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Abstract
Understanding the factors that influence the diversity and composition of arthropod communities is a major topic in ecology. 
Canopy arthropod communities are a major constituent of biodiversity and show great variation in time and space according 
to different factors. Recently, genetic variation within tree species has attracted attention as a significant factor determining 
the diversity and composition of canopy arthropod communities. A major source of genetic and phenotypic novelty in plant 
species is interspecific hybridization, and therefore it is of interest to evaluate how this process affects the communities of 
associated organisms. In this study, we used microsatellite markers and geometric morphometry of leaf shape to analyze 
genetic and morphological variation in 45 individuals in a local hybrid zone between the oaks Quercus affinis and Q. laurina 
in Mexico. Individual trees were assigned to one of the parental species or to the hybrid category. The percentage of leaf area 
removed by herbivores was quantified in each individual and the canopies of five individuals of each categeory (two parental 
species and hybrids) was fogged with insecticide to assess the diversity and composition of arthropod communities. Results 
indicated that hybrid trees experience higher levels of herbivory than parental species and also sustain a higher abundance 
and richness of canopy arthropods. In general, our study supports the “hybrid susceptibility hypothesis” that predicts a higher 
incidence of associated arthropods on hybrid plants than in their parental species as result of the disruption of co-adapted 
gene complexes associated to resistance traits.
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Introduction

Tree canopies harbor great biodiversity that includes 
remarkably rich arthropod assemblages with several 
ecological functions, such as predators, pollinators, 
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herbivores, parasites and scavengers that determine canopy 
structure and function (Basset et al. 2003; Hamilton et al. 
2010). The diversity and composition of the arthropod 
communities in tree canopies have been associated with 
microenvironmental variables, plant architecture, verti-
cal foliage complexity, chemical defenses and nutritional 
quality of hosts (Whitham et al. 2006; Bouget et al. 2011; 
Ulyshen 2011). Intra- and inter-specific genetic variation 
of host plants is also known to affect arthropod diversity 
and levels of damage by herbivores (Morin 2003; Wade 
2003; Tovar-Sánchez et al. 2013; Maldonado-López et al. 
2015; Valencia-Cuevas and Tovar-Sánchez 2015; Pérez-
López et al. 2016; Cuevas-Reyes et al. 2018).

Natural hybridization of plants promotes new genetic 
combinations as a result of interbreeding between two dif-
ferent species, which can produce fertile or infertile indi-
viduals called hybrids (Rieseberg 1997; Martinsen et al. 
2001). From these new genetic combinations, novel plant 
traits can arise in hybrids, including morphological traits 
or growth and chemical defense characters (Fritz 1999; 
Whitham et al. 1999; González-Rodríguez et al. 2004; 
Tovar-Sánchez and Oyama 2004; Bangert et  al. 2005; 
Rehill et al. 2005; Cheng et al. 2011). Therefore, hybrids 
may represent a more extensive mosaic of resources and 
conditions available for arthropod communities associated 
to the tree canopy (Bangert and Whitham 2007; Tovar-
Sánchez et al. 2013; Valencia-Cuevas and Tovar-Sánchez 
2015). Consequently, hybrid zones provide an excellent 
scenario to study arthropod diversity and the response of 
herbivorous insects to the genetic variability of their host 
plants (Floate et al. 2016; Pérez-López et al. 2016).

Studies on plant–insect interactions in natural hybrid 
zones have suggested different general scenarios: (i) a 
higher arthropod density or herbivorous insects perfor-
mance on hybrid plants compared with the parental spe-
cies (“The hybrid susceptibility hypothesis”) (Fritz et al. 
1994; Whitham et al. 1994; Fritz 1999); (ii) lower herbi-
vore densities on hybrid plants than in parental species, as 
a result of higher levels of resistance (“The hybrid resist-
ance hypothesis”) (Boecklen and Spellenberg 1990); (iii) 
intermediate densities of herbivores in hybrid plants in 
comparison with parental species. It is based on the idea 
that hybrid resistance to herbivory is the result of additive 
inheritance traits of both parental species (“The additive 
hypothesis”) (Boecklen and Spellenberg 1990; Fritz 1999); 
(iv) similar herbivore density in hybrids with one of the 
parental species, either the more susceptible or the more 
resistant parent (“The dominance hypothesis”) (Fritz et al. 
1994; Fritz 1999); and (v) the creation of a “hybrid bridge” 
between host species that can facilitate host-switches by 
herbivores (“The hybrid bridge hypothesis”) (Floate and 
Whitham 1993; Pearse and Baty 2012).

