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Abstract

In the past, extensive areas in Drenthe (The Netherlands) were covered by peat bogs and wet heath lands,
but nowadays only relatively small fragments are left. During the second half of the 20th century the quality
of these fragments decreased, due to lowering of the water table and the input of nutrients. These factors
will have a negative effect on the survival of species which are adapted to these stable type of biotopes, like
the Black bog ant. The distribution pattern was analysed within a study area of 750 km2, in order to find
out if this species will survive in a landscape where its habitat is severely fragmented. Using multiple logistic
regression analysis it appears that size and quality of the habitat patches, as well as openness of the
environment, contribute significantly to patch-occupancy. No correlation was found between the proba-
bility of a patch being occupied and its distance to the nearest occupied patch. It appears that the spatial
cohesion of local populations by means of flying queens is weak or absent on the scale of the study area.
Only in parts of the area, where the distance between habitat patches is less than 3 km in open field, a
habitat network may still exist. However, with ongoing habitat loss a threshold will be passed and the
species will ultimately become extinct.

Introduction

Habitat fragmentation is a major cause of the loss
of species in landscapes that have been modified by
man. The creation of a network of natural ele-
ments within man-made landscapes will be crucial
for a sustainable conservation of biodiversity.
However, tools are needed for detecting effects
of landscape change on the survival probability of
species. Most publications about the effect of
habitat fragmentation on the survival probability
of animal species deal with vertebrates. The results
of these studies cannot be extrapolated to inver-
tebrate species, because the latter generally will

have a larger population size and a higher sus-
ceptibility to environmental fluctuations. Studies
about the effect of habitat fragmentation on
invertebrates are relatively scarce, ants in particu-
lar (Mabelis 1992, 1994; Mabelis and Korczyńska
2001).

Species differ in their response to changes in
landscape pattern, due to different habitat
requirements and dispersal capacities. Species with
a poor dispersal capacity are generally tied to a
stable environment and will be more susceptible to
habitat fragmentation then species which have a
good dispersal capacity. Habitat fragmentation
implies that the average size of habitat patches will
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decrease as well as their connectivity. A decrease
of patch areas may have consequences for the size
of the local populations and hence for their
extinction probability, while a decrease in patch
connectivity may have consequences for the re-
colonization chance of empty habitat patches. For
species with a poor dispersal capacity, habitat
patches may become so isolated that patch occu-
pancy is only related to patch area and not to the
position to other patches. In such a landscape the
species will not have a metapopulation structure,
i.e. a system of spatially separated local popula-
tions between which exchange of individuals takes
place to some extent (Hanski 1994a; Verboom
et al. 1991, 1993, among others). Such a situation
was found for the stenotopic brachypterous cara-
bid beetle Agonum ericeti, which lives in peat bogs
and peaty heath lands (De Vries and Den Boer
1990; De Vries et al. 1996). Until the 17th century
these biotopes covered extensive areas of the
Dutch province of Drenthe, but nowadays only
fragments are left, due to reclamation activities,
mainly in the first half of the 20th century (Brou-
wer 1968). Consequently, habitat patches of this
species have become so isolated from each other
that re-colonization of a patch after extinction of
its population is no longer possible.

The question arises if a stenotopic species with
flight ability will have a much better chance to
survive in a landscape where its habitat is frag-
mented. The Black bog ant (Formica transkauca-
sica) was chosen for this case study, because this
species is restricted to the same habitat as A. eri-
ceti, but is able to disperse by means of flying
queens, in contrast to the brachypterous beetle,
which cannot fly.

The Black bog ant is a boreal-alpine species,
occurring in temperate and cold zones of Europe
and Asia (Stitz 1939; Seifert 1996). The Nether-
lands is at the border of its distributional range,
which may imply a lower reproductive rate and a
poorer dispersal capacity than in the centre
(Hengeveld 1990). Consequently it may be more
vulnerable to habitat fragmentation than in the
centre of its distributional range. Its distribution
area in the southern part of the Netherlands seems
to be shrinking (van Loon and Mabelis 1996).
Nowadays the species is most common in the
study area (Figure 1). In Germany and England
the Black bog ant is assigned to the category
‘Endangered’ (Blab et al. 1984; Else and Spooner

1987) and in the IUCN Red List of Threatened
Animals (1986) to the category ‘Indeterminate’,
which means that the species is known to be
‘Endangered’, ‘Vulnerable’ or ‘Rare’, but that
there is lack of information to say which of the
three categories is appropriate.

