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Abstract
Isolation and climate have protected Southern Ocean Islands from non-native species. Relatively recent introductions have 
had wide-ranging, sometimes devastating, impacts across a range of species and ecosystems, including invertebrates, which 
are the main terrestrial fauna. In our comprehensive review, we found that despite the high abundance of non-native plants 
across the region, their impacts on native invertebrates are not well-studied and remain largely unknown. We highlight that 
non-native invertebrates are numerous and continue to arrive. Their impacts are multi-directional, including changing nutri-
ent cycling regimes, establishing new functional guilds, out-competing native species, and mutually assisting spread of other 
non-native species. Non-native herbivorous and omnivorous vertebrates have caused declines in invertebrate habitat, but data 
that quantifies implications for invertebrates are rare. Predatory mammals not only indirectly effect invertebrates through 
predation of ecosystem engineers such as seabirds, but also directly shape community assemblages through invertebrate diet 
preferences and size-selective feeding. We found that research bias is not only skewed towards investigating impacts of mice, 
but is also focused more intensely on some islands, such as Marion Island, and towards some taxa, such as beetles and moths. 
The results of our review support and build on previous assessments of non-native species in the Antarctic region—that the 
responses of invertebrate fauna on these islands are under-reported and often poorly understood. Given the importance of 
invertebrates as indicators of environmental change, and their potential utility in quantifying change associated with island 
restoration projects (such as eradications), these knowledge gaps need to be urgently addressed.
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Introduction

Invasive species are the greatest driver of global biodiver-
sity loss and ecosystem disruption on islands (Mack et al. 
2000; McCreless et al. 2016). Although islands comprise 
only 5% of the world’s landmass, their level of endemism 
is a magnitude higher than for continents, and many global 
biodiversity hotspots are islands and archipelagos (Kier et al. 
2009; Bellard et al. 2014; Courchamp et al. 2014). Thus, 
island ecosystems have proportionally high biodiversity, and 
often host näive indigenous species that lack competitive 
traits and are highly adapted (Bowen and van Vuren 1997; 
Convey et al. 2006a; Smith 2007).

Sub-Antarctic and cool-temperate islands of the South-
ern Ocean are some of the most remote environments in 
the world, yet their ecosystems are susceptible to invasion 
by non-native species (Frenot et al. 2005; Convey et al. 
2006b; Shaw 2013; McGeoch et al. 2015). Low temperature, 
remoteness and associated low human visitation to these 
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islands have historically been an important limiting factor 
in the establishment of non-native species (Smith and Steen-
kamp 1990; Chown et al. 1998, 2005; Gabriel et al. 2001). 
However, increasing human visitation has intensified oppor-
tunities for new introductions (Whinam et al. 2005; Convey 
et al. 2006b; Chown et al. 2012), and relatively recent cli-
matic changes are likely to further reduce physical barriers 
to invasion and enhance colonisation success (Walther et al. 
2009; Janion et al. 2010; Chown and Convey 2016; Laparie 
and Renault 2016). The relatively simple ecosystems found 
on Southern Ocean Islands (SOI) provide a unique opportu-
nity to understand the processes of colonisation, establish-
ment and impacts of non-native species.

Most of the 560 non-native species documented for the 
Antarctic and Southern Ocean region are established on SOI 
(McGeoch et al. 2015). The majority are plants and inver-
tebrates inadvertently introduced through human activity 
(Frenot et al. 2005). Although some non-native invertebrates 
and plant species have been studied individually (e.g. Con-
vey et al. 2010; Laparie et al. 2010; Williams et al. 2016), 
their broader ecosystem impacts remain largely unknown. 
Vertebrates such as house mice (Mus musculus), black rats 
(Rattus rattus) and brown rats (Rattus norvegicus) were 
introduced unintentionally, but others such as rabbits (Oryc-
tolagus cuniculus), cats (Felis catus), sheep (Ovis aries), 
mouflon (Ovis ammon musiman), cattle (Bos Taurus), goats 
(Capra hircus), pigs (Sus Scrofa), reindeer (Rangifer taran-
dus), weka (Gallirallus australis), and trout (Salmo trutta) 
were purposefully released as companions, food or game 
(Headland 2012; McGeoch et al. 2015). As has occurred 
globally, non-native mammals have transformed SOI eco-
systems through habitat destruction, causing extinctions and 
altering ecosystem processes (e.g. Courchamp et al.2003; 
Campbell and Donlan 2005; Frenot et al. 2005; Wanless 
et al. 2007; Jones et al. 2008; Nogales et al. 2013; McGeoch 
et al. 2015; McCreless et al. 2016).

The impact of species invasions on islands has typically 
been determined through monitoring the responses of iconic 
or charismatic species, like albatrosses (Towns et al. 2006; 
Towns 2009; Angel et al. 2009; St. Clair 2011; Jones et al. 
2016). On SOI, this translates to extensive research on the 
impacts of non-native vertebrates on seabirds and vegetation 
(e.g. Copson and Whinam 1998; Cuthbert and Hilton 2004; 
Scott and Kirkpatrick 2008). Impacts on invertebrates have 
been less comprehensively studied. This is despite the fact 
that invertebrates comprise most of the terrestrial fauna on 
SOI and perform a variety of critical ecosystem functions 
such as soil nutrient cycling (Convey et al. 2006a; Smith 
2008; Chown and Convey 2016). In consequence, their 
suppression or extinction by invasive species has a range 
of important implications (Fukami et al. 2006; St Clair 
2011; Collen et al. 2012). Furthermore, because of their 
diversity, invertebrates are important biological indicators 

of environmental change, and can be useful for conserva-
tion planning and monitoring (Kremen et al. 1993; Gerlach 
et al. 2013). Comprehensive understanding of the interac-
tions between invasive species and invertebrates is there-
fore critical for future SOI conservation and management 
(Chown et al. 2008). Non-native vertebrates, invertebrates 
and plants threaten native SOI invertebrates through preda-
tion, competition, and loss of habitat, but our understanding 
of these interactions is limited compared to other threatened 
taxa (McGeoch et al. 2015). Here we review the current 
state of knowledge of non-native species interactions with, 
and impacts on, native invertebrates on SOI and discuss the 
consequences and ramifications for these ecosystems.

Terminology

Greenslade and Convey (2012) outline terminology around 
invasive species that we follow here, including for the terms 
‘invasive’, ‘introduced’, ‘exotic’, ‘naturalised’, ‘native’, and 
‘endemic’. Taxa that we refer to as ‘non-native’ are synony-
mous with ‘introduced’ in Greenslade and Convey (2012), 
and are those which have clearly been transported to a novel 
locality, directly or indirectly, by human activities. Taxa that 
we refer to as ‘invasive’ are those that have followed the 
invasion pathway, i.e. they been introduced to a new loca-
tion, colonised, reproduced and spread, causing disruption 
to the pre-existing ecosystem (Williamson and Fitter 1996).

