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Abstract
The important recent book by Schurz (2019) appreciates that the no-free-lunch theorems 
(NFL) have major implications for the problem of (meta) induction. Here I review the NFL 
theorems, emphasizing that they do not only concern the case where there is a uniform 
prior—they prove that there are “as many priors” (loosely speaking) for which any induc-
tion algorithm A out-generalizes some induction algorithm B as vice-versa. Importantly 
though, in addition to the NFL theorems, there are many free lunch theorems. In particular, 
the NFL theorems can only be used to compare the expected performance of an induction 
algorithm A, considered in isolation, with the expected performance of an induction algo-
rithm B, considered in isolation. There is a rich set of free lunches which instead concern 
the statistical correlations among the generalization errors of induction algorithms. As I 
describe, the meta-induction algorithms that Schurz advocates as a “solution to Hume’s 
problem” are simply examples of such a free lunch based on correlations among the gen-
eralization errors of induction algorithms. I end by pointing out that the prior that Schurz 
advocates, which is uniform over bit frequencies rather than bit patterns, is contradicted by 
thousands of experiments in statistical physics and by the great success of the maximum 
entropy procedure in inductive inference.

There is only limited value in knowledge derived from experience. The knowledge 
imposes a pattern, and falsifies, for the pattern is new in every moment.

T.S. Eliot.
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1  Introduction

Inductive inference plays a central role in an extraordinarily wide variety of fields, ranging 
from traditional statistics to Monte Carlo estimation (Rubinstein and Kroese 2016; Tracey 
et al. 2013) to community detection and link detection in networks (Peel et al. 2017; Gha-
semian et al. 2020; Guimerà 2020). It is also central to essentially all flavors of machine 
learning (Christopher 2006; Kroese et  al. 2019), ranging from supervised learning (in 
which one is provided samples of an input-output map and wishes to infer the full map) 
to unsupervised learning (in which one is provided samples of a probability distribution 
and wishes to infer the full distribution) to active learning / experiment design (in which 
one is provided samples of an input-output map and wishes to determine what input to 
sample next, ultimately in order to infer the full map from all the samples) to reinforcement 
learning (in which one is provided samples of an action-reward map and wishes to infer a 
sequences of actions that will maximize the expected discounted sum of rewards).

The fact that inductive inference is central to all these fields means that we can some-
times use it as a dictionary, to “translate” techniques developed in one field over to another 
field, providing novel, powerful tools in that second field. As an example I am person-
ally familiar with, the technique of ‘stacking’ is a powerful meta-inductive algorithm intro-
duced in machine learning and statistics (Breiman 1996; Clarke 2003; Smyth and Wolpert 
1999) where it is still being actively investigated and extended (Yao et al. 2018). It can be 
translated from those fields into the field of Monte Carlo estimation. In that new setting, 
stacking becomes a technique for post-processing a set of Monte Carlo samples of a distri-
bution to improve the accuracy of the associated estimate of an expectation value. Empiri-
cally, this use of stacking seems to improve the accuracy of the estimator no matter what 
precise Monte Carlo sampling algorithm is used to generate the samples (simple sampling, 
importance sampling, quasi-Monte Carlo, etc.). As another example, stacking has been 
translated to the domain of link prediction in network science. In that domain it recently 
outperformed 203 alternative algorithms by optimally combining them, without making 
any Bayesian assumptions concerning the relative merits of those algorithms (Ghasemian 
et al. 2020; Guimerà 2020).

Another illustration of how inductive inference techniques are shared among multiple 
fields is provided by one of the pillars of the scientific method. Science relies deeply on 
the assumption that one can inductively infer future predictive accuracy from current out-
of-sample predictive accuracy, even if as Hume emphasized, current in-sample predictive 
accuracy cannot be used that way (Hume 2003). To be a bit more precise, suppose we have 
a set of scientific theories, T = {Ti} , each of which can make predictions about the out-
comes y ∈ Y  of any one of a set of experiments x ∈ X . Let d be the set of all experiment-
outcome pairs that were observed by the people who made those theories. Let x−d, x�−d be 
two experiments that are not in d. A central assumption of the scientific method is that 
whichever of the theories in T is most accurate when predicting the outcome of the experi-
ment x−d would likely be more accurate than the other theories when predicting the out-
come of the experiment x�

−d
 . In other words, if we choose among theories based on a set of 

new experiments S which were not used to create those theories in the first place, then we 
are likely to find the theory which would also be most accurate in all future experiments we 
might conduct after the ones in S.

