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Abstract Bees ensure 35 % of global food production,

but this service is endangered due to several threats.

Declines in bumblebee populations (genus Bombus) have

been reported worldwide. Bombus bellicosus is one of the

rare cases of reported threatened bumblebees in South

America. It was once widespread in southern Brazil’s

grasslands until the 1960s. During that time, that area

underwent increasing land use which led to a decrease in

bee abundance and richness, and to local disappearance of

B. bellicosus. Climate change is also believed to cause

declines in the abundance of B. bellicosus. Here we used

species distribution models to assess potential effects of

climate changes on the distribution of B. bellicosus in

southern Brazil, considering both current and future cli-

mate scenarios. Our results show that the suitable climatic

conditions for B. bellicosus will retreat southwards. A wax

cover inside its nests is usually related to Bombus species

inhabiting cooler climates. This cover enables the mainte-

nance of higher temperatures inside the nest and may be

deleterious for the species under future warmer climates.

Continuously growing land use is the second major threat

to this pollinator. The results presented here may eventu-

ally provide theoretical grounds and enable practical con-

servation actions for B. bellicosus protection in South

America, especially given the potential adverse effects of

climate changes for this species.
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Introduction

Bees are the main group of animal pollinators and ensure at

least 35 % of global food production (Klein et al. 2003;

Kremen et al. 2007; Klatt et al. 2014). The pollination of

crops and wild plants by animals represent one of the

ecosystem services that are at risk due to fast and growing

anthropogenic changes (Steffan-Dewenter et al. 2005;

Biesmeijer et al. 2006; Aizen and Harder 2009; Potts et al.

2010). The main factors determining recent environmental

changes and, consequently, bee’s decline worldwide, are

land use and climate change (Travis 2003; MEA 2005;

Tylianakis et al. 2008). Jointly, these factors may cause

extinctions, shifts in species ranges, and changes in spe-

cies’ ecological and phenological events (Walther et al.

2002; Parmesan and Yohe 2003; Parmesan 2006; Tyli-

anakis et al. 2008).

Population declines are well documented for honey bees

as well as for bumblebees (genus Bombus), especially in

Europe and North America (Williams and Osborne 2009;

Bommarco et al. 2012; Colla et al. 2012; Bartomeus et al.
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2013). Bumblebees are effective crop pollinators (Garratt

et al. 2014) and the main factors responsible for the

observed population declines are shortage of food sources

and nesting sites due to habitat loss (Goulson et al. 2008).

Pesticides (Thompson 2001; Whitehorn et al. 2012) and

competition with introduced honeybees (Thomson 2004),

or other bumblebee species (Morales et al. 2013), also exert

a negative influence in bumblebee populations. A combi-

nation of these factors may also be a possible explanation

for the observed decreases in Bombus abundance (Winfree

et al. 2009; Bartomeus et al. 2013). Another reported factor

that causes vulnerability in bumblebee populations is the

low genetic diversity related to its social behaviour

(Chapman and Bourke 2001; Ellis et al. 2006). However,

the existence of a relationship between social behaviour

traits and observed abundance declines of social insects is

still controversial, since for some authors it exists (Winfree

et al. 2009) and for others it does not (e.g. Bartomeus et al.

2013), or depends on environmental disturbance affecting

the species (Williams et al. 2010).

So far, bumblebee declines in South America have gone

unnoticed until Bombus bellicosus Smith, 1879 was

reported to be locally extinct in the Brazilian state of Pa-

raná, Southern Brazil (Martins and Melo 2009). Also

Bombus dahlbomii Guérin, 1835 was reported as being

replaced by the invasive species Bombus terrestris (Lin-

naeus, 1758) in Chile and Argentina (Morales et al. 2013).

B. bellicosus is a surface ground-nesting bee, which

requires only soil and plant detritus to build its nest (Varela

1992a, b). Females of B. bellicosus cover their nest cavity

with a wax layer—possibly as a protection against cold

temperatures. This is a unique trait among tropical and

subtropical Bombus that links B. bellicosus to temperate

and sub-temperate climates (Sakagami et al. 1967a). The

original known distribution of B. bellicosus ranges from

latitude 2446’S in southern Brazil up to Uruguay and

northern Argentina (Martins and Melo 2009), always

associated with native grasslands (Moure and Sakagami

1962).