The study area

Southern Ocean Islands

Southern Ocean Islands (SOI) comprise a series of rela-
tively small, isolated, oceanic islands and archipelagos 
located on either side of the Antarctic Polar Frontal Zone 
(APFZ) between 37°S and 55°S (Fig. 1) (Shaw 2013). They 
are known for their cool, wet, windy but equable climates 
(Bergstrom and Chown 1999; Huiskes et al. 2006; Pendle-
bury and Barnes-Keoghan 2007). Almost all are designated 
as protected areas (Shaw 2013). Despite similarities in their 
contemporary climate, SOI have significantly different cli-
matic histories, glaciations, geological origins and ages that 
have influenced natural (ie not mediated by humans) coloni-
sation by terrestrial biota, speciation, and species turnover 
(Bergstrom and Chown 1999; Shaw et al. 2010; Shaw 2013). 
Most SOI have no resident human settlements (except for 
the Falkland Islands and Tristan da Cunha), but some island 
groups are visited by tourists, and most are either regularly 
visited by research expeditions or have permanent research 
stations (de Villiers et al. 2006).
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Ecosystems

A significant component of the fauna of Southern Ocean 
Islands are the millions of marine mammals and seabirds, 
across numerous species, which live and breed on them (Shi-
rahai 2007). There are no native amphibians, reptiles or ter-
restrial mammals, and very few land-based birds (Bergstrom 
and Chown 1999; Convey 2007). Compared to continental 
ecosystems, terrestrial ecosystems on SOI are relatively 
simple, characterised by non-utilized ecological resources 
and unrepresented functional groups (Convey et al. 2006a; 
Whinam et al. 2005). Although levels of endemism are high 
(Chown and Convey 2016), species diversity is generally 
low, and many taxonomic and functional groups typically 
found at lower latitudes are absent (Block 1984; Convey and 
Lebouvier 2009). A lack of functional redundancy is linked 
to a higher likelihood of establishment by exotic species, 
given that new arrivals may experience little competitive 
resistance (Frenot et al. 2005; Convey et al. 2006b). Low 
temperatures and numerous, but relatively inefficient, inver-
tebrate detritivores mean that organic decay is generally slow 
(Tréhen et al. 1990; Smith 2008), resulting in ‘bottlenecks’ 
in available nutrients (Slabber and Chown 2002). Across 
the region, vegetation communities are dominated by grass-
lands, herbfields (including megaherbs) and are characteris-
tically devoid of trees. High altitude areas support feldmark 
communities populated by cushion plants and bryophytes 

(Greenslade 2006; Convey 2007; Bergstrom et al. 2006). The 
absence of native herbivores means that vegetation is gener-
ally vulnerable to grazing by non-native herbivorous mam-
mals due to a lack of defences and high palatability (Bowen 
and van Vuren 1997; Courchamp et al. 1999; Chapuis et al. 
2004; Hullé 2012).

Invertebrate assemblages are characterised by few herbi-
vores or predators and a high number of decomposers (Smith 
and Steenkamp 1990; Vernon et al. 1998). Typically, assem-
blages feature adversity or stress selection traits (Crafford 
et al. 1986; Convey 1996a, b, 1997; Chown 2001) such as 
low reproductive investment, limited competitive and dis-
persal abilities, investment in stress tolerance (Chown and 
Convey 2016) and unusually long life cycles (Haupt et al. 
2014). The most abundant native invertebrate groups are 
mites (Acarina) and springtails (Collembola) (Chown and 
Convey 2016). Flies (Diptera) and beetles (Coleoptera) are 
the most common insects in the region (Chown and Convey 
2016). Other abundant native groups are Araneae (spiders), 
Lepidoptera (moths), enchytraeids, earthworms, tardigrades, 
and nematodes (Convey 2007; Chown and Convey 2016). 
Flightlessness is unusually common (Roff 1990). Given 
there are very few large, native predators of invertebrates 
on SOI, the ecology of native invertebrate communities is 
unlikely to include adaptations to predation pressure (Con-
vey and Lebouvier 2009).

Biogeography

Consistent low levels of immigration from nearby conti-
nents have shaped the terrestrial environments of older SOI 
with continental origins (Chown et al. 1998; Bergstrom and 
Chown 1999), as per classic island biogeography theory 
(MacArthur and Wilson 1967). Informative examples are 
the Falkland Islands and Auckland Island group. For the 
majority of SOI, which are typically more isolated, younger, 
volcanic islands, the origin of most biota remains largely 
unknown (Bergstrom and Chown 1999). Natural colonisa-
tion and dispersal in the region occurs broadly via wind, 
air, water or with assistance from vectors such as animals, 
birds or marine debris (Gressitt 1970; Barnes et al. 2006; 
Hughes et al. 2006; Moon et al. 2017). Native insect and 
vascular plant species richness are linked, but principally 
explained by island isolation and temperature (Chown et al. 
1998; Leihy et al. 2018). Native vascular plant species rich-
ness varies widely across SOI, ranging from 180 species 
on Auckland Island and one species on Bounty Island, but 
some inter-regional similarities are apparent (Leihy et al. 
2018). Native insect assemblages are more similar between 
island groups close to each other (Greve et al. 2005; Shaw 
et al. 2010; Leihy et al. 2018), but richness is highly variable 
across the region—with as few as six species on MacDonald 
Island to over 230 on Auckland Island (Chown et al. 1998; 

Fig. 1  Map of the biogeographic region referred to as the Southern 
Ocean Islands, between 37°S and 55°S
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Bergstrom and Chown 1999; Chown and Convey 2016). For 
SOI invertebrates other than insects (e.g. springtails, mites, 
and spiders), drivers of diversity and distribution are less 
well known, largely due to imbalanced survey effort and 
lack of data for many island groups (Chown et al. 1998, 
2008). Repeated surveys of some islands reveal incremen-
tal increases in diversity over time, likely due to increased 
search effort in new habitats and documentation of more 
cryptic species (e.g. Jones et al. 2003c; Green and Mound 
1994; Grobler et al. 2011a, b). Non-native species inver-
tebrate richness on SOI is strongly correlated with native 
species richness, energy availability, island temperature and 
area, and the frequency of human visitation (Chown et al. 
1998, 2005).

Climate and invasive species

Climate change is occurring across the region (Pendlebury 
and Barnes-Keoghan 2007; Le Roux 2008; Bergstrom et 
al. 2015). At some locations, warming is occurring rap-
idly, at more than twice the mean global rate (Le Roux 
2008). Warming increases the likelihood of non-native spe-
cies establishment (Gabriel et al. 2001; Janion et al. 2010; 
Chown and Convey 2016; Laparie and Renault 2016), while 
also putting pressure on native species (van der Merwe et al. 
1997). Duffy et al. (2017) modelled the future climatic suit-
ability for some of the world’s most invasive species to SOI 
and the Antarctic region. They found all SOI suitable and 
at invasion risk under future climate scenarios, particu-
larly Macquarie Island and the New Zealand sub-Antarctic 
islands. Many non-native species are generally more adapt-
able (Duffy et al. 2017) and have broader climatic tolerance 
(Chown et al. 2002; Janion et al. 2010), than native species 
that are cool-climate adapted and vulnerable to increasing 
thermal conditions (Convey 1996a, b, 1997; van der Merwe 
et al. 1997). Even if invertebrates that are non-native to SOI 
originate from a cool region, their competitive advantage 
in a warming climate is amplified (Lebouvier et al. 2011; 
Laparie and Renault 2016). Thus, native invertebrate species 
on SOI are likely to be disadvantaged and outcompeted with 
rapid climate change (Chown et al. 2004; McGeoch et al. 
2006; Duffy et al. 2017).

Concurrently, accidental transport of non-native species 
has increased as human activity in the region has escalated 
(Frenot et al. 2005; Convey et al. 2006b; Hughes et al. 
2006; Chown et al. 2012; McGeoch et al. 2015; Duffy 
et al. 2017). Already for some SOI, the rate of natural 
colonisations has been surpassed by human-facilitated 
introductions. On Gough Island, the rate of non-native 
invertebrate establishment is 2–3 orders of magnitude in 
excess of the natural rate (Gaston et al. 2003), and for Iles 
Crozet and Kerguelen 3–4 orders of magnitude for plant 

and invertebrate species respectively (Frenot et al. 2001, 
2008; Lebouvier and Frenot 2007).

