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Abstract
Butterfly species often synchronize their life cycles to seasonality, as increasing temperature and rainfall act as clues of 
resource availability. Nevertheless, human-made forest edges cause major changes in the microclimatic conditions that may 
jeopardize the synchrony between insects and favorable conditions for their emergence, conversely to natural ecotones. 
Here, the distribution of fruit-feeding butterflies was studied over one year in three different habitats (forest interior, for-
est ecotone, forest edge) to examine if: (i) species richness and abundance varies among habitats and subfamily/tribe over 
the year; (ii) temperature and rainfall affect the abundance and temporal distribution of species richness; and (iii) the beta 
diversity and its monthly partition are similar among habitats. The present study was carried out in the Rio Doce State 
Park, Brazil, a 36,000 ha forest reserve. In total, 11,594 individuals representing 98 butterfly species were collected. The 
butterflies presented a nonuniform distribution of abundance in all habitats, with greater abundance, richness and species 
diversity during the wet season. Butterfly abundance increased with high temperatures in all habitats. The contribution of 
species turnover and nestedness varied over the months, overlapping with the seasonal changes. Understanding how rates of 
species turnover vary over time in different habitats can help explain the vulnerability of species to environmental changes, 
allowing comparison of assemblages over time.
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Introduction

Most tropical insects have some degree of response to sea-
sonality, which can be measured in temporal variation in 
abundance throughout the year (Wolda 1988; Kishimoto-
Yamada and Itioka 2015), as many insect populations syn-
chronize their life cycles at or about the beginning of the wet 
seasons (Wolda 1989). During the wet season, the condi-
tions for the development of most tropical organisms, such 
as high temperature and rainfall and resource availability, 
reach their optimum levels (Kishimoto-Yamada and Itioka 
2015). The span and number of demographic peaks in a 
year are determined by the interactions of the environmen-
tal conditions, including the diversity of natural enemies 
(Didham and Springate 2003; Ribeiro et al. 2005) and the 
overlapping generations of the populations (uni-, bi- and 
multi-voltinism for one, two and three or more overlapping 
generations in a year, respectively, Gullan and Cranston 
2010), with multivoltinism being the most common strategy 
for many tropical insects (Wolda 1988; Kishimoto-Yamada 
and Itioka 2015). Rainfall is recognized as a main predictor 
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of insect emergence, and both the onset and the cessation 
of the rains play important role in the regulation of insect 
activity pulses (Wolda 1988, 1989). Therefore, wet and dry 
seasons impose ecological filters that affect both species 
abundance and detectable richness (Grøtan et al. 2012). 
However, although rainfall might be the cue hatching and 
breaking diapause for tropical organisms, other factors such 
as temperature, resource availability and the abundance of 
enemies may actually affect growth, survival and reproduc-
tion of herbivore insects (Didham and Springate 2003).

A temporal increase in temperature, along with constancy 
in rainfall, seems to act as clues of resource availability, 
triggering behaviors such as flight/dispersal, foraging and 
reproduction of tropical insects (Torres-Vila and Rodríguez-
Molina 2002; Didham and Springate 2003; Kishimoto-
Yamada and Itioka 2015). Even though some resources 
(e.g. leaves) are available all year round, their quality may 
vary over time generating some favorable periods throughout 
(Hunter and Lechowicz 1992; Aide 1993). For instance, her-
bivorous insects prefer young, tender, leaves to mature leaves 
(Coley 1983; Aide 1993; Ribeiro et al. 1994). Specifically, 
for butterflies, leaf availability and new plant tissues regulate 
the optimum period for caterpillar development (Murakami 
et al. 2008). The temporal variation in the availability of 
resources may regulate the activity patterns of adults but-
terflies, as previous data have suggested (Hamer et al. 2006; 
Ribeiro et al. 2010). Therefore, the temperature and rainfall 
may indicate favorable times for insect development.