Bombus bellicosus was the dominant native bee species

in Paraná’s first plateau, southern Brazil, until the 1960s

(Sakagami et al. 1967b; Sakagami and Laroca 1971). Since

then, this region underwent intense land use by urbaniza-

tion and/or agriculture, leading to a general local decrease

in bee abundance and richness and to disappearance of B.

bellicosus (Martins and Melo 2009; Martins et al. 2013).

Despite the visible effect of intense land use in the past four

decades, this species still survives in agricultural patches in

more southern regions (Martins and Melo 2009). In Eur-

ope, land cover together with climate change influenced

both richness and local abundance in bumblebees (Herrera

et al. 2014). This leads us to question whether its disap-

pearance in the northern limit of its distribution in southern

Brazil was caused only by habitat loss or if climate change

may have also played an important role in the species

disappearance from its northernmost occurrence limit in

Brazil. In South America, range shifts and species losses

caused by climate change have been predicted for different

groups: Atlantic forest trees (Colombo and Joly 2010),

amphibians (Lemes and Loyola 2013), marsupials (Loyola

et al. 2012) and moths (Ferro et al. 2014).

However, information on many life-history features of

B. bellicosus and on effects of environmental changes on

its natural habitats (the Hutchinsonian shortfall; Cardoso

et al. 2011) are lacking. Such absence of basic biological

data regarding B. bellicosus occurs in parallel with a lack

of broad scale quality data on distribution (the Wallacean

shortfall; Whittaker et al. 2005), a knowledge gap observed

for many other insect species (Diniz-Filho et al. 2010). The

Wallacean shortfall is an undeniable obstacle hindering the

assessment of insect species under conservation biogeog-

raphy frameworks especially when we think of species

conservation in broad scales (Whittaker et al. 2005; Diniz-

Filho et al. 2010; Cardoso et al. 2011) and is an important

motive for continuous field surveys to assess insect species

distributions (Diniz-Filho et al. 2010).

A possible alternative to fully consider insect distribu-

tions and transcend the Wallacean shortfall in broad-scale

studies is to use species distribution modelling (SDMs).

Usually, these methods relate modelled occurrences of

observed species with environmental variables of the

known sampling sites to predict new areas suitable for its

occurrence (Guisan and Zimmermann 2000; Kearney

2006). These techniques have been employed before to (1)

determine insect species’ distributions and inform suitable

areas for future surveys (Silva et al. 2013, 2014), (2) pin-

point modelled species rich areas uncovered by the avail-

able protected areas network (Nóbrega and De Marco

2011), and (3) to evaluate the effects of future climate

changes on species distributions (Loyola et al. 2012; Lemes

and Loyola 2013). Considering this context, we used SDMs

to address the potential effects of climate change in dis-

tributions of B. bellicosus in southern Brazil considering

both current and future climate change scenarios.

Materials and methods

Occurrence of Bombus bellicosus

We obtained a total of 303 records of B. bellicosus

occurrence from (1) literature records; (2) the online

datasets: CRIA’s Species Link (http://splink.cria.org.br),

Global Biodiversity Information Facility (http://www.gbif.

org), Discover Life Bee Species Guide (http://www.dis

cover-life.org), World Checklist (Ascher and Pickering
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2014); and (3) museum collections (see Supplementary

Material). We used Google Earth (Google Inc. 2013) to

acquire approximate geographical coordinates from

downtown of each city near sites where B. bellicosus

occurred, when lacking a precise geographical information.

We assembled 171 unique occurrences to be used in the

modelling procedures (grid cell resolution of 2.5 arc-

min & grid-cells with sizes of 0.041� in the tropics; see

below). Figure 1 shows the spatial distribution of all

unique B. bellicosus occurrences we obtained.

We used all occurrences to model the potential distri-

bution of B. bellicosus, including the sites mentioned by

Martins and Melo (2009), where the species were observed

after the early 1980s, for two reasons. At first, as we pre-

viously mentioned, Wallacean shortfalls severely affect

insect distributional data elsewhere, especially in tropical

regions (Diniz-Filho et al. 2010; Kamino et al. 2011). If we

were to assume the occurrence records only sampled after

1980 were the most reliable distributional information on

the species to infer its distribution (a progressive data

quality measure, since Bombus queens usually live for less

than 1 year; Michener 2007), nearly 80 % of the dated

occurrences (*290 out of the total 303) would be missing

(Figure S1A). Additionally, much of the species known

distribution would be disregarded (Figure S1B). A higher

number of occurrences may eventually add just a small

amount, or even reduce, models’ accuracy (Stockwell and

Peterson 2002). Still, we are dealing with a species

potentially targeted for conservation purposes, so a higher

number of known occurrences will provide a larger amount

of areas which may be relevant for estimating its future

distribution. The second reason for using all occurrences

was that in preliminary tests we carried out, even if we

removed the sites where the species is no longer observed,

the same areas were still predicted as being suitable for the

occurrence of B. bellicosus.

