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Abstract
Motivated by the importance of fault tolerance in quantum computing, there has been renewed interest in quantum circuits 
that are realized with Clifford+T gates. Quantum computers that are based on ion-trap technology, superconducting, and 
quantum dots need to fulfill certain nearest-neighbor (NN) constraints. Fault-tolerant implementations of quantum circuits 
also require restricted interactions among neighboring quantum bits. The insertion of SWAP-gates is often deployed to make 
quantum circuits nearest-neighbor (NN) compliant. As quantum operations are prone to various errors, it is important to 
reduce the nearest-neighbor cost (NNC) which is a marker to the number of SWAP-gates needed to make a quantum circuit 
NN-compliant. Such an optimization problem arises while synthesizing reversible circuits using the Kronecker functional 
decision diagram (KFDD). In this work, we propose a method based on KFDD that reduces NNC during synthesis. Consid-
ering the Clifford+T quantum mapping for NOT, CNOT, and Toffoli (NCT) gates, and mixed-polarity Peres (MPP) gates, 
NNC metrics are defined for reversible circuits. Governed by NNC metrics, the nodes are then ranked for reducing NNC in 
resulting reversible circuits. Furthermore, local transformations are applied on node functions while mapping a node to a 
cascade of reversible gates. Experimental results on several benchmark functions reveal that the proposed synthesis technique 
reduces NNC in many cases while slightly impacting the number of qubits, T-depth, and T-count. Compared to prior methods 
based on functional decision diagrams or binary decision diagrams, the proposed synthesis technique reduces quantum cost 
for NCV-realizations (i.e., with NOT, CNOT, V, and V † gates) in most of the cases.

Keywords  Quantum computing · Fault tolerance · Nearest neighbor cost · Reversible circuit · Logic synthesis · Kronecker 
functional decision diagram

1  Introduction

With the shrinking of transistor size according to Moore’s 
law, the ongoing miniaturization of integrated circuits will 
reach soon its limits [2, 5, 28]. Shrinking transistor sizes 
has become one of the major barriers in the development 
of circuits to provide an exponential increase of computing 
power [5, 28]. As a new computation paradigm, quantum 

computing, which performs computation using properties 
of quantum mechanics and processes information in terms 
of quantum bits (or, for short, qubits) instead of just classi-
cal bits, provides a promising alternative to further satisfy 
the needs for more computational power [2, 5, 16]. It has 
been shown that a quantum computer could efficiently solve 
certain problems (e.g., database search, integer factorization, 
graph problems) which have no efficient solution on a clas-
sical computer [2, 5, 16, 18, 26].

In recent years, the physical realizations of quantum com-
puters have received significant attention [4]. Companies, 
such as IBM, Intel, Google, and Microsoft had started devel-
opments toward the realization of actual quantum computers 
for practical purposes [4]. Moreover, IBM, Intel, and Google 
have all announced their quantum devices with around 50-70 
qubits [12]. Motivated by this, the synthesis of quantum cir-
cuits has become an active research area [2, 4, 5, 9, 12, 18]. 
As quantum logic synthesis is a complex and challenging 
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problem, Boolean functions, which constitute a major com-
ponent in many quantum algorithms (e.g., the Oracle func-
tion in the Deutsch Algorithm or Grover’s database search 
as well as the modular exponentiation in Shor’s factorization 
algorithm), are usually treated separately using a two-step 
approach [2, 17, 18, 26]. First, a reversible circuit is designed 
for the desired Boolean function using established reversible 
gate libraries [23, 29]. Then, the resulting reversible circuit 
is mapped into a functionally equivalent quantum circuit by 
decomposing reversible gates into elementary quantum gates 
[4, 17, 18]. Accordingly, how to efficiently realize reversible 
circuits has received significant interest [4, 29].

There have been several functional and structural synthe-
sis methods for reversible circuits proposed [29]. Such as 
transformation based synthesis methods [15], the positive-
polarity Reed-Muller expansion based synthesis method [8], 
the one-pass synthesis method using a quantum multiple-
valued decision diagram to represent the function matrix 
for improving the limited scalability of functional synthesis 
methods [29], exclusive-sum-of-products expansion based 
synthesis methods [7], as well as hierarchical synthesis 
methods including lookup-table networks based [21] or deci-
sion diagrams (DD) based synthesis methods [1, 3, 23, 24]. 
Although functional methods outperform others in terms of 
the cost of the synthesized circuits, they are limited to small 
functions [1, 29]. Consequently, structural or hierarchical 
synthesis methods which can offer satisfactory scalability 
have gained more attractions.

DD-based methods are intended for the synthesis of func-
tions with a large number of variables [23, 24]. Compared 
to other structural methods, although DD-based methods 
incurs a large number of ancilla qubits, they can achieve low 
quantum cost, and thus can reduce the cost that makes the 
quantum realizations fault tolerant [14, 21]. Furthermore, 
for reducing the number of qubits required for the revers-
ible circuits generated from DDs, techniques including using 
Davio decompositions [22], applying local transformations 
on the function represented by a node [3], as well as sorting 
the ordering of nodes to be mapped by using dependency 
matrices to express dependencies between nodes [23] or by 
using genetic algorithm [1] had been proposed.

The decoherence of quantum states while quantum 
systems interact with environment will result in error and 
consequent failure of computation, as a result, quantum cir-
cuits need to be fault-tolerant in a practical implementation 
[14, 16]. Because the gates can be implemented in a fault-
tolerant way, and the fault-tolerant implementations of the 
gates are known for most technologies that are considered 
promising for large-scale quantum computing, there has 
been renewed interest in using Clifford+T library to realize 
quantum circuits [2, 21, 29]. Quantum computers that are 
based on ion-trap technology, superconducting, and quan-
tum dots need to fulfill certain physical constraints [4, 5, 26, 

27]. Fault-tolerant implementations of quantum circuits also 
require restricted interactions among neighboring quantum 
bits [4, 14]. While realizing a given quantum functionality to 
a given quantum architecture, in order to achieve high fidel-
ity, the so-called nearest-neighbor (NN) constraints imposed 
by lattice models, which require that quantum operations 
can be performed only between adjacent qubits [5, 26, 27], 
or the coupling constraints imposed by IBM quantum archi-
tectures, which are also called CNOT-constraints and allow 
quantum operations applied only between certain pairs of 
qubits on the coupling graph [4], must be complied with.

Usually, to realize reversible circuits to a quantum archi-
tecture, gate decomposition is first performed to decompose 
reversible gates in the circuit into quantum gates from a par-
ticular gate library, and then, qubit placement or qubit map-
ping is conducted to convert the resulting quantum circuits 
to satisfy the NN-constraints or coupling constraints at the 
quantum circuit level [4, 5, 9, 10, 12, 19, 27]. However, 
by combining gate decomposition and qubit mapping, NN-
constraints or coupling constraints can also be addressed at 
the reversible logic level by defining proper cost metrics for 
the nearest-neighbor cost (NNC) [11, 26], designing nearest-
neighbor templates [19], or computing the optimal combina-
tion of SWAPs and templates [17].

Different from the binary decision diagram (BDD) or the 
functional decision diagram (FDD) which are built by carry-
ing out only Shannon decompositions or Davio decomposi-
tions over the variables of a function, the Kronecker FDD 
(KFDD) is built by applying Shannon and Davio decompo-
sitions over the variables. The KFDD as a generalization of 
the BDD and the FDD always will be more compact than 
the two [6]. Hence, the reversible circuits synthesized using 
the KFDD are potentially better than which synthesized 
using the BDD or the FDD. While synthesizing revers-
ible circuits using the KFDD, although how to reduce the 
quantum cost and the number of qubits has been extensively 
researched, the restricted interactions between quibts are 
rarely considered.

In this work, we focus on the NN-constraints. By using 
gates from the Clifford+T library which are also supported 
by IBM quantum architectures [4] to realize reversible cir-
cuits, we attempt to handle the NN-constraints at the revers-
ible logic level while synthesizing reversible circuits from 
the KFDD using NOT, CNOT, Toffoli and mixed-polarity 
Peres (MPP) gates. A common way to make a quantum cir-
cuit nearest-neighbor (NN) compliant is to apply SWAP-
gates for quantum gates over non-adjacent qubits [5, 10, 19]. 
The insertion of SWAP-gates increases the total number of 
quantum gates, and thus affects the operational reliability 
of quantum circuits [4, 9]. Therefore, it is necessary to keep 
the NNC, which is a marker to the number of SWAP-gates 
needed to make a quantum circuit NN-compliant, as low as 
possible.
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The main contributions of this work are listed as follows. 

1)	 The NN-constraints are handled at the reversible logic 
level while synthesizing reversible circuits using the 
KFDD. It is an attempt to combine reversible logic syn-
thesis, gate decomposition, and qubit mapping in one 
synthesis flow.

2)	 The Clifford+T quantum mappings of different MPP 
gates are presented.

3)	 NNC metrics for the reversible logic level are defined 
by considering the Clifford+T quantum mapping for the 
Toffoli and MPP gates.

4)	 Strategies guided by NNC metrics are presented to rank 
the ordering of nodes to be mapped for reducing the 
NNC while synthesizing reversible circuits using the 
KFDD.

The rest of this paper is structured as follows: Section 2 
first briefly introduces reversible and quantum circuits, and 
then presents the Clifford+T quantum mappings of MPP 
gates and the NNC metrics defined for the NOT, CNOT, 
Toffoli, and MPP gates. Section 3 describes the KFDD and 
dependency matrices. In Sect. 4, the mapping of nodes by 
node dependency and by using local transformations are first 
introduced to keep the paper self-contained, and then, the 
synthesis of reversible circuits using the KFDD by com-
bining the dependency matrix and local transformations is 
described, at last, the proposed synthesis method is detailed. 
Finally, the obtained experimental results are summarized in 
Sect. 5 while the paper is concluded in Sect. 6.

2 � Reversible and Quantum Circuits

A reversible gate realizes a reversible function. A revers-
ible circuit is a cascade of reversible gates without fanout 
or feedback [28].

In this work, graphic forms are adopted to illustrate a 
reversible gate or circuit, also a quantum gate or circuit. In 
the graphic form of a gate or circuit, the horizontal lines are 
called circuit lines, or, for short, lines. The symbols located 
on the left of a line indicate the input of the line. Whereas 
the symbols located on the right of a line indicate the output 
of the line.

Figure 1 presents the graphic illustrations of the NOT, 
CNOT and Toffoli gates which compose the NCT library 
[2]. The symbol ‘ ⊕ ’ in Fig. 1 represents the exclusive-or 
operation.

For evaluating the quality of reversible circuits, the 
number of lines (or, for short, #lines) and quantum cost 
which depends on the quantum gate library used while 
realizing reversible circuits are often taken into account. 
A frequently used quantum gate library is the NCV library 

which is composed of the NOT, CNOT, V, and V † gates [2]. 
Because the gates can be implemented in a fault-tolerant  
way and are supported by IBM quantum architectures, 
there has been renewed interest in using Clifford+T library 
to realize quantum circuits [2, 4, 21, 29].