The advance of the agricultural frontier and the increasing 
fragmentation of tropical habitats contributes to the forma-
tion of many human-made forest edges where microclimatic 
conditions change abruptly compared to the closed canopy 
forest (Murcia 1995; Steffen et al. 2015). This change in 
environmental conditions in anthropic forest edges may alter 
the synchrony between local environmental conditions and 
the emergence and growth of insect population (Hamer et al. 
2005; Ribeiro and Freitas 2011). For instance, the rise in 
temperature in forest edges locally increase the activity of 
butterflies, with possible consequences for their life cycles 
(Ribeiro and Freitas 2010). In addition, for many phytopha-
gous insects, the loss and reduction in size and quality of 
breeding areas and availability of larval host plants may con-
tribute to population declines and changes in the community 
structure (Basset et al. 2015; Thomas 2016). Consequently, 
it is expected that the loss of synchrony with the favorable 
period for the emergence of several butterfly species may 
affect the demography and diversity among the different 
habitats. Lourenço et al. (2019) in a recent study showed 
that the structure of fruit-feeding butterfly assemblages (i.e. 
those whose adults primarily obtain resources by feeding 
on rotten fruits or fermenting sap; DeVries 1987) in the 
natural transitions (ecotones) was more similar to the forest 
interior than to the anthropic edges. Although the ecotones 

and the forest anthropic edges were richer and more diverse 
than the forest interior, the pattern of species distribution in 
the anthropic edges was distinct from the ecotone in vari-
ous aspects, suggesting a lower predictability in the latter 
(Lourenço et al. 2019). Hence, the temporal variation in the 
fruit-feeding butterfly assemblages in contrasting habitats 
in the same forest ecosystem offers an opportunity to inves-
tigate how the variation in climatic and micro-climatic con-
ditions throughout the year influence butterfly species and 
ultimately the whole butterfly assemblage.

Historically, the Brazilian Atlantic rainforest has experi-
enced strong anthropic impacts since the early colonization 
in the Atlantic coast. Thereby, it became one of the most 
fragmented tropical forest biomes in South America with a 
consequent increase of forest edges in the last four centuries 
(Ribeiro et al. 2009). Fruit-feeding butterflies are consid-
ered an excellent model for studies of assemblage structure 
and temporal variation in diversity, as they are ecologically 
diverse, sensitive to seasons and to habitat fragmentation, 
which allows simultaneous and standardized sampling in 
several areas (Bonebrake et al. 2010; Freitas et al. 2014; 
Sant’Anna et al. 2014; DeVries et al. 2016). The present 
study examines the temporal variation in abundance of the 
fruit-feeding butterfly assemblages through one year in dif-
ferent habitats of the Atlantic forest (forest interior, eco-
tone and anthropic forest edge) with marked differences in 
their environmental conditions. The following hypotheses 
were tested: (i) the abundance of adult fruit-feeding but-
terflies is concentrated at certain periods of the year, with 
predictions that demographic peaks when temperature and 
rainfall increase; (ii) the increase in temperature and rain-
fall positively affect the species richness and abundance of 
butterflies, with the predictions that these yearly variation 
act as clues for resource availability and low enemy pres-
sure; and (iii) the temporal beta diversity and its partition 
are similar between natural habitats (forest interior and eco-
tone) and distinct to the anthropic edges, because the natural 
habitats present similar conditions for the different species 
to develop, resulting in similar patterns of species substitu-
tion through time.

Material and methods

Study site

The study was carried out in the Rio Doce State Park (here-
after PERD, following the Portuguese abbreviation) (19° 
48′–19° and 42° 38′–42° 28′ W), in the municipalities of 
Marliéria, Timóteo and Dionísio, state of Minas Gerais, 
southeastern Brazil. The PERD covers an area of approxi-
mately 36,000 ha of Atlantic rainforest with an elevational 
range from 200 up to 500 m encompassing a complex lake 
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system that includes over 42 lakes of different sizes. These 
lakes were formed by tectonic movements during the Holo-
cene around 10–8 thousand years ago, and the surrounding 
rainforest arose more recently (about 4500 years old) replac-
ing a more xeric ecosystem (Fonseca-Silva et al. 2015). The 
current prevailing conditions correspond to Aw climate 
(tropical seasonal) on the Köppen classification, with a wet 
season from October to April and a dry season from May to 
September. The average annual temperature and precipita-
tion are 21.9 ºC and 1480 mm, respectively (Alvares et al. 
2014; CBH-Doce 2009).

