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Abstract 
Habitat loss and land-use change in tropical forests have modified the composition and configuration of natural landscapes, 
driving biodiversity loss. Through studies covering different approaches to diversity and functional traits, a more holistic 
comprehension may be drawn regarding the effects of habitat transformation. In this study, we evaluated how the forest cover 
and landscape heterogeneity shape the taxonomic and functional diversity and biomass of dung beetles. Dung beetles were 
sampled in 16 landscape units of the “Los Tuxtlas” Biosphere Reserve (Mexico). We collected a total of 2396 individuals of 
25 species in 14 genera. Taxonomic and functional diversity and biomass of dung beetles were positively related to the amount 
of primary forest and negatively related to increased landscape heterogeneity. These results indicate that tropical rainforests 
are highly sensitive to landscape transformation, which jeopardizes the different aspects of biodiversity. By showing the 
importance of evaluating different facets of biodiversity we conclude that implementing different landscape descriptors and 
different diversity components is a complementary and efficient approach to assessing the effects of landscape composition 
on dung beetles’ assemblages in tropical rainforests.
Implications for insect conservation  Landscape composition plays a pivotal role in elucidating the various components that 
define the dung beetle community in tropical forests. Furthermore, it is of utmost significance to encompass a diverse array 
of biodiversity components, alongside species biomass, in order to comprehensively evaluate the impact of human-induced 
landscape transformation.

Keywords  Anthropogenic landscapes · Bioindicators · Biodiversity · Community ecology · Forest fragmentation · Tropical 
landscapes

Introduction

The fragmentation and loss of tropical forests are one of 
the main threats to biodiversity (Barlow et al. 2016). Such 
transformations in the landscape are intrinsically related to 
decreases in the forest amount and changes in the landscape 
heterogeneity, whose modifications positively or negatively 
affect the abundance and distribution of organisms in space 
(Alvarado et al. 2017; Dunning et al. 1992; Ezcurra 2016). 
These processes generate changes, mainly in microclimate, 
resource availability, biotic interactions, among others (Ben-
net and Saunders 2010; Broadbent et al. 2008). Therefore, 
is necessary to understand the mechanisms associated with 
human-generated landscapes and their effect on different 
components of biodiversity.

When we talk about biodiversity, taxonomic diversity is 
one of the most studied components to explain the effect 
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of landscape composition and configuration on community 
structure (Asaad et al. 2017; Magnusson et al. 2013). In 
general, studies show a decrease in the number of species 
in environments with greater disturbance (Laurance et al. 
2014). Besides taxonomic diversity, which contemplates 
the number of species and their relative abundances, the 
functional diversity highlights as an approach focused on 
the distribution of the species according to their functions 
in the ecosystems (Cadotte et al. 2011; Díaz et al. 2007; 
Sekercioglu 2012). While taxonomic diversity represents the 
variation in community structure and complexity of biotic 
interactions; functional diversity assesses the type, range, 
and relative abundance of functional traits of the organisms 
present in a community that influence ecosystem functioning 
(Córdova-Tapia and Zambrano 2015; Weiher 2011). Among 
the functional traits of ecological communities, biomass is 
used as a proxy of flow energy and matter by assimilated 
resources through the food chain (Laurance et al. 1997; 
Nunes et al. 2016; Saint-Germain et al. 2007). Therefore, 
because biodiversity has many facets, using a single com-
ponent can give an incomplete view of the mechanisms that 
shape the structure, dynamics and functioning of commu-
nities (Piccini et al. 2020; Rivera et al. 2021; Verdú et al. 
2007a, 2007b).

Dung beetles are a highly diverse group in tropical envi-
ronments (Hanski and Cambefort 1991; Scholtz et al. 2009). 
These insects provide important ecosystem services associ-
ated with nutrient cycling, secondary seed dispersal, and 
pollination (Andresen and Feer 2005; Nichols et al. 2008; 
Sakai and Inoue 1999). The ecosystem services provided 
by the dung beetles are related to the way they use the food 
resources (i.e. mammal feces), which allows them to be 
functionally classified into different trophic guilds (Chin and 
Gill 1996; Estrada 1998; Nichols et al. 2008). Furthermore, 
assemblage biomass is extremely important to assess the 
ecosystem services provided by the dung beetles in ecosys-
tems, while the mass of species represents the amount of 
ecological function of dung beetles. This is because large-
bodied species tend to provide more ecological functions 
(i.e. dung removal rates) (Nervo et al. 2014) when compared 
to small-bodied ones even with higher abundances (Barnes 
et al. 2014; Piccini et al. 2020).

