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few hundred (COSEWIC 2014; Smith et al. 2016; Grantham 
et al. 2020) – exist in the 0.1% of remaining tall grass prai-
rie (Samson and Knopf 1994) to which it is endemic (Lay-
berry et al. 1998). Prairie remnants in Manitoba, Canada 
and Michigan, United States host the known remaining 
skipperlings following colony disappearances and fewer 
adults in extant colonies across O. poweshiek’s range since 
approximately the 1980s (McCabe and Post 1977; Catling 
and Lafontaine 1986; Klassen et al. 1989; COSEWIC 2014; 
Smith et al. 2016; Belitz et al. 2018; Grantham et al. 2020; 
P. Klassen and R. Westwood unpublished). However, no 
mechanisms which may cause this decline are understood 
(COSEWIC 2014; Smith et al. 2016).

Supportive habitat in Manitoba is contained within the 
Manitoba Tall Grass Prairie Preserve (MTGPP; Nature Con-
servancy of Canada interpretive building at approximately 
49.153° N, 96.729° W). Irregularly outlined grasslands 
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Endangered in Canada and the United States, the Poweshiek skipperling’s (Oarisma poweshiek (Parker) (Lepidoptera: 
Hesperiidae)) recovery likely depends on understanding more about its ecology. The characteristics of locations which 
facilitate various adult activities, such as oviposition and resting, in Manitoba tall grass prairie are unknown. We followed 
adults in prairie patches to identify locations associated with various behaviours, and subsequently measure vegetative, 
structural and microclimatic attributes at these microhabitats. Adult skipperlings were observed 34 times resulting in 24 
flight tracks and 56 point interactions being recorded. Skipperlings flew almost exclusively in the prairie plant community, 
with few flights into wetter communities and none in forests. Tracks tended to be tortuous, typical of occupancy in higher-
quality habitats. Adult activities appeared to be distributed along a soil moisture gradient: oviposition was associated with 
the relatively mesic section, resting and/or basking with the drier section, and nectar feeding generally associated with sec-
tions throughout the gradient. Adults nectared from a mixture of species during the flight period, consuming nectar from 
Rudbeckia hirta Linnaeus (Asteraceae) most often. We report previously unknown aspects of O. poweshiek’s ecology.
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soil moistures to lay eggs, rest, bask and consume nectar. We visualise approaches to ensure all sections are disturbed 
during stewardship activities and evaluate the degree to which all facilitative soil moistures are present in candidate (re)
introduction sites, for the successful recovery of O. poweshiek.
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– with Andropogon gerardi Vitman and Solidago rigida 
Linnaeus – forests – with Populus tremuloides Michaux 
and Quercus macrocarpa Michaux – and permanent and/or 
ephemeral wetter habitats – with Cyperaceae spp. – comprise 
the generally wet-mesic tall grass prairie habitat (Catling 
and Lafontaine 1986; COSEWIC 2014). Sites which sup-
port comparatively higher abundances of O. poweshiek are 
relatively less wet (Henault 2017; Grantham et al. 2020), 
with Poweshiek skipperlings found in most cases at sites 
within continuous, connected tall grass prairies of approxi-
mately 10 km2 (Westwood et al. 2020).

In Manitoba, adults fly during the end of June to the 
beginning of August (Semmler 2010; COSEWIC 2014) 
most often nectaring from Rudbeckia hirta Linnaeus, Soli-
dago ptarmicoides (Torrey and (A) Gray) (B) Boivin and 
Prunella vulgaris Linnaeus (Semmler 2010; Dupont Moro-
zoff 2013). Females lay eggs during this time on various 
species, including grasses A. gerardi and Sporobolous 
heterolepis (A. Gray) A. Gray and the forb Hypoxis hir-
suta (Linnaeus) Coville (Dupont Morozoff 2013; Henault 
and Westwood 2022). Larvae have been observed forag-
ing amongst shoots of several graminoids during summer 
and fall: A. gerardi, Muhlenbergia richardsonis (Trinius) 
Rydberg, Schizachyrium scoparium (Michaux) Nash and S. 
heterolepis (Henault and Westwood 2022). In Manitoba and 
the United States, larvae are then assumed to diapause close 
to the ground on plants, feed in the spring and pupate in 
the second half of June (McAlpine 1972; Borkin 1995; Lay-
berry et al. 1998; COSEWIC 2014; Henault and Westwood 
2022). Observations of O. poweshiek in natural habitat and 
captive-reared settings in the United States suggests its 
development there is similar, and may use hosts such as S. 
scoparium and/or various Cyperaceae spp. (Holzman 1972; 
McAlpine 1972; McCabe and Post 1977; Borkin 1995; 
Dana 1999 unpublished; Pointon 2015; Smith et al. 2016; 
Belitz et al. 2019).

The characteristics of locations which facilitate various 
adult activities of Poweshiek skipperlings, such as oviposi-
tion and resting, in Manitoba tall grass prairie are unknown. 
While a diversity of microhabitats within a site may have 
the capacity to support a relatively larger suite of species 
(Kleckova et al. 2014), similarly a diversity of microhabi-
tats might be able to support a larger suite of a butterfly’s 
daily behaviours. By better understanding these behaviour 
requirements, stewards can manage habitats in ways that 
may facilitate butterfly behaviours and researchers can incor-
porate these criteria into reintroduction site assessments, in 
turn increasing the likelihood of survival and recovery in the 
species. Plebejus samuelis (Nabokov) (Lepidoptera: Lycae-
nidae) predominantly laid eggs on host plants (lupines) less 
exposed to sunlight which facilitated quicker larval growth 
(Grundel et al. 1998). Carterocephalus palaemon (Pallas) 

(Lepidoptera: Hesperiidae) males searched for mates in 
locations intermediate between drier and wetter habitat 
types, with females laying eggs in these transition areas and 
nectaring in wetter locations (Ravenscroft 1994). Perhaps, 
O. poweshiek also differentially use regions within their 
habitat. The degree of flight tortuosity/straightness can help 
to indicate flight in lower-quality (relatively straight flight 
paths) and higher-quality (relatively tortuous) habitats (Sei 
2009; Fernández et al. 2016).