If we translate this assumption underlying the scientific method into the fields of machine 
learning and statistics, we end up with the technique of cross-validation, which is a core 
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component of those fields.1 In turn, the technique of cross-validation can be translated from 
the field of machine learning to the field of “black box” optimization. In that new field, it pro-
vides a way to dynamically set the parameters of an optimization algorithm (e.g., to dynami-
cally set the temperature in simulated annealing). Just as out-of-sample induction has proven 
so successful in science in general, and was then so successful when translated into machine 
learning in the form of cross-validation, it has also been found empirically that when trans-
lated into the domain of black box optimization it results in faster convergence of the opti-
mizer to the global optimum solution (Wolpert and Rajnarayan 2013; Adam et al. 2019).

Despite sharing inductive inference as a central component, there are many important 
distinguishers among these fields; they are not simply different expressions of the same 
underlying phenomenon. In particular, the no-free-lunch (NFL) theorems apply to optimi-
zation (Wolpert and Macready 1997) and to certain aspects of both supervised learning 
(Wolpert 1996a) and community detection (Peel et al. 2017). However, they do not apply to 
other aspects of supervised learning Wolpert (1996b) and do not apply to co-evolutionary 
optimization (Wolpert and Macready 2005); there are “free lunches” in those domains.

Another example of a free lunch was introduced in 1996 by Parrondo and colleagues 
(Parrondo and Español 1996; Harmer and Abbott 1999). Suppose one has a pair of games 
that an agent can play, where the agent has higher probability of losing than winning in 
both games. Parrondo devised a strategy for the agent to play those games in an alternating 
sequence which results in higher probability of winning, despite the fact that in each game, 
separately, in each round of play, the agent faces a higher probability of losing. This result 
was called “Parrondo’s paradox”, since it was so surprising when it was discovered. As 
mentioned above, Parrondo’s result can be viewed as a “free lunch”, related to the meta-
induction algorithms considered by Schurz.2

To properly understand the claims made in the recent book by Schurz (2019), 
it is worth taking a moment to walk through a simplified version of the sce-
nario that Parrondo analyzed. Suppose there are K + 1 infinite sequences of bits, 
{vk(i) ∈ {0, 1} ∶ k = 1,… ,K + 1, i ∈ ℤ

+} . The first K of those sequences are the succes-
sive payoffs that a player would have received if they had picked that sequence. So for 
any counting number n, the accumulated payoff the player would have by iteration n of 
the sequences if they had always picked sequence k is �k(n) ∶=

∑n

i=1
vk(i) . Define the 

“best” sequence on a given iteration n as k+(n) ∶= argmaxk �k(n) , and the “worst” one as 
k−(n) ∶= argmink �k(n).

Next, suppose that on any iteration n, the associated bit vK+1(n) of the K + 1’th sequence 
is the value given by choosing the sequence whose accumulated payoff over the previ-
ous n − 1 iterations was highest, and evaluating its payoff bit for iteration n. Formally, 
vK+1(n) = vk+(n−1)(n) . This rule for how to choose among the sequences on each successive 
iteration is a simplified version of Parrondo’s strategy.

To see why it can be good to follow this strategy, consider the limiting case where 
K = 2 . Suppose that on some iteration n the difference �k+(n)(n) − �k−(n)(n) = n . Then it 
must that in every iteration i ≤ n , �k+(i)(i) − �k−(i)(i) = i (since the maximal difference in 
any single iteration is 1). So either both v1(i) = 1 and v2(i) = 0 for all i ∈ {1,… , n} , or 
vice-versa. As a result, vK+1(i) = i for all those iterations. In other words, following the 

1  To see this relationship, note that cross-validation chooses among a set of learning algorithms (rather than 
theories), and does so according to which of those performs best at out-of-sample prediction (evaluating 
that performance by forming “folds” of the single provided data set).
2  As an historical aside, it’s interesting to note that Parrondo went on to make some of the seminal contri-
butions to stochastic thermodynamics and non-equilibrium statistical physics (Parrondo 2015).
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strategy vK+1 results in zero “regret”, in the formal sense of the word, in all iterations 
before n—there will be zero gap between one’s actual accumulated payoffs and the best 
possible value of the accumulated payoff, which one could have achieved if one knew the 
entire sequence of all payoffs for all time before picking among those sequences. Formally, 
�K+1(n) = �k+(n)(n).