Regarding the forest loss and fragmentation scenario, 
there is a trend toward a higher richness of dung beetles 
in landscapes with more amount of primary forest (Alva-
rado et al. 2017; Estrada et al. 1998; Sánchez de Jesús et al. 
2016). In tropical rainforests, the decrease in the amount of 
native forests is commonly followed by the local extinction 
of large-bodied species, which are replaced by the small-
bodied beetles (Gardner et al. 2008; Klein 1989; Nichols 
et al. 2007). Consequently, there is strong evidence indicat-
ing that anthropogenic disturbance in the tropics is asso-
ciated to environmental filters that simplifies functional 

diversity of the dung beetles (Barragán et al. 2011; Rivera 
et al. 2021; Souza et al. 2020). In addition to forest cover 
loss, it is important to consider the spatial heterogeneity 
due to land cover change also influences the taxonomic and 
functional diversity of dung beetles (Alvarado et al. 2017; 
Correa et al. 2021; Rivera et al. 2021). In environmentally 
unfavorable landscapes (e.g. the pasture lands that replace 
tropical rainforests), the increase of landscape heterogene-
ity results in a decrease of dung beetles’ richness (Alvarado 
et al. 2017; Nichols et al. 2007). This is supposed to occur 
due to the limited amount of food resources available in open 
areas (i.e. mammal feces) (Garmendia et al. 2013). In addi-
tion, dung beetles have physiological limitations that unable 
them to tolerate the marked climatic differences between 
forested and non-forested environments (Giménez-Gómez 
et al. 2018, 2020). The deforestation of tropical rainforests 
may affect specific attributes of dung beetle assemblages 
(e.g. species richness, functional diversity, or biomass, see 
Filgueiras et al. 2021) or the whole traits of beetles’ assem-
blages (Rivera et al. 2021; Souza et al. 2020). By analyzing 
the different aspects of beetle assemblages, we may present a 
broader comprehension of the tolerance levels of ecological 
communities facing landscape transformations.

Their high sensitivity to environmental variation and 
diversity of functions makes dung beetles an excellent 
model for studying how the functional diversity of organ-
isms is affected by habitat loss and land-use change. The 
substitution of tropical and subtropical rainforests by live-
stock and agriculture represents an environmental barrier 
for forest-dweller dung beetles (Filgueiras et  al. 2015; 
Giménez-Gómez et al. 2018; Salomão et al. 2020). Thus, 
assessing different components of biodiversity (i.e. taxo-
nomic, biomass, and functional) in relation to landscape 
composition allows us to understand how species respond 
to environmental gradients and how their ecological role in 
landscapes might be affected (Derhé et al. 2016; Nunes et al. 
2016; Pakeman 2014). In this study, we evaluate how the 
amount of forest and landscape heterogeneity (structured due 
to anthropogenic activities) influences the taxonomic diver-
sity, functional diversity, and biomass of dung beetles in 
the northernmost portion of tropical rainforests in America. 
We expect that taxonomic diversity, functional diversity, and 
biomass (i.e. diversity components) to be positively related 
to an increase in the proportion of forest in the landscape, 
but negatively related to an increase in landscape hetero-
geneity. This is mainly because native species to tropical 
rainforest ecosystems are physiologically adapted to closed-
canopy forests conditions (Giménez-Gómez et al. 2020) and 
that environments with more forest have greater resource 
availability (i.e. higher quantity and diversity of mammalian 
feces) (Estrada et al. 1998; Garmendia et al. 2013; Klein 
1989). Moreover, because species body size is sensitive to 
habitat shifts (Filgueiras et al. 2011, 2021), we expect that 
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dung beetle biomass increase with increasing forest cover 
and decreases with increasing landscape heterogeneity 
caused by human activities in our study area.