During previous research in the MTGPP, adult Poweshiek 
skipperlings appeared to be observed most often (since 2015 
to study period) in upland prairie patches adjacent to wet-
lands. Physical slopes may possess a soil nutrient and mois-
ture gradient (Liu et al. 2020) partly causing a succession 
of plant species (Zalatnai and Körmöczi 2004). We hypoth-
esised that variable soil moisture within prairie patches 
facilitated specific adult activities (e.g., nectar sources for 
feeding), and that adults would most often occupy plant 
communities where activities could be supported. Addition-
ally, that intermediate soil moistures along slopes would 
simultaneously support a mixture of plant species which 
prefer drier and wetter soils, which might be most likely 
to facilitate larval development. Given that local habitat 
use by adults is not well understood, our objectives were 
to: (1) determine the plant community(ies) where adults are 
active within a prairie patch and (2) describe the vegetative, 
structural and soil moisture attributes of locations which 
facilitate various adult activities. We also hoped to generate 
guidelines to facilitate stewardship of habitats and assess-
ment of site candidates for skipperling reintroduction.

Methods

In 2018, we followed adults in prairie patches within the 
MTGPP (described in Henault and Westwood 2022). In 
Henault and Westwood (2022), we reported oviposition and 
larval feeding components, as well as described vegetative 
and physical attributes of microhabitats. Here, we report 
the adult flight behaviour component, and compare char-
acteristics of the previous oviposition locations (reported 
in Henault and Westwood 2022) with those that facilitated 
nectar feeding, basking, resting and attempted oviposition 
activities by adults. The inclusion of these previous data is 
necessary to enable comparisons amongst the activity types. 
The site is stewarded using prescribed fires, mechanical cut-
ting of vegetation and targeted herbicide application by the 
Nature Conservancy of Canada (Grantham et al. 2021), or 
disturbed by stochastic events such as wildfires.
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Soil moisture gradient

In 2017, we established transects (n = 8; length: 
range = 15–25 m) on slopes in prairie patches, from a 
locally highest elevation to a location with saturated soil (to 
document the complete moisture gradient within the site). 
We leveled a string above each transect, and measured the 
distance to the ground at seven evenly spaced plots (square, 
0.25 m2; highest elevation = position 1). We counted the 
number of shoots of graminoid species and H. hirsuta 
within each plot during 17 through 27 July 2017. During 
this sampling period, the reproductive structures of plants 
which mature during a cooler period of the growing sea-
son (that is, spring; Kindscher and Wells 1995) were still 
intact, while the vegetative growth of plants which mature 
during a warmer period (that is, fall) were well-defined thus 
increasing the accuracy of plant identification. We verified 
plant identifications by using the illustrations/pictures and 
dichotomous keys in Looman and Best (1987) and Leighton 
and Harms (2014). Nomenclature was matched to Tropicos.
org (Missouri Botanical Garden 2021), and common names 
to the most recent version amongst these three reference 
publications. Beckmannia syzigachne (Steudel) Fernald and 
Triglochin Linnaeus spp. (T. palustris Linnaeus and T. mari-
tima Linnaeus) were erroneously identified, and counted, as 
the same species. Therefore, we term corresponding shoots 
as B. syg. /Tri. spp.; these taxa all grow almost exclusively 
in seasonal or permanent wetlands (Lichvar et al. 2012; 
United States Army Corps of Engineers 2018).

We also estimated the percent cover of graminoids, forbs, 
shrubs, duff (dead pieces of vegetation, including larger and 
finer components) and bare soil. The number of blooming 
R. hirta inflorescences (most frequented O. poweshiek nec-
tar source in MTGPP; Semmler 2010) within a 3 m radius 
of each plot’s centre were counted, as well as the height of 
graminoids (~ 95% of shoots) was measured once in each 
plot while the depth of duff was randomly measured in three 
places. We dug two random soil samples (top 15 cm of soil, 
approximately 7 cm wide at surface) at the start (position 
1), middle (position 4 or 5) and end (position 7) along each 
transect after at least 2 days of no precipitation in July 2017. 
Samples were maintained in a freezer (approximately − 20 
℃), air-dried (7 days at 23 ℃), homogenised (within each 
plot) and sieved (2 mm). Then, we used the pipette method 
(Gee and Bauder 1986) to separate sand, silt and clay por-
tions and determine soil particle size proportions. We also 
sent approximately one-third of each homogenised sample 
to Farmers Edge Laboratories in Winnipeg, MB, Canada 
to analyse soil nutrients. On 9 and 10 May 2019 (after at 
least 6 days of generally dry conditions; any precipitation 
that fell did not increase the moisture of the soil surface), 
a soil probe (Fieldscout TDR 150; Spectrum Technologies, 

Incorporated, Aurora, Illinois, United States) was pushed 
into the ground to 10 cm (beneath soil surface, near roots) 
at each plot to simultaneously report the soil moisture and 
electrical conductivity (EC; degree of salinity as in Natural 
Resources Conservation Services (2012).

Adult activity locations

We conducted daily searches for adults between approxi-
mately 10 am and 5 pm, with the exception of days hav-
ing inclement weather, before the typical adult flight period, 
during and after to maximise the number of individuals that 
we could observe. We actively patrolled or stood still and 
visually scanned prairie patches along established survey 
paths in three main prairie patches within the site, circulat-
ing between patches if we did not observe any adults flying 
after ~ 1–3 h. Given the small size of each patch (approxi-
mately 0.9 ha, 2.2 ha and 3.9 ha; calculation correction to 
total patch area of 0.2 km2 in Henault and Westwood 2022), 
we were likely able to observe every individual flying at that 
time, if they were present. Once an adult was sighted, we 
began physically walking behind it at a distance of ~ 2–3 m 
to be close enough to observe behaviours and movements 
accurately but far enough away to avoid influencing its 
behaviours via escape responses. Adults flew consistently 
about 0.3 m above the vegetation, in a sinusoidal path. 
Their hindwings were generally held motionless, parallel to 
the ground, while their forewings were constantly flapped 
vigorously. When changing direction, adults flapped their 
hindwings generally once – during which white-silver 
markings on their hindwings were easily observed – before 
returning them to parallel. Their flight speed was most often 
approximate to a comfortable walking pace, while consider-
ing undulations in this habitat, for someone approximately 
1.8 m tall.