Literature search

Our primary objective was to determine how invasions on 
SOI impact native invertebrates. Therefore, we conducted 
a literature search in Web of Science using the terms 
“invertebrate*”, “insect*”, “non-native”, “impact” and 
“invasive” and three groups of invertebrates widespread on 
SOI “Diptera”, “Coleoptera” and “Lepidoptera”, search-
ing each term individually but paired with each of one 
of the 32 named Southern Ocean Islands (between 37°S 
and 55°S) (e.g. “Campbell Island”, “Macquarie Island”, 
“Prince Edward Island” etc), adding “Antarctic” to focus 
the search where necessary (e.g. where multiple islands 
of the same name exist). The reference lists of all relevant 
publications were further examined to identify other rel-
evant publications. The titles and abstracts of these papers 
were viewed and 45 publications were identified that 
measure, through experiment or observation, impacts of 
invasive species on invertebrates on SOI. By island group, 
the break down was: Marion Island (18—including three 
also investigating Prince Edward Islands), South Georgia 
(8), the Kerguelen archipelago (6), Antipodes Island and 
Bollons Islands (4), Auckland Island (3), Macquarie Island 
(3), Gough Island (2), and Falkland Islands (1). Impacts 
were identified for taxa from 11 higher groups of inverte-
brates. Of the papers examined the most studied taxa were: 
Coleoptera (21 times), Lepidoptera (19), and Annelidae 
(10), followed by Araneae (9), Diptera (7), Amphipoda 
(4), Collembola (4), Hemiptera (3), Orthoptera (1), Mol-
lusca (1) and Chilopoda (1). Many studies did not specifi-
cally identify which invertebrate groups were impacted, 
rather discussing indirect effects through changes to veg-
etation or soil habitat. In these cases, the impact group 
was identified as ‘Unspecified’. Twenty studies identi-
fied impacts on invertebrates from predators (14 of these 
relating to mice alone, one on mice and rats, two on mice 
and cats, and four focussing on either, or both, brown and 
black rats), 17 invasive invertebrate papers, three inva-
sive plant papers, two invasive omnivore papers, and one 
study which explicitly tested the impacts of herbivores on 
invertebrate communities. A summary of these papers is 
presented in Table 1 in Supplementary Material. This table 
underpins our review of invasive species impacts on native 
invertebrates on SOI.
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Non‑native species impacts on native 
invertebrates

Non‑native plants

More than 250 non-native plant species, mostly grasses 
and small herbs, have established across the SOI (Shaw 
2013). Despite the relatively high number and diversity 
of non-native plants across the region, making up a sub-
stantial component of vascular plant species and altering 
habitat (Frenot et al. 2001; Jones et al. 2003b; Le Roux 
et al. 2013), their impacts are generally considered to be 
relatively minor (e.g. Frenot et al. 2005). This assump-
tion may well be a product of limited investigation (Le 
Roux et al. 2013) as very few studies have investigated SOI 
invertebrate and non-native plant interactions (Table 1 in 
Supplementary Material).

There is compelling evidence that habitat quality 
and composition strongly influence invertebrate assem-
blages and species richness on SOI (Crafford and Scholtz 
1987; Davies and Melbourne 1999; Barendse et al. 2002; 
Terauds et al. 2011; Errington et al. 2018). Often, specific 
plants or communities provide habitat and food for native 
SOI invertebrates (e.g. Hugo et al. 2004, 2006; Nyakatya 
and McGeoch 2008; Phiri et al. 2009; Greenslade et al. 
2011). Some endemic plants are particularly important—
for example Azorella selago cushions act as climatically 
benign, resource-rich refuges and support diverse inver-
tebrate communities (Barendse and Chown 2001; Hugo 
et al. 2004). Habitat specificity by invertebrate fauna on 
SOI is identified by some studies (e.g. earthworms and 
flies—Tréhen et al. 1985; weevils and spiders—Davies 
1973; Davies et al. 2011). Others show that many arthro-
pod taxa demonstrate broad habitat tolerances (Burger 
1985; Gressitt 1971; Convey et al. 1999; Hänel and Chown 
1998; Greenslade 2006).

The effect of non-native plants on insect assemblages 
varies among taxa (Gremmen et al. 1998 and references 
therein), but they can greatly reduce local invertebrate 
diversity (Gremmen et al. 1998, 2001). Gremmen et al. 
(1998) described impacts on both overall insect species 
composition and individual species population densities 
of micro-invertebrates and soil macroinvertebrates due 
to the increasingly dominant non-native grass Agrostis 
stolonifera on Marion Island. They showed that up to 30% 
of native invertebrate species were absent from drainage 
areas dominated by A. stolonifera, and that enchytraeid 
worm biomass declined in these areas. Only one other 
study (Chown and Block 1997) tested and demonstrated 
detrimental effects of non-native plant species on inver-
tebrates on SOI. This study demonstrated that the poorer 
nutrition absorption potential of the invasive Poa annua 

compared to native grasses affected the foraging dynamics 
of the native herbivorous beetle Hydromedion sparsutum 
on South Georgia, with implications for its body size and 
fitness. P. annua is the most widespread weed in the region 
(McGeoch et al. 2015). Despite the paucity of published 
data on the effect of P. annua on invertebrates from other 
SOI, detrimental effects on invertebrate taxa or communi-
ties are expected, especially where disturbance and grazing 
pressure by mammalian herbivores has encouraged spread 
of the grass (eg Macquarie Island, Scott and Kirkpatrick 
2008, 2013).

The extent of impacts due to non-native plants on SOI 
may take some time to be realised due to complicated inter-
actions with native and non-native plants and invertebrates, 
and associated lag times. For example, mutually beneficial 
relationships can form between non-native plants and non-
native invertebrates, including mutually-assisted dispersal 
(Barnes et al. 2006). Very few native plants on SOI are 
insect-pollinated—a consequence of the lack of native pol-
linating insect fauna (Convey et al. 2006a) and reflected in 
plant floral structures (Shrestha et al. 2016). Thus, the estab-
lishment of pollinating insects such as the hoverfly Eristalis 
croceimaculata and the blowfly Calliphora vicina on South 
Georgia, represent a novel ecological guild, aiding the seed 
set and dispersal of currently-localised non-native plants 
such as dandelions (Taraxacum officinale) that require polli-
nation (Convey et al. 2010). Moreover, the dandelions them-
selves are likely to have facilitated the spread of these pol-
linating flies (Convey et al. 2010). Several other non-native 
plants on South Georgia have, until recently, also lacked 
suitable pollinators (Barnes et al. 2006). In time, native 
plants on SOI may be outcompeted by non-native insect-
pollinated plants (Frenot et al. 2005, 2008) as new species of 
insect pollinators become established (Convey et al. 2010). 
Invertebrate communities on SOI reliant on native vegeta-
tion could be impacted, but this is yet to be tested.

