
Vol.:(0123456789)

Journal for General Philosophy of Science (2019) 50:327–343
https://doi.org/10.1007/s10838-019-09477-3

1 3

ARTICLE

From Explanation to Understanding: Normativity Lost?

Henk W. de Regt1

Published online: 16 September 2019 
© The Author(s) 2019

Abstract
In recent years, scientific understanding has become a focus of attention in philosophy of 
science. Since understanding is typically associated with the pragmatic and psychologi-
cal dimensions of explanation, shifting the focus from explanation to understanding may 
induce a shift from accounts that embody normative ideals to accounts that provide accu-
rate descriptions of scientific practice. Not surprisingly, many ‘friends of understanding’ 
sympathize with a naturalistic approach to the philosophy of science. However, this raises 
the question of whether the proposed theories of understanding can still have normative 
power. In this paper I address this question by examining two theories of scientific under-
standing: Jan Faye’s pragmatic-rhetorical theory and my own contextual theory of scien-
tific understanding. I argue that both theories leave room for normativity, despite their nat-
uralistic tendencies. The normative power of my contextual theory is illustrated with a case 
study of the chemical revolution.

Keywords  Chemical revolution · Intelligibility · Naturalism · Normativity · Scientific 
understanding · Explanation

1  Introduction

Since the turn of the millennium, the notion of understanding is a central topic of debate 
in the philosophy of science, and various philosophical theories of scientific understand-
ing have been presented in the literature. Today, the idea that scientific explanations pro-
vide understanding, and the question of the nature of this understanding, is considered a 
legitimate subject for philosophical investigation. This contrasts starkly with the heydays 
of logical empiricism, when understanding was deemed a subjective, psychological phe-
nomenon, which was perhaps of interest to empirical studies of science—such as the his-
toriography and psychology of science—but not to the philosophy of science. The logical 
empiricists’ view was that philosophy of science should focus on the notion of explanation, 
to provide a logical analysis of this concept that may be used as a basis for normatively 
assessing prospective scientific explanations. In other words, they relegated understanding 
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to the descriptive context of discovery, while regarding explanation as part of the norma-
tive context of justification.

With the advent of naturalistic philosophy of science (Giere 1999, 151–173), this situ-
ation has changed radically. Today, many philosophers of science readily incorporate 
results of empirical studies of science, provided by historians of science, psychologists and 
cognitive scientists. This also applies to the philosophical debate about explanation and 
understanding: the growing attention for the role of understanding comes with an emphasis 
on analyzing how scientists achieve understanding in actual or historical practice, and on 
accounts that accurately describe these processes. As a result, the focus on understanding 
appears to lead to a shift from accounts that embody normative ideals to accounts that 
provide accurate descriptions of scientific practice. Thus, the question arises whether this 
naturalistic turn entails that normative appraisal, which after all remains an important aim 
of philosophical inquiry, becomes more difficult to achieve. Indeed, naturalism has often 
been associated with accounts that could not explain how normative epistemological state-
ments can be justified without making the naturalistic fallacy.

In this paper I will argue that this fear is unfounded. I will not only show that natu-
ralistic approaches can be consistent with the norms of scientific inquiry, but also argue 
that they help to uncover norms that are built into scientific practice, and that these norms 
cannot be revealed by the traditional and more formal approaches to explanation, in which 
understanding is regarded as merely a psychological phenomenon without philosophical 
significance. My aim in this paper is to disclose the norms of reasoning and behavior in 
the sciences that would not have been recognizable without a proper analysis of the notion 
of understanding. To achieve this, I will consider two recent philosophical theories of sci-
entific understanding of a naturalistic kind: Jan Faye’s pragmatic-rhetorical theory and my 
own contextual theory. I will argue that neither theory is normatively sterile. Although the 
aim of both theories is first and foremost descriptive and explanatory, they can also serve 
as a basis for normative assessment of scientists’ actions.

The outline of the paper is as follows. Section 2 reviews the philosophical debate about 
scientific explanation and understanding with a focus on the tension between normative 
and descriptive aims of various philosophical theories. Section 3 zooms in on the norma-
tive dimension of Faye’s theory of understanding and my own contextual theory. In Sect. 4 
an in-depth case study of an episode in the history of chemistry illustrates the normative 
power of the contextual theory. Section 5 concludes.

2 � Explanation, Understanding, and Normativity

In the 1950s and 1960s the notion of understanding was largely ignored by philosophers of 
scientific explanation. An exception was Michael Scriven, who in his paper ‘Explanations, 
predictions, and laws’ stated that “the request for an explanation presupposes that some-
thing is understood, and a complete answer is one that relates the object of inquiry to the 
realm of understanding in some comprehensible and appropriate way” (Scriven 1962, 202). 
In response, however, Carl Hempel argued that philosophers should be concerned with the 
logic of explanation only and ignore notions like ‘understanding’ and ‘comprehensible’ 
because these “refer to the psychological or pragmatic aspects of explanation” (Hempel 
1965, 413). Hempel’s point was that these aspects are irrelevant to the philosophical analy-
sis of explanation because they are relative to the individuals who produce or receive the 
explanation. They may be interesting from a descriptive, empirical point of view (say, for 
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the psychologist of science) but not from a normative, logical perspective (for the philoso-
pher of science). Hempel’s sharp demarcation of the pragmatic and non-pragmatic dimen-
sions of explanation shaped the philosophical debate about explanation for decades: though 
his covering-law model of scientific explanation was criticized from the 1960s onwards, for 
a long time the discussion remained within the boundaries drawn by Hempel. In his Four 
Decades of Explanation, Wesley Salmon relates this to the general climate in philosophy, 
observing that the 1950s and early 1960s witnessed a “strong opposition [...] between the 
Wittgensteinians, who practiced ordinary language analysis, and the logical empiricists, 
who might be characterized as artificial language analysts” (Salmon 1989, 35–36). Salm-
on’s diagnosis reads:

It is easy to see why deep philosophical conflict arose in that situation. The ordinary 
language philosopher finds the logical empiricist insensitive to human needs and 
interests. The logical empiricist finds the ordinary language philosopher unapprecia-
tive of the objective features that determine whether a proffered explanation is a bona 
fide explanation. (Salmon 1989, 36)

Salmon’s characterization of the situation suggests that part of the conflict was a dis-
agreement about whether philosophy of science should provide a normative assessment 
or an accurate description of explanatory practice. The logical empiricists focused on 
objective norms for “bona fide” explanations, while the ordinary language philosophers 
described how actual explanations relate to pragmatic aspects like “human needs and 
interests”.1 With respect to scientific explanation Hempel’s normative logical-empiricist 
approach carried the day, while for a long time Scriven’s descriptive, pragmatic approach 
was largely neglected in mainstream philosophy of science.