If instead �k+(n)(n) − �k−(n)(n) is some large value, but not quite n, then we can still pro-
vide guarantees that in most of the steps m < n , following the strategy vk+1(m) would have 
resulted in very little regret. For example, if �k+(n)(n) − �k−(n)(n) = n − 2 , then in exactly 
one of the iterations i ≤ n , the payoff vk+(n)(i) = 0 and vk−(n)(i) = 1 , while in all other itera-
tions, the opposite is true. So for all iterations j < i , there will be zero regret for using 
sequence K + 1 = 3 , while for all iterations j ≥ i , there will be regret 2 for using that 
sequence. So if �k+(n)(n) − �k−(n)(n) = n − 2 , then we are guaranteed that the regret never 
exceeds 2 in any iteration i ≤ n , if we use strategy K + 1 , and that in half of all sequences, 
there would have been zero regret for using that strategy for at least half of the n iterations.

As �k+(n)(n) − �k−(n)(n) shrinks, those guarantees on the fraction of iterations with little 
regret for using strategy K + 1 get weaker—but in addition, the maximal regret for using 
that strategy shrinks. So in general, following the strategy vK+1(i) for all iterations will not 
frequently result in a large amount of regret. In contrast, choosing some specific strategy 
M ∈ {1, 2} and using that strategy for all iterations could result in quite bad regret by the 
iteration n. Conversely, if it were the case that using some such specific strategy M ≤ K 
resulted in little regret, then it would also be the case that using strategy K + 1 would result 
in little regret. In this sense, strategy vK+1(i) is superior to the other two strategies, with 
payoffs v1(i) and v2(i) respectively, no matter what the sequences {vk(.)} are.

As K grows, this guarantee gets weaker—but it always holds. Moreover, there are strat-
egies vK+1 that at each step use the preceding sequences {vk(.)} in a more nuanced way 
than the all-or-nothing rule vK+1 described above. (In particular, the strategy underlying the 
Parrondo paradox is more nuanced than the all-or-nothing rule.) Importantly, all of these 
results hold even though no underlying probability distributions have been specified.

In some senses, one might argue that this Parrondo-like strategy for picking among 
sequences had a precursor in the informal investigations of Reichenbach et  al. (1938). 
Related work was also done in 1997 (Cesa-Bianchi et al. 1997; see also 1996.) That par-
ticular analysis was later elaborated and extended in 2006 (Cesa-Bianchi and Lugosi 2006). 
The general topic of designing and analyzing algorithms for these kinds of scenarios is 
now known as “online learning under expert advice” (OLEA).

Schurz claims in Schurz (2019), that properly elaborated, these OLEA results “jus-
tify (meta-)induction” and “solve Hume’s problem”. In particular, such claims are made 
on behalf of various attractivity-weighted (AW) algorithms. Of course, since Schurz only 
considers the (rather limited) version of induction addressed by OLEA, these results can-
not be said to “justify induction” in the full sense of inductive inference discussed at the 
beginning of this chapter. Moreover, since as mentioned above it was already known that 
there are free-lunch theorems (Wolpert and Macready 2005; Wolpert 1996b), some forms 
of (meta-) induction already had been “justified”.

It is also important to emphasize that in actual scientific practice, theories are not con-
tinually revised with each new experimental datum—in the language of the example above, 
vK+1(n) is modified to enforce the constraint that it only changes what sequence it chooses 
quite infrequently, rather than at every iteration, as in its original version described above. 
Similarly, in actual scientific practice, at any given time scientists are only considering at 
most a few theories—in the language of the example above, K is quite small. (After all, it 
would simply be too expensive, in many different aspects, to have many different scientific 



425The Implications of the No‑Free‑Lunch Theorems for…

1 3

theories all continually being updated.) For these and other reasons, the OLEA guarantees 
are quite weak when applied to actual scientific practice. So they provide little justification 
for the kind of induction scientists use.

This still leaves open the possibility that the kinds of guarantees given by OLEA could 
be significant in an idealized version of scientific practice. In this chapter I further analyze 
Schurz’s claims that this is true, in light of the NFL theorems.