Environmental data, principal component variables,

and modelling procedures

A summary of all methods of analysis and input data are

presented in Fig. 2. For the current scenario, we used the

Fig. 1 Bombus bellicosus

geographical distribution. The

map shows the around 170

points of occurrence for B.

bellicosus in southern South

America, sampled from

literature and museum

collections, which are used as

input distribution for all the

modelling approaches. Thick

lines delimit South American

countries and thin lines delimit

provinces or states of each

country
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19 environmental variables available from the WorldC-

lim’s dataset (http://www.worldclim.org/current, Hijmans

et al. 2005). We used a Principal Components Analysis

(PCA) on a correlation matrix, to derive 19 principal

components (PCs hereon), from which the first seven were

used as our final environmental layers (98 % of all original

climatic variation; Table S1). We obtained the same 19

variables for the year 2080 for three different Atmosphere–

Ocean General Circulation Models (AOGCMs; CCCMA-

CGM2, CSIRO-MK2.0, and UKMO-HADCM3) from

CIAT (http://ccafs-climate.org) considering both optimistic

and pessimistic emission scenarios (B2a and A2a, respec-

tively). Then, we projected the linear combinations of all

19 PCs obtained for the current scenario into each different

future AOGCM scenario. We also used the first seven PCs

obtained for each future climatic scenario in the modelling

procedures to predict the future distribution of B. bellico-

sus. Using PCs to predict species distribution is recom-

mended to reduce collinearity among environmental

variables, and to avoid model overfitting, which may result

in biologically unreliable species potential distributions

(Jiménez-Valverde et al. 2011; Serra et al. 2012; Silva et al.

2014).

Given the uncertainty involved with SDMs (Barry and

Elith 2006; Diniz-Filho et al. 2009; Rocchini et al. 2011),

we evaluated B. bellicosus’ distributions using three dif-

ferent modelling algorithms: (1) Maximum Entropy (Phil-

lips et al. 2006; Phillips and Dudik 2008) implemented in

Maxent (Phillips et al. 2006); (2) Support Vector Machines

(SVM; Schölkopf et al. 2001; Tax and Duin 2004); and (3)

Mahalanobis distance (MAHAL; Farber and Kadmon

2003) implemented in open modeller desktop (Muñoz et al.

2011). The later algorithm is simpler and usually needs

presence-only data to predict the potential distribution of

the targeted species. Meanwhile, Maxent and SVM are

artificial intelligence algorithms that are more complex and

tend to better predict the known/true distribution of the

target species (Rangel and Loyola 2012).

We used 50 subsets of occurrences of B. bellicosus,

divided into 70 % training and 30 % testing subsets to,

Fig. 2 Flowchart representing stages of analysis in this study. The

flowchart represent the stages of analysis, methods employed

(algorithms), source of climatic data, and data inputs used in the

distribution modelling for Bombus bellicosus current and future

distribution under climate change
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respectively, produce the potential distributions and eval-

uate them, considering the current and all future climatic

scenarios. B. bellicosus is a potentially targeted species for

future practical conservation actions. Thus, we considered

the ROC threshold to cut the modelled suitability matrices

into presence/absence maps. This threshold balances both

omission and commission errors and assures higher pre-

diction rates than other thresholds usually considered in

modelling species distribution (Liu et al. 2005; Barbet-

Massin et al. 2012). We used true skilled statistics (TSS

hereafter; Allouche et al. 2006), a threshold-dependent

statistics which varies from -1 to 1, to assess models’

performance. Negative or near zero TSS values represent

distributions which were not better than a random distri-

bution, while values near one represent a perfect agreement

between the observed and the modelled species’ distribu-

tion in current climatic scenarios (Allouche et al. 2006).