It was only in the 1980s that the pragmatic approach to explanation returned on the 
scene, with Bas van Fraassen and Peter Achinstein as its most prominent advocates. But 
once again these theories of explanation were criticized for their alleged lack of normative 
power. The theory of van Fraassen is pragmatic because it asserts that not all scientifi-
cally relevant factors are explanatorily relevant to a particular explanation request: explana-
tions single out ‘salient factors’ among the scientifically relevant factors, where the con-
text determines what is explanatorily relevant. This idea was criticized by Philip Kitcher 
and Wesley Salmon for posing no restriction on the relevance relation (Salmon 1989, 
141–146), and more recently by Michael Strevens (2008, 22), who classifies van Fraassen’s 
approach to explanation as a relativist one. In a similar vein, Achinstein’s pragmatic theory 
of explanation, in which the notion of understanding plays a central role, was criticized for 
allegedly failing to specify the objective relationship between a why-question and its cor-
rect answer, on which a sound explanation should be based (Salmon 1989, 148). In sum, 
the main objection to pragmatic approaches to explanation has been concerned with the 
lack of normativity, that is, the perceived failure to specify objective criteria for distin-
guishing between valid and invalid, or correct and incorrect, explanations.

Non-pragmatic theories of explanation such as Hempel’s covering law model, the uni-
ficationist models of Friedman and Kitcher, and Salmon’s causal-mechanical model of 
explanation are (at least implicitly) normative in the sense that they specify what counts 
as an acceptable or good scientific explanation. Still, they also aim at some descriptive 

1  Hempel (2001, 357–359) sees a comparable contrast between “the analytic-empiricist and the historic-
sociological, or pragmatist, school”, where the former offers a normative and the latter a descriptive con-
strual of scientific rationality.
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accuracy: proponents of these theories typically argue that their favored normative rules or 
principles for explanation align with the history and practice of science, and that generally 
accepted examples of good scientific explanations can be reconstructed in terms of their 
theory. Kitcher (1989, 437–448), for example, analyzes classical genetics, Darwinian evo-
lutionary theory, and the theory of the chemical bond as being explanatory because they 
conform to his ideal of explanation by unification. Thus, the aim of these theories of expla-
nation is first and foremost to provide normative guidelines for constructing and assessing 
explanations, but they also seek to describe actual cases of accepted scientific explanations.

Carl Craver, who defends a non-pragmatic theory of mechanistic explanation that is 
specifically suited for the neurosciences, addresses the issue of normative power versus 
descriptive accuracy explicitly in his Explaining the Brain (2007). In the preface he states 
that the goal of his project is both descriptive and normative, where the descriptive aim is 
to “characterize the mechanistic explanations in contemporary neuroscience and the stand-
ards by which neuroscientists evaluate them”, while the normative aim is “to clarify the 
distinction between good explanations and bad” (Craver 2007, vii–viii). He acknowledges 
that the normative does not follow directly from the descriptive (because scientists are 
sometimes mistaken and standards for explanation may change over time), but he argues 
that descriptive accuracy can help to reach the normative aim in the following way: a phil-
osophical account should accommodate “the clear-cut and uncontroversial cases of suc-
cessful and failed explanations”, and the “controversial cases can then be decided accord-
ing to the account that best accommodates the central and uncontroversial cases” (Craver 
2007, ix).2 In Chapter 4, entitled “The norms of mechanistic explanation”, Craver presents 
his mechanistic account of explanation, guided by two normative distinctions: (1) the 
account should be able “to distinguish how-possibly models from how-actually models”; 
and (2) the account “should distinguish mechanism sketches from complete mechanistic 
models” (Craver 2007, 112–113). Craver concludes that progress in the development of 
mechanistic explanations “involves movement along both the possibly-plausibly-actually 
axis and along the sketch-schema-mechanism axis” (Craver 2007, 114). Craver’s norms for 
assessing mechanistic explanations are in line with the views of Hempel (1965, 423–424 
and 428–431), who relegated how-possibly explanations and explanation sketches to the 
domain of pragmatics and argued that they fail to meet the standards for acceptable sci-
entific explanation. It is therefore not surprising that Craver, like Hempel, also downplays 
the importance of understanding for scientific explanation, arguing that feelings of under-
standing are often misleading (Craver 2007, 21) and that one can have explanation without 
understanding (Craver 2007, 33–34).

In more recent years scientific understanding has become a focus of philosophical 
attention independently of explanation. Since the turn of the millennium the notion of 
understanding has been scrutinized from various perspectives, both in philosophy of sci-
ence and in epistemology. For many philosophers of science, scientific understanding 
is now a central topic of investigation, and its pragmatic aspects are no longer routinely 
regarded as irrelevant from a philosophical perspective. Still, there appear to be two types 
of approaches to the analysis of (scientific) understanding, which roughly correspond to the 
two strands described above. On the one hand, one finds philosophers who emphasize that 
understanding should ultimately be grounded in objective explanations and/or knowledge 
(of, for example, causal relations). The understanding itself then consists in a ‘grasp’ of 

2  See also Craver (2007, 19–20): the model of explanation should be both descriptively adequate and func-
tion as a regulative ideal.
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those explanations or causal relations, respectively (Grimm 2017; Strevens 2008; Khalifa 
2017). Although they acknowledge that understanding involves a ‘grasp’, which is a cog-
nitive achievement that relates to the psychology of the subject, they do not see this as 
sufficient for genuine understanding. Stephen Grimm, for example, adds an explicitly nor-
mative requirement when he states that “what seems needed in addition to an accurate, 
subjectively justified grasp of the world is some sort of reliable connection between one’s 
grasp and how the world is” (Grimm 2017, 218).