In order to maximise the length of time that adults could 
be tracked, typically one observer maintained visual contact 
with butterflies while a second observer followed closely 
behind placing flags at locations where adults laid eggs, 
nectared, etc. and providing a second viewpoint if adults 
were momentarily lost by the first observer. Tracks were 
recorded while following adults and locations of adult activ-
ities were later marked using a GPS unit (Garmin Oregon 
700; approximate accuracy 3 m). Protocols for all butterflies 
were identical (females and males). Adults were observed 
until lost, or when stationary for 1.5 h. We observed adults 
from 26 June through 4 July 2018 flying and/or conducting 
various activities described in Table 1. Basking and resting 
activities were grouped because adults frequently alternated 
between these behaviours at the same spot. Although we did 
not observe mating during this study, we describe mating 
behaviour in Henault (2021) and Henault and Westwood 
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Analyses

Soil moisture gradient

A transect along one slope which initially appeared to have 
elevation and soil moisture characteristics consistent with 
other transects, was in fact ridge-shaped and the lowest ele-
vation did not have the wettest recorded soil moisture. Since 
we could not resample within the same year, we decided 
to remove this transect from analyses (analysis: seven tran-
sects, 49 plots). Elevation along transects differed by a mean 
16.3 cm (n = 7; range = 4.0–26.0 cm). Along each transect, 
we calculated Spearman’s rho coefficients of relative eleva-
tion with soil moisture and EC separately before calculat-
ing a mean of each (RStudio Team 2021); soil moisture 
(n = 7, mean = 0.648% volumetric water content [VWC], 
range = 0.312–0.878% VWC) and EC (n = 7, mean = 0.452 
mS/cm, range = 0.070–0.796 mS/cm) increased from posi-
tion 1 to 7. During soil texture analysis, samples with 
final values where errors during analysis were made were 
removed (after removals; n = 16).

Although transects in 2017 were established in patches 
where adult activity had previously been observed, adults 
in 2018 were only active near four of the seven transects. 
To address the risk of analysing habitats not used by adults, 
we first compared the number of shoots of plant species 
counted at each transect using non-metric multidimensional 

(2022). Classifications of all adult behaviours were deter-
mined by the author(s).

At each location where we observed an adult activity we 
recorded the substrate, such as resting/basking on a grami-
noid. Where activity flags were placed, we established cir-
cular 0.25 m2 plots. We then counted the number of shoots 
(including forb and shrub species) and physical variables 
using the same methods as for transects, but on 2 through 
14, and 26 August 2018 (exception: no soil plug sampling, 
nutrient analysis). Where oviposition occurred, we placed 
open-ended plastic bins to observe larval behaviour (0.19 
m2 instead; see Henault and Westwood 2022). Within plots 
of all types, soil moisture and EC were sampled on 18 and 
30 July 2018 and 17 August 2018, following the same sam-
pling protocol as in 2019.

During observations in the site, we noted typical habitat 
characteristics and approximate boundaries of plant com-
munities (Table 1), and then used satellite imagery in Arc-
GIS Pro (“Imagery”: Maxar, Microsoft; ESRI Inc. 2021) to 
finalise boundaries for each community type (Fig. 1).

Lepidopteran nomenclature follow Pohl et al. (2018) to 
provide taxonomic consistency amongst the species being 
discussed; for taxa absent from that document, we used 
nomenclature from GBIF.org (Global Biodiversity Informa-
tion Facility 2021).

Table 1 Typical characteristics adult activities of plant communities. Please refer to Table S1 for plant nomenclature
Adult activity Attributes
Oviposition Hovering close to vegetation, sometimes probing, before depositing an egg as in Henault and Westwood (2022)
Attempted oviposition Searching typically by fluttering and always probing the surface of a leaf blade as observed for “egg laying”, but 

after touching a leaf (usually only once) the female departed and resumed a search at another location.
Resting/Basking Resting: Positioned stationary on a substrate (living or dead vegetation; no observations on bare soil), with wings 

closed or opened briefly.
Basking: Different in that wings were generally open during the entire observation (forewings 45° angle and hind-
wings nearly parallel to the ground); may reposition their wings periodically.

Nectar feeding Landing on a plant (typically directly on an inflorescence) and extending proboscis into flower (s). Adults frequently 
moved across an inflorescence and probed multiple florets during one visit. While we cannot confirm that nectar 
feeding occurred while an adult was at a flower, we assume that adults consumed nectar at every visited flower.

Plant community
Prairie Open grassland with vegetation less than 0.5 m tall; the most abundant grasses are Sporobolous heterolepis and 

Andropogon gerardi; most abundant forbs are Helianthus maximiliani and Dalea purpurea and most abundant 
shrub is Dasiphora fruticosa; at higher elevation; high light intensity near ground level.

Forest Stands of trees over 5 m tall; most abundant species is Populus tremuloides; low light intensity near ground level.
Tree colony Forested stand with trees less than 5 m tall; most abundant species is P. tremuloides; low light intensity near ground 

level.
Wetland Standing water most of the year; perennial vegetation less than 0.5 m tall; most abundant graminoids are Sporobolus 

michauxianus, B. syg. /Tri. spp., and Scirpus spp.; abundant forbs are Typha spp.; at lower elevation; high light 
intensity near ground level.

Ephemeral wetland Perennial vegetation less than 0.5 m tall; standing water only a portion of the year; most abundant graminoids 
include S. michauxianus and B. syg. /Tri. spp.; high light intensity near ground level.

Shrub wetland Perennial vegetation more than 0.5 m tall; standing water only a portion of the year; most abundant graminoids 
include S. michauxianus and B. syg. /Tri. spp.; most abundant shrubs are Salix spp.; intermediate light intensity near 
ground level.
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Adult activity locations

We did not mark adult skipperlings thus we cannot attribute 
observed interactions to individuals. Since we observed 
several combinations of wing wear and sex amongst indi-
viduals, we assume that more than a few skipperlings 
were encountered during this research. Likely, each type 
of observed interaction was not conducted by every adult 
during observations, resulting in an unequal sampling dis-
tribution (by individuals and interaction types). Therefore, 
we explore the data while acknowledging limitations to the 
creation of robust inferences. All attempted ovipositions 
were conducted by the same adult, and we retain this cor-
responding data for exploratory comparisons. Despite these 
biases and limitations, this research can generate biological 
information which may facilitate an increased likelihood of 
O. poweshiek recovery.