Sampling methods

The butterflies were sampled in three different habitats in 
the PERD (for more details see, Lourenço et al. 2019): (i) 
the interior of the forest (hereafter called “forest interior”), 
at least 50 m distant from any border, with a canopy up to 
10–25 m in height; (ii) natural contacts of forest with lakes 
or flooded grasslands (hereafter “ecotone”), with high light 
availability, resulting in the formation of a “brought-low 
canopy” (5–15 m high, sensu Lourenço et al. 2019) where 
the main branches naturally bent towards the lakes at 1–3 m 
above the ground, and have similar characteristics of forest 
canopy (Barbosa 2014); and (iii) anthropic edges (hereafter 
“edge”), a result of planned cut within the park, as in borders 
of dirt roads and facilities, with a canopy higher than the 
ecotone (between 10–30 m), but dominated by saplings and 
young trees close to the ground, right on the edge.

The sample design follows DeVries et al. (1999), modi-
fied after Ribeiro and Freitas (2012). Three transects of 
approximately 250 m in length were selected per habitat. 
Each habitat transect was separated by at least 1 km in dis-
tinct locations, constituting independent samples (Ribeiro 
and Freitas 2012). At each transect (considered a sampling 
unit) 10 portable traps (Van Someren-Rydon—VSR) were 
installed, spaced 25 m between each other, and alternat-
ing between canopy (1–3 m below the canopy surface) and 
understory (1.5 m above ground). Traps were baited with a 
mix of banana and sugar cane juice at a 3:1 ratio, fermented 
for 48 h. Fieldwork was carried out monthly, from August 
2015 to July 2016 (n = 12 months). Every month the traps 
were activated and were left open for four consecutive days 
with visits and bait refreshment every 48 h totaling 4320 
trap-days (10 traps × 3 transects × 3 habitats × 4 sampling 
days × 12 months). All captured butterflies were recorded 
and marked with a sequential number on the right posterior 
wing, in order to avoid overestimating butterfly abundance, 
thus those eventually recaptured were not counted as new 
individuals. Those individuals not identified in the field and 
those that died in the traps (n = 5958; 51.4%) were taken 
to the lab for later identification. For every captured spe-
cies, three individuals (whenever possible) were spread and 

deposited at the Museu de Zoologia of the Universidade 
Estadual de Campinas, São Paulo, Brazil (ZUEC), as well 
as in the Laboratório de Ecohealph, Ecologia de Insetos de 
Dossel e Sucessão Natural of the Universidade Federal de 
Ouro Preto, Minas Gerais, Brazil.

Data analyses

For comparative purposes with previous studies, in all analy-
ses the Nymphalidae taxonomy followed Freitas and Brown 
(2004) modified after Wahlberg et al. (2009) (subfamilies 
Biblidinae, Charaxinae, Satyrinae and the Nymphalinae 
tribe Coeini). The subfamily Satyrinae was subdivided into 
three tribes (Satyrini, Morphini and Brassolini) since they 
are distinct in several morphological, ecological and behav-
ioral traits (see Freitas et al. 2014). Only a single individual 
of the tribe Haeterini (Satyrinae) was captured, therefore, it 
was excluded from the analyzes.