On the other hand, there are those who put the pragmatics of understanding center stage 
in their analysis. This typically leads to approaches to scientific understanding that invoke 
the results of empirical study by, for example, psychologists, historians, or sociologists of 
science. Thus, Faye (2014) bases his theory in part on results from cognitive science and 
evolutionary theory, while De Regt (2017) builds on historical studies of scientific devel-
opment. Such approaches employ a naturalistic methodology, in the sense defined by Pap-
ineau: “Methodological naturalists see philosophy and science as engaged in essentially the 
same enterprise, pursuing similar ends and using similar methods” (Papineau 2016). Prom-
inent philosophers of science taking a naturalistic approach are Ronald Giere (1999) and 
Joseph Rouse (2015).3 It should be emphasized, however, that methodological naturalism 
does not necessarily imply a radical scientism that aims to reduce philosophy completely to 
the empirical sciences, such as Quine advocated in his ‘Epistemology naturalized’. While 
Quine’s naturalism is purely descriptive and explanatory, leaving no room for normative 
philosophy at all, methodological naturalism may still be compatible with normative aims, 
as I will show below. Still, there are obstacles to reconciling naturalistic philosophies of 
science with normativity. The most fundamental one is Hume’s is/ought problem, also 
called the naturalistic fallacy, which asserts that it is impossible to derive normative claims 
from mere descriptions of how the world is. Giere (1999, 72–75 and 151–173), who favors 
a naturalistic approach to the philosophy of science, addresses this ‘argument from norms’ 
against naturalized philosophy of science, arguing that the norms of scientific rationality 
are not categorical but instrumental (and can be explained on an evolutionary basis).4

So far, our discussion has shown that the prima facie assumption that theories of expla-
nation are normative while theories of understanding have descriptive aims has to be 
rejected. The difference is rather one of emphasis and degree: non-pragmatic theories of 
explanation place stronger emphasis on normative assessment, while pragmatic theories of 
explanation and naturalistic theories of understanding focus more on descriptive accuracy. 
When advocates of non-pragmatic theories of explanation describe cases from the history 
or practice of science, they typically do so in the form of a rational reconstruction, which 
also has a normative component. By contrast, the normative power of pragmatic and natu-
ralistic theories is not immediately obvious. In the next section I will examine two natu-
ralistically inclined accounts of understanding, Jan Faye’s pragmatic-rhetorical theory and 

3  According to Rouse, “the most pressing challenge for naturalism today is to show how to account for our 
own capacities for understanding that could be understood scientifically” (Rouse 2015, 6–7). A naturalistic 
account of scientific understanding should show how our capacities for understanding “are a natural phe-
nomenon, intelligibly part of the natural world as scientifically understood” (Rouse 2015, 345). Rouse adds 
that understanding is normative, which places constraints on the kind of account that is acceptable.
4  Compare the Kantian distinction between hypothetical and categorical imperatives. Laudan uses the dis-
tinction to defend a ‘normative naturalism’, based on the idea that the “normative rules of epistemology 
are best construed as hypothetical imperatives, linking means and ends; [and that] the soundness of such 
prudential imperatives depends on certain empirical claims about the connections between means and ends” 
(Laudan 1990, 46).
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my own contextual theory, and investigate whether—and if so, to what extent and in which 
way—they are normative.

3 � Two Naturalistic Theories of (Scientific) Understanding

In his book The Nature of Scientific Thinking (2014), Jan Faye presents a naturalistic 
account of science—and scientific understanding in particular—that is in part based on 
cognitive science and evolutionary theory. Faye aspires “to describe how our human cog-
nitive capacities allow scientists to acquire an understanding of nature by means of rep-
resentation, interpretation, and explanation”, where he assumes that these capacities are 
“a product of evolution and due to our adapting to our external environment” (Faye 2014, 
vii). This naturalistic approach is combined with a pragmatic view of science that empha-
sizes the context dependence of scientific explanation and understanding and allows for 
pluralism regarding representation and interpretation. As Faye explains, naturalism and 
pragmatism are two sides of the same coin: scientific thinking is part of human nature, but 
this implies that science rests on “human perspectives, cognitive limitations, and epistemic 
interests” (Faye 2014, 270).

In the preface to his book Faye writes that his account of science is “thoroughly descrip-
tive” and adds that he does not aspire to provide a “normative ideal for evaluating better or 
worse acts of explaining or instances of understanding” (Faye 2014, ix). This appears to be 
in line with the general spirit of naturalistic analyses of science, which focus on describing 
and explaining science as a human activity, rather than on offering a framework for norma-
tive assessment of scientific activity and results. Faye’s non-normative stance emerges, for 
example, in his claims that understanding does not require knowledge (which is a norma-
tive concept), and that even false beliefs may lead to understanding.5 But is Faye’s the-
ory indeed only descriptive, or does it include some (hidden) normative ideal of scientific 
understanding?