2 � The No Free Lunch Theorems

The NFL theorems for supervised learning are the ones most relevant for discussions of 
“induction” in the sense meant by Schurz. Let X be a finite input space, Y a finite output 
space. Suppose we have a target distribution f (yf ∈ Y ∣ x ∈ X) , along with a training set 
d = (dm

X
, dm

Y
) of m pairs {(dm

X
(i) ∈ X, dm

Y
(i) ∈ Y)} , that is stochastically generated accord-

ing to a distribution P(d ∣ f ) (a conditional distribution conventionally called a likelihood). 
Assume that based on d we have a hypothesis distribution h(yh ∈ Y ∣ x ∈ X) . The creation 
of h from d is completely arbitrary. It is specified in toto by the distribution P(h ∣ d) , and 
is conventionally called the learning algorithm. In addition, let L(yh, yf ) be a loss function 
taking Y × Y → ℝ . Next, fix some distribution P(q | dX) . Finally, given these distributions, 
define the associated cost function by

The cost function quantifies how well the algorithm does, averaged over all query points 
q, when the target is f, the hypothesis generated by the algorithm is h, and the training set 
is d. Note that the term P(q|dX) in the definition of the cost function governs how a query 
point q is generated for testing the performance of the algorithm, given the set of points the 
algorithm has already seen. So for example, under IID sampling to generate both the query 
point and the training set, P(q|dX) is independent of dX . In contrast, if we are concerned 
with the ability of the algorithm to generalize from the training set, then we might require 
that P(q|dX) = 0 if q ∈ dX , since if the query point were the same as an element of the 
training set, then the cost function would quantify the memorization performance of the 
algorithm, not the generalization performance.

From now on, for simplicity, I will assume that any f is a single-valued function (i.e., 
f (yf | x) is a delta function for each x) and similarly for any h. I will also assume that the 
training-set generation process is “vertical”, in the sense that P(dY | dX , f ) is independent of 
the values of f(x) for x ∉ dX.

As an example of this framework, in Bayesian statistics analyses of “model mis-specifi-
cation”, one might investigate the posterior expected cost,

(1)C(f , h, d) ∝
∑

yf∈Y ,yh∈Y

∑

q∈X

P(q|dX)L(yf , yh)f (yf ∣ q)h(yh ∣ q)

(2)�(C | d) =
∑

f ,h

P(h | f , d)P(f | d)C(f , h, d)

(3)=
∑

f ,h

P(h | d)P(f | d)C(f , h, d)
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(the second line following from the fact that the hypothesis generated by the learning algo-
rithm is conditionally independent of the target, given the training set). In contrast, in sam-
pling theory statistics and computational learning theory, one is typically interested in

where m is the size of the training set.
This set of definitions is known as the “extended Bayesian framework (EBF)” (Wolp-

ert 1995). The EBF is needed to properly understand the relationship between Bayesian 
and non-Bayesian statistics. It also allows us to go beyond those two bodies of work. For 
example, we can use the EBF to analyze the conditional distribution �(C |m) . This allows 
us to derive a Bayesian correction to the conventional bias-plus-variance decomposition 
that arises in sampling theory statistics (Wolpert 1997; Kohavi and Wolpert 1996).3

Often when computational learning theory researchers refer to the “generalization 
error” of a supervised learning algorithm, they have in mind a data-blind cost function, 
meaning they choose P(q | dX) in eq. 1 to be independent of dX . (For example, often one 
assumes that dX was formed by IID sampling a distribution �(x) , and that P(q | dX) = �(q) .) 
However, this choice of P(q | dX) conflates two very different aspects of induction: being 
able to recall elements of the training set (i.e., cases where q ∈ dX ), versus truly “general-
izing” from the training set, to previously unseen instances (i.e., cases where q ∉ dX).

To help disentangle these two aspects of induction, one needs to use a distribution 
P(q | dX) that has zero measure on dX , to focus on the generalization. Any C(f, h, d) with 
this choice is known as an off-training set (OTS) cost function, and generically written as 
COTS(f , h, d) . The key feature of an OTS cost function is that it only depends on the partial 
functions {f (x) ∶ x ∉ dX} and {h(x) ∶ x ∉ dX} (see Wolpert 1996a). A standard example is 
any function of the type

In the words of Schurz (2019),  “the ultimate goal and evaluation criterion of inductive 
inferences is success in predictions.” Taken literally, this would imply that we should 
only be interested in OTS error. My personal view is that OTS cost is neither a “right” or 
“wrong” way to measure performance—rather it is an analytic tool for distinguishing two 
very different properties of any learning algorithm.