Non‑native invertebrates

Non-native invertebrates on the SOI include flatworms, 
earthworms, moths, terrestrial crustaceans, predatory car-
abid beetles, parasitic wasps, slugs, isopods, spiders, book-
louse, flies, aphids, springtails, mites and more (Frenot et al. 
2005). The non-native insects total more than 180 species 
across the region (McGeoch et al. 2015). Most species are 
from families that include well-documented pest species 
worldwide—e.g. Thripidae, Aphididae, Noctuidae and Cal-
liphoridae (Annecke and Moran 1982; Roques et al. 2009). 
However, the composition of non-native species can vary 
between islands—for example, non-native springtails com-
prise 38% of the introduced fauna on Marion, compared to 
10% on South Georgia (Frenot et al. 2005). On some islands, 
non-native invertebrates represent the majority of terrestrial 
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species—60% on the Kerguelen archipelago (Frenot et al. 
2005), and 70% on Gough Island (Jones et al. 2003b).

A small number of introduced invertebrates are consid-
ered invasive on SOI, with the majority regarded as ‘per-
sistent’ (i.e. not expanding their range) and/or synanthropic 
(i.e. occurring in and/around research stations alongside 
humans) (Frenot et  al. 2005; Greenslade 2006; Convey 
2011). Some have naturalised with little apparent impact 
(Frenot et al. 2005), although this may change over time 
due to potential changes in temperature, nutrient availability 
and water availability (Crooks et al. 1999; Nielsen and Wall 
2013). Non-native invertebrates can change status from tran-
sient, persistent or synanthropic to invasive if environmental 
circumstances change in their favour (Chown and Avenant 
1992; Chown and Language 1994; Bergstrom and Chown 
1999; Frenot et al. 2005; Lebouvier et al. 2011). For example 
on Marion Island, the establishment of the diamond-back 
moth, Plutella xylostella, a globally significant crucifer crop 
pest (Crafford and Chown 1990), is thought due to recent 
warming in the region (Chown and Avenant 1992). Simi-
larly, the blowfly Calliphora vicina, repeatedly arrived but 
did not establish at Kerguelen Island until a temperature 
threshold was reached in the early 1970s, facilitating the 
completion of its life cycle, followed by a rapid increase in 
range (Lebouvier et al. 2011). C. vicina and the hoverfly 
Eristalis croceimaculata larvae are macrodetrivores. Their 
activity intensifies nutrient cycling naturally performed by 
microarthropod soil fauna and native insects, thereby alter-
ing soil nutrient availability and decomposition dynamics 
(Convey et al. 2010). Native flies on South Georgia such as 
Paractora trichosterna are likely outcompeted (Convey et al. 
2010), as has occurred to native flies on Kerguelen due to C. 
vicina invasion (Laparie et al. 2010).

Some invertebrate species introduced to SOI may impact 
terrestrial ecosystem structure and function (Chown et al. 
2008; Convey and Lebouvier 2009; Convey  et al. 2010; 
Lebouvier et al. 2011). Not only do non-native inverte-
brates often outcompete native species (Bergstrom et al. 
2006; Janion et  al. 2010), but by exploiting previously 
unutilised ecological resources or dominating unsaturated 
niches, new arrivals can experience little to no competition 
(Ernsting et al. 1999; Convey 2007; Smith 2007). Their 
establishment can significantly alter trophic complexity, 
nutrient turnover, native prey, resource availability and 
may assist the spread of other non-native species (Lee et al. 
2007; Greenslade et al. 2007, 2008; Convey and Lebou-
vier 2009; Convey et al. 2010). Examples include a new 
guild of pollinating flies (E. croceimaculata and C. vicina), 
which have established on South Georgia Island and two 
species of invasive, terrestrial crustaceans on Macquarie 
Island, which as macro-detritivores occupy an unsaturated 
trophic level. While the long-term effects of the crustaceans 
are largely unknown, it is likely that they will alter rates of 

soil nutrient turnover (Greenslade et al. 2008). There are 
relatively few naturally occuring invertebrate herbivores on 
SOI (Vernon et al. 1998). Thus, non-native aphids found 
at the Kerguelen archipelago that are sap-feeders, a guild 
nearly vacant on these islands, capitalise on plant resources 
previously unutilized (Hullé et al. 2010). At least one spe-
cies, Myzus ascalonicus, occurs in colones 2-7 larger on 
native plants than on non-native host plants (Hullé 2012). 
The parasitic wasp Aphidius matricariae (an aphid para-
site), is the only kind of species of this guild in the Marion 
Island ecosystem, and has rapidly expanded its range since 
its introduction in 2001 (likely by a single gravid female—
Lee et al. 2007). Its colonisation and spread is facilitated 
by an established non-native aphid (Lee and Chown 2016). 
Non-native, predatory carabid ground beetles on South 
Georgia Island and Kerguelen Island (Trechisibus antarcti-
cus, Oopterus soledadinus and Merizodus soledadinus), 
occupy a novel guild as arthropod predators (Ernsting et al. 
1995, 1999; Chevrier et al. 1997; Laparie et al. 2010; Leb-
ouvier et al. 2011). Through predation, T. antarcticus and O. 
soledadinus have reduced the abundance and increased the 
adult body size of the endemic herbivorous beetle Hydro-
medion sparsutum on South Georgia Island (Ernsting et al. 
1995). Larger adult body sizes in H. sparsutum increase as 
predation of juveniles by the invasive carabids increase, a 
direct response of both selection by the predator in favour of 
larvae with rapid growth rate and reduced competition for 
high-quality food for the survivors (Ernsting et al. 1995). 
Across the Kerguelen archipelago, M. soledadinus has stead-
ily increased its dominance in arthropod communities. It 
lacks competitors as it is the only predatory insect species 
(Laparie et al. 2010; Frenot et al. 2005). Since the 1990s, it 
has expanded its range from the introduction site to remote 
locations (including other islands in the archipelago) at an 
accelerating rate of colonisation (Chevrier et al. 1997), and 
dramatically increased in abundance (Laparie et al. 2010). 
M. soledadinus invasion has led to the near disappearance 
of its preferred prey, the native wingless flies Anatalanta 
aptera (Diptera: Sphaeroceridae) and Calycopteryz moseleyi 
(Diptera: Micropezidae) in some areas (Laparie et al. 2010; 
Lebouvier et al. 2011). In contrast, M. soledadinus on South 
Georgia only colonises a limited area (Ernsting 1993), is 
found in lower abundance, and has a much reduced rate of 
expansion (Brandjes et al. 1999), probably due to cooler 
annual temperatures than the Kerguelen Archipelago (Leb-
ouvier et al. 2011).