To test whether the abundance of fruit-feeding butterflies 
was distributed evenly throughout the year, a circular statis-
tically approaches was implemented (Jammalamadaka and 
SenGupta 2001). Periodic changes such as those occurring 
on daily and yearly basis are cyclical in nature and, thus, 
it is possible to consider that month to month data over a 
year resemble circular data. For example, by using yearly 
data, the first data is the January 1st and the last data is the 
December 31st, however, December 31st is separated from 
January first in just one day. The previous example shows 
that in yearly data there is just one unit of difference between 
the first and the last data, note that this is one of the most 
important properties of circular statistics; because a circle 
starts at 0° and ends in 360°, however 0° is equal to 360°. 
Therefore, for the description of yearly data of butterfly 
abundance and species richness, it was tested whether the 
data were evenly distributed along the year or if they were 
clustered around some specific time periods (Jammalama-
daka and SenGupta 2001). For this, data was divided by 
subfamily or tribe (Biblidinae, Charaxinae, Nymphalinae, 
Satyrinae: Brassolini, Morphini and Satyrini). Monthly 
samplings were coded as intervals of 30° of circumference 
(12 moths/360° of circumference) and then expressed as 
radians (by multiplying the degrees by π/180), that when 
transformed in sine and cosine are truly circular. Under this 
approach each observation is represented as a vector defined 
by the sine and cosine of the bearings in radians, therefore 
the bearings of the overall resulting vector represent the 
mean orientation (µ) and the average length of the resulting 
vector is used to test whether the orientation, in this case 
occurrence through the year, is random or nonrandom. The 
average length of the resulting vector ranges from zero (ran-
dom orientation) to one (if all records occurred in the same 
sampling period). Specifically, Rayleigh test of uniformity 
was used to asses if the data presented a preferred direction 
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(i.e., concentration of data towards a cardinal point; Ruxton 
2017) and this was performed with the R software 3.4.0 (R 
Core Team 2017) using the package “circular” (Agostinelli 
and Lund 2017). In addition, to better describe the data, the 
concentration parameter of the distribution (which ranges 
from 0 and 1/pi), the mean circular angle and its circular 
standard deviance were calculated (according to Ruxton 
2017).

Rarefaction curves were used to compare species richness 
for each month over one year in each habitat. Rarefaction 
is a statistical method of estimating the number of species 
expected in a random sample of individuals taken from a 
collection (Colwell and Coddington 1994). Given the num-
ber of individuals in each species for the collection, one can 
calculate how many species would be expected in a smaller 
sample of n individuals (Colwell and Coddington 1994); in 
this case, the total number of samples were 12, as it is the 
total number of the sampled months. To test if the mean tem-
perature predicts the temporal distribution of species rich-
ness and abundance of butterflies, two mixed linear models 
were fitted. In which the dependent variable were abundance 
or species richness (one model for each variable), the fixed 
factor was the mean temperature of the transects for each 
month (measured in the field during of traps visits), the type 
of habitat as a categorical factor (forest interior, ecotone and 
edge) and each transect was considered as a random factor. 
The statistical model structure corresponds to an ANCOVA 
with three categorical factors. Temporal autocorrelation 
(time-lag) was examined to detect if there was independ-
ence between the values observed in the sampling months.

To assess the variation in butterfly species composi-
tion through time, the pooled data from all transects were 
aggregated by habitat and months (12 units per habitat). The 
scales analyzed were the accumulated diversity among the 
three transects of each habitat per months alpha diversity 
(α), and the beta diversity (hereafter β diversity) represents 
the dissimilarities of butterfly species composition between 
consecutive months. The additive partitioning of species β 
diversity is an approach that allows to disentangle the tem-
poral variation in the turnover and richness differences (nest-
edness) between communities, as well as its variation over 
space (Baselga et al. 2015). In this study, the framework 
proposed by Baselga et al. (2015) was used and thereby the 
additive partition of beta diversity was performed using the 
“vegan” and “betapart” packages in R. Three dissimilar-
ity matrices were also computed based on the Bray–Cur-
tis index to consider the species abundance for β diversity 
calculations (Baselga et al. 2015). This analysis results in 
three dissimilarity matrices based on the Bray–Curtis index: 
(i) temporal turnover (i.e. replacement of some species by 
others from time to time), (ii) nestedness (i.e. species found 
on one site represent a subset of another site from time to 
time, richness differences between habitats), and (iii) total 

β diversity. It is important to stress that temporal changes in 
species composition can be related to both temporal turno-
ver and richness differences (nestedness) from time to time 
(Baselga et al. 2015). All the statistical analyses were per-
formed using the software R 3.4.0 (R Core Team 2017).