We measured the length of each flight track (exclud-
ing those of two adults which moved only one metre over 
several hours) in QGIS (QGIS Development Team 2022). 

scaling ordination (Kruskal 1964; Mather 1976; McCune 
and Mefford 2011). Plant composition of the seven tran-
sects overlapped substantially which suggested that each 
area was vegetatively similar even though adults were only 
observed in four of the seven. Knowing that habitats where 
all transects were placed were relevant to the study, we con-
tinued with the seven transects.

We visually assessed vegetation diversity at positions 
along transects using non-metric multidimensional scaling 
(NMDS) (Sorenson distance, orthogonal rotation, no adjust-
ment for tied scores; Kruskal 1964; Mather 1976; McCune 
and Mefford 2011). The cumulative r2 of each axis – cal-
culated using the PC-ORD graphing interface – was evalu-
ated, to display the axes which explained the most variation 
on NMDS 1, then 2 (Peck 2016). We subsequently over-
laid physical attributes of locations (un-constrained; lines 
scaled to 250% for straightforward interpretation) onto the 
ordination.

Fig. 1 Adult tracks (orange lines; n = 22) and activity locations (convex hulls: attempted oviposition = purple, n = 5; oviposition = red, n = 4; nectar 
feeding = blue, n = 22; resting/basking = yellow, n = 14) occurring within types of plant communities (as described in Table 1). We display the 
prairie patch containing most observations
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basking, and nectar feeding): We used indicator species 
analysis (ISA) to determine if individual plant species were 
associated with a specific group(s) (incorporates abundance 
of species amongst groups; Dufrêne and Legendre 1997; 
McCune and Mefford 2011). Prior to analysis, the number 
of shoots of each species in sample plots were divided into 
the maximum number of respective shoots counted amongst 
plots in all groups (McCune and Mefford 2011).

The degree of plant species dissimilarity/similarity 
(composition and abundance; all species and host species) 
amongst groups was assessed using multi-response per-
mutation procedures (MRPP) (Berry et al. 1983; Mielke 
1984; Mielke and Berry 2001; McCune and Mefford 2011), 
using Sorenson (Bray-Curtis) distances to weigh each spe-
cies equally (Bray and Curtis 1957; McCune and Mefford 
2011). MRPP is suitable for datasets, such as ours, which 
contain unequal samples in groups and numerous zeroes 
(Magurran 1988; McCune and Mefford 2011). Host species 
were absent from some plots, prohibiting the software from 
completing the analysis. Thus, to enable MRPP analysis we 
removed those samples (all part of moisture gradient: posi-
tion 6, one sample; position 7, two samples).We calculated 
summary statistics and Spearman’s rho in RStudio (RStudio 
Team 2021; R version 4.1.2 by R Development Core Team 
(2021), using packages accompanied by helpful vignettes: 
“ggforce” (Pedersen 2021; “super-ellipse” by Kindt (2020), 
“ggplot2” (Wickham et al. 2020; “convex hull points” by 
Chizinski (2014) and “svglite” (Wickham et al. 2021). We 
conducted the NMDS analysis in PC-ORD, exported scores 
to create plots in RStudio, then imported plots into Adobe 
Illustrator (Adobe Inc 2023) to improve the resolution.

Results

Soil moisture gradient

In the NMDS ordination of transect data (3 axes, mean 
stress = 15.0, p = 0.012; Fig. 2), positions along the transects 
appear to follow the soil moisture gradient. Species compo-
sition appeared to transition from low to high ends of the 
transects. B. syg. /Tri. spp., Eleocharis spp. and Juncaceae 
spp. were most associated with the lower end of the tran-
sects; greater graminoid height and soil EC were positively 
associated with the lower end of the transects (approxi-
mately equal direction and magnitude; EC not displayed), 
greater graminoid percent cover and density of R. hirta 
inflorescences with the higher end and deeper duff weakly 
associated with the intermediate to higher sections.

Evaluating trends, the host species S. heterolepis was 
associated with the dry section (Table 2: Stem counts, 
Table 3: ISA, Fig. 2: NMDS), with stem counts declining 

Since the GPS unit was erroneously set to “auto”, track 
points were recorded every 13 ± 12 s (n = 346; mean ± SD; 
range = 1–101 s) and appeared to highlight substantial 
changes in path directions, instead of at every second 
regardless of the path changes as intended. To calculate the 
degree of tortuosity/straightness of tracks, we divided the 
distance between the start and end of each track by the total 
length of each track before subtracting this product from 1, 
to generate a value of tortuosity from 0 (straighter tracks) to 
1 (tortuous tracks) (tortuosity = 1 – [net distance from start 
to end of track/length of track]). This modification to the 
approach used by Fernández et al. (2016) allows an absolute 
assessment of tortuosity without comparing relative values 
of tortuosity from other habitat types. Given that no track 
started and ended within non-prairie communities, total 
track distances in non-prairie communities were short (see 
results), and our limitations with the track recordings, we 
only calculated tortuosity for the prairie community type. 
Since track segments do not represent equal units of time, 
we did not calculate angles or speed of each track seg-
ment. We also added convex hulls of locations where adults 
activities occurred. For Fig. 1, we display only one prairie 
patch, of the three, where the majority of adult observations 
occurred (45/56) to see adult activity locations and plant 
communities at a useful scale. Samples in all prairie patches 
were used in other analyses.

Depending on the speed that adults flew while we marked 
activity locations, our ability to navigate the terrain to pre-
cisely mark the base of facilitative plants varied. There-
fore, we separated locations into high confidence (within 
approximately 5 cm), where we measured all variables as 
described earlier, and low (approximately 6–15 cm), where 
we declined to count the number of shoots which might 
be disproportionately affected. While all oviposition and 
attempted oviposition locations were marked with high con-
fidence, a total of 5/14 resting and/or basking locations and 
23/31 nectar feeding locations were similarly marked.

During analyses, we used all plant species which were 
counted in at least one adult sample location, to identify 
any species which might be important to O. poweshiek. We 
standardised the number of shoots counted at all activity 
locations to 0.19 m2 to maintain consistency between ovi-
position locations and other activity locations.

Associating activity types with positions along the 
moisture gradient

For each focus (moisture gradient and adult activities), the 
following multivariate analyses were conducted using PC-
ORD (McCune and Mefford 2011) with groups as positions 
along the gradient (positions 1–7) and types of interac-
tions of adults (oviposition, attempted oviposition, resting/
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The MRPP analysis showed that the transect positions 
contained different abundances of shoots of all plant spe-
cies enumerated (n = 49, T = -3.785, A = 0.067, p = 0.001) 
and of only species consumed by larvae (n = 46, T = -2.240, 
A = 0.057, p = 0.024) (unadjusted numerical values in Table 
S3).