We produced a total of 1,050 distribution maps for B.

bellicosus, for both current (n = 150) and future scenarios

(n = 900, 450 for each). We used both frequency maps

(Araújo and New 2007) and mean ensemble distributions

of all 50 potential distributions obtained in each climatic

scenario (current, optimistic and pessimistic future climatic

conditions) to represent the species’ final potential distri-

butions in each combination of algorithm and AOGCM

used. Additionally, we also show mean consensus distri-

bution for the species in each one of the three climatic

scenarios considered (current, optimistic, and pessimistic

future). This ensemble method is considered one of the

most reliable to determine the potential distributions of

species from different modelling algorithms (Marmion

et al. 2009).

Finally, we assessed the IUCN’s World Database on the

Protected Areas website (http://protectedplanet.net/) to

obtain the South American reserve network (categories

ranging from I to IV & strict reserves). Then, we overlaid

the South American network of protected areas (PA

hereon) onto the potential distributions of B. bellicosus to

evaluate its current and future conservation vulnerability

under different future climatic scenarios.

Results

The modelled distributions for B. bellicosus had good

prediction rates overall. The TSS values generally reached

values higher than 0.70 (0.788 ± 0.038; mean ± SD),

which indicates a good model fit (MAX 0.798 ± 0.054;

MAHAL 0.779 ± 0.023; SVM 0.787 ± 0.028). In the

current scenario, regions extending from southern Brazil,

Uruguay, and southeastern Paraguay, up to central

Argentina were always predicted as suitable for B. bellic-

osus occurrence. This suitability occurred regardless of the

inherent uncertainty and variance of both the SDMs and the

AOGCM models considered, as shown in the frequency

maps and consensual distributions (Fig. 3). The more

restricted distribution obtained for the current scenario was

mainly determined by the consensual distribution obtained

with the SVM algorithm (Fig. 3).

Our resulting distribution of B. bellicosus for the future

scenarios showed a clear trend despite intrinsic differences

of the considered algorithms (AOGCMs, and the emission

scenarios): the suitable climatic conditions observed for B.

bellicosus in the present will retreat southwards, regardless

of the climate scenario and algorithm considered (Fig. 3).

We observed the same trend in the consensual distributions

produced by each combination of modelling algorithm and

climatic scenario. According to these combinations, B.

bellicosus may occupy areas ranging from the southern

Brazilian state of Rio Grande do Sul, Uruguay, and central/

south Argentina. Nonetheless, we also predicted the

occurrence of a disaggregated patch of suitable landscapes

for southern Brazilian states (Paraná, Santa Catarina, and

Rio Grande do Sul), where grid cells had average altitudes

of 675 ± 305 (mean ± SD) meters above sea level, at least

for the distributions produced by both Maxent and

MAHAL. The models generated for the future distributions

with SVM algorithms did not produce such fractioned

distribution patch in southern Brazil. When we consider the

ensemble distributions, suitable areas for B. bellicosus near

the Andean ridge may also be observed, although in a

smaller frequency for the distributions of B. bellicosus

produced by the current climatic scenario (Fig. 3). Con-

sidering the current, pessimistic and optimistic future

potential distributions obtained with all different modelling

algorithms, B. bellicosus is expected to occur in some of

the available South American protected areas (Fig. 4).

Nonetheless, southern protected areas may provide better

refuges than northern ones in both future and potential

climatic scenarios.

Discussion

Climate change may be a key factor for the southward

retraction of B. bellicosus distribution under future climate

change scenarios, as shown by our potential models. The

current PA network in South America will be able to

protect at least some segments of B. bellicosus potential

future distributions. Models of future distribution for other

bee species also show the loss of suitable areas in future

climate change scenarios (Giannini et al. 2012). Climate

change in the next 50 years is pointed out as a major factor

in forecasts of distribution range changes for Atlantic forest

trees (Colombo and Joly 2010), amphibians (Lemes and

Loyola 2013) and marsupials (Loyola et al. 2012). For
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South American moths, climate change will force range

shifts and reduce the conservation effectiveness of some

protected areas, even leading 4 % of all analysed species to

extinction (Ferro et al. 2014). The bee fauna (bumblebees

included) from this region, as they are also dependent on

the same environmental variables, may also show similar

patterns upon future climate change scenarios.