The no-free lunch theorems are also an analytical tool, designed to disentangle what 
aspects of a given learning algorithm can provide a priori guarantees concerning its 
expected OTS cost. It does by proving that if any given learning algorithm has particularly 
good OTS cost for one set of target functions, it must have correspondingly poor OTS 
cost on all other target functions. Formally, one of the NFL theorems says that for a broad 
range of choices of loss function (formally, for any “homogeneous loss function”), for any 
likelihood function, 

∑
f P(COTS � f ,m) is independent of the learning algorithm. Similarly, 

another NFL theorem says that if P(f) is uniform, then P(COTS | d) is independent of the 
learning algorithm. These two NFL theorems imply in particular that whether one uses the 
the type of expected value of interest in Bayesian statistics (Eq. (3)) or the one of interest 

(4)�(C | f ,m) =
∑

h,d

P(h | d)P(d | f ,m)C(f , h, d)

(5)COTS(f , h, d) =

∑
q∉dX

�(q)L(f (q), h(q))
∑

q∉dX
�(q)

3  The interested reader is directed to Wolpert (1995), Adam et al. (2019) for further-ranging discourse on 
how to integrate Bayesian and non-Bayesian statistics into an overarching probabilistic model of induction.
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in non-Bayesian statistics (Eq. (4)), there are no a priori, assumption-free benefits to using 
one learning algorithm rather than another one.

A secondary implication of the NFL theorems is that if it so happens that you make an 
assumption, but it’s that P(f) is uniform, then the average over f’s used in the NFL  theorem 
is the same as P(f). In this case, you must conclude that all learning algorithms perform 
equally well for your assumed P(f). This second implication is only as legitimate as is the 
assumption of uniform P(f) it is based on, of course.

However, it must be emphasized that simply allowing P(f) to be non-uniform, by itself, 
does not invalidate the NFL theorems. Arguments that only say that P(f) is non-uniform in 
the real world, without advocating one particular non-uniformity, do not establish anything 
whatsoever about what learning algorithm to use in the real world. In fact, allowing P(f)’s 
to vary provides us with a new NFL theorem. In this new theorem, rather than compare the 
performance of two learning algorithms by uniformly averaging over all f’s, we compare 
them by uniformly averaging over all P(f)’s. The result is what one might expect: if any 
given  algorithm A performs better than algorithm B over a given set of P(f)’s, then it must 
perform corresponding worse on all other P(f)’s.

This is the main message of the NFL theorems, not the fact that inference is impossible 
under the uniform prior P(f). In fact, whether the uniform prior is “induction-hostile” is 
irrelevant. The NFL theorems do not assume that the universe is governed by a uniform 
prior in some objective sense. Nor do they suppose that the uniform prior somehow best 
captures our subjective ignorance about the universe—the NFL theorems do not motivate 
the uniform prior by invoking some variant of the common “maximal ignorance” reasoning 
underlying various priors found in the Bayesian statistics literature.

To re-emphasize, the NFL theorems are a mathematical tool, for analyzing a priori rela-
tionships between learning algorithms. It is a category error to interpret them as based on 
any “epistemic assumptions”. Indeed, what they force us to do is try to construct very weak 
assumptions that are not only reasonable, but also can be exploited to design learning algo-
rithms that perform better than random guessing, (see Wolpert 1990 for earlier work in this 
vein). Summarizing, Schurz is simply wrong when he states, “Wolpert seems to assume 
that the state-uniform prior distribution is epistemically privileged.” (Schurz 2019, 240)—
the NFL theorems make no assumption whatsoever concerning the epistemic nature of the 
uniform prior.

I end this section by emphasizing that NFL is completely consistent with many free 
lunches. Crucially, the NFL theorems equate the expected OTS performance of any two 
learning algorithms only when they are considered independently, in isolation from one 
another. However, in general the OTS performance of any two algorithms can be correlated 
as one varies over f’s. As an example, depending on the likelihood, loss functions, and 
other details, it may be that for all f, the expected OTS error of algorithm A, �A(C|f ,m) 
equals that of algorithm B, �B(C|f ,m) , without violating NFL. In this case the maximal 
difference between the expected f-conditioned OTS errors of the algorithms as one var-
ies over f is zero. On the other hand, it may instead be that the two algorithms are anti-
correlated as one varies over f, again, without violating NFL. In other words, it may be that 
algorithm A performs better than random guessing on a function f iff algorithm B performs 
worse than random guessing on that function. In this case, the maximal difference between 
�A(C|f ,m) and �B(C|f ,m) as one varies over f’s can be quite large. As a third possibility, it 
may be that there are a few f for which algorithm A performs vastly better than algorithm B, 
but on the large number of other functions f, algorithm B performs just slightly better than 
algorithm A.
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To make this more formal, fix two learning algorithms A1,A2 , producing hypotheses 
hA1