Black bog ants are not so easy to find in the
field, because a great deal of the food is found
under the soil surface, namely fungi (Bönner 1915;
Skwarra 1929) and excrements of root aphids (on
Erica, Molinia and Eriophorum), although some
worker ants forage also above ground on small
invertebrates. Nest populations of the Black bog
ant are generally small: Bönner (1915) often found
only a few hundred workers in a nest, although
sometimes more, up to 2000 workers (Bönner
1914; Skwarra 1929). A fair proportion of the
nests may be monogynous (Pamilo 1982a), but
some nest populations will adopt more queens, up
to 6 (Bönner 1914; Skwarra 1929), 15 (Donis-
thorpe 1915) or 27 (Pamilo 1982b). In a Finnish
peat bog the average number of queens per nest
(n = 35) was 4.5 (Pamilo 1982b). It is assumed
that there will be rarely more than 10 queens in a
nest.

It is not known if all the queens in a nest take
part in the reproduction. Functional monogyny, in
which one queen suppresses the fertility of other
queens, cannot be excluded, as functionally
monogynous nests are found occasionally in fac-
ultative polygynous species (Heinze 1993). The
advantage for the dominant queen will be that if
she dies, a related queen can take over her task,
increasing the life-time expectancy of the colony.
Another advantage of adopting daughter queens
in a nest is that it opens the possibility to disperse
there own genes by means of budding, i.e. building
daughter nests at some distance of the mother nest,
forming a polydomous colony.

Adoption of young daughter queens seems to be
the rule for species which are living exclusively in a
stable but patchily distributed habitat, like For-
mica uralensis, which also inhabits peat bogs
(Rosengren and Pamilo 1983; Rosengren 1985). A
single nest population of F. transkaucasica can
stand unfavourable conditions to some extent, but
a group of interacting nest populations will be
better off, as they can cooperate and eventually
fuse as long as there is regular exchange of workers
and brood between the nests. Such exchange
will decrease the extinction risk of the nest
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populations. Risky dispersal and low probability
of founding a new colony may be key factors for
the development of polygyny (Wilson 1963;

Holldobler and Wilson 1977; Rosengren et al.
1993; Herbers 1993). So, polygyny may be fa-
voured by habitat fragmentation.

Figure 1. Distribution of the Black bog ant in The Netherlands (data collected after 1970); the study area is outlined.
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The aim of the investigation is to assess the re-
gional persistence of the Black bog ant on the basis
of the occupancy and connectivity of habitat pat-
ches. The hypothesis that patch occupancy will be
positively correlated with patch area and patch
quality and negatively with isolation of the patches
was tested. Finally we discuss the implication of
the findings for the conservation of the species.

Study area and methods

The study area covers 750 km2 in the south-west
part of the province of Drenthe (Figure 1). In the
beginning of the last century this area was largely
covered by peat bog and peaty heath, the habitat
of the Black bog ant, but nowadays only relatively
small and isolated areas with these biotopes are
left (Figure 2). The largest one (Dwingeloo heath)
is about 560 ha and has a National Park status. In
the past the habitat of the Black bog ant used to be
stable, but during the last part of the 20th century
the quality became worse, due to lowering of the
water table, increased nitrogen input and cutting
sods more intensively in order to counteract
domination of grasses.

On the basis of the vegetation map of Drenthe
(Dijkstra et al. 1992) 220 areas were selected where
vegetation types with potential habitat occurred,
i.e. peat bog and peaty heath land, dominated by
Erica tetralix and/or Molinia caerulea.

The areas were visited in the period 1994–1995
and judged on its suitability for the Black bog ant
on the basis of the vegetation, the availability of
suitable nesting sites and the capacity of the soil to
keep moisture. The following sites were judged as
suitable: a relatively dry place in a thick Sphagnum
cover, an old and peaty Molinia tussock, the peaty
base of an old Erica plant or a naked site of peaty
soil near a potential food source (root aphids), as
long as the nest sites are not occupied by other ant
species. The criteria to judge habitat suitability of
areas are based on own experience in other peat bog
areas in the Netherlands, as well as in other Euro-
pean countries. Habitat quality of suitable areas
was classified as optimal, sub-optimal or marginal:
• Optimal: good soil capacity to keep moisture,
many suitable nesting sites (>50/h searching
time), presence of characteristic plant species:
for peat bogs (S. magellanicum, S. papillosum,
S. rubellum, Vaccinium oxycoccus, Andromeda

Figure 2. Fragmentation of Black bog ant habitat in part of the study area (period: 1900–1990). Source: Topographic Service The

Netherlands.
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polifolia, Drosera species, among others) and for
wet heath lands (S. compactum, S. tenellum, S.
molle, Rhynchospora species, Drosera species,
Juncus squarrossus, among others).