According to our potential distribution models, the

center of the original distribution of B. bellicosus, near

Buenos Aires, Argentina (Abrahamovich et al. 2004), will

be still suitable for the species in the future. Declines on

bumblebee populations on the border and its persistence in

areas closer to the center of their distribution was also

observed in other species (Williams et al. 2007, 2009).

Fig. 3 Bombus bellicosus current and future distribution in southern

South America. The figure shows three different modelling

approaches based on the modelling algorithms: Mahalanobis distance,

Maxent and SVM. Frequency and consensus maps are shown. Current

and future scenarios were based on the 19 environmental variables

from the WorldClim dataset. The future climate modelling variables

were based on different Atmosphere Ocean General Circulation

Models (AOGCMs) for the years 2080 (CCCMA-CGM2, CSIRO-

MK2.0, and UKMO-HADCM3), considering both optimistic and

pessimistic emission scenarios (B2a and A2a, respectively)
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Many studies show the vulnerability of species in the

boundaries of their distributions, especially regarding cli-

mate change (Parmesan 2006). Climate is the main factor

determining the boundaries of species distributions. It may

decrease the fitness of marginal populations (Hoffmann and

Blows 1994), and limit the bees’ ability to adapt to

potential climate change scenarios (Bridle and Vines

2007). However, some intrinsic biological traits related to

B. bellicosus may also determine how it will behave under

future climate changes.

The presence of a wax cover in nests of B. bellicosus,

unlike other tropical and subtropical species, is a biological

trait that links this species to temperate climates (Sakagami

et al. 1967a; Hines et al. 2007), and allows their nests to

maintain higher temperatures, especially during cold sea-

sons. However, under future climate change scenarios and

increasing environmental temperatures, this wax layer may

eventually cause severe temperature increases inside nests

of B. bellicosus. Temperature is a very important envi-

ronmental characteristic for the development of all insect

species (Chown and Terblanche 2006). High temperatures

negatively affect the development of insect broods (Polak

and Tomkins 2013). In the future, both vitality and strength

of nests of B. bellicosus may decrease, given the expected

temperature increases under future scenarios of climate

change.

There is solid evidence in the literature that some

invertebrate species may not cope with plant species phe-

nological changes (Root et al. 2003; Hegland et al. 2009).

Consequently, the available resources available for

pollinator insect species during the most important period

of their developmental stages may eventually decrease

under climate warming, causing considerable problems to

insect pollinators (Durant et al. 2007), especially for spe-

cialized plant-pollinators interactions (Schweiger et al.

2012). In some cases, plant species phenological advances

may not cause significant problems to the insect that are

dependent on them (Bartomeus et al. 2011). However, the

role of plant species phenological changes on the future

distribution of B. bellicosus may be of a smaller impor-

tance, as it is a generalist species (Arbulo et al. 2011)

which visits more than 60 different plant species (Martins

and Melo 2009). Consequently, eventual phenological

changes of South American plant species undergoing cli-

mate change, as already reported elsewhere (Root et al.

2003; Parmesan 2006), will probably not affect the per-

sistence of B. bellicosus in the considered area.

Some studies also question the association between

climate change and declines in bumblebee populations

(Williams and Osborne 2009) and link population declines

mainly to habitat loss (Fitzpatrick et al. 2006). Other key

factors, such as introduced species, pesticides and patho-

gens, are also claimed to have an important effect on

bumblebee populations (Goulson et al. 2008). All these

factors cannot be discarded in the local extinction of B.

bellicosus, especially because intense land use and the

increase of urban matrixes have been proved to influence

the observed population decline for many bee species,

including B. bellicosus in southern Brazil (Martins et al.

2013). Land use change is continuously growing in the

Fig. 4 Bombus bellicosus’ current and future distributions over-

lapped with South American protected areas network (IUCN). The

three distribution maps represents the consensual distribution all maps

obtained by all three algorithms models (Mahalanobis, Maxent and

SVM) in each different (Current, Pessimistic, and Optimistic)

climatic scenario. The numeric scale correspond to the consensual

distribution obtained by each modelling algorithm and climatic

scenario. Future distributions were obtained from the mean consensus

from the predicted distributions by each modelling algorithm and on

the three of AOGCM for both pessimist (A2a) and optimistic (B2a)

emission scenarios. Grey polygons refer to the available South

American protected areas network (categories I–IV & strict reserves)