Methods

Study area

The study area is located within “Los Tuxtlas” biosphere 
reserve (RBLT), south of Veracruz, in central-eastern Mex-
ico. It is bounded by a mountain range located between 
latitudes 18° 05′N–18° 45′N and longitudes 94° 35′W–95° 
30′W (Fig. 1). Los Tuxtlas represents the northern limit of 
tropical forest in Mexico (Rzedowski 1963). The climate is 
warm-humid, with an average annual temperature of 25°C 
and annual rainfall between 3000 and 4600 mm (Soto 2004), 
with two climatic seasons. A rainy period from June to Feb-
ruary and a dry period from March to May (Guevara et al. 
2000). The vegetation corresponds to the high evergreen for-
est, which is the predominant native vegetation in the region. 
However, due to social (e.g. marginalization) and anthropo-
genic (e.g. deforestation) factors, much of the forest cover in 
the area has been converted to crops and pasture in the last 
50 years (Ávila-Bello et al. 2018; García-Aguirre et al. 2010; 
Von Thanden et al. 2018). Currently, there are ca. 2140 
forest fragments in RBLT (i.e. comprising ca. 30% of the 
conservation unit land cover), which is highly fragmented 
in lowlands, with most of the larger patches distributed in 

intermediate altitudes and highlands (Guevara et al. 2004; 
Vega-Vela et al. 2018).

2.2 Landscape selection and characterization

Through 200 modulated training points for the IDRISI® 
software system, we generated the land cover map in the 
study area using high-resolution multispectral images 
(QuickBird: 2.4 m resolution) from 2014. The map was 
transformed into raster format in ArcGIS® software to sub-
sequently obtain the landscape composition (i.e. forest cover 
and landscape heterogeneity) (Ahuatzin et al. 2019).

We selected 16 buffers as landscape units (i.e. study unit), 
there were mosaics with the land cover classes: primary for-
est, secondary forest, riparian forest, pastures, fences, culti-
vated land, sand, roads, urban area, water bodies (Ahuatzin 
et al. 2019) (Fig. 1, Table S1). In each landscape unit, we 
determined a central point delimited by buffers of 1 km of 
diameter, as a minimum measure, biologically relevant to the 
dispersal of dung beetles (Salomão et al. 2018) due to the 
availability of the resource (i.e. mammals feces) (see Estrada 
and Coates-Estrada 2002; Garmendia et al. 2013; Woodcock 
et al. 2010). We calculated, for each study unit, primary for-
est cover (%) with a binary map (i.e. primary forest=1 or no 
primary forest=0) and landscape heterogeneity with Shan-
non’s exponential index that quantifies heterogeneity based 
on the number and proportion of land covers in the buffer 
(i.e. effective land cover) (Corro et al. 2019).

Fig. 1   Located off 16 sampled landscape units and land cover clas-
sification of the “Los Tuxtlas” Biosphere Reserve, state of Veracruz, 
Mexico (modified from Ahuatzin et al. 2019). The circles delimit the 

1 km diameter landscape units, while red dots indicate the center of 
the landscape unit, and the purple triangles spaced 50 m apart where 
the dung beetles were collected
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2.3 Beetles collection

We collected dung beetles between Abril to May 2016, sam-
pling a pentagonal transects separated from each other by 
50 m where each vertex we placed a pitfall, per study land-
scape unit on the land cover of forest (n= 60 pitfall in total, 
five per landscape unit) (Fig. 1). The pitfall consisted in a 
plastic container of 1 L (11 cm diameter and 14.3 cm high), 
to which we added 500 ml of solution (water, detergent, and 
salt). To attract the dung beetles, we used 50 g of human 
feces as bait (Salomão et al. 2018). The pitfalls were active 
for 48 h, subsequently the individuals were collected and 
preserved in 70% alcohol for determination. The collected 
material was deposited in the Entomological Collection of 
the Instituto de Ecología A.C. (IEXA) (Mexico).

a) Functional traits

We characterized the functional structure of the community 
using quantitative and qualitative traits that influences the 
ecosystem service provided by dung beetles (see Table S2 
and S3, Barnes et al. 2014; Nichols et al. 2008). For quan-
titative traits we used linear morphological measurements 
(mm): head, pronotum, protibia, metatibia and elytra (Frant-
sevich 2010; Raine et al. 2018; Tong et al. 2005; Vaz-de-
Mello et al. 2011) (Fig. S1). For qualitative traits we used 
activity period (i.e. diurnal and nocturnal) (Nichols et al. 
2013) and resource relocation behavior to classify them 
into: paracoprids, teleocoprids and endocoprids (Halffter 
and Edmonds 1982).