 and hA2
 , respectively, and write the associated cost functions as CA1

= C(f , hA1
, d) and 

CA2
= C(f , hA2

, d) , respectively. Then NFL tells us that 
∑

f P(CA1
� f ,m) =

∑
f P(CA2

� f ,m) , 
i.e., the two marginalizations of 

∑
f P(CA1

,CA2
� f ,m) are identical. Nonetheless, in gen-

eral, 
∑

f P(CA1
,CA2

� f ,m) need not be a symmetric function of its two arguments—it may 
change if we interchange A1 and A2 , i.e., if we redefine A1 to always produce the hypoth-
esis hA2

 that the original algorithm A2 would produce for a given training set d, and rede-
fine A2 to always produce the hypothesis hA1

 that the original algorithm A1 would produce 
on d. In this case, we say that there are “head-to-head minimax” distinctions (Wolpert and 
Macready 1997) between the OTS performances of the two learning algorithms. Such dis-
tinctions might have had substantial repercussions for co-evolutionary scenarios like the 
development of life on Earth under natural selection, as elaborated in Wolpert and Mac-
ready (2005). As described below, it is precisely such head-to-head minimax distinctions 
that underlie the power of OLEA algorithms in toto.

3 � Counter‑Intuitive Implications of the NFL Theorems

In this section I first give a cursory sketch of how the NFL theorems can be consistent with 
the results of computational learning theory. I then present a scenario that illustrates how 
to exploit the NFL theorems in specific scenarios to derive counter-intuitive results that do 
not hold more generally. 

1.	 Suppose that P(h | d) = �(h, h∗) , where �(., .) is the Kronecker delta function. So the 
learning algorithm always produces the same hypothesis h∗ , no matter what d is. Also 
suppose that the likelihood function is P(d | f ) is noise-free. Consider the data-blind cost 
function C(f , h) =

∑
x �(x)L(f (x), h(x)) , and define the associated f-conditioned expected 

empirical cost as 

The law of large numbers assures us that �(C | f ,m) converges to Ĉ(f ,m) as m and |X| 
both grow with |X| ≫ m , e.g., for a uniform distribution � . Therefore �(C |m) as well 
converges to the m-conditioned empirical cost. (Note this is true for any prior P(f).) 
One of the primary concerns of the field of computational learning theory is character-
izing the precise form of this kind of convergence in different scenarios. Next, note that 
for |X| ≫ m , C(f , h∗) ≊ �(COTS | f , h,m) , e.g., using the OTS cost function of Eq. (5) 
for a distribution � that is uniform over X. One might suppose that this means that 
if |X| ≫ m , then �(COTS |m, Ĉ) would also become peaked about C = Ĉ(f ,m) . In fact 
though, by NFL, the average over priors P(f) of �(COTS |m, Ĉ) is independent of Ĉ , 
since Ĉ has no statistical coupling with COTS under that average.4

(6)Ĉ(f ,m) ∶=
�

h,d∶�dX �=m,q∈dX

P(h � d)L(f (q), h(q))P(d � f )𝜋(q)
∑

q∈dX
𝜋(q)

(7)=
�

d∶�dX �=m,q∈dX

L(f (q), h∗(q))P(dX � f )�(q)∑
q∈dX

�(q)

4  The interested reader is directed to Adam et al. (2019) for further discussion reconciling the NFL theo-
rems and computational learning theory.



429The Implications of the No‑Free‑Lunch Theorems for…

1 3

2.	 Given any fixed set of learning algorithms, {Ai} , define Φ({Ai}) to be the learning 
algorithm that for any data set d determines which of the Ai has lowest cross-validation 
error on d and then uses that Ai to predict the output for all questions q ∉ dX , with any 
convenient tie-breaking mechanism. (For current purposes, there is no need to specify the 
precise type of cross-validation, e.g., K-fold, leave-one-out, etc.) Similarly define Φ̂({Ai}) 
to be the learning algorithm that for any data set d determines which of the Ai has highest 
cross-validation error on d and then uses that Ai to predict the output for all questions 
q ∉ dX , with any convenient tie-breaking mechanism. I will refer to Φ({Ai}) and Φ̂({Ai}) 
as the “method of cross-validation” and the “method of anti-cross-validation”, respec-
tively. Note that for any fixed set of learning algorithms {Ai} that those two methods are 
applied to, each of them is itself a learning algorithm, i.e., a map from a provided training 
set d to a hypothesis function h. Next, suppose that Y = {0, 1} . Again suppose that the 
likelihood is noise-free. For simplicity consider the case where {Ai} contains exactly two 
learning algorithms. The “majority” learning algorithm A1 predicts 1/0 for all off-training 
set queries, depending on whether the output y = 1∕0 was more common in the data set 
(with an arbitrary tie-breaking choice). The “anti-majority” learning algorithm A2 instead 
predicts 1/0 for all off-training set queries, depending on whether the output y = 0∕1 was 
more common in the data set. (So A1 predicts whatever was the most common output in 
the training set, independent of the precise question q ∉ dX , and A2 predicts whatever 
was the least common output.) Choose the OTS zero-one cost function, for simplicity 
defined for a uniform sampling distribution over the OTS q’s: 