Results

In total, 11,594 individuals belonging to 98 fruit-feeding 
butterfly species were captured in 12 months of study. The 
captured specimens belonged to four subfamilies (Online 
Resource 1 and 2): Biblidinae, represented by 5339 indi-
viduals (46.05%), Satyrinae 3650 individuals (31.48%), 
Charaxinae 2495 individuals (21.52%) and Nymphalinae 
110 individuals (0.95%). Both, species richness and abun-
dance, varied over the months (Fig. 1, Table 1). Rarefaction 
analysis revealed that the wet months (January to March) 
had lower species richness than the remaining months in all 
three habitats (Online Resource 3). The monthly variation in 
the proportion of subfamilies/tribes was similar among the 
three habitats, with abundance peaks of each taxon highly 
coincident among habitats (Fig. 2).

The circular analysis showed that the distribution of 
abundance of fruit-feeding butterflies throughout the year 
were nonuniform and nonrandom in all habitats for the total 
sampled assemblage and for each subfamily/tribe tested 
(Fig. 3). The mean vector (µ) and the circular standard 
deviation of the total sample were similar among habitats, 
with 73.7% of the total abundance in the forest interior con-
centrated from August to March. Whereas, the period from 
September to March concentrated 66.3% and 68.9% of the 
total abundance in the ecotone and the edge, respectively. 
Considering the abundance distribution of each subfamily/
tribe, the mean vector of Biblidinae was in December in the 
forest interior, while in the ecotone and in the edge, it was 
in January. Both Charaxinae and Morphini had the mean 
vector and the higher abundances in November in all habi-
tats. However, the Morphini (here represented basically by 
Morpho helenor) showed a clearly bimodal distribution for 
all habitats, with a large peak in November and lower peak 
April. Nymphalinae were concentrated in December in the 
ecotone, while in the forest interior it occurred in February 
and in the edge in March, but the small mean vector and 
distributions clearly shows that the group was in general 
evenly distributed along the year. The Brassolini presented 
the higher abundances in November in all three habitats, 
but the mean vectors were slightly displaced to December. 
Although the peaks of abundance were not synchronous in 
all three habitats, the Satyrini were in general evenly dis-
tributed along the year, as indicated by the poorly defined 
mean vectors (Fig. 3).
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Considering the 10 most abundant species [more than 
300 individuals captured, namely Taygetis rufomarginata 
(1405 individuals), Hamadryas amphinome (1164), H. epi-
nome (950), Fountainea ryphea (883), H. feronia (694), H. 
laodamia (539), Zaretis strigosus (438), Memphis moruus 
(400), Callicore astarte (398), Paulograma pygas (316)], 
for most of them, the variation in abundance was congruent 
among the three habitats (Fig. 4). For three species, however, 
the patterns of variation in abundance were different in spe-
cific habitat types. In a first case, T. rufomarginata presented 
constant lower abundances in the edge compared with the 
natural habitats (forest interior and ecotone). In a second 
case, Hamadryas feronia presented overall low abundances 
in the forest interior and edge (less than 20 individuals per 

month), while presenting higher abundances in the ecotone. 
Finally, for Paulograma pygas the abundance was low in all 
three habitats during most of the year, except during the late 
wet season, when the abundance in the edge was about twice 
or more than in the natural habitats.

The linear regression analysis showed that the species 
richness of fruit-feeding butterfly increased with mean 
temperature (F = 5.28, df = 2, P < 0.05), but this result was 
only significant in the forest interior (Fig. 5). The mean tem-
perature also explained fruit-feeding butterfly abundance 
(F = 21.2, df = 2, P < 0.05), and this result was observed 
for all habitats (Fig. 5). There was no statistical interaction 
among mean temperature and habitat (abundance F = 0.10, 
df = 2, P = 0.9; richness F = 0.21, df = 2, P = 0.8). Rainfall 
was not related to either abundance or species richness.