from the IUCN’s World Database on the protected areas

J Insect Conserv (2015) 19:33–43 39

123



areas occupied by B. bellicosus in the last four decades due

to strong agricultural expansion. Such factors will continue

to affect the bee fauna in the region studied unless con-

servation actions take place (Overbeck et al. 2007; WWF

2013). An increasing urban matrix is usually a deleterious

factor for bees, although some surviving species may still

persist this habitat that is inhospitable for many bee species

(Winfree et al. 2007; Banaszak-Cibicka and _Zmihorski

2011). Bee survival in urban environments (and other

anthropogenic landscapes) depends on the availability of

feeding and nesting resources within the bee’s dispersal

ability (Kremen et al. 2007).

Using SDMs to support decisions regarding species

conservation in the future climate change scenarios is not a

simple task, mainly because the resulting potential distri-

butions (based on the current knowledge on species dis-

tribution) are impossible to be truly validated (Pearson and

Dawson 2003). However, SDMs are still one of the best

alternatives to discuss species conservation under future

climate change (Hannah et al. 2007; Heller and Zavaleta

2009; Guisan et al. 2013). The current PA network from

South America will be able to protect small disconnected

portions of the distribution of B. bellicosus under both the

current and the future climate change scenarios. Nonethe-

less, and given the disaggregated predicted distributions of

B. bellicosus in southern Brazil, remnant vegetation and

PAs located within this region may eventually be stepping-

stones for B. bellicosus populations (which is fundamental

in cases of climate change; Hannah et al. 2007). Stepping-

stones facilitate southward dispersal, considering the future

scenarios of climate change. The establishment of several

new protected areas can contribute to future efforts of B.

bellicosus conservation, although the current PA network

will be able to protect some portions of the distribution of

B. bellicosus. Protected areas on the grasslands of southern

South America, which are the main habitat for B. bellico-

sus, are fundamental for the conservation of this pollinator

species in particular. However, these are one of the most

neglected habits in that region, often endangered by large

scale livestock and crops (Overbeck et al. 2007).

The current presence of the species in a protected area

does not necessarily mean it will be protected in the future,

although the conservation biogeography framework con-

siders a given species to be protected even if the smallest

portion of its distribution is covered by a protected area

(Rodrigues et al. 2004). The current effectiveness of a PA

in protecting B. bellicosus (and other species as well) may

vary, especially because such areas were generally created

without any ecological criteria. Additionally, when we

consider the future climate change scenarios, the current

network of protected areas will not be enough to protect

species (Hannah et al. 2007), even in an optimistic

scenario. Considering this situation, future PA implemen-

tation needs to be based on ecological theories rather than

only on the stakeholders’ will and/or landscape scenic

beauty (Hannah et al. 2007).

An additional factor which may potentially affect B.

bellicosus and other South American bumblebees in the

future is the competition for resources with B. terrestris, as

already recently reported in Argentina (Morales et al.

2013). B. terrestris is a very competitive species (Goulson

2003), introduced in many regions of the world to pollinate

crops, including in Chile, where it began its spread towards

other South American countries, and to consequently

replace both a previously introduced and a native bum-

blebee species (Morales et al. 2013). There is a chance that

this species may continuously spread to southern and

southeastern Brazil, and cause negative effects on other

native bumblebees species (Saraiva et al. 2013).

In this paper we showed the potential distribution of B.

bellicosus, under current and future scenarios of climate

change, and discussed the potential influence of climate in

its disappearance in some regions of Southern Brazil,

where it was once the most abundant native species

(40 years ago). However, the general absence of quality

biological and ecological aspects of B. bellicosus as well as

information regarding its wild populations are still major

drawbacks for its efficient current and future protection.

Besides its undeniable value in conservation predictions,

SDMs results rarely become practical conservation deci-

sions, mainly due to a gap in the communication between

researchers (who design the models) and decision makers

(Guisan et al. 2013). We hope that the results presented

here may, eventually, leave the theoretical grounds and

serve both conservationists and stakeholders as practical

bridges towards the future protection of B. bellicosus in

South America, especially given the potential adverse

effects of climate changes for this species. Increasing the

area and representativeness of protected areas, especially of

the grasslands which serve as habitat for B. bellicosus, may

have a major importance in the conservation of this and

other species of Latin American pollinators in the near and

potentially threatening future.
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