Non-native soil invertebrates compete directly with native 
species and alter nutrient turnover in soils (Hänel and Chown 
1998; Smith 2007; Smith and Steenkamp 1990, 1992a, b; 
Greenslade et al. 2008). Through competition and/or pre-
dation, invasive species can eventually lead to a decline in 
abundance or local extinction of native species that may play 
major roles in organic material decomposition (Greenslade 
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et al. 2007; Convey et al. 2011). For example, on Gough 
Island, the only indigenous terrestrial isopod, Styloniscus aus-
tralis, is abundant only in upland sites where the non-native 
terrestrial isopod Porcellio scaber is rare, and is rare where 
P. scaber is abundant in the lowlands (Jones et al. 2003b). 
Some of the non-native fauna on Gough Island, including 
worms (Ogliochaeta), P. scaber and a millipede, are the most 
abundant on the island (Jones et al. 2003b). The long-term 
effect of such a large biomass of macro-detritivores on Gough 
Island, in a system naturally lacking such species, is likely 
to considerably speed up organic nutrient cycling, affecting 
peat formation, and substantially changing floral and faunal 
assemblages (Jones et al. 2002, 2003b; Reynolds et al. 2002; 
Smith 2007, 2008). On Tristan da Cunha, introduced milli-
pedes and earthworms may similarly be impacting soil types, 
as native litter-decomposing invertebrates are relatively few 
(Holdgate 1966). Detritivores on Marion Island, including the 
European slug Deroceras panormitanum (also herbivorous), 
the chironomid midge Limnophyes minimus and P. scaber, also 
process considerable quantities of litter in competition with 
native species, and substantially alter nutrient turnover (Smith 
and Steenkamp 1992b; Hänel and Chown 1998; Slabber and 
Chown 2002; Smith 2008). L. minimus is estimated to ingest 
litter at a rate that is an order of magnitude more than that con-
sumed by the endemic flightless moth larvae Pringleophaga 
marioni, the primary native detritivore on the island (Hänel 
and Chown 1998). The relatively slow rate of litter processing 
by this native species is thought to represent a nutrient-cycling 
bottleneck that once released by non-native macro-detritivores 
will have implications for primary productivity and peat for-
mation in the island’s ecosystem (Smith and Steenkamp 1990; 
Hänel and Chown 1998; Jones et al. 2003c). The non-native 
slugs greatly exacerbate rates of nutrient mineralisation from 
litter and ratios of C:N and N:P released are different than 
for the native caterpillars on Marion Island (Smith and Steen-
kamp 1992a, b). This also ultimately affects peat nutrient qual-
ity, decomposition rates and primary production, which are 
important drivers of ecological succession (Smith 2007, 2008). 
If the nutrient-cycling caterpillars become replaced by non-
native slugs (which, unlike the indigenous caterpillar, are not 
palatable to mice), consequences for ecosystem structure and 
function are inevitable (Smith 2007, 2008). Though it may be 
difficult to predict cascading impacts of the non-native detriti-
vores, altered vegetation and soil properties will undoubtedly 
have implications for native invertebrate life.

Non‑native vertebrate impacts

Herbivores and Omnivores

Rabbits, cattle, sheep, corsican mouflon, pigs, goats and 
reindeer were introduced to SOI in the nineteenth century to 
either provide food for camps of seal-hunters or for farming 

(Headland 2012). Typically, herbivore introductions on SOI 
have led to major declines in vegetation cover, particularly 
of endemic megaherbs and large tussock grasses that are 
important habitat for invertebrates (Micol and Jouventin 
1995; Chapuis et al. 2004; Scott and Kirkpatrick 2008). With 
the reduction of some plant species through grazing, short 
grasses and herbs can thrive, associated with the expansion 
of grazing-tolerant non-native plants (Frenot et al. 2005), 
such as P. annua (Chown and Block 1997; Williams et al. 
2013). The largely detritus-based food webs of SOI, which 
are composed of weakly efficient detritivores (Tréhen et al. 
1990; Smith 2008), are further affected by the conversion of 
plant matter to herbivore dung rather than accumulated litter 
(Burger 1985; Tréhen et al. 1990).

Rabbits established on many SOI; however, most have 
been eradicated in recent times or died out (Headland 2012). 
Rabbits can reach plague proportions on these islands (e.g. 
Macquarie Island—Terauds et al. 2014) leading to drastic 
changes in vegetation (Convey and Lebouvier 2009; Scott 
and Kirkpatrick 2013; Whinam et al. 2014). The flow-on 
effects of vegetation loss can lead to soil exposure and ero-
sion (Scott 1988; Chapuis et al. 1994; Scott and Kirkpat-
rick 2008, 2013), degradation of waterways and associated 
freshwater invertebrate life (Marchant et al. 2011), as well 
as reduction of seabird nesting habitat (Chapuis et al. 1994; 
Copson and Whinam 1998). Reduction in seabird nesting 
habitat ultimately leads to fewer nesting seabirds. In this 
way, grazing-mediated declines in seabird densities alter 
the dynamics of terrestrial communities by reducing marine 
nutrient inputs that underpin vegetation growth, affecting 
nutrient turnover and soil integrity, with consequences for 
food webs and invertebrates (Anderson and Polis 1999; 
Maron et al. 2006; Smith 2008; Pisanu et al. 2011). Such 
drastic ecosystem changes occurred on Macquarie Island 
before rabbits were eradicated, where they caused consider-
able loss of biomass of vegetation such as tall tussock grass-
lands (dominated by Poa foliosa) and herbfields (dominated 
by Stilbocarpa polaris and Pleurophyllum hookeri). This 
led to degradation of seabird habitat, extreme habitat and 
edaphic modification, landscape denudation, and increased 
land-slipping and erosion (Copson and Whinam 1998, 
2001; Scott and Kirkpatrick 2008; Stevens et al. 2010), and 
resulted in substantial changes to invertebrate populations 
(Copson and Whinam 2001). This is especially the case as 
invertebrate richness is highest in vegetation communities 
that were impacted by rabbits (Davies and Melbourne 1999; 
Terauds et al. 2011; Whinam et al. 2014; Errington et al. 
2018). Rabbits have had similar impacts on the Kerguelen 
archipelago, causing erosion and rapid declines in some 
native plant species, which are often replaced by monospe-
cific communities of the less palatable, and increasingly 
dominant, Acaena magellanica (Holdgate 1966; Burger 
1985; Chapuis et al. 1994). Some studies have suggested 
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that the reduced range and abundance of unique SOI inver-
tebrate fauna is related to herbivore-induced disappearance 
of natural vegetation communities dominated by Pringlea 
antiscorbutica and Azorella selago (Holdgate and Wace 
1961; Holdgate 1966; Chapuis et al. 1994), but there are no 
empirical data to support these claims.

Livestock on SOI have caused severe damage to native 
vegetation (Holdgate 1966; Taylor 1971; Chapuis et al. 
1994; Seddon and Maloney 2003), leading to erosion, com-
paction, elimination of deep organic soils, the spread of non-
native plants and presumably, commensurate reductions in 
associated invertebrates dependant on intact habitat (Hold-
gate 1966; van Vuren 1992; Chapuis et al. 1994). Many 
herbivores prefer particular endemic plant species, caus-
ing large-scale alteration of plant community composition 
across a range of islands (e.g. Holdgate 1966; Taylor 1971; 
Campbell and Rudge 1984; Convey and Lebouvier 2009). 
Feral cattle, recently eradicated from Iles Amsterdam (Váňa 
et al. 2014), had major environmental impacts (Micol and 
Jouventin 1995; Convey and Lebouvier 2009). Monitoring 
following initial control fencing and cattle removal from half 
of the island showed some vegetation regeneration (Micol 
and Jouventin 1995), but there are no published data avail-
able that quantify either the initial impacts of livestock on 
invertebrates, or the benefits of recent livestock control on 
invertebrates. Pigs remain on Auckland Island where their 
effects have been described as ‘severe’ (Headland 2012). 
They eat large amounts of native vegetative matter, par-
ticularly megaherbs, and prey directly on annelids (anne-
lids—26% dry weight of stomach content), insect larvae, 
and amphipods (Challies 1975; Chimera et al. 1995). Eight 
of the ten species of annelids found on Auckland Island 
are endemic (Lee 1959). Whether any of these species are 
threatened with extinction as a result of pigs is unknown 
(Chimera et al. 1995).