When evaluating these hypotheses, it is important to 
consider features of the plant species such as leaf size and 
shape. These traits may differ between closely related spe-
cies and even within species, and several studies have shown 
positive correlations between leaf size and herbivory levels, 
which suggest that larger leaves are more attractive to herbi-
vores (Price 1991; Cuevas-Reyes et al. 2011; Garibaldi et al. 
2014). It is also known that morphological attributes like 
leaf teeth, lobes, spines, etc. may interfere with feeding of 
some insects and therefore impact herbivory levels (Brown 
and Lawton 1991). A second aspect to consider is arthropod 
ontogeny, since behavioral characteristics and ecological 
requirements can change along the developmental stages of 
these organisms, and therefore their preferences for particu-
lar food or habitats (Petersen et al. 2013; Haan et al. 2018; 
Quintero and Bowers 2018).

The genus Quercus (Fagaceae) is a highly diverse group 
of woody plants that supports a great diversity of canopy 
arthropods (Stone and Schönrogge 2003; Tovar-Sánchez and 
Oyama 2006a, b). Oak species are also known for a high fre-
quency of interspecific hybridization (González-Rodríguez 
et al. 2004; Tovar-Sánchez and Oyama 2004; Albarrán-Lara 
et al. 2010; Pérez-López et al. 2016) and depending of the 
introgression levels, the hybrids can express a continuum 
of leaf shapes (Whitham 1989). The frequent formation of 
hybrid zones between Quercus species in Mexico (González-
Rodríguez et al. 2004; Tovar-Sánchez and Oyama 2004; 
Albarrán-Lara et al. 2010; Peñaloza-Ramírez et al. 2010; 
Valencia-Cuevas et al. 2014) offers an excellent opportunity 
to analyze the effects of host–plant genetic variation on the 
composition and structure of canopy arthropod communi-
ties and their consequences on the variation of herbivory 
levels. Therefore, the objective of this study was to deter-
mine the changes of structure and composition of canopy 
arthropod community and the patterns of herbivory in the 
red oak hybrid complex Quercus laurina × Quercus affinis. 
We addressed the following questions: (i) what are the pat-
terns of genetic and leaf morphological variation in a local 
hybrid zone between Q. affinis and Q. laurina, (ii) are hybrid 
individuals more susceptible to consumption by herbivores 
than parental trees? (iii) Are there differences in the diversity 
and composition of canopy arthropod communities among 
hybrid and parental individuals? (iv) Does the frequency of 
the different arthropod guilds and ontogenetic stages vary 
among the two parental species and their hybrids?

Materials and methods

Study system

This study was conducted in Puerto del Aire, Veracruz 
state, Mexico (18°45′N; 97°30′W). In this site, Q. laurina 
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Humboldt et Bonpland and Q. affinis Scheidweiler occur 
in sympatry at an altitude of 2380 m. Both species are red 
oaks (section Lobatae; subgenus Quercus). This hybrid zone 
was previously characterized genetically and morphologi-
cally by González-Rodríguez et al. (2004). From this, based 
on morphology, in the field we selected individuals of the 
parental species, as well as hybrid plants for all analyses. 
Q. laurina is a tree 10–40 m high, with dark gray and finely 
cracked bark and elliptical-oblanceolate to lanceolate leaves. 
It occurs along the Sierra Madre del Sur and the Trans-Mex-
ican Volcanic Belt (Arizaga et al. 2009). Q. affinis is a tree 
that grows up to 25 m in height with elliptical to lanceolate 
leaves, attenuate or almost acuminate apex, bristle-tipped 
and cuneate base (Valencia 2004). It is distributed along the 
Sierra Madre Oriental and the western portion of the Trans-
Mexican Volcanic Belt (González-Rodríguez et al. 2004).