• Sub-optimal: moderate soil capacity to keep
moisture, less suitable nesting sites (10–50/h
searching time), presence of plant species which
are indicative for eutrophication or desiccation
(respectively Juncus effusus, Phragmites australis,
Typha latifolia, among others and Rubus fruti-
cosus, Deschampsia flexuosa, young Betula and/
or Pinus trees, among others).

• Marginal: poor soil capacity to keep moisture,
only a few suitable nesting sites (<10/h search-
ing time), clear indication of eutrophication and/
or desiccation.
All suitable patches were mapped with Auto-

CAD into a geographic information system Arc-
View (ESRI 1996). Neighbouring habitat patches
within 100m, that were separated by a vegetation
with a poor habitat quality, were considered one
habitat patch and therefore clustered, assuming
that contact between worker ants of the local
populations was still possible in the recent past.

Next, all habitat patches were checked for the
presence of the Black bog ant. A small stab-shovel
appeared to be useful for checking the occupancy
of nesting sites, as the workers are often not
walking over the nest surface. Searching time was
correlated with the size of the area, although rel-
atively more time was spent in areas where no
Black bog ants were found.

In order to find out what variables are most
important for the present distribution of the Black
bog ant, the presence/absence data were related to
the area, habitat quality (3 levels) and isolation of
the habitat patches (see Table 1). The following
variables for isolation were used: the distance to
the nearest habitat patch, the distance to the
nearest occupied patch, the average distance to the
three nearest patches, and the distance to the core
area with the main source population. As a qual-
itative isolation variable the location of a patch
with respect to woodland was used (3 levels: out-
side, at the border and inside woodland), because
woodland is supposed to hinder dispersal of flying
ant queens. Nest density was not taken into ac-
count as a variable, as it varied not only consid-
erable between occupied habitat patches, but also
within habitat patches.

The effects of these variables were analysed
using logistic regression (Jongman et al. 1995),
with the statistical programme Genstat (Genstat 5
Committee 1993). In order to test if isolation
variables contribute significantly to the regression
model in addition to habitat area and quality a
two-step regression method was used (Fahrig et al.
1995; Vos and Stumpel 1996; Vos and Chardon
1998). Differences between the habitat patches in
area and quality were accounted for by entering
these variables in the model first (step 1). To
investigate if isolation could explain part of the
occupancy of the Black bog ant, the regression
model was extended with one isolation variable

Table 1. Summary of the variables used in the regression analysis; mean and standard deviation (SD) are given for quantitative

variables.

Variables Occupied patches Unoccupied patches

Area

Mean area habitat patch (ha)a 5.63 ± 6.4 1.47 ± 2.0

Habitat quality (qualitative: 3 levels):

– # optimal patches 14 (30%) 33 (70%)

– # suboptimal patches 5 (9%) 50 (91%)

– # marginal patches 2 (4%) 45 (96%)

Isolation

Location with respect to woodland (qualitative: 3 levels):

– # patches outside woodland 12 (22%) 43 (78%)

– # patches bordering woodland 4 (19%) 17 (81%)

– # patches inside woodland 5 (7%) 68 (93%)

Mean distance to source population (m)a 8960 ± 4392 10555 ± 5304

Mean distance to nearest habitat patch (m)a 652 ± 557 517 ± 474

Mean distance to nearest occupied habitat patch (m)a 2350 ± 1689 1974 ± 1895

Mean distance to the 3 nearest habitat patches (m)a 967 ± 686 862 ± 627

aBecause of skewed distribution logtransformation was used
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each time (step 2). In addition, the effect of the
occurence of a potential competitor, i.e. F. san-
guinea, on the presence of F. transkaucasica was
tested in the same way.

Results

Out of 220 wet heath lands and peat bogs that
were visited, 149 were judged as suitable for the
Black bog ant. These habitat patches were classi-
fied as optimal (47), sub-optimal (55) and marginal
(47). The Black bog ant was present in 33% of the
optimal patches, 7% of the sub-optimal patches,
and 4% of the marginal patches, occurring in a
total of 22 (15%) sites.