b) Biomass

We calculated total biomass per landscape unit as indicator 
of dung beetle community structure (Saint-Germain et al. 
2007). We subjected two individuals per species to 45°C for 
72 h in a drying oven and then weighed them on an analyti-
cal balance with a precision scale of 0.0001 g to obtain the 
mass. We obtained the total mean biomass per landscape 
unit using the formula:

where m is mass measured in grams and a abundance for the 
species present in the landscape unit (Saint-Germain et al. 
2007). We also obtained the mean body mass of each dung 
beetle species collected in the landscape units. With this 
approach, we aim to explain the loss of dung beetles in land-
scapes under a biomass scenario, which represent a proxy 
for the body size and removal rates of each specie (Nervo 

Biomass =

n
∑

i=25

mi ⋅ ai

et al. 2014). In this measure, we averaged the sum of the 
mass of dung beetles present in each landscape unit, without 
considering the abundance to represent the diversity of body 
mass in the landscapes. In this way, landscapes with higher 
mean body mass have larger beetles and tend to exhibits 
high dung removal than small beetles (Saint-Germain et al. 
2007; Nervo et al. 2014). We obtained the mean body mass 
for each landscape unit using the formula:

where n is the total of species present in the landscape unit.

2.4 Data analysis

a) Taxonomic diversity

In each landscape unit we calculated the diversity based on 
Hill’s numbers (Hseih et al. 2016). This metric is sensitive 
to taxonomic richness and relative abundance of species 
through the coefficient q, which was calculated for the diver-
sity orders q0, q1, and q2. When Hill’s number has a value of 
q = 0 ( q0 ), represents the number of species collected (i.e. 
species richness), while if the value is q = 1 ( q1 ) represents 
the Shannon–Wiener exponential index that express the 
number of typical species in the community (i.e. abundant 
species), and if is a value of q = 2 ( q2 ) represents Simpson’s 
inverse index that considers the abundance of the most abun-
dant species within the community (i.e. dominant species, 
see Jost 2006; Moreno, 2000). We obtained the diversity 
values with the vegan package (R software version 2.5–3, 
Oksanen et al. 2018) (R Core Team 2021). The iNEXT 
package was used for evaluating the sampling coverage of 
the entire landscape (the total data, obtained from the 16 
buffers) (R software version 2.0.19, Hseih et al. 2019). The 
sampling coverage was estimated according to the number 
of collected individuals.

b) Functional diversity

Functional diversity per landscape unit was evaluated 
through three indices: (i) functional richness ( FRic) consid-
ers the distribution of species in the functional niche space, 
values close to zero indicate low diversity of functional traits 
in the community (Mason et al. 2005; Villeger et al. 2008; 
Carmona et al 2016); (ii) functional entropy ( RaoQ) meas-
ures the distance between pairs of species considering the 
abundances of all species, high values indicate functional 
traits with varying while low values indicate dominance 
in abundance of similar traits (Botta-Dukát 2005); (iii) 
functional dispersion (FDis ) measures the distance of the 

Mean bodymass =

∑n

i=n
mi

n
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centroid (i.e. average of most abundant) with the traits, val-
ues varying between 0 and 1 where zero indicate low variety 
of functional traits versus most abundant traits (Petchey and 
Gaston 2002; Laliberte and Legendre 2010). We obtained 
functional diversity per landscape unit with package FD (R 
software version 1.0–12, Laliberté et al. 2014) (Laliberté 
and Legendre 2010).

c) Landscape composition and diversity analysis

We evaluated the effect of landscape composition on dif-
ferent biodiversity components of dung beetles with Gen-
eralized Lineal Models (GLM). We used species richness 
(q0) , Shannon diversity(q1) , Simpson diversity(q2 ), func-
tional diversity (functional richness ( FRic) , functional 
entropy ( RaoQ) and functional dispersion(FDis)), bio-
mass and mean body mass as dependent variables. For 
independent variables we used primary forest cover and 
landscape heterogeneity (Table S4). Using the variance 
inflation factor (i.e. VIF), we found there was no collinear-
ity between the independent variables (VIF = 1.83) with 
packages usdm (R software version 1.1–8, Naimi 2015). 
We verified a priori the normality of the data (i.e. Sha-
piro–Wilk test). Depending on the response (discrete o 
continuous), we fit the distributions of the models to dif-
ferent distribution types: Gaussian ( q1,FRic,RaoQ,FDis ), 
Gamma ( q2 , biomass and mean body mass) and Poisson 
( q0).