Consider the prior P†(f ) that allows just the two constant functions: f (x) = 1 ∀x ∈ X , 
and f (x) = 0 ∀x ∈ X , assigning each of them the probability 1/2 . For either of those 
two constant functions, for any training set d, Φ̂({A1,A2}) always makes the wrong 
prediction for any OTS question. So the expected OTS zero-one loss of anti-cross-
validation is 1. This is true whether we condition on a single data set (as in Bayesian 
statistics) or average over all data sets of a given size (as in sampling theory statistics).5 
By NFL, this means that there must be some other prior, P∗(f ) ≠ P†(f ) , for which the 
expected OTS zero-one cost of anti-cross-validation is less than 1/2. (Note that in gen-
eral such a “compensating” prior may assign nonzero probability to functions f that are 
not constant over all X.) Next, note that the sum of the expected OTS zero-one cost of 
cross-validation and anti-cross-validation conditioned on d and one of the two allowed 
target functions f is independent of f, d: 

 (This is due to the nature of the majority and anti-majority algorithms and has nothing 
to do with NFL.) Therefore for any prior P(f) over the two constant functions, the sum 
of the expected errors conditioned on d (as in Bayesian statistics) equals 1: 

(8)COTS(f , h, d) =
∑

x∉dX

1 − �(h(x), f (x))

|X| − m

(9)�Φ({Ai})

(
COTS | d, f

)
+ �Φ̂({Ai})

(
COTS | d, f

)
= 1

(10)�Φ({Ai})

(
COTS | d

)
+ �Φ̂({Ai})

(
COTS | d

)
= 1

5  It is also true if we condition on a particular one of the two allowed f’s, as in sampling theory statistics, in 
which case the prior is irrelevant, and NFL does not apply.
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Combining, since the expected OTS zero-one loss of anti-cross-validation is less than 
1/2 for the prior P∗(f ) , the expected OTS zero-one loss of cross-validation must be 
greater than 1/2 for that prior. Moreover, no matter what f is, and therefore no mat-
ter the prior, expected zero-one OTS loss is 1/2 for the algorithm that always guesses 
randomly, with probability 1/2 of choosing y = 1 . The NFL theorems already told us 
that there must be a prior P�(f ) for which cross-validation performs worse than random 
guessing, and that there must be a prior P��(f ) for which anti-cross-validation performs 
better than random guessing. However, one might have suspected that in general, those 
would have to be different priors, i.e., that P�(f ) ≠ P��(f ) . For example, one might have 
supposed that any prior P�(f ) for which anti-cross-validation does worse than random 
guessing is also a prior for which cross-validation does worse than random guessing 
(and vice-versa). The analysis above shows that this is not the case: For the single prior 
P∗(f ) , the method of anti-cross-validation is successful, in the sense of performing bet-
ter than random guessing. However, for that same prior the method of cross-validation 
is not successful, and performs worse than a random coin-toss. (Note that the experi-
ments recounted in Sect.  9 of Schurz (2019) are consistent with this phenomenon.) 
This kind of phenomenon holds more generally. For any method I  , and associated 
“anti-” method Î  , there exist priors for which Î  is successful, but I  is not. (Or as 
others might put, for any such “meta-induction algorithm” I  and “anti-meta-induction 
algorithm” Î  .) In this very specific sense, any claim that some such method I  “is guar-
anteed to be successful, no matter the course of nature, if any method is” Tom (2019) 
is wrong. This is true even though there can be a method I  that performs better than 
the associated method Î  in head-to-head minimax distinctions, “no matter the course 
of nature”. In sum, whether one method can have such guarantees depends on how 
precisely one is comparing methods.