Patch size in the study area ranges from 0.1 to
26.5 ha (average: 20.5 ha). Results from regression
analysis showed that there was an increasing
probability of Black bog ants occurrence with
increasing patch area (Table 2, Figure 3). Addi-
tion of the habitat quality variable resulted in a
significant increase of the explained deviance
(p < 0.001, v2-test). Both variables indicate that
size and quality of the patch are relevant for the
presence of the Black bog ant.

Nest density varied considerably, due to habitat
heterogeneity. It was lowest in desiccated areas
where litter accumulated and in areas where micro-
relief was lacking. In an Erica–Molinia vegetation

(on Dwingeloo heath) nest density varied from 1 to
30 nests per 100 m. The mean nest density of 500
small random plots (a circle with 1 m radius) was 7
nests per 100 m. Nearly half of the nests within
this vegetation type were built on a Molinia

Table 2. Results of the logistic regression on Black bog ant presence–absence data.

df Sign Deviance p-value v2-test R2
adj of the total

model (%)

Patch area 1 + 23.23 <0.001 19

Addition of Habitat quality 2 + 13.91 <0.001 31

marginal (reference model)

suboptimal (param. estimate = +0.50)

optimal (param. estimate = +2.35)

Residual deviance 145 84.05

Total deviance 148 121.19

Addition of :

Presence of F. sanguinea 1 � 0.064 (ns)

Addition of isolation variables

Location with respect to woodland: 2 � 0.061 (ns)

outside (reference model)

bordering (param. estimate = �0.74)
inside (param. estimate = �1.57)
Mean distance to source population 1 � 0.54 (ns)

Mean distance to nearest habitat patch 1 + 0.40 (ns)

Mean distance to nearest occupied habitat p. 1 + 0.09 (ns)

Mean distance to 3 nearest habitat patches 1 + 0.63 (ns)

Figure 3. Percentage occupancy of different-sized habitat pat-

ches by the Black bog ant.
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tussock (45%) and nearly half of them in the peaty
soil beneath an old Erica plant (44%). In peatbogs
all nests were built on the Sphagnum cover. As
building material small pieces of Molinia, Erica or
Sphagnum were used.

Figure 4 shows the occupancy of habitat patches
within part of the study area. The biggest cluster of
habitat patches (Dwingeloo heath) may function
as a source of young ant queens for habitat pat-
ches in its surroundings. Most of the habitat pat-
ches situated within a distance of 3 km from the
core area are surrounded by woodland and only
one of them is occupied by the Black bog ant
(Figure 4). Overall, about half of the habitat pat-
ches (n = 73) are surrounded by woodland, and
hardly 7% (n = 5) of these patches are occupied
by the Black bog ant, compared with 22% of
patches in open field (n = 12). It seems that the
probability of occupancy of a habitat patch which

is surrounded by woodland is less than of a habitat
patch in open field.

Adding each of the isolation variables separately
as third term to the model did not result in further
significant explanation of the total model devi-
ance, although the variable ‘location with respect
to woodland’ comes close with a p-value of 0.061
(Table 2). The negative sign of this variable is in
accordance with the increasing unsuitability of the
levels.

Competition for nesting sites with other ant
species may hamper the establishment of new col-
onies. The minimum habitat size in the study area
(0.1 ha) is large enough for establishing colonies,
but competitive exclusion of F. transkaucasica by a
territorial ant species is imaginable in such small
areas (e.g. see: Vepsäläinen and Pisarski 1982;
Boomsma et al. 1987; Savolainen and Vepsäläinen
1988). This is most likely in small habitat patches

Figure 4. Occupancy of habitat patches by the Black bog ant in part of the investigated area. The largest habitat area (in the middle,

below the centre) is inhabited by several local populations. Habitat networks of which at least one of the patches are occupied by the

