval, we have
used the metric proposed in Hare and Lewis (2004) that uses semantically marked
images as ground-truth against the results from our system. To such purpose, we have
adopted the University of Washington Ground Truth Dataset that contains a large
number of images that have been semantically marked up. For example an image
may have a number of labels describing the image content (our categories), such as
trees, bushes, clear sky, etc...

Given a query image with a set of labels, we should expect that the images
returned by the retrieval system should have the same labels as the query image.
Let labq be the set of all labels from the query image, and labrs be the set of labels
from a returned image. The semantic relevance, rel, of the query is definded:

rel = labq ∩ labrs
labq

(19)

Table 5 Semantic relevance
Semantic relevance on Average semantic relevance
rank 1 result images on top 5 result images

49.56% 53.18%
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Taking each image in the described test set in turn as a query, we calculated the
animate distance to each of the other images in the result set in order to obtain
a ranking of the retrieved images. We then calculated the semantic relevance for
the rank one image (the closest image, not counting the query image), and we also
calculated the averaged semantic relevance over the closest 5 images. The obtained
results are shown in Table 5 and can be compared with the other ones discussed in
Hare and Lewis (2004).

6.5 Query performance with respect to human categorization

The goal here is the evaluation of the retrieval precision of the system, with respect
to the possible categories that the user has in mind when a query is performed. This
measure is evaluated with respect to the whole database (50,000 images), and the
following protocol has been adopted.

The not-labeled images have been grouped into about 300 categories. In order to
associate the set of images to each proposed category, twenty naive observers were
asked to perform the task on the data set, and eventually the classification has been
accomplished by grouping into a category those images that the a certain number
(10) of observers judged to belong to such category (it is clear that an image can
belong to one or more categories).

Given a test set of 20 outside images Iq, q = 1...20 (in Fig. 15 some of them are
shown), randomly selected out of 100 images, ten observers uj, j = 1...10 (different
from those that performed category identification), were asked to perform the task
of choosing for each query image Iq, the three most representative categories, say
C1, C2, C3 among those describing the database. To this end, images in all categories
have been presented in a hierarchial way (e.g., animals: horses, cows, etc..), to
speed-up the selection process. Meanwhile, each user was asked to rank the three
categories in terms of a representativeness score, within the interval [0, 100], namely:
R

(uj,q)

1 (C1|Iq),R(uj,q)

2 (C2|Iq),R(uj,q)

3 (C3|Iq); the three scores were constrained to sum
to 100 (e.g., a user identifies categories 1, 2, 3 for image 2 with scores 60, 30, 10).

For each image, the three most relevant categories have been chosen,according
to a majority vote, by considering those that received the highest number of “hits”
Nhc, c = 1, 2, 3, from the observers, and each category was assigned the average
score Rqc (Cc|Iq) = 1

Nhc

∑Nhc
j=1 R

(uj,q)
c (Cc|Iq). Results for the previous four images are

reported in Table 6.
The scores Rqc(Cc|Iq) are then normalized within the range [0, 1] to allow com-

parison with category belonging probabilities computed by the system, and the
perceptually weighted precision has been calculated:

Pqw = 1

TK

TK∑

k=1

wnqk
k

, (20)

Fig. 15 Some query examples
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Table 6 Representativeness
score Rq

c (Cc|Iq) for each
query image of Fig. 15

Image User scores

1 Sunset (40%), Beaches (35%), Coasts (25%)
2 Horses (45%), People (40%), Landscapes (15%)
3 Cows (0.60%), Landscapes (0.25%), Mountains (0.15%)
4 Buildings (55%), Mountains (30%), Landscapes (15%)

where wnqk represents, for the query q, the weighted average match of the k retrieved
image with respect to user score Rqc(Cc|Iq) and belonging probability Pkc(Cc|Ik)
provided by the system:

wnqk = 1 −
∑3

c=1 wc|Rqc(Cc|Iq) − Pkc(Cc|Ik)|∑3
c=1 wc

(21)

Note that a perfect match is obtained only for wnqk = 1, that is for |Rqc(Cc|Iq) −
Pkc(Cc|Ik)| = 0,∀c. Relevance distance weights wc have been chosen as the decreas-
ing values {1, 0.5, 0.25}.

In this way the perceptually weighted precision on the whole data set of 50, 000,
considering the first 100 retrieved images, for the 20 tested query cases, resulted to
be 0.597.

Fig. 16 Perceptually weighted precision Pqw plotted as a function of TK, for queries q = 1, 2, 3, 4
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Also, a query was performed for each image Iq, by considering a variable TK of
images. Figure 16, for four query cases, shows values Pqw plotted at Tk variation. As
shown in the figure, the three category belonging scores returned by system decrease
to the TK size variation, but it is possible to notice that the related proportions
between system scores and user probabilities are preserved.