Reindeer are extant on Iles Kerguelen and South Georgia 
(Courchamp et al. 2003), although they are near eradicated 
from South Georgia Island at the time of this publication. 
While feeding on Iles Kerguelen they turn over A. selago 
cushions (Chapuis et al. 1994), key invertebrate habitat 
(Phiri et al. 2009; Barendse and Chown 2001). Reindeer 
grazing and trampling impacts on South Georgia alter soil 
integrity and destroy large tracts of the dominant vegeta-
tion, the grass P. flabellata and herb A. magellanica, which 
are succeeded by the grazing resistant native grass Festuca 
contracta, and the grazing tolerant non-native grass P. annua 
(Vogel et al. 1984; Leader-Williams et al. 1987; Chown and 
Block 1997). Although the impacts of reindeer-mediated 
vegetation change have not been quantified at an invertebrate 
community level, some species-specific impacts have been 
documented (Vogel et al. 1984; Chown and Block 1997). 
One example is the increased frequency of sciarid flies in 
grazed areas (which are possibly non-native), likely due to 

the ability of their larvae to establish larger populations in 
deep soil and hardened substrates (a result of trampling—
Vogel et al. 1984). Another is reduced abundance of the 
primary decomposer perimylopid beetle (Hydromedion 
sparsutum), and increased frequency of their egg parasite 
Notomymar aptenosoma (Hymenoptera, Mymaridae) (Vogel 
et al. 1984). Furthermore, trampling may have facilitated a 
shift in the proportions of Collembola (major prey inver-
tebrates) and spiders (predators) found in pitfall traps—in 
ungrazed areas the ratio of invertebrates to spiders was 1: 
1.3, compared to 1: 0.82 in grazed areas (Vogel et al. 1984).

In general, suppression or extinction of vegetation that 
invertebrates rely on for food or shelter, strongly influences 
native invertebrate extinctions (Dunn et al. 2009). Although 
rodents are omnivorous, in our review we treat them as 
predators, given their severe direct impacts on invertebrates 
as prey. However, rodents on SOI can also affect seedling 
recruitment and vegetation communities through consump-
tion of seeds and plant material (Shaw et al. 2005; Cop-
son 1986), nesting (Barendse and Chown 2001; Phiri et al. 
2009), burrowing, sediment removal and erosion (Gremmen 
and Smith 1981; Eriksson and Eldridge 2014). These activi-
ties have consequences for invertebrates dependant on pre-
ferred plants or plant communities (Hugo et al. 2004; Phiri 
et al. 2009; St Clair 2011).

Predators

Native terrestrial mammalian predators are absent from SOI, 
therefore the introduction of non-native predators has led 
to severe impacts on a suite of native taxa, predominantly 
seabirds, that have evolved few defences (Courchamp et al. 
2003; Frenot et al. 2005; Convey 2011). These effects have 
provided the impetus for several eradication programs, both 
completed and planned (e.g. Angel and Cooper 2006; Rus-
sell 2012; Robinson and Copson 2014; Springer 2016). For 
invertebrates, the impacts of predatory mammals on SOI 
(such as rodents and cats) are both indirect and direct (Cop-
son 1986; Courchamp et al. 2003; Angel et al. 2009; St Clair 
2011; McGeoch et al. 2015). Rats and mice have caused 
extensive damage to SOI ecosystems, including impacts on 
invertebrate richness and diversity, exemplified by compara-
tive studies of invaded and uninvaded islands, such as those 
in the Falkland Islands (St Clair et al. 2011), Marion Island 
and neighbouring Prince Edward Islands (Crafford and 
Scholtz 1987; Chown and Smith 1993; Treasure and Chown 
2014; McClelland et al. 2018) and uninvaded Bollons and 
Archway islands, which are offshore from Antipodes Island 
(Marris 2000; McIntosh 2001; Russell 2012). Globally, there 
are well-documented impacts by rats on terrestrial communi-
ties, ecosystem properties, and other native taxa, particularly 
seabirds (Fukami et al. 2006; Towns et al. 2006; Jones et al. 
2008; Drake and Hunt 2009; Mulder et al. 2009; Wardle 
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et al. 2009; Pisanu et al. 2011). However, rat impacts on 
invertebrates are less frequently quantified (St Clair et al. 
2011). Towns et al. (2006) cite only nine examples of direct 
rat-invertebrate interactions in their global review of rat 
impacts, and only a few published studies directly measure 
these interactions for SOI (e.g. St. Clair et al. 2011; Pisanu 
et al. 2011). In general, rats on SOI are found to augment 
their largely plant-based diet, with large-bodied invertebrates 
such as caterpillars, annelids, beetles and weevils (Pye and 
Bonner 1980; Copson 1986; Pisanu et al. 2011; St Clair 
et al. 2011). St Clair et al. (2011) investigated the effects 
of rats on large-bodied invertebrates in the Falkland Islands 
(particularly the endemic Falkland camel cricket) across 37 
invaded, uninvaded and recently cleared islands. They found 
uninvaded islands had up to an order of magnitude more 
camel crickets than invaded or recently rat-free islands, but 
also that camel cricket populations recover quickly follow-
ing rat eradication. Alongside their plant diet preferences, 
the preferences of rats to predate on the most abundant and 
large bodied terrestrial invertebrates on SOI implicate them 
in species suppression and ecosystem transformation.

By contrast, the predation effects of mice on SOI inver-
tebrates are better documented. Eleven SOI have been 
invaded by mice and their predatory impacts are consider-
able (Angel et al. 2009), especially for invertebrate popula-
tions on Gough Island (Jones et al. 2003a, b, c), Guillou 
Island (in the Kerguelen archipelago) (Le Roux et al. 2002), 
Antipodes Island (Marris 2000), Macquarie Island (Copson 
1986) and Marion Island (Gleeson and van Rensburg 1982; 
Crafford and Scholtz 1987; Smith et al. 2002; McClelland 
et al. 2018). Where mice are the sole predator, their effects 
on invertebrates are typically greater, such as on Antipodes, 
Marion, and Gough islands (Angel et al. 2009; Russell 2012; 
McClelland et al. 2018). Furthermore, climate warming in 
the region underpins increases in mice biomass and further 
exploitation of invertebrate prey (McClelland et al. 2018). 
A good example is the 197.6-fold decrease in invertebrate 
biomass on Marion Island between 1976 and 2006 due to 
mice, or around 90% loss of biomass each year, linked to 
climate-driven mice population increases (McClelland 
et al. 2018). Mice predation is implicated in the extinction 
of island endemic invertebrate species on Antipodes Island 
(Marris 2000) and increases the extinction threat for several 
species on Gough Island (Jones et al. 2003a) and Marion 
Island (Crafford and Scholtz 1987; Rowe-Rowe et al. 1989; 
Angel et al. 2009; McClelland et al. 2018). Where mice are 
abundant they are responsible for localised extinction of 
invertebrates in lowland and coastal areas on SOI, restricting 
once abundant species to upland areas (e.g. Gough Island—
Jones et al. 2003b; Antipodes Island—Marris 2000). Large-
bodied invertebrates are more at risk to suppression or local 
extinction through rodent predation than smaller-bodied taxa 
(Chown and Smith 1993; Pisanu et al. 2011; St Clair 2011). 

Pronounced impacts of size-selective feeding are evident in 
changes to the size distribution of weevils on Marion (Treas-
ure et al. 2014), and is potentially responsible for the hybrid-
ization of two weevil species that may previously have been 
differentiated by size (Chown 1990; Grobler et al. 2006). 
Depending on the season and availability of preferred prey, 
mice can switch preferred food items (Copson 1986; Smith 
et al. 2002; James C Russell et al. (in review)). For example, 
on Antipodes Island, mice seem to exhaust their preferred 
invertebrate prey to the point of severe suppression or local 
extinction, before moving on to the next preference, thus sys-
tematically eating their way through the ecosystem (James 
C Russell et al. (in review)). Such extirpation of preferred 
invertebrate prey, particularly during winter on islands with 
elevated populations of mice as the sole predator, may be 
a driver behind mice switching diets to seabirds (James C 
Russell et al. (in review)), such as on Gough Island (Wanless 
et al. 2012; Dilley et al. 2015) and Marion Island (Jones and 
Ryan 2010). Through their dynamic dietary preferences, the 
above studies have shown that mice can drastically modify 
the structure of ecosystems on SOI.