Results

We recorded 2 396 dung beetles belonging to 25 species 
and 14 genera (Table 1). The genera with more individu-
als was Onthophagus (31.5% of the total individuals) and 
Canthon was the genera with more species (20% of the 
total species). The four most abundant species (Onthopha-
gus batesi, Onthophagus rhinolophus, Canthon femora-
lis, and Canthon cyanellus) together comprised ca. 50% 
of the total beetles collected in this study. Five species 
were rarely recorded (Sulcophanaeus chryseicollis, Can-
thidium pseudopuncticolle, Canthon vazquezae, Euryst-
ernus angustulus, and Pseudocanthon perplexus), each 
one representing less than 1% of the total abundance. 
Regarding species distribution, O. batesi was recorded in 
all landscape units, followed by C. cyanellus (n = 15 land-
scapes). The species with narrowest spatial distribution 
were Uroxys boneti (n = three landscapes), C. puncticolle 
(n = two), and P. perplexus (n = one).

The species with more mass were Coprophanaeus cory-
thus (0.347 g), Deltochilum pseudoparile (0.279 g), and 

Dichotomius satanas (0.219 g), while U. boneti (0.002 
g) had the lowest mass in our recorded data (Table S2). 
Nonetheless, when considering species abundance, Pha-
naeus endymion, and C. corythus were those with the 
highest species biomass (25% of the total biomass), while 
C. pseudopuncticolle, U. boneti, and P. perplexus were the 
species that had the lowest relative biomass (together com-
prising less than 0.5% of the total biomass) (Table S2). 
According to relocation of the resource, 14 species were 
paracoprid beetles, 8 species were telecoprid beetles, and 
3 species were endocoprid. About the period of activity, 
15 species were nocturnal, and 10 species were diurnal 
(see Table S2). The sample coverage indicated 100% com-
pleteness of dung beetles’ assemblages at the sampling 
landscapes units (Fig. S2).

3.1 Landscape composition

Dung beetle diversity, biomass, mean body mass, 
and functional diversity varied positively respect for-
est cover. When the amount of forest was higher in 
the landscape, there was a higher species richness (q0) 
( 𝜒2

= 13.98,DE = 37.3%,P < 0.001 ), Shannon diver-
sity (q1) ( 𝜒2 = 180.12,DE = 72.7%,P < 0.001 ), Simpson 
diversity (q2) ( 𝜒2 = 5.30,DE = 64.7%,P < 0.001 ), func-
tional richness (FRic) ( 𝜒2 = 0.91,DE = 58.9%,P < 0.001) , 
f u n c t i o n a l  e n t r o p y  ( R a o Q ) 
( 𝜒2 = 0.001,DE = 69.9%,P < 0.001) , functional disper-
sion (FDis) ( 𝜒2 = 0.94,DE = 56.5%,P < 0.001) , bio-
mass (�2 = 2.19,DE = 19.8%,P = 0.012) , and mean body 
mass ( 𝜒2 = 8278.5,DE = 49.2%,P < 0.001 ) of the dung 
beetles (Fig. 2). Nevertheless, when the heterogeneity was 
high in the landscape, there was a decrease in all response 
variables. Specifically, we observed that the increase of land-
scape heterogeneity presented a negative effect on species 
richness (q0) ( 𝜒2 = 20.09,DE = 53.6%,P < 0.001 ), Shan-
non diversity (q1) ( 𝜒2 = 150.65,DE = 60.8%,P < 0.001) , 
Simpson diversity (q2) ( 𝜒2 = 4.49,DE = 54.9%,P < 0.001 ), 
f u n c t i o n a l  r i c h n e s s  ( F R i c ) 
( 𝜒2 = 0.003,DE = 52.7%,P < 0.001) , functional entropy 
(RaoQ) ( �2 = 0.0007,DE = 32%,P = 0.0102) , functional 
dispersion (FDis)  (�2 = 0.006,DE = 27.2%,P = 0.022) , 
biomass ( �2 = 1.91,DE = 17.3%,P = 0.031 ), and mean 
body mass ( �2 = 4.6061,DE = 35.6%,P = 0.005 ) (Fig. 3).