Adult activities

Movement and habitat use. Adults were observed 34 times 
(at least 13 females 9 males; unable to determine sex of other 
adults); a butterfly with the same scratch on its hindwing 
was observed on 26 June and 28 June 2018 thus was likely 
the same individual (male). During the 34 observations of 

along the transect through the wettest section. Muhlenbergia 
richardsonis was situated near position 5 in the NMDS, with 
highest stem counts in the mesic section but lower at both 
the dry and wet ends. Schizachyrium scoparium ordinated 
closest to the driest end of the moisture gradient accompa-
nied by consistent stem counts through to the mesic sec-
tion before dropping off in the wettest section. Andropogon 
gerardi was associated with the dry section (NMDS) and its 
stem counts indicate its presence was consistent throughout 
most of the transect. Hypoxis hirsuta was associated with 
the driest positions in all analyses. Soil nutrients and texture 
in gradient positions 1 (top), 4 (middle) or 7 (bottom) along 
transects were not significantly different (Table S2).

Fig. 2 An NMDS ordination of plant species enumerated and environmental attributes measured (blue font; scaled to 250%) at transect positions 
along the slopes (labels at centroids; accompanied by respective convex ellipses in corresponding colours). Species names abbreviated
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relative elevation. Including locations from all patches, 
49 were within the prairie plant community, 3 bordered 
in-between the prairie and shrub wetland communities (1 
oviposition, 2 resting/basking) and 4 were within the shrub 
wetland community (all nectar feeding).

Nectar feeding and activity substrates. Amongst all 
prairie patches, adults used various plant substrates for 
most types of activities (Table 4; nomenclature in Table S1). 
Resting/basking on plants typically occurred at the top of 
the vegetative canopy.

Nectar feeding was observed 26 June through 3 July 
2018, during which adults consumed proportions of nec-
tar from different species, using R. hirta most often (Fig. 
S4). When considering only dates where nectar feeding was 
reported more than once, the mixed diet at the beginning of 
the flight period transitioned to one dominated by R. hirta 
at the end.

Microhabitat attributes. The highest relative shoot 
abundances of individual larval food species were not con-
sistently recorded at locations associated with oviposition 
or attempted oviposition (Table 5). The majority (81%) of 
R. hirta shoots were counted at locations where adults con-
sumed nectar.

The ISA generated four species to indicate activity loca-
tions (Table 3). Additionally, H. hirsuta was nearly indicative 

adults, 24 flights were tracked. Adults were observed fly-
ing almost exclusively in prairie plant communities (Fig. 1), 
rarely in shrub or ephemeral wetland communities and never 
in wetland or forest communities (communities as described 
in Table 1). The mean distance we followed an adult was 
86.5 ± 65.4 m (n = 22; mean ± SD; range = 2.1 to 228.0), and 
in total 1.9 km (1696.7 m in the prairie plant community, 
166.2 m in shrub wetland, and 39.1 m in ephemeral wet-
land).The mean tortuosity of adult tracks was 0.57 ± 0.30 
(n = 22; mean ± SD; range = 0.04 to 0.94). Of the individu-
als we could identify, the tortuosity of female tracks was 
0.56 ± 0.32 (n = 4; mean ± SD; range = 0.19 to 0.84) and of 
male tracks was 0.66 ± 0.23 (n = 6; mean ± SD; range = 0.34 
to 0.90).

During the 34 observations of adults, six adults flew with-
out conducting an observable activity, thus 28 adults created 
56 activity events (attempted oviposition: n = 5, oviposition: 
n = 6, nectar feeding: n = 31, resting/basking: n = 14; focal 
patch in Fig. 1). In the focal prairie patch, attempted ovi-
position locations were concentrated at a relatively lower 
elevation and egg locations were generally adjacent to the 
wetland with one laid at a higher elevation (oviposition of 
6 eggs by up to 5 adults). Nectar feeding locations ranged 
through most elevations, and resting/basking locations 
appeared to be relatively concentrated, and at the highest 

Table 2 Number of graminoid shoots counted (0.25 m2) at positions along transects (mean (range); each position: n = 7). The fonts of taxa which 
were used during oviposition activities and larval foraging behaviours are bolded
Position A. gerardi B. syz. /Tri. spp. Bromus spp. Cyperaceae spp. D. cespitosa Eleocharis spp. H. hirsuta H. spartea
1 105.1 (0 to 214) 0.0 (0 to 0) 1.0 (0 to 6) 64.0 (5 to 158) 5.0 (0 to 17) 0.1 (0 to 1) 0.6 (0 to 2) 0.9 (0 to 4)
2 56.7 (17 to 120) 0.0 (0 to 0) 0.0 (0 to 0) 59.7 (14 to 130) 25.0 (0 to 139) 0.0 (0 to 0) 0.0 (0 to 0) 1.0 (0 to 7)
3 61.9 (17 to 111) 0.0 (0 to 0) 0.0 (0 to 0) 63.7 (10 to 136) 44.3 (0 to 207) 2.7 (0 to 18) 0.0 (0 to 0) 0.3 (0 to 2)
4 56.7 (3 to 132) 0.0 (0 to 0) 0.1 (0 to 1) 60.9 (8 to 133) 4.3 (0 to 28) 4.4 (0 to 17) 0.0 (0 to 0) 0.0 (0 to 0)
5 59.4 (3 to 247) 0.0 (0 to 0) 0.0 (0 to 0) 65.4 (6 to 126) 6.1 (0 to 13) 15.7 (0 to 71) 0.0 (0 to 0) 0.0 (0 to 0)
6 78.7 (0 to 194) 0.6 (0 to 4) 0.1 (0 to 1) 55.7 (13 to 84) 4.6 (0 to 20) 26.7 (0 to 87) 0.0 (0 to 0) 0.0 (0 to 0)
7 28.9 (0 to 96) 5.0 (0 to 20) 0.0 (0 to 0) 57.7 (29 to 91) 5.0 (0 to 18) 63.9 (0 to 144) 0.0 (0 to 0) 0.0 (0 to 0)
Position Juncaceae spp. M. richardsonis Muhlyspp. Poaceae spp. S. heterolepis S. michauxianus S. nutans S. scoparium
1 0.0 (0 to 0) 33.9 (0 to 104) 7.7 (0 to 24) 0.0 (0 to 0) 64.0 (20 to 145) 0.0 (0 to 0) 22.4 (0 to 122) 20.0 (0 to 65)
2 0.0 (0 to 0) 23.6 (1 to 59) 10.3 (0 to 27) 0.0 (0 to 0) 63.9 (4 to 136) 0.0 (0 to 0) 16.4 (0 to 69) 17.0 (0 to 82)
3 24.6 (0 to 148) 86.3 (0 to 408) 8.6 (0 to 13) 0.0 (0 to 0) 36.0 (5 to 113) 0.4 (0 to 3) 12.4 (0 to 49) 13.0 (0 to 40)
4 14.1 (0 to 91) 98.7 (0 to 231) 11.7 (0 to 70) 0.1 (0 to 1) 20.3 (0 to 100) 4.9 (0 to 34) 11.6 (0 to 46) 18.9 (0 to 125)
5 43.9 (0 to 93) 146.7 (27 to 457) 1.9 (0 to 13) 0.0 (0 to 0) 10.9 (0 to 42) 5.3 (0 to 16) 1.6 (0 to 11) 3.9 (0 to 23)
6 55.4 (0 to 116) 72.4 (0 to 129) 1.4 (0 to 6) 0.0 (0 to 0) 11.3 (0 to 31) 4.6 (0 to 20) 0.0 (0 to 0) 2.4 (0 to 14)
7 42.3 (0 to 97) 50.4 (0 to 157) 1.6 (0 to 6) 0.3 (0 to 1) 3.4 (0 to 14) 21.9 (0 to 62) 0.0 (0 to 0) 0.7 (0 to 5)