6.6 Retrieval efficiency

The retrieval efficiency can be evaluated in terms of time elapsed between query
formulation and presentation of results. For our system the total search time tQ is
obtained from the tree search (traversing) time ttree and the query refining time
tqref as tQ = ttree + tqref.

Due to the indexing structure adopted, the parameters that affect the total search
time are the range query radius, obtained via the sq value, the number of clusters L,
which is fixed for each level of the BCT, the tree capacity c and the number of images
within the i-th category Ni. Thus, by fixing L,c,Ni, the times ttree and tqref are
expected to increase for increasing sq within the interval [0, 1]. The upper bounds on
such quantities can be estimated as follows.

The tree search time accounts for the CPU time tCPU to compute the range query
distances while traversing the tree, and the I/O time tIO needed to retrieve from the
disk the image IPs (the storage on disk of each IP requires 32 Kb) and to transfer
them to central memory, ttree = tCPU + tIO. By allocating the images of a leaf node
in contiguous disk sectors (by exploiting the appropriate operating system primitives)
it is possible to reduce the number of disk accesses, so that tCPU >> tIO, and ttree ≈
tCPU holds.

In the worst case, sq = 1:

ttree ≈
Nc∑

i=1

·
[logL( Nic )]∑

k=0

td · Lk (22)

tqref = tsim ·
Nc∑

i=1

[
Ni

Nleaves

]
· Nleaves (23)

Nc being the number of database categories. Here td is the time for computing a
single distance, Nleaves the number of tree leaves. The tqref parameter takes into
account the fact that our tree is balanced and each leaf contains approximately the
same number of images, in general [ Ni

Nleaves
] <= c.

Both ttree and tqref provide upper bounds in the sense that the number of
evaluated distances, in the tree traversing step, is greater than the average case since,
to simplify, we are not considering that in practice at each tree-level many pruned
nodes occur. In fact, by setting sq = 1, all nodes of the tree are explored: thus, the
number of evaluated distances is equal to the total number of such nodes and the
number of retrieved leaves that satisfy the range query is equal to the total number
of tree leaves; on the contrary, by choosing sq < 1, at each tree-level there are many
pruned nodes and the number of retrieved leaves is lower than Nleaves.

The actual variations of times ttree and tqref for an increasing range query radius
are plotted in Fig. 17 (here, c = 15,L = 3).

The experimental curves have been obtained by using a PENTIUM IV 3GHz
Server (1 GB RAM), under the Windows 2003 Server operating system. To compute
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Fig. 17 Tree search and query refining time at sq variation

the IP features (about 0.6 s for each image) and create the full BCT index (about
1 min for each category) on the entire database (50,000 images subdivided in
about 300 categories) our system requires about 14 h. Moreover for such hardware
configuration the time required for computing td is about 0.3e − 4 s. (about 25,000
CPU floating operations are necessary), and the time required for computing tsim is
about 1e − 3 s. Such results refer to the case in which the query image is present in
the database; on the contrary, one extra second of CPU time is approximately spent
to extract from the query image features related to the IP.

By considering ttree and tqref, it is possible to estimate the scalability of our
system and the total search times for a very large database. Assuming a database of
1,000,000 images subdivided in 2,000 categories (500 images for each category), and
choosing L = 3,c = 25, we have a tree search time of about 3 s and a query refining
time of about 1,000 s, in other terms, in the worst case, our system would spend about
15 min to execute a user query.

Eventually in order to have an idea of BCT performances respect to other access
methods, in Fig. 18 we report the index construction time and index size at d (space-
dimension) variation.

Fig. 18 Index construction time and index size at d variation
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7 Final remarks

In this paper a novel approach to QBE has been presented. We have shown how,
by embedding within image inspection algorithms active mechanisms of biological
vision such as saccadic eye movements and fixations, a more effective processing
can be achieved. Meanwhile, the same mechanisms can be exploited to discover
and represent hidden semantic associations among images, in terms of categories,
which in turn drives the query process along an animate image matching. Also, such
associations allow an automatic pre-classification, which makes query processing
more efficient and effective in terms of both time (the total time for presenting the
output is about 4 s) and precision results.

Note that the proposed representation allows the image database to be endowed
with semantics at a twofold level, namely, both at the set-up stage (learning) and at
the query stage. In fact, as regards the query module it can in principle work on the
given WW space learned along the training stage or by further biasing the WW by
exploiting user interaction in the same vein of Santini et al. (2001). A feasible way
could be that of using an interactive interface where the actions of the user (pointing,
grouping, etc.) provide a feedback that can be exploited to tune on the fly parameters
of the system, e.g. the category prior probability P(Cn) or, at a lower level, the mixing
coefficients in (17) to grant more information to color as opposed to texture, for
instance.

Current research is devoted to such improvements as well as to extend our
experiments to very large image databases. Moreover, in order to improve the
effectiveness of retrieval some high-level concepts will be taken in account. To
this purposes a promising approach that we are exploiting is the adoption of some
ontologies useful to represent the semantic relations among images belonging to
different categories as function of application context.
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