Faye (2014, 44–46) distinguishes between various levels and forms of understanding, 
which can be either embodied or reflective. While embodied understanding is non-repre-
sentational and typically tacit, reflective understanding is representational and explicit.6 
Here I will focus on the higher-level, reflective forms of understanding—such as explan-
atory, theoretical, and interpretive understanding—that are typical of scientific thinking. 
Faye regards understanding as an important aim of science, and in Chapter 2 of The Nature 
of Scientific Thinking he presents his own theory of scientific understanding, comparing 
it to two rival accounts, which he terms the ‘content view’ and the ‘ability view’. On the 
content view, understanding is a species of knowledge, namely knowledge of the (explana-
tory) content of our beliefs. On the ‘ability view’, by contrast, understanding is the cogni-
tive skill that is needed to construct explanations. Faye rejects both views and presents 
an alternative, the ‘organization view’, on which understanding consists in “grasping how 
pieces of information relate to one another” (Faye 2014, 59). He presents the following 
characterization (U) of reflective understanding, which expresses his organization view in a 
more formal manner:

5  “A may truly claim to understand P, and therefore to assume that a belief regarding P is true, but not to 
know whether her belief is true” (Faye 2014, 54, original italics).
6  In line with his naturalism, Faye (2014, 46–48) observes a continuity between human and animal cogni-
tion, and argues that some lower-level, embodied forms of understanding can be had by animals as well.
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(U) A human agent A understands a state of affairs, P, in a certain context, C, in the 
terms of a theory, T, if, and only if, A’s belief regarding P connects (in the epistemi-
cally correct way for A; i.e., in accordance to A’s epistemic norms, N, of understand-
ing) with A’s cognitive system, including A’s background knowledge, beliefs, and 
assumptions (A’s worldview). (Faye 2014, 54)

Faye proposes (U) as a descriptive characterization that fits all forms of understanding. 
To be sure, (U) refers to specific norms—namely, “A’s epistemic norms of understanding”, 
but these norms vary with the context. Faye: “No single norm of objective understanding 
predominates in all sciences; rather the criteria for understanding vary according to the 
epistemic context in which scientific thinking takes place” (Faye 2014, 53). The norms of 
understanding vary across scientific disciplines, and sometimes also within a particular dis-
cipline. So (U) merely describes the role that particular context-dependent norms play in 
the achievement of scientific understanding. This is consistent with a naturalistic approach 
to understanding. In other words, there are no absolute, universal norms for understanding 
that transcend contextual epistemic norms, where the latter are ultimately social or conven-
tional (2014, 53).

It seems to me, however, that (U) also expresses a demand for coherence as an overarch-
ing norm for understanding. (U) does appear to tell us something about how we ought to 
think in order to obtain scientific understanding; namely: if we want to understand P, we 
ought to connect our belief regarding P to our background knowledge, beliefs, and assump-
tions. In this respect, Faye’s coherence theory of understanding does not differ from other 
coherence theories in epistemology (e.g. of truth or justification), which are clearly nor-
mative. That a coherentist view of understanding does not preclude but rather calls for a 
normative stance can be gleaned from Catherine Elgin’s recent book, in which she devel-
ops an elaborate analysis of epistemic normativity to support her coherentist account of 
understanding (Elgin 2017, 63–121). Hence, it does not appear to be a problem that Faye is 
wrong in evaluating (U) as non-normative, on the contrary: an account of scientific under-
standing should have some normative power, as I will argue in more detail below.

So why would Faye emphasize the descriptive nature and downplay the role of norma-
tivity in his theory? This obviously has to do with his naturalistic objective. His approach 
is based on a distinction between universal cognitive standards of understanding, inher-
ited in our thinking, and more local epistemic norms, which are socially constructed.7 Faye 
holds that norms are typically social, and characteristic of (communities of) beings that 
are capable of abstract, reflective thinking. By contrast, understanding by itself is a natu-
ral phenomenon and accordingly non-normative: the organizing principle (U) describes 
how humans understand; it does not present normative guidelines or rules for achieving 
understanding. I submit, however, that this assumes a too restrictive view of normativ-
ity. A broader interpretation should distinguish between two types of norms in relation to 
understanding:

•	 Prescriptive norms, which provide rules that scientists should follow if they want to 
achieve scientific understanding of phenomena.

•	 Evaluative norms, which can be used to assess whether or not a particular scientific 
result does in fact provide genuine understanding.

7  Jan Faye, personal communication.
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On Faye’s view, any prescriptive norms for understanding that we find in scientific prac-
tice are local, socially constructed, and context-dependent: these are A’s epistemic norms 
N, cited in (U). Faye suggests that (U) itself does not specify a categorical norm that can 
be used in a prescriptive manner. However, it does at least offer a standard that can be used 
for evaluating claims to understanding: if someone claims to understand P, we can evaluate 
this claim on the basis of (U). So (U) at least allows for evaluative normativity, even if it 
does not allow for prescriptive normativity. What is more, we can use (U) for articulating 
instrumental rules for achieving understanding. Even if one wants to retain the idea that 
(U) in itself is non-normative (in the sense that it merely describes the nature of under-
standing), this characterization can be used to formulate an instrumental rule of the form 
‘If you want to understand P, do X’, where X is the act of connecting your belief regarding 
P to your background knowledge, beliefs, and assumptions.8 I conclude that Faye’s natu-
ralistic account of scientific understanding contains more normativity than his writing sug-
gests. For most philosophers of science this will be an asset rather than a disadvantage of 
Faye’s theory.

My own theory of scientific understanding (De Regt 2017) has much in common with 
Faye’s theory but also differs from it in important respects. Most importantly, it is an exam-
ple of what Faye terms the ‘ability view’, on which understanding is the cognitive skill that 
is needed to construct explanations, a view that Faye rejects in favor of the ‘organization 
view’. But like Faye’s my approach is naturalistic in the sense defined in Sect. 2, and my 
theory is first and foremost a descriptive account of how scientists acquire understanding 
of phenomena in actual scientific practice. Thus, the same question arises: Does it have any 
normative force as well? In the remaining part of this section I will outline my theory with 
an eye on this question, and in the next section I illustrate it with a historical example, the 
Chemical Revolution. I will argue that my theory does not only describe this episode but 
can also give a normative assessment of it.

The contextual theory of scientific understanding is based on an analysis of examples 
from the history of science (esp. physics) and on recent insights that philosophers of sci-
ence have derived from studying scientific practice. Its central idea is the thesis that scien-
tists achieve understanding of a phenomenon P if they construct an appropriate model of 
P on the basis of a theory T, following the model-based account of explanation defended 
by Cartwright (1983, 143–162). More specifically, the contextual theory is built around the 
following criterion for scientific understanding:

CUP: A phenomenon P is understood scientifically if and only if there is an explanation 
of P that is based on an intelligible theory T and conforms to the basic epistemic values 
of empirical adequacy and internal consistency (De Regt 2017, 92).