Genetic analyses

In the field, we selected in total 45 trees based on their phe-
notype (15 trees of Q. laurina, 15 trees of Q. affinis and 15 
hybrids). To verify this field assignment, individuals were 
genotyped using nine nuclear microsatellites (Ramos-Ortiz 
et al. 2016). Total DNA was extracted from 100 mg of leaf 
material, using a cetyltrimethyl ammonium bromide (CTAB) 
protocol. We used nine nuclear microsatellite loci (quru-GA-
OI01, quru-GA-OM05, quru-GA-OM07, quru-GA-IC08, 
quru-GA-2F05, quru-GA-2M04, quru-GA-IF07,) previously 
designed for Quercus rubra (Aldrich et al. 2002). Primers 
were multiplexed in three groups (OC11 and OA01/OI01, 
OM05 and OM07/IC08, 1F07, 2F05 and 2M04). For PCR 
reactions the QIAGEN Multiplex PCR kit (QIAGEN) was 
used. The final volume of each reaction was 5 µL, containing 
1 µL Multiplex PCR Master Mix, 2 mM each primer, deion-
ized water, and 20 ng DNA. The thermal cycling program 
was run on an Applied Biosystems thermocycler. The pro-
gram consisted of one cycle at 95 °C for 15 min and then 40 
cycles, each with denaturation at 95 °C for 30 s, annealing at 
55 °C for 90 s, and extension at 72 °C for 60 s. A final exten-
sion at 60 °C for 30 min was included. PCR products were 
diluted 1:1 in deionized water and run in an ABI-PRISM 
3100-Avant sequencer with the GeneScan-500 LIZ size 
standard included (Applied Biosystems). DNA fragment 
final sizing was performed using Peak Scanner software, 
version 1.0 (Applied Biosystems).

Morphometric analysis of leaves

To determine the differences in leaf morphology and size 
between parental species and hybrid plants, from the same 
individuals selected for the genetic analyses, we collected 
30 intact leaves with no apparent damage by herbivores. We 
obtained a digital image of each leaf and on each image, 32 

anatomical marks were placed with two additional marks 
as size reference. All morphological marks correspond to 
homologous loci, which are unambiguous and repeatable 
marks, representing the shape of the leaves (i.e. ‘landmarks’ 
sensu Bookstein 1991; Cuevas-Reyes et  al. 2011). We 
recorded the coordinates (x, y) of the 32 anatomical marks 
in each leaf image with the TpsDig program (Rohlf 1998). 
A Procrustes superimposition analysis was performed with 
the CoordGen6 program in the Integrated Morphometrics 
Package (IMP series: http://www.canis​ius.edu/~sheet​s/
morph​soft.html). We considered the average configuration 
of all leaves as reference and then, we calculated the shape 
variables (Procrustes distances) based on superimposition 
coordinates to eliminate the effect of leaf size (Cuevas-Reyes 
et al. 2011). Finally, a principal components analysis (PCA) 
was performed to evaluate the differences in leaf morphol-
ogy between the three groups of plants considering the con-
figuration of all leaves.

Herbivory measurements

Samples were collected at the end of the rainy season after 
the peak of herbivore activity. In the same individuals 
selected for the genetic and morphometric analyses (15 trees 
of Q. laurina, 15 trees of Q. affinis and 15 hybrids), we ran-
domly selected 30 leaves per tree from the top, middle and 
bottom strata of the canopy. Then, we took a digital image of 
each leaf to calculate the total leaf area and the area removed 
by herbivorous insects using the Image analysis software for 
plant disease quantification (Assess Image) (Cuevas-Reyes 
et al. 2013). Herbivory data were transformed as arc-sine 
square root (Cuevas-Reyes et al. 2018).