When the NCV library is used, the quantum cost of a 
circuit is usually measured by NCV-cost. The NCV-cost 
of a reversible gate is equal to the number of elementary 
quantum operations required to implement its functional-
ity [13]. Both the NOT gate and the CNOT gate have an 
NCV-cost of 1 [2]. The NCV-cost of the Toffoli gate is 5 
[2]. For a reversible circuit, the NCV-cost is the cumula-
tive NCV-cost sum of the reversible gates in the circuit.

When the Clifford+T library is used, the quantum cost of  
a circuit is often measured by T-count and also by T-depth  
[2, 21, 29]. This is due to the high cost of fault tolerant 
implementations of the T gate, exceeding the cost of Clifford 
group gates (CNOT, H, S gates) by as much as a factor of a 
hundred or more [18]. The T-count of a circuit is the total 
number of T and T † gates in the circuit. Whereas the T-depth 
of a circuit is the number of T or T † gates that have to be 
processed sequentially [2]. In addition, since quantum opera-
tions are prone to various errors, the number of quantum 
gates (or, for short, #QG) in the circuit is also an important 
cost metric for evaluating a quantum circuit [4, 9].

Figure  2 graphically illustrates the mixed-polarity  
Peres (MPP) gates. Using MPP gates to synthesize reversible 
circuits helps reduce the quantum cost [3]. The NCV-cost 

(a) (b) (c)

Fig. 1   NCT gate library: (a) NOT gate, (b) CNOT gate, (c) Toffoli 
gate

(a) (b)

(c) (d)

Fig. 2   MPP gate library: (a) Peres gate, (b) Peres gate with the first 
control negated, (c) inverse Peres gate, (d) or-Peres gate
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of MPP gates are all 4 [3]. In the graphic forms of NCT or 
MPP gates as presented in Fig. 1 or Fig. 2, the lines on which 
symbols ‘ ∙ ’, ‘ ◦ ’, ‘ ▴ ’, ‘ ▵ ’, or ‘ ◻ ’ are located are considered 
as control lines. They take A or B as the input. The line on 
which the symbol ‘ ⊕ ’ is located is the target line. It takes 
C as the input.

According to the Clifford+T quantum mappings of Tof-
foli gates with different polarities [2], by using equiva-
lence and permutation, the Clifford+T quantum mappings 
of different MPP gates can be derived. Figure 3 presents 
the Clifford+T quantum mappings of different MPP gates. 
To keep the paper self-contained, Fig. 3(e) presents the 
Clifford+T quantum mapping of the Toffoli gate [2]. As 
can be seen from Fig. 3, the T-count and the T-depth of the 
Toffoli and MPP gates are 7 and 3, respectively. The #QG 
of the Peres gate, Peres gate with the first control negated, 
and inverse Peres gate are all 15. Whereas, the #QG of the 
or-Peres gate and Toffoli gate are both 16.

For making a quantum circuit NN-compliant, a com-
mon way is to apply SWAP-gates for two-qubit quantum 
gates over non-adjacent qubits [5, 10, 19]. Accordingly, for 
evaluating the effort to convert a quantum gate or quantum 
circuit to be NN-compliant, the NNC metrics for a quantum 
gate or quantum circuit which are defined as the number of 
SWAP-gates applied are proposed [10, 11]. The NNC of a 

quantum gate can directly be determined by considering the 
distance between the control line and the target line [11, 19]. 
Obviously, single-qubit quantum gates (e.g., the NOT, T, or 
H gates) have an NNC of 0.

By considering NCV quantum mapping for multiple-
control Toffoli gates, Kole et al. [11] proposed NNC metrics 
for the reversible logic level. In this work, by considering the 
Clifford+T quantum mapping for NCT and MPP gates, the 
NNC metrics for NCT and MPP gates for the reversible logic 
level are defined.

Assuming a numerical encoding of the circuit lines from 
the topmost line to the undermost line. For the CNOT, Tof-
foli, or MPP gates presented in Fig. 1 or Fig. 2, and the 
Clifford+T quantum mappings of the Toffoli gate and dif-
ferent MPP gates presented in Fig. 3, suppose that the lines 
taking A, B, or C as the input are numerically encoded by 
LA , LB , and LC , respectively. In the following, those lines are 
called line LA , line LB , and line LC , respectively.

In this work, NCT and MPP gates are used to synthesize 
reversible circuits from the KFDD. That is, the reversible 
circuits are composed of NOT, CNOT, Toffoli, and MPP 
gates. To realize a reversible circuit using gates from the 
Clifford+T library, a NOT or CNOT gate in the reversible 
circuit is directly mapped to a NOT or CNOT gate, without 
the need to be decomposed. Whereas, the Toffoli and MPP 
gates in the reversible circuit need to be mapped or decom-
posed into the quantum gate cascades as shown in Fig. 3. If 
the Clifford+T quantum mappings presented in Fig. 3 are 
considered as templates, the mapping or decomposition of 
a Toffoli or an MPP gate is to substitute the reversible gate 
by the corresponding template. Single-qubit quantum gates 
have an NNC of 0. Thus, for making the resulting quantum 
circuits NN-compliant, only whether those CNOT gates are 
NN-compliant needs to be considered.

It is usually assumed that two SWAP-gates are required 
in order to decrease the distance between the control and 
the target line of a two-qubit gate by one (one SWAP-gate 
for moving the control and the target line together, another 
to restore the original order) [11, 19]. Considering the first 
CNOT gate presented in Fig. 3(a) as an example. When the 
CNOT gate is not NN-compliant (i.e., |LA − LB| > 1 ), firstly, 
|LA − LB| − 1 SWAP-gates are inserted in front of the CNOT 
gate for moving the control and the target line of the CNOT 
gate being next to each other, and then, |LA − LB| − 1 SWAP-
gates are inserted behind the CNOT gate for restoring the 
original order of lines.

Example 1  Figure 4 presents a trivial circuit with 4 lines 
and a CNOT gate which takes line LA as the control line and 
line LB as the target line, as well as the transformed circuit 
which satisfies the NN-constraints. Assuming that LA = 1 
and LB = 4.

(a)

(b)

(c)

(d)

(e)

Fig. 3   Clifford+T quantum mappings of different MPP gates and 
the Toffoli gate: (a) Peres gate, (b) Peres gate with the first control 
negated, (c) inverse Peres gate, (d) or-Peres gate, (e) Toffoli gate
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Known that |LA − LB| = 3 . Then for converting the CNOT 
gate presented in Fig. 4(a) to be NN-compliant, 2 SWAP-
gates are successively inserted in front of the CNOT gate 
to make the control and the target line of the CNOT gate 
adjacent. After the CNOT operation has been performed, 
2 SWAP-gates are successively inserted behind the CNOT 
gate to restore the original order of lines. Consequently, 
2(|LA − LB| − 1) = 4 SWAP-gates are inserted in the circuit, 
the transformed circuit presented in Fig. 4(b) is resulted.

As can be seen from Fig. 3(a), the Clifford+T quantum 
mapping of a Peres gate has 6 CNOT gates. To convert 
those CNOT gates to be NN-compliant, 4(|LA − LB| − 1) , 
4(|LA − LC| − 1) , and 4(|LB − LC| − 1) SWAP-gates are 
required for the two CNOT gates applied between line 
LA and line LB , the two CNOT gates applied between 
line LC and line LA , and the two CNOT gates applied 
between line LB and line LC , respectively. Consequently, 
to convert the Clifford+T quantum mapping of a Peres 
gate as shown in Fig. 3(a) to be NN-compliant, a total of 
4(|LA − LB| − 1) + 4(|LB − LC| − 1) + 4(|LA − LC| − 1) 
SWAP-gates are needed. In a similar way, the number of 
SWAP-gates needed to make the Clifford+T quantum map-
pings of a Toffoli gate, a Peres gate with the first control 
negated, an inverse Peres gate, or an or-Peres gate as shown 
in Fig. 3 to be NN-compliant can be derived.

In conclusion, by the CNOT gate presented in Fig. 1(b) 
as well as the Clifford+T quantum mappings presented in 
Fig. 3, the NNC of the CNOT, Toffoli, and MPP gates can 
be evaluated using the equations as follows.

By using the above equations, the NNC of a circuit can be 
evaluated at the reversible logic level. The T-count, #QG, 

(1)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

NNC(CNOT) = 2(�LA − LC� − 1)

NNC(TOF) = 4(�LA − LC� − 1)

+ 4(�LB − LC� − 1)

+ 6(�LA − LB� − 1)

NNC(MPP) = 4(�LA − LC� − 1)

+ 4(�LB − LC� − 1)

+ 4(�LA − LB� − 1)

or NNC of a reversible circuit is the cumulative sum of the 
T-count, #QG, or NNC of the reversible gates in the circuit, 
respectively. Similarly, the T-depth of a reversible circuit is 
estimated as the cumulative sum of the T-depth of the revers-
ible gates in the circuit.

The insertion of SWAP-gates affects the operational relia-
bility of quantum circuits [9]. Thus, it is important to reduce 
the NNC which is a marker to the number of SWAP-gates 
needed to make a quantum circuit NN-compliant. By using 
the NNC metrics in Eq. (1), the NNC can be reduced (i.e., 
the NN-constraints can be handled) at the reversible logic 
level while synthesizing a reversible circuit. Therefore, it is 
possible to combine reversible logic synthesis, gate decom-
position, and qubit mapping in one synthesis flow.

At the quantum circuit level, a SWAP-gate is usually real-
ized using 3 CNOT gates [12] as shown in Fig. 5. Therefore, 
known the NNC of a circuit, the number of quantum gates 
needed to convert the quantum circuit to be NN-compliant 
is 3 times of the NNC.

3 � KFDD and Dependency Matrices

3.1 � KFDD

Let f ∶ Bn
→ B be a totally defined Boolean function and 

X = {x1, x2,⋯ , xn} be the corresponding set of primary vari-
ables. The function f can be decomposed over the primary 
variable set X using the following well-known decomposi-
tion types [20].

where fx̄i and fxi denote the cofactors of f with respect to 
xi = 0 and xi = 1 respectively, ⊕ is the exclusive-OR 
operation.

Definition 1  A KFDD for the function f is a rooted DAG 
G = (V ,E) with node set V and edge set E.

A KFDD for the function f is built by carrying out 
Shannon decomposition, positive or negative Davio 

(2)

⎧
⎪
⎨
⎪
⎩

f = x̄ifx̄i ⊕ xifxi Shannon

f = fx̄i ⊕ xi(fx̄i ⊕ fxi ) PositiveDavio

f = fxi ⊕ x̄i(fx̄i ⊕ fxi ) NegativeDavio

(a) (b)

Fig. 4   SWAP insertion: (a) the original circuit, (b) the transformed 
circuit

Fig. 5   Quantum realization of the SWAP-gate
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decompositions as shown in Eq. (2) over X, with one type 
of decomposition per primary variable. An inner node in 
the KFDD is labeled with one of the primary variables and 
has exactly two successors, the low and the high successors. 
The terminal nodes of a KFDD indicate constant 0 or 1 and 
have no successors. The primary variable that labels an inner 
node vi ∈ V  is denoted as var(vi) ( var(vi) ∈ X ). The level at 
which node vi is positioned in the KFDD is denoted as lev(vi) 
( lev(vi) ≥ 1 ). The root of the KFDD is positioned at the top 
level, the terminal 0 or 1 nodes are positioned at the (n + 1)

-th level. If node vj ∈ V  is one of the descendants of node vi 
(i.e., vi is a paraent node of vj ), lev(vj) > lev(vi) . Since vari-
able xj ∈ X labels all of the nodes positioned at one level in 
the KFDD, the level at which xj is positioned in the KFDD 
is denoted as lev(xj).