The key term in this criterion is ‘intelligible’: understanding of phenomena requires an 
intelligible theory, where intelligibility is defined as:

Intelligibility: the value that scientists attribute to the cluster of qualities of a theory T 
(in one or more of its representations) that facilitate the use of T (De Regt 2017, 40).

8  (U) is an evaluative standard. ‘Do X to achieve (U)’ is a prescriptive norm, based on a valuation of under-
standing (U). See McMullin (1983, 5) for the distinction between valuation and evaluation.
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Note that this definition entails that intelligibility is not an intrinsic property of theories, 
but a context-dependent value: whether or not a theory is intelligible to scientists depends 
on, for example, their skills and their background knowledge. Why do scientific theories 
need to be intelligible to the scientists who use them? My argument for this claim draws on 
the work of philosophers Nancy Cartwright (1983) and Margaret Morrison (1999, 60–64), 
who have highlighted the pivotal role of modelling in scientific practice, and in explana-
tory practices in particular. On the model-based account of scientific explanation scientists 
acquire understanding of the phenomena by constructing models, which ‘mediate’ between 
relevant theories and the phenomenon-to-be-explained. Constructing such mediating mod-
els involves pragmatic judgments and decisions, since models do not follow straightfor-
wardly from theories (and neither do they follow from the empirical data). For example, 
suitable idealizations and approximations need to be made. I submit that the construction 
of such models—which provide explanatory understanding of phenomena—requires theo-
ries that are intelligible in the sense defined above. Only if scientists’ ability to work with 
the theory allows them to make suitable pragmatic judgments, will they succeed in con-
structing explanatory models. Consequently, the theory should be intelligible in the sense 
that scientists’ skills should match the qualities of the theory. In sum, understanding a phe-
nomenon on the basis of T depends on an appropriate combination of skills of S and quali-
ties of T.

An example of such a quality is visualizability. This is a theoretical quality that is 
widely valued, because for many scientists visualizable theories are more tractable and 
easier to work with (De Regt 2014). But the contextual theory does not imply that visu-
alizability is a necessary condition for the intelligibility of scientific theories. Depending 
on the context, there may be alternative ways to render theories intelligible.9 A concrete 
example of model construction in which visualization plays a role is the explanation of gas 
phenomena on the basis of the kinetic theory of gases, as it was developed by James Clerk 
Maxwell and Ludwig Boltzmann in the nineteenth century. The kinetic theory represents 
gases as aggregates of particles in motion obeying the laws of Newtonian mechanics. Spe-
cific models of the particles and their structure have to be constructed in order to explain 
particular gas phenomena on the basis of the theory. For example, the kinetic explanation 
of Boyle’s law involves the construction of a model (the ideal gas model) that represents 
gas molecules such that Newton’s laws can be applied and a theoretical prediction of the 
relationship between pressure and volume can be derived. The ideal gas model does not 
follow deductively from the kinetic theory, as its construction involves idealizations and 
approximations. Specific features of the theory—its visualizability, but also its causal 
aspects—guaranteed its intelligibility to Maxwell and Boltzmann (and to physicists ever 
since).10 Subsequently, the construction of more specific molecular models, such as the van 
der Waals model and the dumbbell model for diatomic gases, yielded additional or more 
detailed understanding of gas phenomena (see De Regt 2017, 205–216).

One might object that my definition of intelligibility makes it a purely subjective notion 
that is thereby devoid of normative power. If valuing a theory as intelligible is merely a 
matter having a subjective preference for that theory, then it may seem that there can be no 
objective (normative) criteria for assessing whether or not a particular theory is intelligible. 
However, this does not follow. Although intelligibility criteria are contextual and will vary 
across scientific communities (and sometimes even within a community), there are ways of 

9  See De Haro and De Regt (2018) for examples from current theoretical physics.
10  See De Regt (2017, 31–35 and 103–106) for an extensive discussion of this example.
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objectively testing the intelligibility of a theory (for scientists in a particular context). Such 
an objective test is provided by the following Criterion for the Intelligibility of Theories:

CIT1: A scientific theory T (in one or more of its representations) is intelligible for sci-
entists (in context C) if they can recognize qualitatively characteristic consequences of 
T without performing exact calculations (De Regt 2017, 102).11

The basic idea behind CIT1 is that its fulfilment indicates that the scientists have an 
‘insight’ into the workings of the theory and are accordingly able to use the theory for the 
construction of models of the phenomena. If the resulting models are empirically adequate 
and internally consistent, they provide understanding of the phenomena in question. The 
conceptual tools—e.g. visualization—that scientists may use to recognize qualitative con-
sequences of T are also the tools that will facilitate model construction.

4 � Understanding (in) the Chemical Revolution

In this section I will apply the contextual theory of scientific understanding to a concrete 
historical case: the eighteenth-century revolution in chemistry, in which the phlogiston the-
ory of combustion was replaced by Lavoisier’s oxygen theory.12 The aim of this case study 
is to illustrate how analysis of the role of understanding in this episode from the history of 
science reveals the contextual norms of scientific reasoning in the sciences. In addition to 
showing how the contextual theory describes the historical case, I will address the question 
of whether it can also be used to give a normative appraisal of the development.