Black bog ant are numbered and encircled by a dashed line. Black habitat patch: occupied, white habitat patch: not occupied, grey:

woodland, matrix (white): non habitat.
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where F. sanguinea is occurring. This slave-making
species, which rob pupae from nests of F. trans-
kaucasica and F. fusca, was found in a quarter of
the habitat patches of the Black bog ant, but al-
ways in a very low density: one or a few nests per
habitat patch, while at least tens of nests
of F. transkaucasica were found in occupied pat-
ches. F. sanguinea occurred only two times together
with F. transkaucasica in the same area. It con-
cerned in both cases a mixed nest population
F. sanguinea – F. transkaucasica. Mixed nest pop-
ulations of F. sanguinea–F. fusca were found more
often (12·), as both species prefer dryer places than
F. transkaucasica. Addition of the presence of F.
sanguinea as a variable to the regression model did
not contribute significantly to the explanation of
the variance (Table 2). In other words: F. sanguinea
does not play a significant role in the occupation of
habitat patches by F. transkaucasica. The negative
sign is in accordance with the finding that the
habitat of the species overlaps only for a small part:
F. sanguinea occurs more often in dryer places,
which are less suitable for F. transkaucasica.

Discussion

The regional survival probability of a species de-
pends on the ratio between the extinction rate of
local populations and the colonization rate of
empty habitat patches. The extinction rate of local
populations depends mainly on habitat size and
quality, while the colonization rate depends for a
great deal on habitat connectivity, i.e. the config-
uration of empty habitat patches in relation to
occupied ones. These factors will be discussed
successively.

Habitat size

The hypothesis that patch occupancy of F. trans-
kaucasica will be positively correlated with patch
area is supported by the result of the regression
analysis (Table 2). Generally the size of a local
population (number of nests) increases with the
size of a habitat patch. Consequently, the extinc-
tion probability of a local population of F. trans-
kaucasica will be smaller the larger the habitat
patch will be.

An area of 100 m optimal habitat appears to
be sufficient for a nest population of the Black
bog ant. However, its survival chance will be
greater if more habitat is available at walking
distance, as it will increase the possibility to adapt
to changes in the environment by moving the
whole nest population to a better site and it will
give the possibility to build daughter nests by
means of budding (Figure 5a). Such a polydom-
ous colony can be considered a multipartite
population, i.e. an interacting group of subpop-
ulations (i.e. nest populations), which can grad-
ually merge into one another (Den Boer 1977;
Andrewartha and Birch 1954). Due to environ-
mental heterogeneity, such subpopulations may
fluctuate asynchronously, which gives the local
population a better chance to survive (Den Boer
1981). Consequently, the extinction chance of a
group of interacting nest populations (as in a
polydomous colony) will be lower than that of
an isolated nest population, as was found in red
wood ants (Mabelis 1986; Mabelis and
Korczyńska 2001).

So, interacting nest populations will reduce the
probability to become extinct. However, contact
between mother and daughter populations will
become less as workers of one of the nests will
move the whole nest population to a more remote
nesting place. Removals in autumn by means of
transport by nestmates to hibernation sites, as was
observed in F. uralensis (Rosengren and Pamilo
1983), are not known from F. transkaucasica, but
we observed that Black bog ants remove rather
quickly after disturbance (see also Bönner 1915). A
decrease of contact between nest populations may
lead to alienation of colony odour and hence to a
switch from cooperative to competitive behaviour,
as was found in the polygynous Formica polyctena
(Mabelis 1979). However, this was not observed in
the Black bog ant.

A polydomous colony of the Black bog ant
needs at a rough estimate at least 0.5 ha optimal
habitat. However, in the field, where optimal
habitat is generally mixed with marginal habitat,
the minimum habitat size for such a local popu-
lation will be at least two times greater. The
survival chance of the species will be highest
within the core area (Dwingeloo heath), where
extensive peaty heath lands occur, due to a
retaining soil layer of boulder clay, which is
covered by a 0.2–1 m thick layer of sand. The
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species was found to be distributed over the
whole area, although it did not occur on dryer
places, where Calluna vulgaris, Empetrum nigrum
and Deschampsia flexuosa were dominating.

Habitat quality

The hypothesis that patch occupancy of F. trans-
kaucasica will be positively correlated with patch
quality is supported with the results of the logistic
regression analysis (Table 2).

Deterioration of habitat quality will result in a
decrease of nest density. However, it will take
some years before an effect on the nest density of
this species can be measured, because there is a
time lag between cause and effect, i.e. between a
decrease of habitat quality and the extinction of
nest populations. It was found that the density
dropped from 14 to 4 nests per 100 m in a plot
with an Erica–Molinia vegetation within a period
of 5 years (1977–1982). At first deterioration will
result in a decrease of population size and the
production of sexuals and workers, but this can
only be measured by excavating nests.