In this work, the conventions for a KFDD presented in [6] 
are complied with. Only the edge from node vi to its high 
successor (i.e., this edge takes node vi and its high successor 
as the tail and the head, respectively) can be a complemented 
edge, and only the terminal 1 node is used in a KFDD. The 
terminal 0 node is represented by a terminal 1 node pointed 
to by a complemented edge.

Suppose the low and high successors of node vi are nodes 
vj and vk , respectively. Then the following definitions are 
presented.

Definition 2  The function represented by node vi , which 
is denoted by fvi , can be derived by the following equa-
tions depending on the decomposition type of the variable 
xl = var(vi).

where fvj and fvk are the functions represented by nodes vj 
and vk , respectively. If the edge from node vi to node vk is a 
complemented edge, the function fvk in above equations is 
complemented.

Definition 3  For an inner node vi , if the function fvi can be 
expressed as fvi = var(vi)⊕ g or fvi = var(vi)⊕ g , where the 
function g is independent of variable var(vi) , then vi is called 
a linear node.

Fig. 6 presents sub-graphs for linear nodes in the KFDD. 
Note that in Fig. 6, a dashed (solid) edge having node vi as a 
tail means an edge from node vi to the low (high) successor 
of vi . A white dot on a solid edge means that the edge is a 
complemented edge.

⎧
⎪
⎨
⎪
⎩

fvi = x̄lfvj ⊕ xlfvk Shannon

fvi = fvj ⊕ xlfvk PositiveDavio

fvi = fvj ⊕ x̄lfvk NegativeDavio

As shown in Fig. 6, if vi is a linear node, by Definition 2 
and Definition 3, it is known that its high successor (node vk ) 
must be the terminal 1 node and the edge from node vi to the 
terminal 1 node must not be a complemented edge when the 
decomposition type of variable var(vi) is a Davio decompo-
sition, or there is vj = vk and the edge from node vi to node vk 
must be a complemented edge when the decomposition type 
of variable var(vi) is a Shannon decomposition.

Variable nodes defined in the following are special kinds 
of linear nodes.

Definition 4  For a linear node vi , if vj is the terminal 1 node, 
vi is called a variable node, due to the fact that fvi = var(vi) 
or fvi = var(vi).

FDDs are special kinds of the KFDD [6]. An FDD for the 
function f is built by carrying out positive or negative Davio 
decompositions as shown in Eq. (2) over X, with one type 
of decomposition per primary variable.

3.2 � Dependency Between Nodes and Dependency 
Matrices

Due to the sharing of nodes in FDDs or KFDDs, while map-
ping a node to a cascade of reversible gates (or, for sim-
plicity, a reversible gate cascade or reversible cascade), 
an ancilla line is generally added to the circuit to store the 
result of the node function. In order to reduce the number 
of circuit lines required for the resulting circuits by reus-
ing ancilla lines, Stojković et al. [23] proposed dependency 
between nodes in FDDs for ranking the ordering of nodes 
to be mapped and dependency matrices for expressing 
the dependency between nodes. In this work, dependency 
between nodes and dependency matrices are generalized to 
KFDDs.

For inner nodes vi , vj , and vk in a KFDD, suppose that 
node vk is a successor of both node vi and node vj . Then the 
definitions of dependency between nodes are presented in 
the following.

(a) (b)

Fig. 6   Sub-graphs for linear nodes. The decomposition type of varia-
ble var(vi) is a: (a) Davio decomposition, (b) Shannon decomposition
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Definition 5  Nodes vi and vj are strongly dependent on node 
vk.

Definition 6  When the decomposition type of variable 
var(vi) is a Davio decomposition and node vk is the low 
successor of node vi , or the decomposition type of variable 
var(vi) is a Shannon decomposition and vi is a linear node. 
If the decomposition type of variable var(vj) is a Davio 
decomposition and node vk is the high successor of vj , or the 
decomposition type of variable var(vj) is a Shannon decom-
position and vj is not a linear node, then node vi is weakly 
dependent on node vj.

Figure  7 presents sub-graphs in which node vi weakly 
depends on node vj . According to Definitions 5 and 6, if 
node vi strongly or weakly depends on node vj , it is called 
that node vi depends on node vj . Otherwise, it is called that 
node vi does not depend on node vj , or node vi is independ-
ent of node vj.

Suppose there are w inner nodes in a KFDD which consti-
tute a set V = {vi|1 ≤ i ≤ w} . Then for using a dependency 
matrix to express the dependency between those w nodes, 
V is mapped onto the set J = {j|1 ≤ j ≤ w} . In other words, 
every node in V is encoded by one and only one integer in 
the set J and every integer in the set J corresponds to one 
and only one node in V. Suppose that node vi is encoded 
by j ∈ J which is also the row index or column index of 
the dependency matrix. Then in the dependency matrix, the 
j-th row and the j-th column are both correlated to node 
vi . The j-th row indicates that node vi strongly or weakly 
depends on which nodes. Whereas the j-th column indicates 
which nodes weakly or strongly depend on node vi . In the 

following, in the context of dependency matrices, node j or 
Node(j) is referred to as the node which is encoded by the 
integer j ∈ J . For a KFDD, suppose that wl is the number of 
nodes positioned at level l in the KFDD and w is the number 
of inner nodes in the KFDD. Then based on Definitions 5 
and 6, the dependency matrix [23] is generalized to express 
the dependency between nodes in the KFDD as follows.

Definition 7  The level dependency matrix (LDM) with 
respect to the l-th level in the KFDD is a wl × wl matrix, 
whose element dij is set to 1 when node i weakly depends 
on node j, or set to 0 when node i is independent of node j.

Definition 8  The diagram dependency matrix (DDM) for 
the KFDD is a w × w matrix, whose element dij is set to 2 
when node i strongly depends on node j, set to 1 when node 
i weakly depends on node j, or set to 0 when node i is inde-
pendent of node j.

In a dependency matrix, if all of the elements of the i-th 
row have an value of 0, the row is called a zero row. The i-th 
row being a zero row implies that the mapping conditions 
for node i are satisfied. That is, node i can be mapped to a 
cascade of reversible gates.

4 � Synthesis of Reversible Circuits With 
Reduced NNC Using the KFDD

4.1 � Mapping Nodes By Node Dependency

For inner nodes vi and vj in a KFDD, when node vi strongly 
depends on node vj , node vi has to be mapped after node vj 
[23]. Strong dependency between nodes assures the func-
tional equivalence of the resulting reversible circuit to the 
original function by applying strong constraint on the order-
ing of nodes to be mapped. When node vi weakly depends on 
node vj , node vi is preferred to be mapped after node vj [23]. 
Weak dependency aims at reusing ancilla lines by applying 
weak constraint on the ordering of nodes to be mapped.

Example 2 presented in the following is used to dem-
onstrate the mapping of nodes by node dependency. Note 
that, if a node has been mapped into a reversible cascade, it 
is called a mapped node. Otherwise, it is called a node not 
mapped.

Example 2  Figure  8 presents a sub-graph for nodes v1 and 
v2 which is extracted from a KFDD and reversible cascades 
mapped for nodes v1 and v2 by using different ordering of 
nodes to be mapped. Following the conventions presented in 
Sect. 2, in Fig. 8(b) and (c), the symbols located on the left 
of a line indicate the input of the line, whereas the symbols 
located on the right of a line indicate the output of the line. 

(a) (b)

(c) (d)

Fig. 7   Sub-graphs in which node vi weakly depends on node vj : (a) 
the decomposition types of var(vi) and var(vj) are both Davio decom-
positions, (b) the decomposition types of var(vi) and var(vj) are Davio 
and Shannon decompositions, respectively, and node vj is not a linear 
node, (c) the decomposition types of var(vi) and var(vj) are Shannon 
and Davio decompositions, respectively, (d) the decomposition types 
of var(vi) and var(vj) are both Shannon decompositions and node vj is 
not a linear node
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In addition, the reversible cascade indicated by symbol ‘ vi ’ 
( 1 ≤ i ≤ 2 ) is the mapping result for node vi . For the sake of 
the simplicity of description, suppose that Lv3 , Lv4 , and Lv5 
indicate the numerical encoding of the lines taking fv3 , fv4 , 
and fv5 as the input, respectively. Then the lines taking fv3 , 
fv4 , and fv5 as the input are called line Lv3 , line Lv4 , and line 
Lv5 , respectively.

The sub graph presented in Fig. 8(a) consists of 5 nodes 
which are all inner nodes in the complete KFDD. Assum-
ing that var(v1) = var(v2) = x1 , and the decomposition type 
of x1 is a positive Davio decomposition. Moreover, in the 
complete KFDD, there is not any other node which takes 
node v5 as a successor excepting node v2 , and there is not 
any other node which takes node v4 as a successor excepting 
nodes v1 and v2.

Known by Definitions 5 and 6, node v1 strongly depends 
on nodes v3 and v4 , node v2 strongly depends on nodes v4 and 
v5 , and node v1 weakly depends on node v2 . According to 
Definition 2, there are fv1 = fv4 ⊕ x1fv3 and fv2 = fv5 ⊕ x1fv4.

Node v1 strongly depends on nodes v3 and v4 . Thus, nodes 
v3 and v4 should be mapped before node v1 . Similarly, nodes 
v4 and v5 should be mapped before node v2 . Here, we focus 
on the effect of mapping nodes by weak dependency. That 
is, we focus on the ordering of nodes v1 and v2 to be mapped.

Assuming that nodes v3 , v4 , and v5 have been mapped into 
reversible cascades (which are not presented in Fig. 8(b) and 
(c)), and lines Lv3 , Lv4 , and Lv5 have been used to store the 
results of the functions fv3 , fv4 , and fv5 , respectively. Next, 
the impact of the ordering of nodes v1 and v2 to be mapped 
on the number of required lines is demonstrated.

If node v1 is mapped before node v2 , by the expressions 
of the functions fv1 and fv2 , the reversible cascade as shown 
in Fig. 8(b) is constructed. When mapping node v1 , because 
node v4 has another parent node not mapped (i.e., node v2 ), 
line Lv4 can not be reused to store the result of fv1 . An ancilla 
line with the initial value of 0 needs to be first added to the 
circuit, and then, the function h1 = x1fv3 ⊕ 0 is synthesized 
to a Peres gate and a CNOT gate as shown in Fig. 8(b). The 
CNOT gate (the first CNOT gate presented in Fig. 8(b)) is 
used to recover the value on line Lv3 , becuase there may 
be other nodes not mapped in the complete KFDD which 
take v3 as a successor in addition to node v1 . After that, 
the function fv1 = fv4 ⊕ h1 is synthesized to a CNOT gate 
(the second CNOT gate presented in Fig. 8(b)) and the 
added ancilla line is used to store the result of function fv1 
as shown in Fig. 8(b). Node v4 has two parent nodes (i.e., 
the nodes v1 and v2 ) in the complete KFDD, but node v1 
is a mapped node when mapping node v2 . Hence, while 
mapping node v2 , there is not any other node not mapped 
which takes node v4 as a successor excepting node v2 . Mean-
while, there is not any other node in the complete KFDD 
which takes node v5 as a successor excepting node v2 . Con-
sequently, the function fv2 = x1fv4 ⊕ fv5 is synthesized to a 
Peres gate by reusing line Lv5 to store the result of function 
fv2 . Note that, the output of line Lv4 becomes a garbage out-
put indicated by the symbol ‘ g ’. The reversible cascade pre-
sented in Fig. 8(b) is composed of 2 Peres gates, 2 CNOT 
gates, and 5 lines.