The transition from phlogiston theory to oxygen theory is a famous episode in the 
history of science.13 It was a revolution in chemistry, which involved radical conceptual 
changes that do not fit the picture of cumulative progress in which scientific understand-
ing gradually increases. In particular, after the Chemical Revolution the existence of phlo-
giston—the principle of combustion—was denied; in its place, Lavoisier’s new theory 
postulated chemical elements such as oxygen and hydrogen. Lavoisier’s work marks the 
beginning of modern chemistry, and although there are important differences between his 
oxygen theory of combustion and today’s chemical theories, the way in which they explain 
chemical processes is basically the same. Accordingly, no one will deny that Lavoisier’s 
theory provides understanding of chemical phenomena. With phlogiston theory, on the 
other hand, the situation is less clear: because this theory is currently regarded as patently 
false, and phlogiston as a non-referring term, the claim that it can provide understanding of 
chemical phenomena is more controversial.14 However, historians of science have argued 
that with the phlogiston theory chemists were able to explain many (though not all) aspects 
of combustion, and they classified chemical substances and reactions in ways that bear 

14  De Regt and Gijsbers (2017) defend the claim that phlogiston theory can provide understanding despite 
the fact that today ‘phlogiston’ is considered a non-referring term.

11  N.B.: CIT1 is only one of many possible criteria (tests) for intelligibility. Accordingly, CIT1 is a suffi-
cient condition for intelligibility, not a necessary one.
12  Part of this section draws on De Regt and Gijsbers (2017), which presents the case in more detail.
13  See Hankins (1985, 8–112) for an overview, and Chang (2010, 2012) for an account that focuses on 
phlogiston theory.
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close resemblance to our current understanding. Hence, there are reasons to argue that also 
phlogiston theory provided at least some degree of understanding.

Phlogiston theory was born in 1703, when Georg Stahl introduced the concept of phlo-
giston as the principle that accounts for the processes of combustion, respiration, and cal-
cination of metals. Stahl identified phlogiston as the principle of inflammability, a funda-
mental substance that is present in all inflammable materials.15 He assumed that highly 
inflammable materials are rich in phlogiston, which escapes and is absorbed by the air in 
the process of combustion. Similarly, in the process of calcination metals are deprived of 
phlogiston and become “calx”. The presence of air is essential for the processes of combus-
tion and calcination, and phlogiston theorists explained this by hypothesizing that the air is 
needed to absorb the released phlogiston. This hypothesis was supported by the observa-
tion that a candle that is placed in a closed vessel stops burning after a while, when the air 
is saturated with phlogiston and has turned into ‘phlogisticated air’.

Phlogiston theory provided a unifying explanation of the phenomena of combustion, 
respiration, calcination and the reduction of metals. It also explained common properties 
of metals, such as shininess, malleability, ductility, and electrical conductivity (Chang 
2012, 21).16 Moreover, the theory led to fundamental experimental discoveries. In 1766, 
Henry Cavendish isolated hydrogen by dissolving metals in acid. Because it burned easily 
and explosively, he called it ‘inflammable air’ and identified it as ‘phlogisticated water’. 
In 1774, Joseph Priestley was the first to isolate oxygen, which he called ‘dephlogisticated 
air’. There was, however, one problem for phlogiston theory: calxes that result from cal-
cination weigh more than the metals from which they are produced. There was no gener-
ally accepted explanation for this weight gain, but the problem was—at least for a long 
time—not considered fatal for phlogiston theory because, first, it was mainly restricted to 
calcination, and second, phlogiston chemists focused on qualitative rather than on quantita-
tive features. Moreover, weight was regarded as a property of substances, not as a quantity 
of matter; and properties can change in chemical reactions. Here we see that norms for 
scientific understanding are context-specific: while in retrospect weight gain is often seen 
as fatal to phlogiston theory, it was not regarded as such in the eighteenth-century context.

The weight gain problem inspired Antoine Lavoisier to investigate the nature of com-
bustion. In 1772 he learned that phosphorus gains weight in combustion and began to 
experiment with burning phosphorus. He found that in the combustion process air was 
absorbed and phosphoric acid produced. In his subsequent experiments and theorizing 
Lavoisier focused on the role of air in combustion and calcination. Assuming that air is 
not an element but rather a state that substances may achieve, he hypothesized that atmos-
pheric air consists of several components, and that only one of these components (oxygen) 
is absorbed in the processes of combustion and calcination. The result was a radically new 

15  To modern ears it may sound strange to call something both a principle and a substance. But the ontol-
ogy of pre-Lavoisier chemistry distinguished between active and passive substances, where the former 
embody principles associated with particular properties. In line with the dominant approach in chemistry, 
the emphasis is on the property that the principle imparts on the passive substance. Thus, phlogiston is the 
active substance that makes, for example, wood a combustible.
16  This is a standard example of ‘Kuhn-loss’, since the explanation of this fact was lost in the Chemical 
Revolution. A new explanation appeared only at the end of the nineteenth century, with the electron theory 
of metals (Chang 2012, 44–45).
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theory of combustion.17 In the late 1770s, Antoine Lavoisier repeated Priestley’s experi-
ments with dephlogisticated air and interpreted them in terms of his new oxygen theory.

Lavoisier successfully predicted the production of water in the process of burning 
inflammable air. He argued that water is not an element but a compound of inflammable air 
(hydrogen) and oxygen. The analysis of water is commonly regarded as the final victory of 
Lavoisier’s oxygen theory over phlogiston theory, which assumed water to be an elemen-
tary substance. However, as Chang (2012, 6) argues, phlogiston theorists had a defensible 
account of the formation of water as well. Although they regarded water an element, this 
did not imply that it could not be modified: phlogiston could be added to it or taken from it, 
resulting in ‘phlogisticated water’ or ‘dephlogisticated water’.

Let us see how the contextual theory of scientific understanding deals with this his-
torical episode, whether it can give a descriptively adequate account and whether it allows 
for normative assessment. First, I will address the question of whether phlogiston theory 
provided understanding of chemical processes like combustion. That would be the case 
if CUP applies, that is, if phlogiston theory was an intelligible theory with which scien-
tists constructed empirically adequate and internally consistent explanations of empirical 
phenomena. So, was phlogiston theory intelligible? Intelligibility is a contextual value: 
whether scientists value the qualities of a theory (as facilitating its use) depends on their 
skills and on other contextual factors. For eighteenth-century scientists phlogiston theory 
was plausibly intelligible, as it fitted the context in which chemistry was practiced. Eight-
eenth-century chemistry differed from modern chemistry in two important ways: first, it 
was predominantly qualitative rather than quantitative; and second, it focused on the prop-
erties of substances, not on their composition. The emphasis lay on explaining the proper-
ties of substances by means of principles. Thus, the scientific context changed fundamen-
tally in the Chemical Revolution, involving a transition to a new approach in chemistry, 
which focused on the compositional analysis of substances and on quantitative research 
(exemplified by Lavoisier’s emphasis on determining and explaining weight relations).18 
Accordingly, it is reasonable to suppose that phlogiston theory was intelligible to chemists 
in the pre-Lavoisier era.