Deterioration of habitat quality is most clear in
small habitat patches, which are surrounded by
agricultural fields. Generally it implies lowering of
the ground water level within the habitat patch
and a high input of nutrients. Desiccation will
make areas more suitable for potential competitors

of F. transkaucasica, like F. sanguina and its con-
gener F. fusca. The presence of these species may
hamper the establishment of Black bog ant queens,
but it is unlikely that they can exclude the species
from optimal habitat patches.

The average nest density in areas with good
habitat quality (on Dwingeloo heath) was 7 nests
per 100 m, which is more than was found by
Bönner (1914) in a Danish peatbog (ca. 1 nest per
100 m2), but less than was found by Pamilo (1982b)
in a Finnish peat bog (ca. 9 nests per 100 m2).
Sometimes a cluster of nests was found (5–10 nests
per 4 m2). Such a nest concentration may be either
due to a strong habitat selection by nest-founding
queens, or to nest budding, i.e. the formation of
daughter nests nearby the mother nest.

It appears that one third of potential habitat
patches already have become unsuitable and it is
expected that the habitat quality of suitable pat-
ches will decrease if causal factors continue oper-
ating. Consequently, more of the small isolated
populations will become extinct in the near future,
while the habitat patches will not any more be-
come re-colonized.

Habitat connectivity

The hypothesis that patch occupancy will be neg-
atively correlated with the distance to nearest
occupied patches is not supported by the results of
the logistic regression analysis. It seems that the

Figure 5. Connectivity between populations (a) Multipartite population, i.e. one habitat patch, occupied by one local population,

consisting of three nest populations. Exchange between nest populations by ant workers and sexuals (distance to nearest nest:

<100 m). (b) Patchy population, i.e. three habitat patches, all occupied by a local population. Exchange between local populations

only by sexuals (distance to nearest habitat patch: <500 m). (c) Metapopulation, i.e. six habitat patches, partly occupied by a local

population Exchange between local populations only by sexuals (distance to nearest habitat patch: <3 km).
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distance between habitat patches is generally too
great for (re)colonization. In other words: habitat
connectivity seems to be too low.

Habitat connectivity of ants should be judged
on two scales: for walking individuals and for
flying individuals. The existence of barriers for
walking ants will reduce the positive effect of
spreading the risk of extinction of a population.
Due to isolation, nest populations may stay longer
in low quality sites and at the same time optimal
patches may remain empty. Local populations
may become isolated by digging ditches, and by
constructing roads or dry tracks, which function as
a barrier for Black bog ant workers. Within the
core area (Dwingeloo heath) several such barriers
exist. It implies that several local populations can
be distinguished (i.e. 14). Genetic exchange be-
tween them can only occur by means of flying
sexuals. Every local population inhabits a habitat
patch. So in fact Dwingeloo heath includes 14
habitat patches, instead of one as used in the lo-
gistic regression analysis. Some of the patches are
large enough to contain a key population, i.e. a
population with an extinction chance of <5% in
100 years, given an immigration rate of one
immigrant per generation (Verboom et al. 2001).
Although such populations are large, they still
depend on other local populations for their per-
sistence. Thus the habitat patches must be part of
a network for the maintenance of the Black bog
ant. On the Dwingeloo heath, where the distance
between habitat patches is smaller than a few
hundred metres, we may expect that migration of
fertilized queens will take place regularly. Conse-
quently the extinction chance of the total (patchy)
population will be very low, due to this rescue ef-
fect (Brown and Kodric-Brown 1977). So declining
nest populations may be rescued by workers from
other nest populations in the vicinity and declining
local populations may be rescued by queens from
other local populations at flying distance (Fig-
ure 5b). Nevertheless it may happen that a local
population will disappear due to deterioration of
habitat quality. An estimated number of 10 habitat
patches (>1 ha), within flying distance of the
queens, are necessary for a persistent population.
As generally a great deal of a peat bog or heath
land area will be unsuitable for the Black bog ant
(too dry or too wet) the whole area which should
be protected to guarantee long lasting persistence
may be 10-times greater, e.g. 10 · 10 ha =

100 ha. For comparison: the area of Dwingeloo
heath is 560 ha and contains 14 habitat patches,
which varies in size from 1–150 ha (on average:
40 ha). All these habitat patches are occupied. So,
the Black bog ant population of Dwingeloo heath
will be persistent. Such a persistent population may
function as a source area for the (re)colonization of
small habitat patches in its surroundings. However,
evidence for such a source-sink relationship, as
mentioned by Pulliam (1988), is lacking.