However, since node v1 weakly depends on node v2 , node 
v1 is preferred to be mapped after node v2 . Therefore, by 
weak dependency, node v2 is first mapped, and then node v1 . 
While mapping node v2 , because there is not any other node 
in the complete KFDD which takes node v5 as a successor 
excepting node v2 , the function fv2 = x1fv4 ⊕ fv5 is synthe-
sized to a Peres gate and a CNOT gate by reusing line Lv5 to 
store the result of function fv2 . Node v4 has two parent nodes 
(i.e., the nodes v1 and v2 ) in the complete KFDD, but node 
v2 is a mapped node when mapping node v1 . Hence, while 
mapping node v1 , there is not any other node not mapped in 
the complete KFDD which takes v4 as a successor except-
ing node v1 . As a result, fv1 = x1fv3 ⊕ fv4 is synthesized to a 
Peres gate and a CNOT gate by reusing line Lv4 to store the 
result of function fv1 . The reversible cascade as shown in 
Fig. 8(c) is constructed. This reversible cascade is composed 
of 2 Peres gates, 2 CNOT gates, and 4 lines.

As can be seen from above, mapping nodes by weak 
dependency, excepting that line Lv5 is reused to store the 
result of function fv2 while mapping node v2 , line Lv4 is also 
reused to store the result of function fv1 while mapping node 
v1 , no extra ancilla lines need to be added to the circuit. As 
a result, the number of required lines is reduced.

(a)

(b) (c)

Fig. 8   Sub-graph for nodes v1 and v2 as well as the constructed revers-
ible cascades by using different ordering of nodes v1  and v2 to be 
mapped: (a) the sub graph for nodes v1 and v2 , (b) node v1 is mapped 
before node v2 , (c) node v2 is mapped before node v1
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4.2 � Mapping Nodes By Applying Local 
Transformations

While mapping a node, Bu and Wang [3] had detailed that 
which type of local transformations can be applied on the 
node function and the conditions to be satisfied for applying 
the local transformations, as well as the reversible cascades 
constructed for the node by applying different local trans-
formations on the node function in their paper. More details 
about local transformations are referred to Ref. [3]. How-
ever, to keep the paper self-contained, Example 3 presented 
in the following is used to demonstrate the construction of a 
reversible cascade by applying local transformations on the 
node function while mapping a node.

Example 3  Figure   9 presents the sub-graph for node v1 
and the reversible cascades mapped for v1 . Suppose that 
var(v1) = x1 and the decomposition type of x1 is a Shannon 
decomposition. In addition, nodes v2 and v3 are both inner 
nodes in the complete KFDD, and have been mapped into 
reversible cascades (which are not presented in Fig. 9) by 
using lines taking fv2 and fv3 as the input to store the results 
of function fv2 and function fv3 , respectively, as shown in 
Fig. 9(b)-(f).

Known from Definition 2, fv1 = x̄1fv2 ⊕ x1fv3 , which is the 
original form of the expression of function fv1 . When map-
ping node v1 by this expression of function fv1 , an ancilla 
line with the initial value of 0 is first appended to the circuit. 
And then, the functions h1 = x1fv3 ⊕ 0 and fv1 = x̄1fv2 ⊕ h1 
are successively synthesized to reversible gates as shown in 
Fig. 9(b). The function h1 is realized using a Toffoli gate. 
Whereas, the function fv1 = x̄1fv2 ⊕ h1 is realized using a 
Peres gate with the first control negated and a CNOT gate. 
Note that, the CNOT gate is used to recover the value on the 
line taking fv2 as the input. The #lines, T-depth, T-count, and 

#QG of the reversible cascade presented in Fig. 9(b) are 4, 
6, 14, and 32, respectively.

However, by applying local transformations on function 
fv1 , the expression fv1 = x1(fv2 ⊕ fv3 )⊕ fv2 can be derived. 
Node v1 can be mapped into different reversible cascades by 
further applying local transformations on function fv1 as the 
four cases described in the following. 

	 (i)	 Case I. When nodes v2 and v3 both have other parent 
nodes not mapped in the complete KFDD in addition 
to node v1 , by successively synthesizing the func-
tions h2 = fv2 ⊕ fv3 , h3 = x1h2 ⊕ 0 , fv1 = fv2 ⊕ h3 , 
and fv3 = fv2 ⊕ h2 , the reversible cascade as shown 
in Fig. 9(c) is constructed. An ancilla line with the 
initial value of 0 is added to the circuit when synthe-
sizing the function h3 and is used to store the result 
of function fv1 when synthesizing fv1 = fv2 ⊕ h3 . The 
#lines, T-depth, T-count, and #QG of the reversible 
cascade presented in Fig. 9(c) are 4, 3, 7, and 19, 
respectively.

	 (ii)	 Case II. When node v2 has other parent nodes 
not mapped in the complete KFDD in addition to 
node v1 , but node v3 does not have any other parent 
node not mapped excepting node v1 , node v1 can be 
mapped in a similar way as the above case. However, 
while mapping node v1 in this case, node v3 does not 
have any other parent node not mapped excepting 
node v1 . Hence, a Peres gate instead of a Toffoli gate 
is used to realize the function h3 , and the last function 
fv3 = fv2 ⊕ h2 , which is used to recover the value on 
the line taking fv3 as the input, does not need to be 
realized. As a result, the output of the line taking fv3 
as the input becomes a garbage output indicated by 
the symbol ‘ g ’. The constructed reversible cascade is 
presented in Fig. 9(d). The #lines, T-depth, T-count, 
and #QG of this reversible cascade are 4, 3, 7, and 
17, respectively.

	 (iii)	 Case III. When node v3 has other parent nodes not 
mapped in the complete KFDD in addition to node v1 , 
but node v2 does not have any other parent node not 
mapped excepting node v1 , by successively synthe-
sizing the functions h4 = fv2 ⊕ 0 , h2 = fv3 ⊕ fv2 , and 
fv1 = x1h2 ⊕ h4 , the reversible cascade as shown in 
Fig. 9(e) is constructed. An ancilla line with the ini-
tial value of 0 is appended to the circuit when synthe-
sizing the function h4 and is used to store the result 
of function fv1 when synthesizing fv1 = x1h2 ⊕ h4 . 
Moreover, the output of the line taking fv2 as the 
input becomes a garbage output indicated by the 
symbol ‘ g ’. The #lines, T-depth, T-count, and #QG 
of the reversible cascade presented in Fig. 9(e) are 4, 
3, 7, and 17, respectively.

(a) (b)

(d) (e) (f)

(c)

Fig. 9   Sub-graph for node v1 and reversible cascades mapped for v1 : 
(a) the sub graph for node v1 , (b) reversible cascade constructed by 
using the original form of the expression of function fv1 , (c) Case I, 
(d) Case II, (e) Case III, (f) Case IV

47Journal of Electronic Testing (2022) 38:39–62



1 3

	 (iv)	 Case IV. When neither of nodes v2 and v3 have 
any other parent node not mapped in the complete 
KFDD excepting node v1 , by successively synthesiz-
ing the functions h2 = fv2 ⊕ fv3 and fv1 = x1h2 ⊕ fv2 , 
the reversible cascade as shown in Fig. 9(f) is con-
structed. Note that, when synthesizing the func-
tion fv1 = x1h2 ⊕ fv2 , the line taking fv2 as the input 
is reused to store the result of function fv1 . Hence, 
no ancilla line is added for mapping node v1 in this 
case. Moreover, the output of the line taking fv3 as 
the input becomes a garbage output indicated by the 
symbol ‘ g ’. The #lines, T-depth, T-count, and #QG 
of the reversible cascade presented in Fig. 9(f) are 3, 
3, 7, and 16, respectively.

Known from Example 3 in the above and the descrip-
tions of local transformations presented in Ref. [3], when 
synthesizing reversible circuits using the KFDD by mapping 
a node into a reversible cascade, applying local transforma-
tions on the node function helps reduce the quantum cost 
of the resulting circuit, even helps reduce the number of 
required lines by reusing ancilla lines. Nevertheless, due to 
the sharing of a node in the KFDD (i.e., a node may have 
more than one parent node in the KFDD), there are different 
types of local transformations which can be applied on the 
node function. In fact, while mapping a node, the type of 
local transformations applied on the node function depends 
on the ordering of the node to be mapped [3].

4.3 � Reversible Circuit Synthesis By Combining 
the Dependency Matrix and Local 
Transformations

Performing local transformations on the node function when 
mapping a node into a reversible cascade helps reduce the 
quantum cost, even the number of lines of reversible circuits 
synthesized using the KFDD [3]. On the other hand, the 
ordering of nodes in a KFDD to be mapped influences the 
number of lines, T-count, T-depth, and NNC of the circuit 
synthesized using the KFDD. Consequently, combining the 
dependency matrix and local transformations for synthesiz-
ing reversible circuits using the KFDD helps improve the 
quality of the resulting circuits.

For a node vi , there are different types of local transfor-
mations which can be applied on function fvi [3]. Neverthe-
less, the type of local transformations applied on function 
fvi can be determined only after the ordering of node vi to 
be mapped has been determined [3]. Consequently, in this 
work, the dependency matrix and local transformations are 
combined in a two-step way. Firstly, the ordering of nodes 
to be mapped is ranked by using dependency matrices. And 
then, local transformations are applied on the node func-
tion while mapping a node into a reversible cascade [3]. 

However, dependency matrices only apply constraint on the 
ordering of nodes to be mapped which have dependencies 
between each other. The ordering of nodes to be mapped 
which do not depend on each other also influences the qual-
ity of the resulting circuit.

Example 4  Figure  10 presents a KFDD for an exemplar 
function with 3 inputs and 3 outputs as well as the circuit 
synthesized by using the DDM for that KFDD. Whereas, 
Fig. 11 presents two other reversible circuits synthesized 
from the KFDD presented in Fig. 10(a).

In the KFDD presented in Fig. 10(a), the variable labeling 
those nodes positioned at one level is placed on the left. The 
decomposition types of variables x1 , x3 , and x2 are positive 
Davio decomposition, Shannon decomposition, and negative 
Davio decomposition, respectively.

According to the KFDD presented in Fig. 10(a) as well as 
the definitions of dependency between nodes and diagram 
dependency matrix, the DDM for the KFDD is created as 
follows.