4 � No Free Lunch and OLEA

The central problem in the simplified OLEA scenario introduced in Sect. 1 is how to set 
the value vK+1(m) based on knowledge of the values of the preceding values of the K other 
sequences, {vk(i) ∶ i ∈ {1,… ,m − 1}, k ∈ {1,… ,K}} . One can map this problem into 
a special case of the supervised learning problem of how to generalize from a particular 
training set d. Take X = ℤ

+ , and identify the successive iterations i ∈ ℤ
+ with successive 

elements of X. Also take Y = {0, 1} . So each f is a function from ℤ+
→ {0, 1} . Identify dX 

with the first m counting numbers, and choose dY to be any vector of m bits. Also identify 
each of the first K sequences {vk(x) ∶ k = 1,… ,K} with the values of K different consid-
ered functions, {gk(x) ∶ k = 1,… ,K} , by setting gk(x) = dY (x) iff vk(x) = 1 , for all x ∈ dX . 
(The values of those candidate functions for values x > m is arbitrary.) So the sequence vk 
has a payoff value of 0/1 for iteration x depending on whether gk agrees with the training 
set on x ∈ dX . Assume a noise-free likelihood function P(d | f ) , and adopt a OTS cost func-
tion C(f , h, d) = 1 − �(h(|dX| + 1), f (|dX| + 1)).

At heart, when the algorithms considered in Schurz (2019) are mapped this way into 
the realm of supervised learning, they become various learning algorithms for using the 
m-element training set d to combine the values of the candidate functions gk evaluated for 
x = m + 1 in order to set the value of the hypothesis function at x = m + 1 , i.e., in order 
to set h(m + 1) . The associated value vK+1(m + 1) is set to 0/1 depending on whether that 
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value h(m + 1) produced from the candidate functions equals f (m + 1) . So translated back 
into the context of Schurz (2019), the OTS cost function is 0/1 depending on whether 
vK+1(x) = 0∕1.

The NFL theorems for supervised learning tell us immediately that averaged over all f, 
the expected value of this OTS cost is 1/2 for all algorithms vK+1 (not just those algorithms 
considered in Schurz (2019)). More generally, if we average uniformly over all priors P(f), 
then the expected value of vK+1(x) in any iteration x is 1/2. This is true no matter how we 
set the sequence vK+1 , no matter what d is, and no matter what the candidate functions gk 
are, i.e., no matter what the sequences {vk ∶ k = 1,… ,K} are.

How can these NFL results for OLEA be reconciled with the regret-reducing results of 
OLEA in general, and the benefits of AW algorithms in particular? The answer was pro-
vided in Wolpert and Macready (1997): OLEA results concern head-to-head distinctions 
between learning algorithms, and there can be free lunches for head-to-head distinctions. 
Whether such free lunches are normative, determining how one “should” make predictions 
is a nuanced topic. (For example, recall the discussion above about natural selection and 
co-evolutionary free lunches.) Under the most conventional formulations of Bayesian deci-
sion theory, the answer is ’no’, these kinds of distinctions do not provide a reason to pre-
fer one algorithm over another. In this sense, Schurz’s claim to “solve Hume’s problem” 
results from subtle and rich but ultimately flawed reasoning.

As a final point, while Schurz does not consider the NFL theorems involving an average 
over priors P(f), he does address the case of a uniform P(f), by contesting its “epistemic 
validity”. Specifically Schurz argues that one “should” adopt a single, specific prior, in a 
normative sense (a stance I do not promote). However, Schurz argues that it should be a 
uniform prior over frequencies of the future sequences of bits, rather than (as under uni-
form P(f)) over the patterns of those bits.

In response to this it is important to point out that all of statistical physics is based on a uni-
form distribution over patterns, not over frequencies; that uniform distribution over patterns is 
known as the microcanonical ensemble. As an example, under the microcanonical ensemble, 
the distribution of joint states of all the binary spins in an Ising spin is uniform, and so the distri-
bution of frequencies of the average spin value is highly non-uniform. Indeed, the whole valid-
ity of standard, macroscopic thermodynamics, relies on the fact that in the thermodynamic limit 
of an infinite number of spins, the distribution over frequencies becomes a Dirac delta function.

In addition, the highly successful Maximum entropy procedure for inductively inferring 
(!) a probability distribution from knowledge of its moments relies on a uniform prior over 
patterns, not over frequencies (Jaynes and Bretthorst 2003; Jaynes 1968). In short, Schurz’s 
proposal for a uniform prior over frequencies runs afoul of thousands (tens of thousands?) 
of previous experiments concerning the real, physical world. Again, the central issue is 
how one is comparing algorithms. In all of those real-world experiments, the key issue is 
not head-to-head minimax distinctions, which is what allows there to be such strong argu-
ments in favor of a uniform prior.
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