Canopy arthropod diversity

From the individuals selected for the genetic and morpho-
metric analyses, we randomly chose five trees of Q. lau-
rina, five trees of Q. affinis, and five hybrid individuals to 
determine canopy arthropod diversity. In each tree canopy, 
a Swingfog SN-50 Thermal Fogger was used to disperse a 
mix of synergized pyrethrins (30 g/L) and piperonyl butox-
ide (150 g/L). Fogging was carried out between 6:00 and 
7:00 h, for a period of 5 min. The arthropod collection was 
done 2 h after fogging using 8 funnel-shaped trays (1 m2 in 
area) installed under each tree canopy (Erwin 1983). After 
2 h of the first collection, a second collection was performed 
to capture the remaining arthropods using ropes to shake the 
canopy (Marques et al. 2006). The arthropods collected were 
stored in 95% ethanol and transported to the Agroecology 
Laboratory of Universidad Michoacana de San Nicolás de 
Hidalgo, for taxonomic identification. Arthropods were iden-
tified to family level, recording the ontogenic stage of each 
individual, and assigned to trophic guilds (Triplehorn et al. 

http://www.canisius.edu/~sheets/morphsoft.html
http://www.canisius.edu/~sheets/morphsoft.html
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2005). Considering that taxonomic knowledge is very poor, 
arthropod abundance and species richness were estimated 
using morphospecies criteria (recognizable taxonomic units) 
(Majer et al. 2000).

Statistical analysis

Multilocus microsatellite data were analyzed with the Struc-
ture ver. 2.3.4 software (Pritchard et al. 2000; Hubisz et al. 
2009) to assign individuals as either Q. laurina, Q. affinis or 
hybrids (Pérez-López et al. 2016; Cuevas-Reyes et al. 2018). 
In the analysis the admixture model with correlated allele 
frequencies without prior information was used. Since previ-
ous studies (Ramos-Ortiz et al. 2016) have revealed that two 
is the most probable number of genetic groups in this hybrid 
complex, the value of k (number of potential genetic groups) 
was set to vary only from one to three with ten replicate 
runs for each value of k. Each run consisted of a burn-in of 
105 steps and 106 iterations. The results were analyzed with 
Structure Harvester Web ver. 0.6.94 (Earl and von Holdt 
2011) to confirm that k = 2 was the most probable number 
of genetic groups, based on the calculation of Δk (Evanno 
et al. 2005). After these analyses, the inferred admixture 
coefficient of the individuals (q value) was used to assign 
them as Q. laurina (q ≥ 0.8), Q. affinis (q ≤ 0.2) or hybrids 
(0.19 ≥ q ≤ 0.79).

To describe the genetic diversity patterns in parentals 
and hybrids individuals, we calculated the mean number 
of alleles per locus (NA), mean effective number of alleles 
(NE), mean observed heterozygosity (HO), mean expected 
heterozygosity (HE), mean fixation index (F) and their 
respective standard errors using GenAlEx 6.5 (Peakall and 
Smouse 2006).

We tested for differences in leaf area consumed by her-
bivorous insects between plant groups (i.e. the two paren-
tal species and the hybrids). Since leaf area consumed may 
depende on leaf size (Cuevas-Reyes et al. 2011; Garibaldi 
et al. 2014), total leaf area was included in this analysis as a 
covariate. The analysis of covariance (ANCOVA) was per-
formed with the JMP ver. 8.0 software (SAS Institute). A 
LSMeans test was used for a posteriori comparisons among 
plant groups (SAS, Stokes et al. 2000).

The overall similarity level in the composition of canopy 
arthropod communities among the three plant groups was 
determined calculating a Morisita–Horn similarity matrix 
(Magurran 1988) and then representing the relationships 
with the unweighted pair-group method with arithmetic 
mean (UPGMA) dendrogram in the MVSP 3.2 software 
(Kovach 1999). Canopy arthropod abundance and species 
richness were compared among plant groups with a gener-
alized linear model (GLM) analysis using a Poisson error 
distribution and a log link function. Plant group was used 
as the independent variable and arthropod abundance and 

richness as the response variables. A LSMeans test was 
used for a posteriori comparisons. Additionally, a two-way 
GLM was applied to analyze the differences of abundance 
and arthropod richness among plant groups and arthropod 
orders, trophic guilds and ontogenic stages. We also used 
a Poisson error distribution and a log link function for this 
case (SAS, Stokes et al. 2000).