(a)

(b)

Fig. 10   The KFDD and reversible circuit for an exemplar function: 
(a) the KFDD, (b) the reversible circuit
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By the above DDM, according to ‘ Algorithm 3 ’ in Ref. [23], 
the ordering of nodes to be mapped is determined as ( v1 , 
v2 , v5 , v4 , v3 , v7 , v6 ) , the reversible circuit presented in 
Fig. 10(b) is generated by applying local transformations 
on the node function while mapping a node into a reversible 
gate cascade [3]. The number of lines, T-count, T-depth, and 
NNC of that circuit is 6, 35, 15, and 92, respectively. Note 
that the symbols ‘1’ or ‘0’ located on the left of a circuit line 
imply that the initial value of the circuit line is 1 or 0. The 
symbol ‘ g ’ located on the right of a circuit line indicates 
that the output of the circuit line is a garbage output [2]. 
The reversible gate cascade indicated by symbol ‘ vi ’ is the 
mapping result for node vi.

On the other hand, according to the definitions of weak 
dependency between nodes and level dependency matrix, 
the LDMs for the KFDD presented in Fig. 10(a) are created 
as follows.

By the above LDMs, according to ‘ Algorithm 2 ’ in Ref. 
[23], the ordering of nodes to be mapped is determined as 
(v1, v2, v4, v3, v5, v7, v6) , the reversible circuit presented in 
Fig. 11(a) is resulted by applying local transformations on 
the node function while mapping a node into a reversible 
gate cascade [3]. The number of lines, T-count, T-depth, 
and NNC of the circuit is 6, 35, 15, and 64, respectively. 
Compared to the circuit presented in Fig. 10(b), the NNC of 
the circuit presented in Fig. 11(a) is reduced by 28.

Nodes v5 , v6 , and v7 positioned at level lev(x1) in the 
KFDD presented in Fig. 10(a) do not depend on each other. 
When mapping nodes in a BFS manner, in other words, level 
by level from the bottom to the top level, the ordering of the 
nodes v5 , v6 , and v7 to be mapped does not impact the func-
tionality of the resulting circuit, but may influence the qual-
ity of the resulting circuit. If those three nodes are mapped 
in order of (v7, v5, v6) , a reversible circuit with the NNC of 56 
as shown in Fig. 11(b) can be obtained. Compared to the cir-
cuit presented in Fig. 11(a), the NNC is further reduced by 8.

Note that, the symbols Lx2 , Lx3 , Lv2 , Lv4 , Lx1 , and Lv7 pre-
sented in Fig. 11(b) indicate the numerical encoding of the 
circuit lines from the topmost line to the undermost line 
(e.g., Lx2 indicates the numerical encoding of the line taking 
x2 as the input). They will be used in Example 5 presented 
in Sect. 4.4.2 to describe the construction of the circuit pre-
sented in Fig. 11(b).

4.4 � Synthesis of Reversible Circuits With Reduced 
NNC

From Example 4 presented in Sect. 4.3, it can be seen that 
the ordering of nodes in a KFDD to be mapped influences 
the NNC of the resulting circuit. Since NN-constraints 
require the control and the target line of a reversible gate to 
be adjacent, it is necessary to reduce the distance between 
the control and the target line of a reversible gate for reduc-
ing the NNC of reversible circuits.

Ranking the ordering of nodes to be mapped for reducing 
the NNC is a combinational optimization problem. Many 
discrete optimization algorithms (e.g., integer programming, 
genetic algorithm, etc.) can be used to solve this problem. 
However, in this work, a method by using strategies guided 
by NNC metrics is proposed for solving this problem. In the 
following, the strategies for ranking the ordering of nodes 
to be mapped are first elaborated. And then, the reversible 
circuit synthesis method is presented.

4.4.1 � Strategies for Ranking the Ordering of Nodes to Be 
Mapped

For an inner node vi , suppose that var(vi) = xl , and the 
low and high successors of node vi are inner nodes vj 

(a)

(b)

Fig. 11   Other reversible circuits synthesized for the exemplar 
function by using different ordering of nodes to be mapped: (a) 
(v1, v2, v4, v3, v5, v7, v6) , (b) (v1, v2, v4, v3, v7, v5, v6)
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and vk , respectively. Although local transformations will 
be applied on function fvi while mapping node vi into a 
reversible cascade. However, as mentioned in Sect. 4.2, 
due to the sharing of node vi in the KFDD, the type of 
local transformations applied on function fvi can not be 
determined before the ordering of node vi to be mapped 
has been determined. Consequently, in order to be able to 
provide directive rules for ranking the ordering of nodes 
to be mapped, the reversible cascades mapped for node vi 
by using the original form of the expression of function fvi 
are discussed in the following.

Figure   12 presents the reversible cascades mapped 
for node vi by using the original form of the expression 
of function fvi when the decomposition type of variable 
xl is a Shannon or positive Davio decomposition. When 
the decomposition type of variable xl is a negative Davio 
decomposition, the reversible cascade mapped for node vi 
is similar to the reversible cascade presented in Fig. 12(b).

For the sake of description, assuming that symbols Lvi , 
Lvj , Lvk , and Lxl indicate the numerical encoding of the lines 
presented in Fig. 12 which take 0, fvj , fvk , and xl as the 
input, respectively. In the following, those lines are called 
line Lvi , line Lvj , line Lvk , and line Lxl , respectively.

Lines Lvj , Lvk , and Lvi are used to store the results of 
functions fvj , fvk , and fvi , and paired with nodes vj , vk , and 
vi , respectively. Line Lxl is used to trace the value of vari-
able xl before it is reused to store the result of a node func-
tion. Since nodes vj and vk are mapped before node vi , and 
line Lxl is added to the circuit while the first node posi-
tioned at level lev(xl) in the KFDD is mapped. There are 
Lvi > Lvj , Lvi > Lvk , Lxl > Lvj , Lxl > Lvk , and Lvi > Lxl.

Let NNC(vi) indicate the NNC of the reversible cas-
cade mapped for node vi . For simplicity, NNC(vi) is 
also referred to as the NNC for node vi . By Eq. (1) and 
Fig. 12(a), the following approximate equations can be 
derived if the decomposition type of variable xl is a Shan-
non decomposition.

When the decomposition type of variable xl is a Davio 
decomposition, there is fvi = fvj ⊕ x̃lfvk , where x̃l ∈ {xl, x̄l} . 
Then by Eq. (1) and Fig. 12(b), the following approximate 
equations can be derived.

Guided by the NNC metrics as shown in Eqs. (3) and (4), 
the strategies for ranking the ordering of nodes to be mapped 
are described in the following.

Above all, as can be seen from Fig. 12 and Eqs. (3) and 
(4), for reducing the NNC of the reversible cascade mapped 
for node vi , line Lvi should be near to lines Lvj and Lvk . 
Because lev(vj) = lev(vk) and lev(vi) = lev(vj) − 1 in many 
cases, mapping nodes level by level in a BFS manner helps 
reduce the NNC compared to mapping nodes in a DFS man-
ner. Consequently, it is better to use LDM rather than DDM 
to rank the ordering of nodes to be mapped.

Secondly, the weak dependency between nodes posi-
tioned at level lev(xl) in the KFDD is common when the 
decomposition type of variable xl is a Davio decomposition. 
The ordering of those nodes to be mapped is determined by 
using LDM [23].

However, when the decomposition type of variable xl 
is a Shannon decomposition, only a linear node is weakly 
dependent on other nodes positioned at level lev(xl) which 
are not linear nodes. In other words, most of those nodes 
positioned at level lev(xl) do not depend on each other 
according to the definitions of dependency presented in 
Sect. 3.2, the ordering of those nodes to be mapped can not 
be determined by using LDM. Accordingly, for reducing 
the NNC of the resulting circuit, when the decomposi-
tion type of variable xl is a Shannon decomposition, the 

(3)

NNC(vi) =NNC(TOF) + NNC(MPP)

+ NNC(CNOT)

=6(Lxl − Lvk − 1) + 4(Lvi − Lxl − 1)

+ 4(Lvi − Lvk − 1) + 6(Lxl − Lvj − 1)

+ 4(Lvi − Lxl − 1) + 4(Lvi − Lvj − 1)

∝ 4Lxl + 16Lvi − 10(Lvj + Lvk )

∝ 2Lxl + 8Lvi − 5(Lvj + Lvk )

=2(Lxl − Lvi) + 5(Lvi − Lvj )

+ 5(Lvi − Lvk )

(4)

NNC(vi) =NNC(TOF) + NNC(CNOT)

=6(Lxl − Lvk − 1) + 4(Lvi − Lxl − 1)

+ 4(Lvi − Lvk − 1) + 2(Lvi − Lvj − 1)

∝2Lxl + 10Lvi − 2(Lvj + 5Lvk )

∝Lxl + 5Lvi − (Lvj + 5Lvk )

=Lxl + 5(Lvi − Lvk ) − Lvj

(a) (b)

Fig. 12   Reversible gate cascades mapped for node vi labeled with 
variable xl . The decomposition type of variable xl is a: (a) Shannon 
decomposition, (b) positive Davio decomposition
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ordering of nodes positioned at level lev(xl) to be mapped 
should be cautiously considered. For ranking the order-
ing of those nodes to be mapped, a look-ahead strategy is 
adopted. That is, the impact of the ordering of nodes posi-
tioned at level lev(xl) to be mapped on the NNC for nodes 
positioned at level lev(xl) − 1 is considered. Suppose that 
variable xt is positioned at level lev(xl) − 1 in the KFDD. 
Then the look-ahead strategy is as follows. 

	 (i)	 When the decomposition type of variable xt is a 
Davio decomposition, known from Eq. (4), the 
weight of Lvk with respect to the NNC for nodes posi-
tioned at level lev(xt) in the KFDD is larger than that 
of Lvj . That is, the larger the value of Lvi − Lvk is, the 
NNC of the reversible cascades mapped for nodes 
positioned at level lev(xt) in the KFDD is also larger. 
For reducing the NNC, at first, every node vi posi-
tioned at level lev(xl) is assigned a weight which is 
indicated by wtvi and computed as the number of 
nodes that take vi as the high successor. And then, 
nodes positioned at level lev(xl) are sorted by the 
value of wtvi in ascending order. Doing that helps 
reduce the value of the component 5(Lvi − Lvk ) in Eq. 
(4), and thus the NNC.

	 (ii)	 When the decomposition type of variable xt is a 
Shannon decomposition, known from Eq. (3), the 
weight of Lvk with respect to the NNC for nodes posi-
tioned at level lev(xt) in the KFDD is the same as that 
of Lvj . As a result, the ordering of nodes positioned 
at level lev(xl) is left unchanged.

Once more, while mapping nodes positioned at level 
lev(xl) by using LDM(lev(xl)) , there may be more than one 
row in LDM(lev(xl)) being zero row. In other words, the 
mapping conditions for more than one node are satisfied. 
The ordering of those nodes to be mapped also influences 
the NNC of the resulting circuit. In that case, one of those 
nodes is selected to be first mapped by using the best map-
ping node selecting strategy described as follows. Suppose 
the nodes whose mapping conditions are satisfied consti-
tute a set denoted by S. 