Table 3 Indicator species of moisture gradient positions (position 1 = driest) and of adult activity locations. Indicator value, generated during ISA, 
is abbreviated as “IV”. Transects: all positions, n = 7; adult activities: attempted oviposition, n = 5 (all one adult); oviposition, n = 6; nectar feeding, 
n = 23; resting/basking, n = 5
Moisture gradient positions Adult activity locations
1 S. heterolepis

H. hirsuta
IV = 30.5, p = 0.046
IV = 42.9, p = 0.012

Resting/Basking Rosa spp. IV = 40.0, p = 0.031

7  S. michauxianus IV = 50.6, p = 0.003 Attempted oviposition M. richardsonis IV = 75.1, p = 0.002
Eleocharis spp. IV = 40.2, p = 0.012 Eleocharis spp. IV = 37.6, p = 0.037

Cyperaceae spp. IV = 38.0, p = 0.029
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maximum shrub covers compared to locations associated 
with resting/basking and nectar feeding (albeit still only up 
to ~ 25% coverage). The density of R. hirta inflorescences 
was relatively highest at locations where oviposition or nec-
tar feeding were observed.

Discussion

Adult flight

Adults flew most often in the prairie plant community, where 
various activities were also supported; forested and relatively 
wet communities were generally avoided (Fig. 1 and track 
lengths in plant communities). Tracks of individual adults 

of oviposition locations (IV = 38.0, p = 0.052). Species com-
position and abundance were dissimilar amongst locations 
in which various adult activities were supported (MRPP: 
all plant species: n = 39, T = -3.132, A = 0.041, p = 0.005; 
host food species: n = 39, T = -2.476, A = 0.046, p = 0.017; 
uncorrected scores for analysis of pairwise comparisons in 
Table S3). The wetland species B. syz and/or Tri spp. was 
not found in any adult activity plot.

The varied magnitudes of microhabitat characteristics 
amongst activity types are shown in Table 6. Soil moisture 
was relatively the highest in locations where oviposition 
and attempted oviposition were observed. Graminoids were 
tallest, and duff was deepest, in locations where attempted 
oviposition was observed. Locations associated with ovi-
position and attempted oviposition had lower average and 

Table 4 Proportion of substrates used during adult activity types (% (number of observations))
Attempted oviposition Oviposition Nectar feeding Resting/Basking
Graminoid 100% (n = 5) A. gerardi 67% (n = 4) R. hirta 58% (n = 18) Graminoid 43% (n = 6)

H. hirsuta 17% (n = 1) Packera spp. 19% (n = 6) G. lepidota 36% (n = 5)
S. heterolepis 17% (n = 1) G. lepidota 13% (n = 4) Packera spp. 14% (n = 2)

Apocynum spp. 3% (n = 1) A. canescens 7% (n = 1)
D. fruticosa 3% (n = 1)
Unidentified 3% (n = 1)

Environmental 
characteristic

Attempted 
oviposition

Oviposition Nectar feeding Resting/
Basking

Soil moisture (% VWC) 29.5 (22.5 to 41.7) 28.5 (16.5 to 
41.4)

20.8 (9.0 to 38.3) 21.2 (12.7 to 
30.8)

Soil EC (mS/cm) 0.17 (0.10 to 0.30) 0.15 (0.06 to 
0.25)

0.09 (0.00 to 
0.24)

0.10 (0.04 to 
0.18)

Graminoid (cm) 40.6 (38.5 to 42.5) 31.7 (24.7 to 
35.3)

34.0 (17.0 to 
53.4)

28.9 (13.4 to 
41.5)

Duff (cm) 6.33 (5.2 to 7.6) 4.0 (2.5 to 4.9) 4.9 (2.4 to 8.4) 4.1 (2.2 to 7.6)
Shrub (%) 0.8 (0.0 to 2.0) 0.3 (0.0 to 1.1) 4.4 (0.0 to 28.5) 3.9 (0.0 to 25.0)
Forb (%) 7.4 (3.0 to 15.0) 7.8 (3.0 to 15.8) 9.2 (2.0 to 20.0) 8.2 (1.9 to 14.0)
Graminoid (%) 59.2 (55.0 to 62.0) 60.8 (50.0 to 

70.0)
55.6 (42.0 to 
75.0)

57.4 (40.0 to 
80.0)

Duff (%) 31.6 (28.0 to 36.0) 29.8 (19.0 to 
37.5)

29.3 (20.0 to 
39.0)

29.1 (15.0 to 
38.0)

Bare soil (%) 1.0 (1.0 to 1.0) 1.3 (1.0 to 2.5) 1.6 (1.0 to 4.0) 1.4 (1.0 to 3.0)
Number of
R. hirta flowers