Mice predation on invertebrates also alters overall eco-
system processes. Suppression of invertebrates influencing 
nutrient cycling and mineralisation, has profound impli-
cations for SOI ecosystems that are already nutrient poor 
(McClelland et al. 2018). Alteration of ecosystem processes 
by mice on Marion Island occurs through predation of a 
keystone nutrient-cycling species, the caterpillar of a flight-
less moth, P. marioni (Smith and Steenkamp 1992a; Klok 
and Chown 1998), as well as depletion of other invertebrate 
prey such as spiders, weevil larvae and weevil adults (Craf-
ford and Scholtz 1987; Rowe-Rowe et al. 1989; Chown et al. 
2002). The substantial reduction in the flightless moth cat-
erpillars, which are vital to nutrient supply for primary pro-
ducers, threatens to slow plant growth, reduce litter quality, 
potentially affect the formation of peat on the island, and 
alter vegetation success (Smith and Steenkamp 1990; Smith 
2008; Haupt et al. 2014).

Caterpillar declines are also linked to a declining popu-
lation of lesser-sheathbills (Chionis minor), whose over-
wintering diet is dependent on them (Huyser et al. 2000). 
This is a clear example of the cascading ecosystem effects 
of invertebrate impacts. Potentially similar effects have 
been documented on Gough Island, where two endemic 
brachtyperous moths (Dimorphinoctua goughensis and 
Peridroma goughi), which are key nutrient cycling species, 
are preferentially eaten by mice (Jones et al. 2002, 2003a). 
On Macquarie Island, before a successful rodent eradica-
tion, amongst a wide variety of invertebrate prey detected 
in 108 mouse stomachs, spiders were recorded in 67% of 
them (Copson 1986). Given that all three spider species on 
Macquarie Island are major predators of small invertebrates 
(Greenslade 2006), depletion of spiders by rodents likely 
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had flow on-effects in the ecosystem and the invertebrate 
community as small invertebrates prey were released from 
spider predation.

Indirect effects on invertebrates can occur through reduc-
tion of seabird populations due to rodent predation. Mice 
can prey-switch to seabirds as invert biomass falls in winter 
(Jones and Ryan 2010; Dilley et al. 2015), over time reduc-
ing seabird-driven marine inputs to the ecosystem and lead-
ing to soil impoverishment. Guano deposition by seabirds 
leads to increased cover, vitality and growth in plant com-
munities (Smith 1976, 1978; Erskine et al. 1998), which in 
turn support a disproportionately high biomass of inverte-
brate detritivores and herbivores compared with areas free 
of seabirds (Burger 1978; Crafford and Scholtz 1987). In this 
respect, seabirds act as ‘ecosystem engineers’, influencing 
the base of food webs (Sanchez-Pinero and Polis 2000; Jones 
2010; Russell 2012; Buxton et al. 2014). Thus, predation of 
seabirds on islands can reduce soil fertility (Fukami et al. 
2006; Wardle et al. 2009), affect vegetation recruitment and 
growth, litter composition and decomposition (Wardle et al. 
2007, 2009), and exert considerable multi-trophic, cascading 
effects in the terrestrial ecosystem (Croll et al. 2005; Fukami 
et al. 2006; Maron et al. 2006; Wardle et al. 2009; Mulder 
et al. 2009; Towns 2009). Rodent predation on seabirds can 
indirectly lead to reduced abundance of major orders of soil 
and above-ground invertebrates (Fukami et al. 2006; Towns 
2009). Furthermore, invertebrate food webs are smaller and 
less complex on islands not dominated by seabirds, lead-
ing to lower trophic-level redundancy and therefore lower 
ecosystem resistance (Thoresen et al. 2017). These cumula-
tive predator impacts have contributed to severe, sometimes 
permanent ecosystem alteration (Fukami et al. 2006; Mulder 
et al. 2009; Towns 2009; Wardle et al. 2009; Jones 2010). In 
light of these trends, cat eradication success on Macquarie 
and Marion Islands is predicted to have implications for their 
ecosystems beyond seabird population increase, including 
for invertebrates (van Aarde et al. 1996; Raymond et al. 
2011). Unexpected consequences of ecosystem change fol-
lowing predator eradication has also been observed, such as 
the expansion of a non-native springtail on Marion Island, 
as its preferred habitat, a native grass, responds favourably 
to recovery of seabirds and associated nutrients since cat 
removal (Treasure and Chown 2013).

Discussion

Southern Ocean Islands have been visited by scientists for 
over 100 years. Despite this, some islands and some taxa 
have received more attention than others (Chown et al. 
2008). The significance of such extensive studies in the 
region is valuable for invertebrate ecology. However, Table 1 
in Supplementary Material highlights that research gaps 

remain for some ecological processes, some taxa and some 
islands. For example, non-native species on SOI have wide-
ranging, sometimes severe, impacts on native invertebrates, 
either through direct mechanisms (e.g. predation and com-
petition) or indirectly, through habitat modification, changes 
in soil integrity and reduced nutrient subsides by seabirds. 
Yet there is still limited understanding of these impacts for 
invertebrates and empirical data remain scarce. Similarly, 
non-native plant species are common on most SOI, and in 
some instances widespread, yet to date, only three studies 
have investigated the response of invertebrates to non-native 
plant expansion. This is despite the fact that we know native 
invertebrates rely on native plant species for food, habitat 
and cover (e.g. Hänel 1999; Hugo et al. 2004, 2006) and flow 
on effects are likely for native invertebrates when non-native 
plants flourish. Furthermore, whilst numerous studies have 
referred to the likelihood of considerably altered invertebrate 
populations associated with extensive damage to soils and 
native vegetation by grazing mammals (e.g. Chapuis et al. 
1994, 2004; Copson and Whinam 2001; Courchamp et al. 
2003), few have supported their claims with empirical data. 
Island-wide modification of habitat and soil through graz-
ing and trampling have had wide-ranging ecosystem impacts 
(e.g. Courchamp et al. 2003; Chapuis et al. 2004; Frenot 
et al. 2005; Scott and Kirkpatrick 2008). The impacts on 
lower trophic levels, such as among invertebrates, are often 
implied (e.g. Chapuis et al. 1994; Micol and Jouventin 2002) 
but rarely quantified. Only two publications explicitly test 
the indirect effects of herbivore-induced plant community 
changes and activity on local associated invertebrates—
Vogel et al. (1984) through reindeer trampling effects, and 
Chown and Block (1997), via the effects of grazing-medi-
ated, non-native P. annua grass on native invertebrate fitness 
(Table 1 in Supplementary Material). More than 50 years 
have passed since Holdgate and Wace (1961) noted that 
elimination of native vegetation by rabbits on Kerguelen 
is accompanied by ‘the loss of the remarkable invertebrate 
fauna associated with it’, but there has been few, if any, 
comprehensive studies measuring invertebrate responses to 
non-native mammal grazing and vegetation damage on SOI. 
Even at a global scale, a lack of meaningful reporting on 
vegetation responses to herbivore eradication persists, which 
underpins a gap in our understanding for whole-ecosystem 
conservation benefits (Schweizer et al. 2016), including the 
fate of invertebrates. As a result, although eradications of 
mammalian herbivores have occurred on SOI for conserva-
tion benefits, to date we can only assume there are associated 
benefits to invertebrate communities.