Overall, the temporal partition of the β diversity of all 
months was similar across the studied habitats, with monthly 
variations overlapping with seasonal changes. However, the 
variation of the β diversity among months was clearer in 
the forest interior (Online Resource 4). For example, at the 
transition from the wet to the dry season (March to April), 
the forest interior has a greater species nestedness, that is, 
the months presented similar species richness. While, in 
this same period, in the ecotone and edge prevailed spe-
cies turnover, that is, species composition changed over the 
months. During the following period, the early dry season 
(April and May), nestedness remained as the main process 
in the forest interior, but not in the edge, where seasonal 
turnover remains as a main process driving species variation, 
nor in the ecotone where a growth of nestedness contribution 
is noted. In the beginning of the wet season (October and 
November) the turnover process prevails in all the habitats, 
followed again by changes due to richness differences in the 
following period (November and December).

Discussion

It’s usually suggested that butterfly life cycles synchronize 
with the periods of greater resource availability, mating sea-
son and low enemy pressure (Brown 1992; Ribeiro et al. 
2010). Following a quantitative temporal approach, the 
results of the present study demonstrated that the peaks of 
butterfly species richness, abundance and diversity observed 
during the wet season started with the seasonal changes 
occurring during the transition from dry to rainy season. 
Additionally, the intense leaf production after the first rains 
would be important for the success of immatures, as well as 
the following greater availability of fleshy fruits, essential 
for adults (Aide 1993; Morellato et al. 2000; Fischer et al. 
2004). Although there are very few studies that investigated 
the yearly variation of butterfly diversity, the peaks of spe-
cies richness and abundance during the transition from dry 

Fig. 1  Species richness and abundance of fruit-feeding butterfly spe-
cies by habitats throughout a year, in Rio Doce State Park, Brazil. 
The symbols represent the habitats: forest interior dark grey circle, 
ecotone light grey square, edge white triangle; the shaded area repre-
sents the wet season
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to wet season appear to be a recurrent pattern for several 
sites in the tropical regions (Brown 1992; DeVries et al. 
1999; Ribeiro et al. 2010; Grøtan et al. 2012, 2014). Similar 
patterns have been also reported for other tropical insects, 
including beetles, bees and mosquitoes (see Kishimoto-
Yamada and Itioka 2015), supporting the hypothesis that 
the onset of wet season triggers pulses of productivity influ-
encing the emergence of several tropical organisms (Wolda 
1989; Kishimoto-Yamada and Itioka 2015).

Seasonal changes are accompanied by variation in aver-
age temperature that plays an important role for diversifica-
tion and species coexistence in plant and animal communi-
ties (Wolda 1988; Peters et al. 2016). In fact, temperature is 
an important driver in insect metabolism and thus an accel-
erator of development rates and adult reproductive activity 

(Wolda 1988). Higher temperatures, combined with high 
water availability, are known to trigger primary produc-
tivity and can predict species richness and other diversity 
components (e.g., species interactions) for taxonomically 
broad communities of both, plants and animals (Wolda 1988; 
Peters et al. 2016; Dáttilo and Vasconcelos 2019). In the 
present study, higher temperatures increased the butterfly 
abundance and richness, as reported by other studies with 
fruit-feeding butterfly (Ribeiro and Freitas 2010; Ribeiro 
et al. 2010; Grøtan et al. 2012; Santos et al. 2017). How-
ever, while a clear positive effect of mean temperature on 
abundance was observed in all three habitat types, the effect 
on species richness was detected only in the forest interior. 
It is possible that other factors such as vegetation structure, 
host plant availability and microclimatic conditions, all very 

Table 1  Species richness and abundance of fruit-feeding butterflies (total and mean) per months in each habitat, Rio Doce State Park, Brazil. 
SD = standard deviation