	 (i)	 When the decomposition type of variable xl is a 
Shannon decomposition, from Eq. (3), it is known 
that the weight of Lvk with respect to the NNC is the 
same as that of Lvj . To reduce the NNC, for a node 
vi ∈ S with the non-terminal low successor vj and the 
non-terminal high successor vk , the number of nodes 

that take node vj or node vk as a successor and are 
positioned at level lev(xl) is first counted and indi-
cated by wsvi . Then the node for which the value of 
wsvi is the largest is selected from the set S as the 
node to be first mapped. The reason for doing that is 
to reduce the component 5(Lvi − Lvj ) and the compo-
nent 5(Lvi − Lvk ) in Eq. (3).

	 (ii)	 When the decomposition type of variable xl is a Davio 
decomposition, by Eq. (4), it is known that the weight of 
Lvk with respect to the NNC is larger than that of Lvj . Sup-
pose the index of the first zero row in LDM(lev(xl)) is r, 
the low successor of node r is node vj , and nodes in the 
set S which take node vj as the low successor constitute a 
set indicated by N. If there is not any other node not 
mapped which takes node vj as the low successor except-
ing nodes in N, then the node vi ∈ N with the high suc-
cessor vk for which the paired line Lvk has the largest 
numerical value is greedily selected from the set N as the 
node to be first mapped. Otherwise, node r is selected as 
the node to be first mapped.

Lastly, for nodes positioned at level lev(xl) which take node vj 
as the low successor when the decomposition type of variable 
xl is a Davio decomposition, or for linear nodes positioned at 
level lev(xl) which take node vj as a successor when the decom-
position type of variable xl is a Shannon decomposition, the 
last node to be mapped can reuse line Lvj to store the result of 
the function represented by this node [3, 23]. For reducing  
the NNC as well as the number of required lines, if there is a 
variable node positioned at level lev(xl) , the variable node is 
selected as the last node to be mapped for using line Lxl to store 
the result of the function represented by it. Otherwise, the last 
linear node in the set of nodes that are positioned at level 
lev(xl) is selected as the last node to be mapped.

Note that, always selecting a linear node (e.g., linear node 
vi which takes node vj as the low successor) as the last node to 
be mapped may help reduce the the number of CNOT gates in 
some cases [3]. However, doing that will increase the NNC. 
Because node vi can be mapped only after all the other nodes 
positioned at level lev(xl) have been mapped, the distance 
between line Lvj and line Lxl will be increased.

4.4.2 � The Proposed Synthesis Method

Following the strategies described in Sect. 4.4.1, the KFDD 
based method of synthesizing reversible circuits with reduced 
NNC is presented as Algorithm 1 in the following.
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In Step 7 of Algorithm 1, ‘DT’ implies decomposition 
type, ‘SD’ and ‘DD’ indicate Shannon and Davio decompo-
sition, respectively. In Step 8, the implication of wtvi has been 
described in Sect. 4.4.1. In Step 11, in a level dependency 
matrix LDM(l), if there is a row which does not have an ele-
ment with the value of −1 , ‘HasValidRow(LDM(l))’ returns 
true, otherwise it returns false. In Step 12, ‘GetAllZero-
Rows’ returns the indices of the zero rows in LDM(l) which 

constitute a set R. In Step 14, ‘GetMaxColumn’ returns the 
index of the column in LDM(l) which does not have an ele-
ment with the value of −1 and has a maximal number of  
non-zero elements [23]. In Step 18, the mapping technique by  
performing local transformations on node functions and by 
using NCT and MPP gates proposed in Ref. [3] is used. In 
Step 19, the elements of the j-th column in LDM(l) take 
the value 0 [23]. In Step 20, the value of the element djj in 
LDM(l) is set to −1 [23]. In Step 22, the strategy proposed 
in Ref. [3] is used.

Subsequently, the KFDD presented in Fig. 10(a) is con-
sidered as a running example for demonstrating Algorithm 
1. Remember that, the symbols Lx2 , Lx3 , Lv2 , Lv4 , Lx1 , and Lv7 
presented in Fig. 11(b) indicate the numerical encoding of 
the circuit lines from the topmost line to the undermost line.

Example 5  The nodes of the KFDD presented in Fig. 10(a) 
are partitioned into 3 levels. As can be seen from Fig. 10(a), 
lev(x2) = 3 , lev(x3) = 2 , and lev(x1) = 1 . From level 3 to level 
1, the nodes will be mapped into reversible cascades for 
generating a reversible circuit. 

1)	 Map nodes positioned at level 3. The decomposition 
type of x2 is a negative Davio decomposition. Node v1 is 
positioned at level 3. That is, V = {v1} . A line encoded 
by Lx2 = 1 (the topmost horizontal line in the circuit pre-
sented in 11(b) which takes x2 as the input) is added to 
the circuit in Step 4. Because node v1 is a variable node, 
it is selected as the last node to be mapped in Step 5. 
That is, u = v1 . Because V = V�{u} = ∅ , the algorithm 
goes to Step 22. Since fv1 = x2 , there is no need to add 
any gate in this round.

2)	 Map nodes positioned at level 2. The decomposition 
type of x3 is a Shannon decomposition. Nodes v2 , v3 , 
and v4 are positioned at level 2. That is, V = {v2, v3, v4} . 
A line encoded by Lx3 = 2 (the second horizontal line 
in the circuit presented in Fig. 11(b) which takes x3 
as the input) is added to the circuit in Step 4. Since 
fv3 = x3 ⊕ fv1 , node v3 is a linear node. Because node v3 
is the only linear or variable node positioned at level 2, it 
is selected as the last node to be mapped in Step 5. That 
is, u = v3 . After that, V = {v2, v4} . Because DT(x3) = SD 
and DT(x1) = DD , nodes in V are sorted by the value 
of wtvi in ascending order in Step 8. Since wtv2 = 0 and 
wtv4 = 2 , V = {v2, v4} is resulted. In Step 10, the LDM 
for level 2 is created as follows 

 In Step 12, there are R = {1, 2} , Node(1) = v2 , and 
Node(2) = v4 . Node v2 has the non-terminal high suc-
cessor v1 . Whereas node v4 has the non-terminal low 
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successor v1 . Because there are two nodes (i.e., nodes 
v2 and v4 ) in the set V which take node v1 as a succes-
sor, wsv2 = 2 and wsv4 = 2 . Consequently, v2 is selected 
as Node(j) in Step 16 by using the best mapping node 
selecting strategy. In Step 18, known that fv2 = 1⊕ x3 f̄v1 , 
an ancilla line encoded by Lv2 = 3 (the third horizontal 
line in the circuit presented in Fig. 11(b)) which has the 
initial value of 1 is first added to the circuit, and then 
node v2 is mapped into the reversible cascade indicated 
by the symbol ‘ v2 ’ as shown in Fig. 11(b). The revers-
ible cascade is composed of an inverse Peres gate and a 
CNOT gate. The inverse Peres gate realizes function fv2 . 
The CNOT gate is used to recover the value on line Lx2 , 
because node v1 has two parent nodes not mapped (i.e., 
nodes v3 and v4 ). Thereafter, LDM(2) becomes 

 The algorithm goes to Step 11. Because R = {2} and 
fv4 = x̄3fv1 , an ancilla line encoded by Lv4 = 4 (the fourth 
horizontal line in the circuit presented in Fig. 11(b)) 
which has the initial value of 0 is first added to the cir-
cuit, and then node v4 is mapped into the reversible cas-
cade indicated by the symbol ‘ v4 ’ as shown in Fig. 11(b). 
The reversible cascade is composed of a Peres gate with 
the first control negated and a CNOT gate. The Peres 
gate with the first control negated realizes function fv4 . 
The CNOT gate is used to recover the value on line Lx2 , 
because node v1 has one parent node not mapped (i.e., 
node v3 ). In Step 22, known that fv3 = x3 ⊕ fv1 , node v3 
is mapped into a CNOT gate using line Lx3 as the target 
line which is indicated by the symbol ‘ v3 ’ as shown in 
Fig. 11(b).

3)	 Map nodes positioned at level 1. The decomposition 
type of x1 is a positive Davio decomposition. Node v5 , v7 , 
and v6 are positioned at level 1. That is, V = {v5, v7, v6} . 
A line encoded by Lx1 = 5 (the fifth horizontal line in 
the circuit presented in Fig. 11(b) which takes x1 as the 
input) is added to the circuit in Step 4. Known from 
Fig. 10(a), there is not a linear or variable node in V. 
Furthermore, the decomposition type of x1 is a positive 
Davio decomposition. Subsequently, the algorithm goes 
to Step 10, the LDM for level 1 is created as follows 

 In Step 12, there are R = {1, 2, 3} , Node(1) = v5 , 
Node(2) = v7 , and Node(3) = v6 . The index of the first 
zero row in LDM(1) is 1. As can be seen from Fig. 10(a), 
nodes v5 and v7 share the low successor v2 . That is, 

N = {v5, v7} . The high successors of nodes v5 and v7 are 
nodes v1 and v4 , respectively. In addition, there is not 
any other node not mapped which takes v2 as the low 
successor excepting nodes in N, and there is Lv4 > Lv1 
where Lv1 = Lx2 . Thus, by the best mapping node select-
ing strategy, node v7 is greedily selected as the node 
to be first mapped in Step 16. In Step 18, known that 
fv7 = fv2 ⊕ x1 f̄v4 , an ancilla line encoded by Lv7 = 6 
(the sixth horizontal line in the circuit presented in 
Fig. 11(b)) which has the initial value of 0 is first added 
to the circuit, and then node v7 is mapped into the revers-
ible cascade indicated by the symbol ‘ v7 ’ as shown in 
Fig. 11(b). The reversible cascade is composed of an 
inverse Peres gate and two CNOT gates. The inverse 
Peres gate realizes the function h1 = x1 f̄v4 ⊕ 0 . The first 
CNOT gate is used to recover the value on line Lv4 . The 
second CNOT gate realizes the function fv7 = fv2 ⊕ h1 . 
Thereafter, LDM(1) becomes 

 Subsequently, according to the functions fv5 = x1fv1 ⊕ fv2 
and fv6 = x1fv4 ⊕ fv3 , nodes v5 and v6 are both mapped 
into a Peres gate indicated by the symbol ‘ v5 ’ and 
the symbol ‘ v6 ’ as shown in Fig. 11(b), respectively. 
Because neither of nodes v2 and v3 have parent nodes 
not mapped, line Lv2 and line Lx3 are reused to store the 
results of functions fv5 and fv6 , respectively. In addition, 
since neither of nodes v1 and v4 have parent nodes not 
mapped, the values on line Lx2 and line Lv4 do not need 
to be recovered, and the outputs of line Lx2 and line Lv4 
become garbage outputs indicated by the symbol ‘ g’.

4)	 Add a NOT gate for every root node of G which has an 
incoming complemented edge. Since all the nodes in the 
KFDD presented in Fig. 10(a) have been mapped into 
reversible cascades, the algorithm goes to Step 24. The 
KFDD presented in Fig. 10(a) has 3 root nodes which 
are nodes v5 , v6 , and v7 . As can be seen from Fig. 10(a), 
nodes v5 and v6 both have incoming complemented 
edges. Consequently, two NOT gates are added on lines 
Lv2 and Lx3 , respectively. Thereafter, the circuit is gener-
ated completely, the algorithm terminates.