Discusion

We reported the relation between forest cover and landscape 
heterogeneity with the dung beetle assemblage of a highly 
fragmented high evergreen forest region in the “Los Tuxtlas” 
Biosphere Reserve (RBLT). In general, we show that differ-
ent attributes of the dung beetle assemblage (i.e. taxonomic 
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diversity, functional diversity, and biomass) were positively 
related to the increase in the amount of forest and negatively 
associated with the rise in heterogeneity in the landscape. 
We demonstrated that the replacement of native tropical 
forests by other types of land cover had a homogeneous 
negative effect on different dimensions of diversity, besides 
decreasing the biomass of the dung beetles in the landscape. 
Our study reinforces previous findings in the region (Rivera 
et al. 2021; Salomão et al. 2020), suggesting the needing to 
conserve a large amount of forest in the tropical rainforests, 
as a fundamental habitat for the dung beetle assemblage.

Several studies have shown that the richness of dung bee-
tles is lower in fragmented forests compared to continuous 

forests, and decreases even more in open areas (i.e. pas-
tures) (Derhé et al. 2016; Estrada et al. 1998; Estrada and 
Coates-Estrada 2002; Klein 1989). Their findings are con-
sistent with the patterns observed in our landscape units, 
where we found a greater number of species as the amount 
of forest increases. Forested environments originally com-
prised the dominant native vegetation in the RBLT. Such 
vegetation physiognomy structure a closed-canopy ecosys-
tem and maintain relatively low daily climatic fluctuations 
when compared to open environments (Antoniazzi et al. 
2020; Davies-Colley et al. 2000). One important factor for 
the maintenance of dung beetle diversity is the availability 
of food resources. In this sense, the non-forested matrices 
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of the RBLT encompass different food resources that are 
often used by dung beetle species of tropical ecosystems 
(e.g. cattle dung in pasturelands, fruits in plantations, see 
Basto-Estrella et al. 2014; Halffter and Halffter 2009). None-
theless, our results show an impoverished assemblage in 
landscapes with low amounts of forest cover, which only a 
few species may inhabit. Such species are open-habitat spe-
cialists (e.g. P. perplexus) or eurytopic species, which toler-
ates contrasting environmental conditions (e.g. C. cyanellus 
and O. batesi) (Bourg et al. 2016; Salomão et al. 2020). In 
tropical ecosystems, there is a marked environmental barrier 
settled by the decrease of forest cover, which is apparently 
driven by the physiological limitations of forest-dweller spe-
cies. Studies in tropical ecosystems of America suggest that 
the thermoregulation strategies of dung beetle species (e.g. 
endothermic, ectothermic), together with their body traits 
(e.g. body size), are some of the main drivers of species spa-
tial distribution (Giménez-Gómez et al. 2020; Verdú et al. 
2007a, 2007b). Since the decrease in forest cover is followed 
by an increase in open vegetation, daily temperatures, and 
other restraining environmental attributes, the amount of 
forest cover is highlighted as an excellent proxy of anthro-
pogenic disturbance in the tropics.

We also found that functional diversity (i.e. FRic, RaoQ, 
FDis) decreases when the amount of forest is low in the 
landscape. We report a loss of functional traits along a for-
est cover gradient, which could affect the ecosystem service 
provided by dung beetles provided (Derhé et al. 2016; Gagic 
et al. 2015). The increased functional dispersion (FDis) we 
report in the landscape with a greater amount of forest indi-
cates the occurrence of specialist species of the forest. In 
tropical rainforests, the niche partitioning allows the mainte-
nance of a high diversity of dung beetles, which are adapted 
to use different ranges of food resources (e.g. coprophagous, 
necrophagous, frugivorous, predators), periods of the day 
(e.g. diurnal, crepuscular, nocturnal), microclimates and 
periods of the year (Halffter and Halffter 2009; Hanski and 
Cambefort 1991; Larsen et al. 2006; Scholtz et al. 2009). 
Therefore, the assemblage of coprophagous beetles in land-
scapes with more forest indicates high diversity of functional 
traits to make use of the availble resource; thus avoiding 
competition and allowing the coexistence between species 
(Barragán et al. 2011; Beiroz et al. 2018; Correa et al. 2019). 
As previously stated, it is important to consider that dung 
beetle assemblage in the RBLT may have reached a func-
tional threshold (Rivera et al. 2021), and such limitation 
could be led by specific functional groups. Under such a 
scenario, the study of beetle diversity separated by func-
tional groups has been revealing novel perspectives regard-
ing community dynamics (see Bogoni et al. 2019; Souza 
et al. 2020). Therefore, to reveal sensitive species groups in 
fragmented landscapes from a functional perspective, future 
studies should focus on understanding how forest loss may 

affect functional diversity by analyzing different functional 
groups.