While the 17 studies on invasive invertebrates in Table 1 
in Supplementary Material include a broad suite of 26 inva-
sive invertebrate species impacting on native fauna and eco-
systems, the 20 studies researching the impact of mammalian 
predators on native invertebrates on SOI is overwhelmingly 
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skewed towards studies of mouse-invertebrate interactions 
(17 of the 20 predator-related studies). Not only do mice 
studies dominate predator research for invertebrates, but the 
native invertebrate taxa studied is skewed heavily towards 
Coleoptera (beetles—21 times), and Lepidoptera (moths—
19 times). Within the Coleoptera studies, the weevils Ectem-
norrhinus spp. dominated (7 studies) and within the Lepi-
doptera studies flightless moths, Pringleophaga spp., were 
the primary focus (14 studies). Some of this research bias is 
due to the profusion of work on certain islands where these 
species exist. Marion Island, for example, is the site of 18 
of our 45 studies incorporating invertebrate and non-native 
species interactions, with the second most-studied island, 
South Georgia, producing only 8 studies. The Kerguelen 
archipelago, which has a suite of non-native mammal, plant 
and invertebrate species across numerous islands, is the 
subject of only six studies that investigate their impacts on 
native invertebrates. This summary highlights gaps in our 
knowledge for unknown or under-surveyed invertebrate spe-
cies on SOI that are impacted by invasive species, and also 
emphasises the lack of survey effort that persists for some 
SOI.

While it has been widely shown that non-native mam-
mals drastically alter SOI, our review also highlights the 
considerable impacts of non-native invertebrates on native 
invertebrates and island ecosystems more broadly. To date 
these impacts have been underestimated, and their long-
term extent is still largely unknown (McGeoch et al. 2015). 
Moreover, variation remains in the level of survey effort 
and knowledge among taxonomic groups (Convey et al. 
2006b). Despite these impacts and improved biosecurity, 
non-native invertebrates continue to arrive and establish 
on SOI (Hughes et al. 2011; Houghton et al. 2016; Phillips 
et al. 2017). Invasions are expected to increase as the cli-
mate warms (Chown et al. 2008; Chown and Convey 2016). 
Eradications of invertebrates are rare, although recently 
demonstrated to be possible—for example, a butterfly in 
the South Island of New Zealand (Department of Conser-
vation 2018); and ants on Tiritiri Matangi, New Zealand 
(Green (2019), and Lord Howe Island (Boland et al. 2011; 
Hoffmann et al. 2017). Nevertheless, the most cost-effec-
tive management strategy to reduce the impacts of invasive 
invertebrates on SOI is through improved biosecurity. For 
this reason, extending our knowledge of native and non-
native invertebrate interactions in SOI ecosystems is criti-
cal, particularly in identifying high-risk taxa and developing 
targeted biosecurity procedures. Such knowledge increases 
the likelihood that island managers can reduce or even avoid 
completely, incursions of taxa likely to establish, invade and 
have impact. Similarly, improving our understanding of how 
established invasive invertebrates interact with flora and 
other invertebrate in SOI ecosystems, and their influence 
on food webs and nutrient cycling, is critical to our future 

management of present non-native species and developing 
responses to future incursions.

We have a good understanding of rodent impacts on SOI 
invertebrates from a suite of studies (Table 1 in Supple-
mentary Material). However, the indirect consequences of 
seabird predation by rodents on above- and below-ground 
invertebrate communities and food webs can only be 
assumed from comprehensive studies of the seabird impacts 
on New Zealand islands (e.g. Fukami et al. 2006; Towns 
2009; Thoresen et al. 2017). To date, no published study 
has measured the consequences of predator-mediated seabird 
declines for native SOI invertebrates, although the topic is 
often discussed (e.g. by Crafford and Scholtz 1987 in rela-
tion to cat impacts on Marion Island and by Huyser et al. 
2000 for cats, mice, seabird invertebrate interactions). Fur-
thermore, although some comparative island studies docu-
ment rodent impacts on invertebrates on SOI (e.g. Crafford 
and Scholtz 1987; Marris 2000; McClelland et al. 2018), we 
still know little about how invertebrate communities respond 
once the target invasive species is eradicated. Furthermore, 
we have very little understanding of how these invertebrate 
responses to such management may influence recovery (or 
otherwise) of the whole island ecosystem. The study by St 
Clair et al. (2011) on the Falkland Islands showing camel 
cricket recovery following rat removal is an exception. How 
interactions between plants and native invertebrates may 
change in response to mammal eradications are also not well 
described (Angel and Cooper 2006).

There are several underlying reasons behind the limited 
monitoring of SOI invertebrate response to eradications to 
date. A key contributing factor is that conservation efforts 
have traditionally focused on large, charismatic megafauna 
(Samways 2007; Angel et al. 2009; Collen et al. 2012). 
Invertebrate surveys are time-consuming, and often consid-
ered too difficult, yielding enormous abundance and diver-
sity of species for which few specialists are available to pro-
cess and even less to identify (Ward and Larivière 2004). 
Finally, the dramatic speed of invertebrate responses (e.g. 
St Clair et al. 2011; Watts et al. 2011) mean that unless sur-
veys are planned and undertaken before and soon after eradi-
cations, nuanced changes can be difficult to identify. The 
consistent lack of invertebrate baseline data on SOI prior 
to non-native species introductions means that it is rarely 
clear which (or if any) species have experienced population 
declines or been lost altogether. In order to quantify change 
with confidence, invertebrate monitoring must begin with 
meaningful pre-treatment baseline surveys, accompanied by 
comprehensive and timely post-treatment monitoring.

The results of our review support and build on the assess-
ments and findings of McGeogh et al. (2015), and Jones 
et al. (2016) who suggest that the responses of invertebrate 
fauna on islands are under-reported and poorly understood. 
Although critical to ecosystem functioning and high in 
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diversity, invertebrates rarely generate interest in conser-
vation funding (Angel et  al. 2009). Furthermore, being 
inconspicuous, with cryptic habits, invertebrates are often 
overlooked in restoration programmes to date, even though 
they comprise the base of trophic pyramids and changes in 
their abundance and distribution can affect the whole eco-
system (Courchamp et al. 2003; Angel et al. 2009; Shaw 
et al. 2011). More recently, the importance of invertebrates 
has been recognised in SOI mammal eradication feasibility 
studies and planning processes, For example, invertebrate 
recovery was one of the objectives of the Macquarie Island 
Pest Eradication program (rodents and rabbits; Parks and 
Wildlife Service 2008), the Antipodes Island mice eradica-
tion (Elliot et al. 2015) and the proposed mice eradication 
on Gough Island (Parkes 2008). However, given the recent 
completion or near implementation of these programs (post-
eradication monitoring is currently underway on Antipodes 
and Macquarie Islands, pre-eradication monitoring is under-
way on Gough), meaningful data and reporting on species 
interactions and the responses of invertebrates to mamma-
lian predator and herbivore removal remain elusive. While 
these studies are yet to be completed (or published), they 
represent an important and necessary shift in thinking by sci-
entists, funders and land managers. As we have highlighted 
here, the impacts of non-native species on invertebrates are 
far too wide-ranging to be ignored any longer.
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