In the study area patch-occupancy of the Black
bog ant is not correlated with the distance to the
core area (Dwingeloo heath), nor with the dis-
tance to the nearest occupied patch. The immi-
gration rate of flying queens seems to be very low
in patches which are situated >1 km from an
occupied patch. The immigration rate depends on
the number and flight capacity of dispersing
queens in relation to the configuration of habitat
patches. These factors will be discussed succes-
sively.

Young queens will leave the nest in summer
(July–August). However, no data are available
about the number of queens which will disperse
from a nest. We assume that the number will be
low, because nest populations are generally small
and the number of queens produced per nest is
rather low, 15 queens per nest at most, according
to Bönner (1915). We assume that only a few
young daughter queens will leave the nest, as we
caught them only occasionally in traps and we
never observed flying queens (see also Pamilo
1982a; Kaschek and Königschulte 1982). For the
Black bog ant, reproduction by budding is likely to
be the main mode of formation of new nests.

Little is known about the flight capacity of
young queens. The maximum distance which a
queen of the Black bog ant can fly may be 10 km
in open field, on the basis of what was found for a
Formica rufa-queen (Haeseler 1982), but a queen
probably achieve such a distance only occasionally
(Mabelis 1994; Mabelis and Korczyńska 2001).
Evidence for limited dispersal of queens (<1 km)
was found in F. paralugubris (Chapuisat et al.
1997) and in F. exsecta (Liautard and Keller 2001;
Sundström et al. 2003) on the basis of genetic
relatedness of the ants. If we assume that 95% of
dispersing queens will not fly further than 3 km,
then the distance of most habitat patches to their
nearest occupied patch will be too great to be
bridged by most of the queens.
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In the study area many local populations have
not only become isolated from other local popu-
lations by distance, but also by woodland.
Woodland may be avoided by flying queens, as
was found in Formica truncorum (Mabelis and
Korczyńska 2001). However, in the case of the
Black bog ant it will not be reliable to incorporate
distances that queens have to fly over woodland in
the distance variables (Chardon et al. 2003), as it is
not known how dispersing queens behave: they
may fly over woodland when leaving an isolated
patch which is surrounded by woodland, while
they may avoid woodland when leaving a patch in
open field, but there are no observations to con-
firm this.

In case of ongoing habitat loss, the distance
between the remaining patches will increase and
consequently a patchy population will turn into a
set of local populations in a habitat network,
which shows temporary absences in habitat pat-
ches, due to local extinction and (re)colonization
events (Figure 5c).

Isolation of local populations means that there
will be no rescue effect by means of immigrating
queens and extinction of local populations will not
be compensated by the colonization of empty
patches. So, the species don’t have a metapopula-
tion structure, at least not on the scale of the study
area, as the spatial cohesion of the local popula-
tions is absent or very weak. Only in parts of the
area, where the distance between habitat patches is
less than 3 km in open field, a habitat network still
exists. If part of the patches of such a network are
occupied by the Black bog ant, the species may
have locally a metapopulation structure (Verboom
et al. 1991; Verboom et al. 1993). However, with
ongoing habitat loss a threshold will be passed and
the species will ultimately become regionally
extinct.

Implications for conservation

The regional survival probability of the Black bog
ant can be increased by minimizing the extinction
probability of local populations and by maximiz-
ing the opportunities for colonization. The
extinction probability of local populations can be
decreased by enlarging the size of habitat patches
and by improving their quality in order to optimise
the growth rate of nest populations and to increase

the carrying capacity of the habitat patches.
Opportunities for colonization can be improved by
increasing the number of habitat patches at flying
distance of the queens. It is likely that this flying
distance will be rather short (<1 km) for most of
the queens. As peat bogs and wet heath lands
cannot be created, the situation can only be im-
proved by restoration measures. So habitat pat-
ches can be enlarged and stepping stones between
them can be made by improving the habitat
quality of existing peat bogs and wet heath lands.