The biomass and mean body mass of the dung beetles 
decrease when the amount of forest is lower in our landscape 
units. In other words, a decrease in abundance, and loss of 
large dung beetles (i.e. higher biomass) occurs in landscapes 
with less forest. Large-bodied species require a high amount 
of resources, and they are more sensitive to habitat change 
compared to small species (Barragán et al. 2011). In addi-
tion, the local extinction of large-sized mammals in the 
region of the RBLT (e.g. jaguar and tapir) apparently limit 
the availability of food resources and thus the distribution of 
larger dung beetles (Rivera et al. 2021). In this sense, here 
we present cues that landscape transformations can limit 
species distribution, and such filter excludes mostly the 
large-bodied dung beetles. Note that, there are anthropogenic 
ecosystems in which the hyper-abundance of small-bodied 
dung beetles can balance the decrease in biomass caused 
by the loss of larger species (Nichols et al. 2007), although 
this was not the case in our study. The loss of large-sized 
species implies decreasing the efficiency of the ecosystem 
services of dung beetles since there is no support that the 
small-bodied species compensate for the function provided 
by the large-sized dung beetles (Alvarado et al. 2018). In 
order to maintain functionally healthy forests, conservation 
policies should aim to increase dung beetle biomass and to 
maintain sensitive taxa that provide crucial ecosystem func-
tions, as the large-bodied species.

Conversely, we found that landscape heterogeneity 
negatively affects the taxonomic and functional diversity, 
as well as the biomass, of dung beetles. As is well known, 
the landscape heterogeneity provides a mosaic with diverse 
environmental conditions that allow the permanence and 
coexists of species with different life histories and ecophys-
iological requirements (Turner et al. 2001). However, the 
heterogeneity of our landscapes is mainly caused by anthro-
pogenic activities (e.g. pastures, crops, urban areas, etc.) 
(García-Aguirre et al. 2010). Therefore, it is expected that 
heterogeneous landscapes caused mainly by anthropogenic 
disturbances will negatively affect the diversity of groups 
of organisms (Laurance et al. 1997). Contrary to our find-
ings, some studies report that the functional diversity of 
dung beetles can be high when environments are disturbed 
in some way (Beiroz et al. 2018) because they can make use 
of the resource in different land uses generated. We found 
a lower functional entropy value in landscapes with higher 
heterogeneity, due to a high abundance of similar functional 
traits (e.g. width of head and protibia). This result seems 
to indicate that heterogeneous landscapes in the RBLT are 
composed of functionally redundant species, which could 
exploit the spatial and trophic resources in a similar way, 
therefore increasing the competition among beetle assem-
blages. Furthermore, we found that the mean body mass of 
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dung beetles is lower as landscape heterogeneity increases, 
we suggest that small species could be favored in disturbed 
environments (Barragán et al. 2011; Salomão et al. 2018; 
Tilman et al. 1997; Woodcock et al. 2010), as large-bodied 
species are more susceptible to land-use changes.

In this study, we demonstrate the importance of integrat-
ing different biodiversity components in addition to species 
biomass to assess the effect of landscape transformation 
caused by human disturbance on dung beetle assemblages. 
Specifically, we observed that disturbed landscapes with low 
diversity of dung beetles also exhibited low diversity of their 
functions and lower biomass. These findings suggest that a 
complete view of biodiversity gives us a better picture of 
the effects of habitat loss, but also that the individualism of 
each its component indicates a different effect on ecosys-
tem functioning. Overall, we show that the amount of forest 
cover positively affects dung beetle assemblages while land-
scape heterogeneity negatively affects them. We conclude 
that landscape composition is an important factor explaining 
different components that characterize the dung beetle com-
munity and that could shape the ecosystem services provided 
by dung beetles. These findings allow us to target tropical 
forest conservation strategies and mitigate the effects of het-
erogeneity caused by anthropogenic disturbances.
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