Months Forest interior Ecotone Edge

Species richness Abundance Species richness Abundance Species richness Abundance

Total Mean ± SD Total Mean ± SD Total Mean ± SD Total Mean ± SD Total Mean ± SD Total Mean ± SD

January 26 15.7 ± 2.1 266 88.7 ± 60.9 37 20.7 ± 0.6 291 97.0 ± 37.0 38 25.0 ± 4.0 358 119.3 ± 39.4
February 32 16.3 ± 4.2 278 92.7 ± 23.7 52 24.7 ± 0.6 494 164.7 ± 69.8 48 30.7 ± 5.9 521 173.7 ± 70.2
March 26 15.3 ± 1.5 211 70.3 ± 5.1 39 22.0 ± 3.6 388 129.3 ± 83.8 39 25.7 ± 4.2 363 121.0 ± 49.0
April 37 22.7 ± 5.7 379 126.3 ± 9.0 45 29.0 ± 1.7 497 165.7 ± 74.0 50 33.7 ± 2.5 421 140.3 ± 24.1
May 34 19.3 ± 3.2 196 65.3 ± 11.9 42 23.7 ± 3.2 209 69.7 ± 19.3 43 24.7 ± 7.5 247 82.3 ± 38.9
June 25 13.0 ± 1.7 136 45.3 ± 21.5 40 22.3 ± 4.9 209 69.7 ± 10.7 34 18.0 ± 4.6 110 36.7 ± 10.4
July 30 16.3 ± 2.1 118 39.3 ± 5.8 42 24.0 ± 3.6 182 60.7 ± 19.7 38 20.0 ± 4.4 139 46.3 ± 13.0
August 39 22.7 ± 3.2 251 83.7 ± 47.6 40 26.3 ± 2.5 361 120.3 ± 36.6 48 32.0 ± 5.2 364 121.3 ± 19.3
September 40 21.3 ± 7.6 244 81.3 ± 17.9 47 27.3 ± 5.1 266 88.7 ± 33.8 47 29.3 ± 4.0 370 123.3 ± 22.7
October 53 30.7 ± 2.3 417 139.0 ± 32.9 61 41.0 ± 3.6 533 177.7 ± 49.1 60 42.7 ± 1.5 544 181.3 ± 66.1
November 48 30.3 ± 7.1 528 176.0 ± 54.1 64 36.0 ± 1.7 768 256.0 ± 62.5 55 37.3 ± 7.0 569 189.7 ± 19.1
December 22 12.3 ± 0.6 127 42.3 ± 24.8 28 15.7 ± 1.5 123 41.0 ± 13.2 27 15.0 ± 1.7 116 38.7 ± 7.6

Fig. 2  Proportion of fruit-feeding subfamily/tribe abundance by habitats throughout a year, in Rio Doce State Park, Brazil
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Fig. 3  Circular diagrams of 
the number of individuals 
observed for the total sampled 
assemblage and for subfamily/
tribe of fruit-feeding butterflies 
in each habitat throughout the 
year, in Rio Doce State Park, 
Brazil. The arrows represent 
the average vector length (r) 
and indicate the average dates, 
the red area represent standard 
deviation
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important for the maintenance of viable butterfly popula-
tions (Saunders et al. 1991; Shahabuddin and Terborgh 
1999; Hamer et al. 2006; Beirão et al. 2017), are playing an 
important role to predict the species richness in the transi-
tional habitats (ecotones and forest edges) and overcoming 
the effects of the mean temperature.