Habitat quality of peat bog and heath deterio-
rated during the last decades, at least in the
Netherlands. This is mainly the result of a high
atmospheric deposition of nitrogen, which pro-
motes the dominance of grasses at the expense of
heather species (Berendse et al. 1993; Diemont
1996). Habitat quality can be improved by sod-
cutting: the removal of organic matter. Although
efforts are made to decrease atmospheric
N-deposition in the Netherlands, this deposition is
still very high (RIVM 2003). So sod cutting often
will be repeated after a relatively short period of
time (e.g. <20 years). A few years after sod cut-
ting a Molinia vegetation, Erica may already be-
come dominant, but it will take many more years
before the area becomes suitable again for the
Black bog ant. On Dwingeloo heath it was found
that 30 years after sod cutting there was hardly
enough accumulation of humus to cut sods again
(Diemont et al. 1982). So the managed area was
probably not yet suitable for the Black bog ant for
nesting. As soon as such an area becomes suitable
it can be re-colonized from neighbouring occupied
patches, but we have to keep in mind that mea-
sures of management should be taken on such a
scale of space and time that re-colonizations can
still keep up with extinctions of local populations.
A decrease of habitat quality is not only due to the
great nutrient supply, but also to desiccation. The
species can overcome desiccation to some extent as
long as nest populations can move to more suit-
able sites, but a long-lasting trend, due to lowering
of the groundwater table (ample 1 m), will lead to
the extinction of local populations. Desiccation
may have resulted in a quicker mineralization of
organic matter and consequently in a higher
nutrient availability. This process will promote
Molinia at the expense of Erica (Diemont 1996).
The grass cover may become so dense that it will
become unsuitable for the Black bog ant.
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Measures taken in the field to oppose nutrient
enrichment will be most effective in areas where
habitat networks can be restored. Networks where
at least one of the patches is occupied by a key
population will have a good chance for developing
a persistent metapopulation (Verboom et al. 2001).
The fraction of occupied patches within the net-
work should also be taken into account, as it is
suggested that the fraction of occupied patches is a
useful predictor of meta population viability
(Hanski 1994a, 1994b; Vos et al. 2001). The
probability of chance extinctions generally will
increase as the number of occupied patches de-
creases (Vos et al. 2001).

Some authors take an occupation of habitat
patches of 50% as a threshold below which re-
gional survival of a species is threatened (Vos et al.
2001), while only 15% of the habitat patches within
the study area are occupied by the Black bog ant.
For the interpretation of occupancy data we have
to keep in mind that the turnover rate of nest
populations is low and that there will be a time-lag
between deterioration of the habitat and the
extinction of local populations. Thus an interpre-
tation of patch occupancy may be too optimistic.

The improvement of the quality of habitat pat-
ches which are part of a network with the greatest
cohesion (judged on the basis of average patch
carrying capacity and average connectivity of the
patches) will be most effective (Vos et al. 2001;
Opdam et al. 2003). In the study area six occupied
habitat networks are distinguished (Table 3).
Habitat networks of which only a small number of
patches is occupied will not be viable, unless at
least one of the patches contains a key population.

Source directed measures, like increasing the
groundwater level and decreasing the input of
nutrients, are most important to improve habitat
quality. The proposed measures will not only in-
crease the survival chance of the Black bog ant,
but of all species which are dependent of peat bogs
and wet heath.
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Möglichkeiten des Biotoperhalts. Inf. Natuursch. Lands-

chaftspfl. 3: 239–282.

Liautard C. and Keller L. 2001. Restricted effective queen dis-

persal at a microgeographic scale in polygynous populations

of the ant Formice exsecta. Evolution 55(12): 2484–2492.

Loon A.J. van and Mabelis A.A. 1996. Flora en Fauna 2030 –

Fase III. Deelrapport Mieren. Mededelingen European

Invertebrate Survey – Nederland 83: 1–34.

Mabelis A.A. 1979. Wood ant wars, the relationship between

aggression and predation in the red wood ant (Formica

polyctena Foerster). Neth. J. Zool. 29(2): 221–232.

Mabelis A.A. 1986. Why do young queens fly? Proceedings 3rd

EuropeanCongress of Entomology, Amsterdam, pp. 461–464.

Mabelis A.A. 1992. Wood ants in fragmented woodlands. In:

Zombori L. and Peregovits L. (eds), Proceedings 4th ECE/

XIII SIEEC Gdll. Hungarian Natural History Museum

Budapest, pp. 757–761.

Mabelis A.A. 1994. Flying as a survival strategy for wood ants in

a fragmented landscape. Memorabilia Zoologica 48: 147–170.
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