According to the circuit presented in Fig. 11(b), by Eq. (1), 
the NNC of the reversible gate cascade mapped for every 
node can be computed as follows.

NNC(v1) = 0 , NNC(v2) = 4 , NNC(v4) = 12 , NNC(v3) = 0 , 
NNC(v7) = 8 , NNC(v5) = 20 , and NNC(v6) = 12.

The NNC of the circuit presented in Fig. 11(b) is 56 which 
is the cumulative sum of the NNC of the reversible gate 
cascades in the circuit. In addition, the circuit is composed 
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of 5 MPP gates, 5 CNOT gates, and 2 NOT gates. Conse-
quently, the T-count of the circuit is 5 × 7 = 35 , which is the 
cumulative sum of the T-count of the 5 MPP gates. Whereas 
the T-depth of the circuit is estimated as 5 × 3 = 15 , which 
is the cumulative sum of the T-depth of the 5 MPP gates. 
Since the MPP gates all consist of 15 quantum gates except-
ing the or-Peres gate, the number of quantum gates of the 
circuit presented in Fig. 11(b) before SWAP insertion is 
#QG = 5 × 15 + 5 + 2 = 82 . Let #QG_A indicate the num-
ber of quantum gates of a circuit after SWAP insertion. Then 
there is #QG_A = #QG + 3 × NNC = 82 + 3 × 56 = 250 for 
the circuit presented in Fig. 11(b).

The costs of the circuits presented Fig. 10(b) and Fig. 11 
are summarized in Table 1. As can be seen from Table 1, 
the circuit as shown in Fig. 11(b) which is achieved with 
Algorithm 1 has lower NNC and lower #QG_A compared 
to two other circuits as shown in Fig. 10(b) and Fig. 11(a).

5 � Experimental Evaluations

Algorithm 1 has been implemented in C++ on the top of Revkit 
[30]. With regard to the KFDD data structure, the PUMA pack-
age [6] has been used. The experimental evaluations have been 
carried out on an Intel Core i7-10700 Processor with 32 GB of 
main memory running Ubuntu 16.04 64bit OS.

5.1 � Evaluating the Effect of the Proposed Method 
On NNC

For reducing the NNC, the proposed synthesis method uses 
strategies governed by NNC metrics to rank the ordering 
of nodes in the KFDD to be mapped. In order to evaluate 
the effect of the proposed method on the NNC of the syn-
thesized reversible circuits, two other algorithms named 
by FDD+DDM and KFDD+DDM have been designed. 
FDD+DDM synthesizes a reversible circuit from an 
FDD and uses the DDM to rank the ordering of nodes in 
the FDD to be mapped as described in Ref. [23]. Simi-
larly, KFDD+DDM synthesizes a reversible circuit from 
a KFDD and also uses the DDM to rank the ordering of 
nodes in the KFDD to be mapped as described in Ref. [23]. 
While mapping a node into a reversible cascade, algorithms 
FDD+DDM and KFDD+DDM both apply local transforma-
tions on node functions [3] and both use the NCT and MPP 

gates to generate reversible cascades. Similarly to Algorithm 
1, the KFDDs used by KFDD+DDM are generated by using 
the PUMA package and sifting techniques [6]. As FDDs are 
special kinds of the KFDD, the FDDs used by FDD+DDM 
are also generated by using the PUMA package and sifting 
techniques [6].

Algorithms FDD+DDM, KFDD+DDM, and Algorithm 
1 have been used to synthesize reversible circuits for 31 
functions available in the RevLib benchmark suite [25] 
which were also used by Stojković et al. [23] to evaluate 
their FDD-based synthesis method or used by Abdalhaq 
et al. [1] to evaluate their BDD-based synthesis method. In 
the following, Table 2 presents the results with respect to 
#lines, #QG, NNC, #QG_A, and #nodes. Table 3 presents 
the percentage reduction (improvement) in those results 
achieved by comparing KFDD+DDM to FDD+DDM and 
by comparing Algorithm 1 to KFDD+DDM. In Table 2, the 
column indicated by ‘#in/#out’ gives the number of inputs 
and outputs of the functions. Note that #nodes indicates 
the number of nodes in the FDD or KFDD, #QG indicates 
the number of Clifford+T quantum gates before SWAP 
insertion, and #QG_A indicates the number of Clifford+T 
quantum gates after SWAP insertion. Because a SWAP-
gate is commonly realized using 3 CNOT gates, there is 
#QG_A = #QG + 3 × NNC . In addition, Fig. 13 illustrates 
the improvement results of those functions presented in 
Table 2 for which KFDD+DDM achieves results different 
from FDD+DDM. Figure  14 illustrates the improvement 
results of those functions presented in Table 2 for which 
Algorithm 1 achieves results different from KFDD+DDM.

As can be seen from Tables 2 and 3, KFDD+DDM can 
achieve #lines, #QG, NNC, and #QG_A not inferior to 
FDD+DDM for all of the functions excepting function 
mini- alu_84 and function mod5adder_66 . Compared to 
FDD+DDM, KFDD+DDM increases the NNC, #QG, and 
#QG_A while not increasing the number of lines for func-
tion mini- alu_84 . Whereas for function mod5adder_66 , 
KFDD+DDM only slightly increases the NNC and 
#QG_A. Note that, compared to FDD+DDM, there are 7 
cases where KFDD+DDM reduces #lines, #QG, NNC, and 
#QG_A. As can be obviously observed from Table 3 and 
Fig. 13, this is because the KFDD is more compact than 
the FDD. In other words, for a given function, the KFDD 
has the number of nodes (#nodes) less than the FDD. For 
function mini- alu_84 , although the number of nodes of the 
FDD is the same as that of the KFDD, the KFDD is not 

Table 1   The costs of the circuits 
presented in Fig. 10(b) and 
Fig. 11

Circuit #lines T-depth T-count #QG NNC #QG_A

Figure  10(b) 6 15 35 83 92 359
Figure  11(a) 6 15 35 82 64 274
Figure  11(b) 6 15 35 82 56 250
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same as the FDD. For that function, synthesizing a revers-
ible circuit using the KFDD instead of the FDD signifi-
cantly increases the NNC and #QG_A. For the functions 
presented in Tables 2 and 3, compared to FDD+DDM, the 
average reductions achieved by KFDD+DDM in #lines, 
#QG, NNC, and #QG_A are 3.62% , 5.31% , 7.44% , and 
7.59% , respectively. As can be seen, while synthesizing 
reversible circuits by mapping a node into a reversible cas-
cade, using the KFDD instead of the FDD helps reduce the 
NNC, also the number of lines, the number of Clifford+T 
gates before and after SWAP insertion.

Algorithm 1 and KFDD+DDM both synthesize a revers-
ible circuit from a KFDD and the KFDDs used by them 
are both generated by using the PUMA package and sifting 
techniques [6]. That is, for a given function, Algorithm 1 
and KFDD+DDM synthesize reversible circuits from the 

same KFDD. Subsequently, Algorithm 1 is compared to 
KFDD+DDM.

As can be seen from Tables 2 and 3, out of the 31 func-
tions, there are 15 cases where Algorithm 1 outperforms 
KFDD+DDM on NNC as well as #QG_A, and 9 cases 
where Algorithm 1 achieves the NNC and #QG_A both 
same as KFDD+DDM. In the other 7 cases, compared to 
algorithm KFDD+DDM, although Algorithm 1 increases 
both the NNC and #QG_A, the NNC and #QG_A are 
increased by no more than 11% and 10% , respectively. 
Whereas, compared to KFDD+DDM, Algorithm 1 reduces 
the NNC and #QG_A by up to 65.26% and 65.07% (function 
pdc_191 ), respectively. Moreover, there are 12 cases where 
Algorithm 1 reduce both the NNC and #QG_A by no less 
than 11% . On the other hand, Algorithm 1 achieves the same 
#QG as KFDD+DDM in 18 cases. In the other 13 cases, 

Table 3   Improvement (%) 
results of KFDD+DDM and 
Algorithm 1

Function KFDD+DDM vs. FDD+DDM Algorithm 1 vs. KFDD+DDM

#lines #QG NNC #QG_A #nodes #lines #QG NNC #QG_A

4mod5_8 0 0 0 0 0 0 0 0 0
9symml_91 0 0 0 0 0 0 0 3.99 3.42
alu_9 0 0 0 0 0 0 0 0 0
apex2_101 20.51 29.07 47.48 47.40 31.60 –1.77 1.96 62.41 62.03
apex5_104 6.42 3.61 1.12 1.14 4.05 –0.30 –0.15 16.19 16.09
bw_116 0 0 0 0 0 0 –0.14 20.26 19.78
cordic_138 0 0 0 0 0 –2.44 0 12.61 11.44
cycle10_2_61 0 0 0 0 0 8.70 1.02 8.11 5.93
decod24_10 0 0 0 0 0 0 0 0 0
e64_149 0 0 0 0 0 0 0 51.37 38.92
ex5p_154 3.05 8.78 13.20 13.17 8.99 –1.57 –0.69 50.70 50.34
ham15_30 0 0 0 0 0 0 0 45.02 43.43
ham7_29 0 0 0 0 0 0 0 16.25 14.30
hwb5_13 0 0 0 0 0 0 0.20 –10.38 –9.43
hwb6_14 4.65 8.00 14.05 13.84 11.11 –4.88 –0.09 –5.72 –5.51
hwb7_15 0 0 0 0 0 –1.96 0.06 –6.62 –6.43
hwb8_64 0 0 0 0 0 4.35 0.07 –9.76 –9.56
hwb9_65 22.27 35.96 59.04 58.89 38.26 –0.58 0.32 18.63 18.45
mini–alu_84 0 –0.78 –22.06 –16.95 0 0 0 –4.82 –3.82
mod5adder_66 0 0 –0.10 –0.09 0 15.00 0.50 29.22 27.48
pdc_191 32.96 44.2 64.32 64.29 46.58 –7.40 0.48 65.26 65.07
plus127mod8192_78 0 0 0 0 0 0 0 0 0
plus63mod4096_79 0 0 0 0 0 0 0 0 0
plus63mod8192_80 0 0 0 0 0 0 0 0 0
rd53_68 0 0 0 0 0 0 0 0 0
rd73_69 0 0 0 0 0 0 0 0 0
rd84_70 0 0 0 0 0 0 0 –2.61 –2.20
spla_202 22.32 35.72 53.61 53.57 37.74 –3.04 0.19 64.14 63.96
sym6_63 0 0 0 0 0 0 0 –10.69 –8.55
sym9_71 0 0 0 0 0 0 0 3.99 3.42
xor5_195 0 0 0 0 0 0 0 0 0
Average 3.62 5.31 7.44 7.59 5.75 0.13 0.12 13.47 12.86
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Algorithm 1 slightly increases (by no more than 0.69% ) 
or decreases (by no more than 1.96% ) the #QG compared 
to KFDD+DDM. Consequently, it can be concluded that, 
compared to KFDD+DDM, the reduction in the number of 
Clifford+T gates after SWAP insertion which is achieved 
by Algorithm 1 is mainly contributed to the reduction in 
NNC. Compared to KFDD+DDM, the average reductions 
achieved by Algorithm 1 in NNC and #QG_A are 13.47% 
and 12.86% , respectively.