2.0 (1.0 to 4.0) 3.2 (0.0 to 9.0) 2.7 (0.0. to 7.0) 1.9 (0.0 to 4.0)

Table 6 The environmental char-
acteristics associated with various 
adult activities (mean (range)). 
For characteristics: attempted 
oviposition, n = 5 (all one adult); 
oviposition, n = 6; nectar feeding, 
n = 31 (duff (cm) and graminoid 
(cm): n = 30); resting/basking, 
n = 14

 

Plant species Attempted 
oviposition

Oviposition Nectar feeding Resting/
Basking

A. gerardi 31.6 (6.1 to 65.4) 43.2 (16.0 to 76.0) 21.3 (0.0 to 76.0) 27.5 (22.0 to 
44.1)

M. richardsonis 129.0 (28.1 to 305.5) 17.0 (0.0 to 45.0) 18.5 (0.0 to 147.4) 7.3 (0.0 to 
30.4)

S. heterolepis 55.9 (10.6 to 107.2) 57.3 (4.0 to 133.0) 42.8 (0.0 to 106.4) 44.5 (9.1 to 
66.9)

S. scoparium 10.9 (3.0 to 25.1) 5.0 (0.0 to 23.0) 18.7 (0.0 to 66.1) 17.9 (0.8 to 
47.1)

R. hirta 0.2 (0.0 to 0.8) 0.7 (0.0 to 4.0) 1.0 (0.0 to 3.0) 0.2 (0.0 to 0.8)

Table 5 The number of shoots 
of host plants and the most 
frequently used nectar spe-
cies – R. hirta (mean (range)) in 
locations where adults conducted 
various activities. For all species: 
attempted oviposition, n = 5 (all 
one adult); oviposition, n = 6; 
nectar feeding, n = 23 and resting/
basking, n = 5
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activities, collectively suggest that adult habitat interactions 
are associated along a soil moisture gradient in Manitoba, 
summarised in Fig. 3. Given the limitations of our data, these 
are tentative conclusions open to further investigations.

The dissimilar plant composition amongst the vari-
ous activities, as indicated by summary statistics, ISA and 
MRPP analyses, appears to be expressed gradually among 
the activity types. The varied magnitudes of vegetative and 
physical factors, suggest that specific combinations stimu-
late adults to conduct various activities in prairie communi-
ties. The relatively wet soil, close proximity to wetlands, 
tall graminoid height, low density of R. hirta, and differ-
ential associations with Eleocharis R. Brown spp. and S. 
michauxianus suggests that attempted oviposition occurs in 
a relatively wet section, mediated by its association with the 
mesic indicator M. richardsonis (at least for this female). 
The adult appears to have been initially attracted to this 
area, but was inadequately stimulated upon arrival to ovi-
posit (Singer 1971; Rabasa 2005; Lund et al. 2019). The 
absence of wetland B. syzigachne and/or Triglochin spp. 
from all activity locations suggest that adults avoid wettest 
areas.

In Henault and Westwood (2022), locations where eggs 
were laid were differentiated by a combination of vegeta-
tive and physical attributes from under-stimulating loca-
tions (duff and graminoid heights, duff and shrub covers, 
humidity; host foods present at all types); we similarly 
observed relatively shallower duff and taller graminoids. 

overlapped each other with a few adults flying in both main 
sections of prairie within the focal patch, suggesting some 
degree of affinity by adults for the prairie community type 
(as in male C. palaemon in Ravenscroft 1994; female Macu-
linea rebeli (Hirschke) (Lepidoptera: Lycaenidae) in Kőrösi 
et al. 2008). Adult tracks within prairie community types 
tended towards the tortuous side, typical of adult movements 
in higher-quality habitats containing required resources 
(Sei 2009; Fernández et al. 2016; Henault 2021; Henault 
and Westwood 2022), and likely in prairies elsewhere with 
similar habitat attributes. Specifically regarding oviposition, 
prairies may support relatively robust host plants which con-
fer survival benefits to foraging larvae (Grundel et al. 1998).

Slopes in prairie patches

We found that physical slopes in prairie patches had a mois-
ture gradient (theoretically consistent with Liu et al. 2020), 
and that as soil moisture increased the plant species also 
changed (Zalatnai and Körmöczi 2004). Our findings about 
soil moisture and texture attributes of a typical tall grass 
prairie patch in Manitoba, build on general wet-mesic tall 
grass prairie knowledge by Catling and Lafontaine (1986).

Interactions along a soil moisture gradient

Analysed vegetative and physical characteristics measured 
along transects and at locations which facilitated adult 

Fig. 3 Tentative conclusions about locations of adult activities along the soil moisture gradient (elevation declines to the right). We illustrate spe-
cies typical of positions along the gradient, and note evaluative attributes between both foci of the study (dotted line adjacent to the nectaring 
illustration represents the range of the gradient used for this activity)
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Papilionidae) also feeds on nectar species available during 
its flight period, even though it prefers relatively few spe-
cies (Szigeti et al. 2018). Butterflies may also respond to 
droughts by diversifying their nectar sources among those 
still in bloom (Depisch and Fiedler 2023). Although climate-
induced asynchronization between butterfly emergence and 
nectar availability may lead to butterfly mortality (Hindle 
et al. 2015; Donoso et al. 2016; Patterson et al. 2020), O. 
poweshiek’s opportunistic feeding patterns appear to make 
it more resilient to this threat.

We explored the relative elevations, and inferred soil 
moisture, where each nectar species was used: R. hirta, G. 
lepidota and D. fruticosa were nectar sources at the rela-
tively high elevation/dry section; R. hirta, Packera spp. and 
Apocynum Linnaeus spp. at intermediate/mesic section and 
only Packera spp. at low/wet section. Given the range of 
moisture gradient sections and nectar species associated 
with nectar feeding, adults likely take advantage of diverse 
sources while they fly in prairie communities. However, we 
cannot reject a hypothesis where adults preferentially fly to 
specific sections to feed from certain species.