To analyze if the arthropod community composition is 
related to the genetic distance among individual trees, we 
calculated a Bray–Curtis distance matrix (Brower and Zar 
1984). The corresponding pairwise genetic distance among 
individuals was calculated in GenAlEx v. 6.5 (Peakall and 
Smouse 2006) with the method of Smouse and Peakall 
(1999). Mantel tests were performed between these two 
matrices to assess the significance of the relationship. We 
repeated the analysis separating arthropod communities by 
trophic guilds, excluding mycophages and hematophages 
because of the low number of individuals collected.

Results

Genetic analysis

The analysis in Structure assigned 24 individuals to Q. lau-
rina, 13 individuals to the hybrid class, and 8 individuals to 
Q. affinis (Fig. 1). There was general congruence between 
the field assignment and the genetic assignment, but sev-
eral of the trees classified in the field as Q. affinis actually 
belonged to the genetic hybrid class, and several of the 
morphologically intermediate individuals were genetically 
assigned as Q. laurina. In all the following analyses we used 
the genetic assignment to define the plant groups.

Genetic diversity levels were high and similar among the 
three plant groups, even though HE and HO were slightly 
higher in the hybrid group (Table 1). The fixation index (F) 
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was positive and similar in the three groups, what can be 
explained by the presence of null alleles, as has been previ-
ously reported (Ramos-Ortiz et al. 2016).

Morphometric analysis

We found consistent differences in leaf morphology among 
the plant groups. The principal component analysis distin-
guished the three groups: individuals of Q. laurina, indi-
viduals of Q. affinis and the hybrids. In the PCA, the first 
two axes explained 62.9% of the variance, with 44.9% for 
PC1 and 18.0% for PC2 (Fig. 2a). The degree of leaf shape 
variation based on the mean configuration of the coordinate 
superimposition analysis showed that leaves of Q. laurina 
were more elongated and wider in comparison with leaves 
of hybrids and Q. affinis (Fig. 2b). The three plant groups 
also differed significantly in total leaf area (F = 83.2; df = 2; 
P < 0.0001). Mean leaf area was significantly greater in Q. 
laurina (67.8 ± 1.6 cm2) than in hybrids (61.1 ± 1.1 cm2) and 
Q. affinis (47. 53 ± 1.05 cm2).

According to the ANCOVA, percentage of leaf area 
removed by folivorous insects differed significantly among 
the hybrids and the parental species (F = 17.73; df = 2; 
P < 0.001) without a significant effect of total leaf area 
on leaf area removed (P = 0.36). Parental species did not 
show significant differences in herbivory levels (Q. laurina: 
11.7 ± 3.6% and Q. affinis: 16.7 ± 4.2%) but hybrids showed 
on average twice the leaf area removed (29.5 ± 5.1%). We 
found that at least nine free-feeding insect species of differ-
ent families such as Coleoptera (Chrysomelidae), Orthoptera 
(Acrididae) and Lepidoptera (Geometridae) were responsi-
ble for most of the apparent damage of leaves.

General description of arthropod community

A total of 2217 arthropods were collected (703 in Q. lau-
rina, 929 in hybrids and 585 in Q. affinis), representing 520 

morphospecies (193 in Q. laurina, 203 in hybrids and 155 in 
Q. affinis), grouped in 15 orders (Table S1). The most abun-
dant orders were Coleoptera, Psocoptera and Hemiptera. The 
orders Araneae, Acari, Collembola, Hymenoptera, Diptera 
and Lepidoptera generally represented between 5 and 10% of 
arthropod individuals, while Orthoptera, Opilionidae, Thy-
sanoptera, Neuroptera, Blattodea and Pseudoscorpinidae 
were rare (< 5%). The Morisita–Horn index indicated that 
at the level of family, individuals of Q. laurina and hybrids 
had a 90% of similarity in their arthropod communities, 
while individuals of Q. affinis and hybrids presented 88% 
of similarity, and the similarity between Q. affinis and Q. 
laurina was 84% (Fig. 3). A complete description of compo-
sition, abundance and arthropod richness between parental 
and hybrids is described in Table S1.