The qualities of phlogiston theory that facilitated the construction of explanations were: 
its ontology of principles, its qualitative nature, and its scope. So were the explanations 
that phlogistonists constructed using these qualities empirically successful? Above we have 
seen that phlogiston theory allowed eighteenth-century chemists to describe, predict and 
understand aspects of combustion, such as the escape of heat and light, as well as other 
chemical phenomena. Phlogiston theory provided a coherent, unifying account of combus-
tion, calcination, reduction, and respiration, and made accurate predictions across a wide 
range of phenomena. Moreover, some phenomena could be understood on the basis of 
phlogiston theory but not on Lavoisier’s oxygen theory (notably, the common properties of 
metals19), and the theory guided experimental chemistry and the discovery of new gases.

Still, Lavoisier won out in the end, and phlogiston theory was abandoned in favor of 
oxygen theory. So one might ask to what extent Lavoisier understood chemical phenomena, 
and whether he had more (or a higher degree of) understanding than phlogiston theorists 
such as Priestley. A comparative analysis by Hasok Chang (2012, 14–29) shows that both 
phlogiston theory and Lavoisier’s oxygen theory had their merits and problems, and that 
17  While Lavoisier abandoned phlogiston, he introduced a new invisible and weightless substance to 
account for the escape of heat in combustion processes: caloric. This is one important difference with mod-
ern oxygen theory.
18  This transition has been described as one from ‘principlism’ to ‘compositionism’ (Chang 2012).
19  For more examples, see Kuhn (2012, 156) and Chang (2012, 45).
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there was no clear reason to favor one over the other at the end of the eighteenth century. 
Chang evaluates the merits of phlogiston theory and Lavoisier’s oxygen theory by compar-
ing the respective ‘problem fields’ they considered important and assessing how well they 
solved the problems in these fields. Of course, phlogistonists and oxygenists shared central 
problem fields (otherwise they wouldn’t be rivals), but there were also differences. Chang 
(2012, 20) presents the following list of problem fields considered important:

•	 By both sides: combustion, calcination/reduction and respiration; theory of acids; con-
stitution of various substances

•	 By phlogistonists only: properties of compounds in terms of properties of ingredients; 
mineralogy/geology; meteorology; nutrition/ecology

•	 By oxygenists only: theory of heat and changes of state; chemistry of salts

Assessing which side did better in solving problems is not an easy matter. Chang (2012, 
22–29) suggests that in total the phlogistonists dealt with a larger number of problems. 
But he admits that the most important issue is which side did better in solving the shared 
problems. To answer this question, however, it should first be acknowledged that phlogis-
tonists and oxygenists had different criteria for what counted as a good solution. In other 
words, they adhered to different epistemic values, associated with different norms for sci-
entific understanding. Chang presents an elaborate analysis of the relevant differences in 
epistemic values. He notices three ways in which value judgments of phlogistonists and 
oxygenists diverged: completeness vs. simplicity, conservatism vs. novelty, and pluralism 
vs. absolutism (see Table 1).

Regarding completeness vs. simplicity, Lavoisier focused on explaining a relatively lim-
ited set of phenomena in an elegant way, while the phlogistonists advanced explanations 
for a wide range of phenomena, which were sometimes rather cumbersome. Moreover, 
even in cases where phlogistonists and oxygenists shared an epistemic value, they some-
times interpreted it differently. For example, while both parties valued unity and systema-
ticity, they disagreed about what were instantiations of these values, and they accused each 
other of not respecting the values. Taking stock, Chang concludes that a clear verdict is 
impossible, because “there were different standards according to which one or the other 
was better supported by empirical evidence. […] both systems were partially successful in 
their attempts to attain worthwhile goals, and […] there was no reason to clearly favor one 
over the other” (Chang 2012, 29).

Chang’s comparative analysis accords with the contextual theory of scientific under-
standing, as it assigns a crucial role to context-specific standards and epistemic values. 
CUP implies that whether or not a scientific theory can provide understanding of phenom-
ena depends on its intelligibility, which in turn depends on the scientific, historical, and dis-
ciplinary context. We have seen above that phlogiston explanations provided understanding 
of phenomena in some domains. Phlogiston theory could achieve these successes because, 
in the context of eighteenth-century chemistry, it was an intelligible theory: it provided 
the tools for constructing models of the phenomena that were internally consistent and—
from the perspective of the eighteenth-century chemists—empirically adequate to a suf-
ficient extent. The development of Lavoisier’s rival oxygen theory of combustion involved 
a radical change in chemical thinking, from qualitative to quantitative research and from 
principlism to compositionism, with a corresponding change in value judgments. This led 
to new intelligibility standards, which at least for Lavoisier himself opened the door to new 
explanations for known phenomena and to novel predictions of as yet unknown phenomena 
(e.g. the analysis of water). Chang’s analysis makes it clear, however, that it is difficult to 
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say which theory provided more understanding. Accordingly, while the contextual theory 
allows for a positive normative evaluation of the understanding-providing power of the two 
individual theories within their respective contexts, it does not supply a context-independ-
ent normative rule for choosing between the two theories.