The ecotones and forest edges studied here were generally 
richer and presented higher abundance of butterflies when 
compared to the forest interior throughout the year. This was 
expected because it is largely known that transitions (both 
natural and anthropic) are usually richer and more diverse 
than adjacent habitats, since they present characteristics of 
two nearby environments (Holland 1988). Additionally, the 
subfamily/tribes abundance and their proportions varied 
similarly among the habitats throughout the year. Seasonal 
patterns were evident for some subfamilies/tribes that coin-
cide with that described in the literature. For example, the 
bimodal pattern of Morpho helenor (Morphini), with two 
distinct population peaks in all three habitat types is similar 
to the pattern reported for this species in other localities 
(Carreira 2015; Freire et al. 2014; Ribeiro et al. 2010; San-
tos et al. 2017) and should be associated with availability of 
fleshy fruits and with the regrowth period that are similar in 
the different studied sites (Morellato and Leitão-Filho 1992; 
Morellato et al. 2000). Additionally, the variation of resource 
availability and distinct microclimatic conditions among 
habitat type can trigger different species responses. Some 
butterfly species such as Taygetis rufomarginata (Satyrini) 
is a good example of this; in the present study, this spe-
cies had highlighted peaks of abundance in natural habitats 
(forest interior and ecotone) over the year, while had few 
individuals in the edge. This result corroborated the pattern 
described by Uehara-Prado et al. (2007) that showed that 
large Satyrinae species prefer well preserved habitats.

In general, the monthly fluctuation of beta diversity 
was similar among habitats, although the variation was 
more evident in the forest interior. This variability can be 
related to the presence of a favorable season (hot and wet) 
with great resource abundance and other unfavorable (cold 
and dry) with little available resources (Brown 1992). In 
the transition between dry and wet seasons (September 
to November) the higher temperatures and the constant 
rainfall lead to the regrowth of many plants representing 
a period of bonanza promoting the development of the 
Nymphalidae family first generation (see Brown 1992). 
The next period (November–December) overlaps with the 
adult emergence peak of the species already present in the 

Fig. 4  Most abundant fruit-feeding butterfly species per habitats 
throughout a year (more than 300 individuals across 12 months), in 
Rio Doce State Park, Brazil. The symbols represent the habitats: for-
est interior dark grey circle, ecotone light grey square, edge white tri-
angle; the shaded area represents the wet season

▸
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butterfly assemblage, which explains the greater diversities 
observed in all three habitats The changes in assemblage 
composition decrease significantly at the end of the wet 
season and at the beginning of the dry season, although 
in this period the transitional habitats change the species 
composition more than the forest interior. Finally, during 
the dry season there was an increase in diversity and a 
large change in butterfly assemblage structure in all habi-
tats, in contrast to previous reports for the Atlantic Forest 
(Brown 1992; Ribeiro et al. 2010). This difference is likely 
related to the local climatic conditions; while the previous 
studies were in areas of where the dry season is also cold 
and present a lower productivity (Brown 1992; Ribeiro 

et al. 2010), the PERD has a comparatively higher mean 
monthly temperature, which favors the butterfly develop-
ment and activity (Wolda 1988; Ribeiro and Freitas 2010).

As a final point, the importance of the present results 
goes beyond a better understanding of insect ecology in 
the tropics. The information here presented may help pro-
vide guidance for environmental diagnostics and monitor-
ing, regardless of the aspects to be investigated, including 
anthropic changes (e.g. effects of forest logging and fire 
incidence, among other). Due to time and financial con-
straints, monitoring programs rarely include long term 
sampling. Therefore, knowing the best sampling period 
of an increasingly used indicator group such as butterflies 
helps to focus the samplings at the best periods (in this 
case, dry–wet transition and/or only wet season), com-
bining the periods of highest richness and highest abun-
dant of the group (Santos et al. 2016). The present results 
showed yet that transitional habitats (natural or anthropic 
transitions) are more variable in terms of diversity than the 
forest interior throughout the year. Thus, the results sug-
gested that the maintenance of viable butterfly populations 
is more difficult in these transitional habitats, and events 
of local extinctions may occur over time, affecting species 
turnover and community composition. Determining how 
the rates of species turnover vary over time in different 
habitats is important to understand the sensitivity of the 
ecological systems to environmental change, a quite rel-
evant task in a scenario of future climate change. All the 
above points should be taken into account for assessing the 
effectiveness of the tropical protected areas in maintaining 
diversity in the face of changing world.
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