Differences in arthropod community among plant 
groups

We found significant differences among plant groups in 
arthropod abundance (χ2 = 164.7, df = 2, P = 0.0001) 
(Fig. 4a) and morphospecies richness (χ2 = 17.2, df = 2, 
P = 0.0002) (Fig. 4b). Hybrid trees harbored on average 
higher arthropod abundance (186 ± 6.0 individuals) than Q. 
laurina (140.2 ± 8.2 individuals) and Q. affinis (87.7 ± 6.1 
individuals). A similar pattern was found with the mean 
richness of arthropod morphospecies, which was higher in 
hybrids (46.6 ± 3.3) than in Q. laurina (32.4 ± 2.1) and Q. 
affinis (24.7 ± 3.0).

The two-way GLM showed significant differences in 
arthropod abundance among plant groups (χ2 = 26.1, df = 2, 
P = 0.001) and arthropod orders (χ2 = 654.34, df = 15, 
P = 0.0001). Hybrids harbored higher numbers of individu-
als in the orders Collembola, Psocoptera, Acari and Ara-
neae than parental species. The order Blattodea was only 
present in hybrids. Q. laurina showed higher abundance in 
the orders Psocoptera and Orthoptera than hybrids and Q. 
affinis. Collembola, Acari and Psocoptera were the most 
abundant orders in Q. affinis (Fig. 5).

We found that all trophic guilds were more abundant in 
hybrid individuals than in the parental species (χ2 = 269.6, 
df = 5, P = 0.0001). Predators, phytophages and detriti-
vores–saprophages were the most abundant trophic guilds in 
the three plant groups, while mycophages and hematophages 
were the least abundant (Fig. 6a). In the same way, hybrids 
harbored the highest morphospecies richness in all trophic 
guilds (χ2 = 340.8, df = 5, P = 0.0001) (Fig. 6b). Finally, 
we found differences between ontogenetic stages in abun-
dance (χ2 = 162.3, df = 2, P = 0.0001) (Fig. 7a), and arthro-
pod morphospecies richness (χ2 = 16.8, df = 2, P = 0.002) 
(Fig. 7b). In both cases, adults had a greater abundance and 
species richness in comparison with nymphs and larvae.

Table 1   Measurements of genetic diversity in the hybrid oak complex 
Q laurina × Q. affinis in Puerto del Aire, Veracruz

Number of alleles (Na), effective number of alleles (Ne), Shannon’s 
Diversity Index (I), observed heterozygosity (Ho), expected hete-
rozygosity (He) and fixation index (F). Standard errors are shown in 
parenthesis

Genetic 
diversity

Q. laurina Hybrids Q. affinis

Na 12.5 (± 0.44) 12.3 (± 0.47) 11.4 (± 0.93)
Ne 8.8 (± 0.88) 8.2 (± 0.7) 8.6 (± 1.31)
I 2.3 (± 0.82) 2.3 (± 0.48) 2.2 (± 0.98)
Ho 0.6 (± 0.08) 0.64 (± 0.05) 0.6 (± 0.12)
He 0.8 (± 0.09) 0.9 (± 0.05) 0.8 (± 0.07)
F 0.3 (± 0.019) 0.3 (± 0.009) 0.3 (± 0.013)
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Fig. 2   Differences in leaf shape 
morphology between plant 
groups according to morpho-
metric analysis. a Scatterplot 
of PCA that show the differ-
ences in leaf shape morphology 
between individuals of the three 
plant groups. White circles: Q. 
laurina. White stars: Q. affinis. 
Black crosses: hybrids (b). Pro-
crustes superposition analysis 
of leaf morphology variation 
between the three plant groups: 
mean shape of coordinates 
of landmark configuration 
of leaves. White circles: Q. 
laurina. White stars: Q. affinis. 
Black crosses: Hybrids

Fig. 3   Dendrogram of 
Morisita–Horn similarity which 
shows the faunistic relation-
ships between canopy arthro-
pod assemblages based on the 
composition of families in the 
hybrid complex

Modified Morisita's Similarity
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The Mantel correlation test did not show a significant 
correlation between the genetic distance matrix and the 
arthropod community composition (r = 0.078, P = 0.29). 
Similarly, we did not find a significant correlation between 
genetic distance and community composition when separat-
ing trophic guilds (predators: r = 0.019; P = 0.4; parasitoids: 
r = 0.065, P = 0.3; phytophages: r = − 0.033, P = 0.4 and 
detritivores–saprophages: r = 0.044, P = 0.06).