Some readers may find this type of normativity too weak. Since intelligibility is a 
context-relative notion implying that no theory is intrinsically unintelligible, CUP does 
not provide scientists with concrete normative guidelines. Hence, they might object, the 
demand for intelligibility does not seem to place any constraints on scientific activity. I 
admit that my theory can and does not provide concrete normative guidelines in the sense 
of categorically recommending the use of specific types of theories. However, this does 
not render the demand for intelligibility vacuous and CUP normatively sterile, as becomes 
clear if we invoke the distinction between prescriptive and evaluative norms, introduced in 
Sect. 3. It appears that CUP does not supply an unambiguous prescriptive norm for theory 
choice, at least not with respect to intelligibility.20 It merely advises scientists to use intel-
ligible theories, where the context determines which theory is intelligible. But while the 
normative power of the contextual theory is thus relatively weak if one is looking for pre-
scriptive norms, the theory is well-equipped for (normatively) evaluating claims to under-
standing, that is, for assessing whether or not a model constructed to explain a particular 
phenomenon does in fact provide genuine understanding. Part of such an assessment is the 
evaluation of the intelligibility of the theory used in the construction of the model (e.g. 
using criterion CIT1). Accordingly, in a specific context there is the possibility of assessing 
whether a theory is intelligible to a scientist or a group of scientists. Hence, the normative 
content of the contextual theory of scientific understanding is of the evaluative kind, rather 
than of the prescriptive kind.

It might be suggested that we should adopt the following prescriptive norm: ‘if theory 
T1 is more intelligible than theory T2 in context C, scientists in C should work with T1’. 
However, although this may be a fruitful policy, it should never be turned into a normative 
rule. The case of phlogiston theory versus Lavoisier’s rival oxygen theory clearly shows 
that we cannot and should not proclaim that chemists, at any point in time in the late eight-
eenth century, should have used the one rather than the other theory. While it provides 
tools for assessing the (un)intelligibility of phlogiston and oxygen theory in their historical 
context, the contextual theory of understanding does not offer prescriptive norms. Its nor-
mative content is not of the prescriptive but of the evaluative kind. Evaluating the develop-
ment of chemistry at the end of the eighteenth century leads to the conclusion that both 
Priestley and Lavoisier had some understanding of chemical phenomena such as combus-
tion, and that it is difficult to determine whether Lavoisier had more.21 Today, however, 
the situation is different: it is fair to say that phlogiston theory has (de facto) become less 
intelligible than oxygen theory, because the scientific context has changed to such an extent 

20  Note that CUP includes the additional requirements of empirical adequacy and internal consistency, 
which do imply prescriptive norms, although also these values are to some extent context-relative (see De 
Regt 2017, 38–39).
21  A comparative evaluation of the understanding-providing merits of the various theories would be pos-
sible if we acknowledge that understanding comes in degrees. A precise analysis of the notion of degrees 
of understanding is beyond the scope of this paper, however. See Baumberger (2019) and Kelp (2017, 252–
254) for attempts to explicate the notion of degrees of understanding.
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that the framework in which phlogiston theory was embedded (qualitative chemistry on a 
principlist basis) has become completely foreign to present-day scientists. Moreover, in all 
contexts of application modern chemical theory (in contrast to Lavoisier’s oxygen theory) 
is superior from a predictive and explanatory perspective.22

5 � Conclusion

In this paper, I have addressed the question of whether naturalistic theories of scientific 
understanding can have normative power, through an examination of two such theories: 
Jan Faye’s pragmatic-rhetorical theory of understanding and my own contextual theory of 
scientific understanding. Although both theories focus first and foremost on the description 
and explanation of how understanding is achieved in the practice and history of science, I 
have shown that they are not normatively sterile. Faye’s theory, which has been analyzed 
in Sect. 3, is basically a coherentist account of understanding, implying that coherence is 
a normative requirement for understanding. My own contextual theory of scientific under-
standing, also discussed in Sect. 3, is designed to describe the criteria for understanding 
employed in scientific practice and to explain their function and historical variation. But 
it can also serve as a basis for normative assessment of the understanding that scientific 
research delivers. Although it does not provide concrete normative prescriptions, the con-
textual theory allows for normative evaluation of concrete scientific practices, and of the 
intelligibility of the theories employed in these practices. The historical case study of the 
Chemical Revolution, presented in Sect.  4, illustrates how a naturalistic approach can 
uncover the contextual epistemic norms of understanding that are built into scientific prac-
tice. Using Chang’s analysis of the competition between phlogiston theory and Lavoisier’s 
oxygen theory, I have highlighted how local epistemic norms for intelligibility were condu-
cive to understanding, where intelligibility itself functions as a universal norm for scientific 
progress.

To conclude, let me address a possible worry about the contextual theory of scientific 
understanding, namely that the definition of intelligibility is a vacuous notion without any 
normative bite. For it might be objected that associating intelligibility with the ability to 
make fruitful use of a scientific theory runs the risk of trivializing intelligibility, because it 
implies that any theory can become intelligible if only one succeeds in learning to use it in 
a fruitful way. But does this make the notion of intelligibility vacuous? Not at all. It is true 
that the demand that theories be intelligible does not pose universal restrictions on theo-
ries or theory choice, but it does entail that certain theories are preferable over others in 

Table 1   Opposing value 
judgments of phlogistonists and 
oxygenists

Phlogistonists Oxygenists

Completeness Simplicity (elegance)
Conservatism Novelty (reform)
Pluralism Absolutism (dogmatism)

22  All phenomena that can be understood with phlogiston theory or with Lavosier’s theory can also be 
understood within modern chemistry. The commonalities of metals, for example, are understood in terms of 
the free electron theory of metals.
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particular local contexts. Thus, for most chemists in the late eighteenth century phlogiston 
theory was plausibly more intelligible than, and thereby preferable to, Lavoisier’s oxygen 
theory. However, no theory is intrinsically unintelligible, and there was no reason to sup-
pose that oxygen theory could not become intelligible—which happened in due course.23 
The aim of the contextual theory is to describe and explain, historical developments like 
these, in which intelligibility standards may change. In addition, it offers a framework for 
normatively evaluating scientists’ actions and results on the basis of local norms for scien-
tific understanding.
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