Carterocephalus palaemon laid eggs, mated and nectared 
at different soil moistures along a slope (Ravenscroft 1994), 
similarly to how we suggest Poweshiek skipperling use hab-
itat. Whereas ovipositing C. palaemon in mesic areas were 
possibly trying to avoid male harassment, O. poweshiek 
were likely influenced by a fitness benefit to larvae (the low 
density of O. poweshiek makes conspecific dispersal mech-
anisms unlikely, but at least possible if populations were 
historically dense). Relatively steep prairie slopes might 
cause the same moisture spectrum to occur over a shorter 
distance (e.g., slope 15 m vs. 100 m), enabling adults to 
conduct activities across the moisture spectrum more effi-
ciently (e.g., moving from a resting/basking location to an 
oviposition location), perhaps facilitating an increased fit-
ness. Additionally, host species which require different soil 
moistures would likely grow in closer proximity, causing 
larval foraging amongst shoots of various species to be less 
costly in terms of energy and predation (perhaps also pro-
duce unique microclimates; Henault and Westwood 2022).

Sites supporting relatively high adult abundances (from 
2007 to 2016) appeared to contain a wider range of the 
local moisture gradient, as indicated by plant communities, 
compared to those supporting lower abundances (Henault 
2017, 2021; Grantham et al. 2020). Agricultural activities 
and climate change could conceivably change local hydrol-
ogy, causing a loss/gain of moisture sections used by adults 
(e.g., drying removes wet through mesic moisture sections). 
We assume adults would continue to conduct activities (e.g., 
oviposition), but possibly at lower quality locations. Would 
this decrease fitness, and partly explain recent population 
declines?

The fact that host food plants were not at their relatively 
highest abundance at oviposition locations (Table 5), further 
suggests an additional larval need for abiotic components in 
microhabitats. Oviposition occurred where relative counts 
of M. richardsonis were low, S. heterolepis were high, S. 
scoparium were low, and A. gerardi were high. The pres-
ence of all hosts at at least intermediate abundances from 
positions 1 to 5 (Table 2), and relatively wet soil, close prox-
imity to wetlands, low graminoid height, high density of R. 
hirta inflorescences, and high graminoid cover suggests 
that mesic sections of the gradient most likely facilitate 
immature development. Oviposition likely occurs wherever 
suitable components of a microhabitat exist, whether physi-
cally at the midpoint along a slope or in shallow depres-
sions/mounds amongst level areas at relatively high/low 
elevations.

The concentration of resting/basking activities at higher 
elevations, with relatively dry soil, low graminoid height, 
and high graminoid cover suggests that these activities occur 
at drier elevations, mediated by a low density of R. hirta. 
Adults which were resting/basking might have concentrated 
at the highest elevation to take advantage of optimal condi-
tions. Perhaps, the funnelling of adults navigating between 
the two prairie lobes of this patch increased the concentra-
tion of adults, thus becoming a better vantage point to locate 
potential mates (instead of using elevated grassland ridges 
by several Hesperiidae; McCabe 1981; Scott 1986). Previ-
ous mating observations contrastingly occurred in visually 
mesic locations (Henault 2021; Henault and Westwood 
2022).

Nectar feeding locations had characteristics representa-
tive of positions throughout the gradient, weighted slightly 
to the drier end: high variation in elevation and plant com-
position (including host plants), relatively dry soil and 
shrubs present, intermediate density of R. hirta and height 
of graminoids, and relatively low graminoid cover. During 
their flight period, adults initially nectared from several spe-
cies and then used one species most often (R. hirta) midway 
through the end (R. hirta also most often used in Semmler 
2010). In contrast to Semmler (2010) and Dupont Morozoff 
(2013), adults nectared from Dasiphora fruticosa (Linnaeus) 
Rydberg but not S. ptarmicoides or P. vulgaris. Mature S. 
ptarmicoides inflorescences were not prevalent until after 
the flight period of our study. We think that O. poweshiek 
feed opportunistically (e.g., Packera Linnaeus spp., Glyc-
yrrhiza lepidota Pursh) based on phenological timing, use 
R. hirta during the majority of the flight period and if they 
fly later may use S. ptarmicoides. If Lobelia Linnaeus spp. 
– reported as a source in the general area by Catling and 
Lafontaine (1986) – was present where we observed O. 
poweshiek, we assume it would have been used if synchro-
nised. Parnassius mnemosyne (Linnaeus) (Lepidoptera: 
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Implications for conservation

Visualising habitat interactions

We report the flight tendencies of Poweshiek skipperlings 
in relation to vegetative community types in Manitoba, 
Canada for the first time. Despite the scarcity of Poweshiek 
skipperlings during extensive survey efforts, we suggest a 
reasonable concept of how adults interact along a soil mois-
ture gradient in prairie patches (Fig. 4). If our conclusions 
are confirmed with further research, then a combination of 
GIS techniques and field sampling could be used to map 
the soil moisture gradient in a site, before modelling facili-
tative regions for various behaviours (similar to Vanreusel 
and van Dyck 2007). This ecological understanding might 
prompt research of previously unconsidered aspects of O. 
poweshiek biology.

Applications for stewardship and reintroduction

Disturbances to maintain habitat using haying (Swen-
gel 1996) and fire (Dupont-Morozoff et al. 2022) can be 
compatible with O. poweshiek survival, while the effects 
of grazing are unclear (Swengel 1998; Dupont-Morozoff 

Future research

Given the limitations of our research, we encourage fur-
ther studies to confirm or revise our tentative conclusions 
about associations of adult activities along a moisture gradi-
ent. Specifically, do particular soil moistures facilitate mat-
ing, are hill-topping or patrolling behaviours (Scott 1986) 
employed by Poweshiek skipperling and do changes in 
adult diet determine fitness and subsequent population size 
during the following year? How might localised environ-
mental effects of adjacent habitats (trees/shrubs influencing 
temperature, moisture, snow accumulation, wind flow) and 
emigration-immigration processes amongst habitat patches 
influence adult within-patch habitat use? How might other 
Lepidopteran and neighbouring species in tall grass prai-
ries interact along these gradients? To provide a focused 
research strategy, we suggest manipulation of the mois-
ture gradient in a patch, subsequent comparisons of adult 
responses and documentation of population dynamics. Such 
research might generate strategies to remediate degraded 
habitats and respond to future changes which ensure sup-
portive habitats for Poweshiek skipperling.

Fig. 4 A theoretical sequence in which an O. poweshiek might interact with a prairie patch. We used our findings and satellite imagery (“Imagery” 
by Maxar, Microsoft in ESRI Inc. (2021)) to outline plant communities, and estimate regions where each adult activity may occur along the soil 
moisture gradient (resting/basking = yellow, oviposition = red, nectar feeding = blue)
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