Discussion

The genus Quercus is characterized by the formation of 
hybrid zones in several regions of Mexico (González-
Rodríguez et al. 2004; Tovar-Sánchez and Oyama 2004; 
Peñaloza-Ramírez et al. 2010; Pérez-López et al. 2016). 

In this study, we confirmed the hybridization between Q. 
affinis and Q. laurina in a local stand using both molecu-
lar markers and morphometric analysis of leaf shape. 
Our results showed that when the genetic assignment of 
individuals is used as reference, morphometric analyses 
also show clear separation with little overlap between 
Q. affinis and Q. laurina. Interestingly, hybrid individu-
als were similar to Q. laurina individuals in the first axis 
of the PC but were separated (although with some over-
lap) as a third morphological group in the second axis. 
These results may be explained by the presence of trans-
gressive segregation that involve the presence of differ-
ent phenotypes in hybrid plants in comparison with the 
parental species, by gene–environment interactions and 
dominance, resulting in the differentiation of the hybrid 
group with at least one parental species (Rieseberg et al. 

Fig. 4   Diversity patterns of 
canopy arthropods associated 
to the oak hybrid complex Q. 
affinis × Q. laurina in Puerto del 
Aire, Veracruz. a Differences 
in total arthropod abundance 
between the three plant groups. 
b Differences in total arthro-
pod morphospecies richness. 
Different letters above bars 
indicate statistically significant 
differences (P < 0.05) according 
to a GLM analysis followed by 
a LSMeans test
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2003; González-Rodríguez et al. 2004; Cuevas-Reyes et al. 
2018).

In particular, interspecific plant hybridization has been 
recognized as an important mechanism in plant speciation 
and diversification, and therefore, may have also conse-
quences for arthropod diversity and their food webs associ-
ated with the arboreal canopy (Fritz et al. 1994; Fritz 1999; 
Whitham et al. 1999; Dungey et al. 2000; Hochwender and 
Fritz 2004; Wimp et al. 2004; Bangert et al. 2005; Pérez-
López et al. 2016). We found that in the hybrid oak complex 
Q. affins × Q. laurina, hybrid individuals had higher abun-
dance and species richness of arthropods in comparison with 
parental species. In addition, we found that hybrid plants had 
higher levels of leaf area consumed by folivorous insects 
than their host parental species. This can be explained by 
the fact that genetic variation in hybrid plants potentially can 
generate new phenotypes (Hunter et al. 2004; Tovar-Sánchez 
and Oyama 2004) with intermediate and novel physiological 
and biochemical traits, such as secondary metabolites, nutri-
tional quality, phenological and morphological characters 
that represent potential niches to be colonized by arthropods 
(Floate and Whitham 1993; Arnold 1997; LeBoldus et al. 
2013; González-Rodríguez et al. 2004; Cheng et al. 2011; 
Pérez-López et al. 2016).

Furthermore, we found a high diversity of arthropod 
orders, guilds and ontogenic stages, coexisting in hybrid 
plants. Our results suggest that hybrids include a greater 
niche diversity that could represent more potential sites to 
be colonized by arthropods (Martinsen and Whitham 1994; 
Wimp et al. 2005; Fritz et al. 1994; Strauss 1994; Tovar-
Sánchez and Oyama 2006b). Particularly, guilds such as 
phytophages, predators, detritivores–saprophages and para-
sitoids presented higher abundance and species richness in 
hybrid plants. Performance and survival of phytophagous 

insects are regulated through “bottom-up” forces (host 
plant quality) (Lill and Marquis 2001; Sobek et al. 2009) 
and “top-down” forces (predators and parasitoids) (Price 
et al. 1980; Hartvigsen et al. 1995; Schönrogge et al. 2013). 
On one hand, several studies have indicated that host plant 
quality, which is influenced by genetic diversity, is posi-
tively related with herbivore diversity (Wimp et al. 2004; 
Tovar-Sánchez and Oyama 2006a, b, 2004; Tovar-Sánchez 
et al. 2013; Hunter et al. 2004) and a cascade effect occurs 
throughout the community, extendible to multiple trophic 
levels (Whitham et al. 2006). In other words, an increase in 
host–plant genetic diversity can promote an increase in their 
architectural complexity and nutritional quality (Bailey et al. 
2004) which in turn, favor a greater presence of herbivo-
rous insects (Bailey and Whitham 2006) and natural enemies 
such as predators and parasitoids (Sarfraz et al. 2008).

Alternatively, “top-down forces” have important influ-
ences on ecosystems through direct effects on the regula-
tion of phytophagous arthropod population densities and 
indirect effects propagated to primary producers (i.e., 
Marquis and Whelan 1994; Morin 1999; Van Bael et al. 
2003; Mäntylä et al. 2011). For example, predators that 
feed selectively on different competitively superior spe-
cies reduce the interspecific competition among surviving 
prey species enhancing the number of prey species that 
are able to coexist (Murakami and Nakano 2000). Specifi-
cally, arthropod communities associated with oak cano-
pies respond to predation by natural enemies as parasites 
or parasitoids (Tovar-Sánchez et al. 2013). In this way, 
the high diversity of predators and parasitoids found in 
our study could be explained by the great abundance of 
phytophagous arthropods. Detritivores presented a high 
abundance and richness in hybrid individuals. This guild is 
a key group within the ecosystem processes since they are 

Fig. 5   Difference in abundance 
of arthropod orders among the 
three plant groups
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responsible for degrading and ingesting the great majority 
of organic matter, together with fungi and microorganisms 
(Speight et al. 1999; Chapin et al. 2002).

Arthropod adults and larvae were the ontogenic stages 
with higher diversity in hybrid individuals. This differ-
ential diversity of ontogenic stages between hybrids and 
parental individuals could indicate a preference of the 
arthropods in relation to the choice of their host plants; 
since the vast majority of the arthropods spend much of 
their life cycle associated with plants, either using them 
as food resources or shelter to carry out their life cycle 
(Southwood 1973). Therefore, a greater diversity of onto-
genic stages may indicate that arthropods are able to 
recognize changes in the plant phenotype (consequence 
of genotypic variation) resulting from hybridization 
processes.

Overall, our results support the “hybrid susceptibil-
ity hypothesis” (Fritz et al. 1994; Whitham et al. 1994; 
Fritz 1999) also called the “hybrids-as-sinks hypothesis” 
that predicts a higher incidence of herbivorous insects or 
arthropods on hybrid plants than in their parental spe-
cies as result of the disruption of co-adapted gene com-
plexes associated to resistance traits (Whitham 1989). 
Our results agree with other ecological studies that have 
shown more herbivore diversity or higher herbivore per-
formance or fitness on host hybrid plants than in parental 
species (Whitham 1989). The genetic structure of the Q. 
affinis × Q. laurina hybrid complex significantly affects 
arthropod diversity and herbivory patterns by folivorous 
insects, increasing in the hybrid plants. This result sug-
gests the appearance of new niches that can potentially 

Fig. 6   Comparison among 
the three plant groups in a 
abundance of canopy arthropod 
guilds, and b species richness 
of arthropod guilds. Differ-
ent letters above bars indicate 
statistically significant differ-
ences (P < 0.05) according to 
a two-way GLM followed by a 
LSMeans test
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generate an increase in arthropod diversity in hybrid 
zones, making them important sites of biological activity 
in terrestrial ecosystems. Hybrid zones have been already 
described as important centers of arthropod diversity 
(Whitham et al. 1999; Tovar-Sánchez et al. 2006a, b) and 
also microorganisms (Strauss 1994; Whitham et al. 1999). 
Considering that oak species present a high frequency of 
hybridization, they are very important reservoirs of canopy 
arthropods and potential sites to analyze ecological and 
evolutionary process of multiple trophic levels.
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