In addition, as can be seen from Table 3 and Fig. 14, 
compared to KFDD+DDM, there are 9 cases where Algo-
rithm 1 increases the number of lines (#lines). Increas-
ing the number of lines may help reduce the NNC and 
#QG_A. In the 15 cases where Algorithm 1 reduces both 

the NNC and #QG_A, there are 7 cases where Algorithm 1 
increases the number of lines. However, it is worth noting 
that there are 6 cases where Algorithm 1 achieves the same 
#lines as KFDD+DDM, and 2 cases where Algorithm 1 
even reduces the number of lines. For the functions pre-
sented in Table 2, compared to KFDD+DDM, the average 
reduction achieved by Algorithm 1 in the number of lines 
is 0.13%.

Table 4 presents the T-count and the T-depth of the 
reversible circuits obtained with algorithms FDD+DDM, 
KFDD+DDM, and Algorithm 1. In Table  4, the col-
umns indicated by ‘Imp_1’ show the percentage reduc-
tion in T-depth or T-count achieved by comparing 
KFDD+DDM to FDD+DDM. Whereas the columns 

Fig. 13   Improvement results of 
KFDD+DDM wrt. FDD+DDM 

Fig. 14   Improvement results of 
Algorithm 1 wrt. KFDD+DDM 
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indicated by ‘Imp_2’ give the percentage reduction in 
T-depth or T-count achieved by comparing Algorithm 1 
to KFDD+DDM. It can be observed from Table 4 that, 
compared to FDD+DDM, there are 7 cases where algo-
rithm KFDD+DDM reduces both the T-depth and the 
T-count. For the other 24 cases, KFDD+DDM achieves 
the T-depth and the T-count both same as FDD+DDM. 
Compared to FDD+DDM, the average reductions achieved 
by KFDD+DDM in T-depth and T-count are both 5.50% . 
As can be seen, while synthesizing reversible circuits by 
mapping a node into a reversible cascade, using KFDDs 
is also better than using FDDs in terms of the T-depth and 
T-count.

On the other hand, since KFDD+DDM and Algorithm 
1 both synthesize a reversible circuit from a KFDD, the 
resulting T-depth or T-count of the two algorithms are 
quite close to each other.

It can be concluded from above analyses that, the strat-
egies presented for ranking the ordering of nodes to be 
mapped for reducing NNC which are used by the pro-
posed synthesis method is effective. While synthesizing 
reversible circuits using the KFDD, the proposed method 
helps reduce the NNC as well as the number of Clifford+T 
gates after SWAP insertion and has a slight impact on 
the resulting #lines, T-depth, T-count, and the number of 
Clifford+T gates before SWAP insertion.

Table 4   The results wrt. T-depth and T-count

Function FDD+DDM KFDD+DDM Algorithm 1

T-depth T-count T-depth T-count Imp_1(%) T-depth T-count Imp_2(%)

T-depth T-count T-depth T-count

4mod5_8 6 14 6 14 0 0 6 14 0 0
9symml_91 60 140 60 140 0 0 60 140 0 0
alu_9 15 35 15 35 0 0 15 35 0 0
apex2_101 1,611 3,759 1,134 2,646 29.61 29.61 1,110 2,590 2.12 2.12
apex5_104 1,314 3,066 1,260 2,940 4.11 4.11 1,263 2,947 –0.24 –0.24
bw_116 258 602 258 602 0 0 258 602 0 0
cordic_138 120 280 120 280 0 0 120 280 0 0
cycle10_2_61 33 77 33 77 0 0 33 77 0 0
decod24_10 12 28 12 28 0 0 12 28 0 0
e64_149 381 889 381 889 0 0 381 889 0 0
ex5p_154 792 1,848 720 1,680 9.09 9.09 726 1,694 –0.83 –0.83
ham15_30 81 189 81 189 0 0 81 189 0 0
ham7_29 33 77 33 77 0 0 33 77 0 0
hwb5_13 90 210 90 210 0 0 90 210 0 0
hwb6_14 222 518 201 469 9.46 9.46 201 469 0 0
hwb7_15 333 777 333 777 0 0 333 777 0 0
hwb8_64 537 1,253 537 1,253 0 0 537 1,253 0 0
hwb9_65 1,452 3,388 909 2,121 37.40 37.40 906 2,114 0.33 0.33
mini–alu_84 24 56 24 56 0 0 24 56 0 0
mod5adder_66 72 168 72 168 0 0 72 168 0 0
pdc_191 3,324 7,756 1,830 4,270 44.95 44.95 1,821 4,249 0.49 0.49
plus127mod8192_78 33 77 33 77 0 0 33 77 0 0
plus63mod4096_79 30 70 30 70 0 0 30 70 0 0
plus63mod8192_80 33 77 33 77 0 0 33 77 0 0
rd53_68 24 56 24 56 0 0 24 56 0 0
rd73_69 42 98 42 98 0 0 42 98 0 0
rd84_70 63 147 63 147 0 0 63 147 0 0
spla_202 2,760 6,440 1,767 4,123 35.98 35.98 1,764 4,116 0.17 0.17
sym6_63 36 84 36 84 0 0 36 84 0 0
sym9_71 60 140 60 140 0 0 60 140 0 0
xor5_195 0 0 0 0 0 0 0 0 0 0
Average 446.81 1042.55 328.94 767.52 5.50 5.50 327.97 765.26 0.07 0.07
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5.2 � Comparison to Prior Synthesis Methods Based 
On FDD or BDD

Stojković et al. [23] used FDDs to synthesize reversible cir-
cuits. Whereas, Abdalhaq et al. [1] used BDDs to synthesize 
reversible circuits. They did not consider the reduction of the 
NNC in their works. However, for the completeness of this 
work and due to the fact that BDDs and FDDs are both spe-
cial kinds of the KFDD, we compare the proposed synthesis 
method to their methods in this section.

Stojković et al. [23] and Abdalhaq et al. [1] both used the 
NCV-cost to measure the quantum cost of reversible circuits. 
In other words, they considered the NCV quantum realiza-
tions for reversible circuits. In the following, Algorithm 1 is 

compared to their methods by using the NCV-cost metric. 
The results are listed in Tables 5 and 6.

In Tables 5 or 6, OFPFDD+LDM indicates the algo-
rithm in Ref. [23] which synthesizes circuits from the 
optimal fixed-polarity FDDs by using LDMs. Whereas 
OFPFDD+DDM indicates the algorithm in Ref. [23] 
which synthesizes circuits from the optimal fixed-polarity 
FDDs by using DDMs. BDD+GA indicates the algorithm 
in Ref. [1] which synthesizes circuits from BDDs by using a 
genetic algorithm to search the optimal BDDs. The columns 
indicated by ‘runtime’ list the runtime in CPU seconds of 
those algorithms. Table 6 shows the percentage reduction 
(improvement) in #lines and NCV-cost achieved by compar-
ing Algorithm 1 to OFPFDD+DDM or BDD+GA.

Table 5   Comparison with the results of FDD based and BDD based methods

–: the data is not available

Function OFPFDD+LDM [23] OFPFDD+DDM [23] BDD+GA [1] Algorithm 1

#lines NCV-cost #lines NCV-cost #lines NCV-cost runtime #lines NCV-cost runtime

4mod5_8 5 18 5 18 7 24 < 0.01 5 12 < 0.01
9symml_91 – – – – 27 206 0.02 12 104 < 0.01
alu_9 8 29 8 28 7 29 < 0.01 8 26 < 0.01
apex2_101 – – – – 282 2747.78 6.53 288 1,735 0.81
apex5_104 – – – – 1,015 9839.09 5.31 336 2,124 0.29
bw_116 72 619 74 619 86 931.34 0.01 67 458 < 0.01
cordic_138 – – – – 49 311.44 0.33 42 196 < 0.01
cycle10_2_61 97 552 97 552 – – – 21 74 0.01
decod24_10 7 23 6 23 6 27 < 0.01 6 23 < 0.01
e64_149 – – – – 192 886 2.21 192 636 0.03
ex5p_154 231 1,808 225 1,803 206 1,970 0.03 194 1,186 < 0.01
ham15_30 – – – – 42 270 0.44 42 176 0.26
ham7_29 16 85 15 85 21 141 0.01 17 71 < 0.01
hwb5_13 18 199 18 196 27 268 0.01 17 160 < 0.01
hwb6_14 35 382 34 378 44 503 0.01 43 354 < 0.01
hwb7_15 56 677 57 678 76 910 0.02 52 564 < 0.01
hwb8_64 78 1,109 85 1,087 114 1,552 0.04 66 912 < 0.01
hwb9_65 – – – – 169 2,239 0.07 172 1,617 < 0.01
mini-alu_84 8 43 8 43 10 60 < 0.01 8 41 < 0.01
mod5adder_66 21 151 20 150 29 301.52 0.01 17 130 < 0.01
pdc_191 – – – – 619 6598.02 0.71 450 2,977 0.05
plus127mod8192_78 24 73 24 73 25 98 0.09 24 75 0.04
plus63mod4096_79 22 66 22 66 23 89 0.04 22 69 0.02
plus63mod8192_80 – – – – 25 97 0.08 24 76 0.03
rd53_68 8 44 8 44 13 98 < 0.01 8 45 < 0.01
rd73_69 10 76 10 76 25 217 0.01 10 77 < 0.01
rd84_70 15 112 15 112 34 304 0.02 15 111 < 0.01
spla_202 – – – – 482 5960.72 0.50 441 2,873 0.04
sym6_63 10 69 10 69 14 93 0.01 10 62 < 0.01
sym9_71 12 106 12 106 27 206 0.02 12 104 < 0.01
xor5_195 – – – – 6 8 < 0.01 5 6 < 0.01
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As can be observed from Table  5, the results of 
OFPFDD+LDM and OFPFDD+DDM are quite close to 
each other. This is because the two algorithms both syn-
thesize reversible circuits from the optimal fixed-polarity 
FDDs. Consequently, Algorithm 1 is only compared to 
OFPFDD+DDM and BDD+GA in the following.

As can be seen from Tables  5 and 6, there are 14 
cases where Algorithm 1 achieves results not inferior to 
OFPFDD+DDM in terms of #lines and NCV-cost. Com-
pared to OFPFDD+DDM [23], there are only 2 cases 
(functions ham7_29 and hwb6_14 ) where Algorithm 
1 only increases the number of lines, and 4 cases (func-
tions plus127mod8192_78 , plus63mod4096_79 , rd53_68 , 

and rd73_69 ) where Algorithm 1 only increases the NCV-
cost. Furthermore, Algorithm 1 reduces the number of 
lines and the NCV-cost by up to 78.35% and 86.59% (func-
tion cycle10_2_61 ), respectively. The average reductions 
achieved by Algorithm 1 in the number of lines and NCV-
cost are 5.67% and 14.07% , respectively.

On the other hand, compared to BDD+GA [1], there 
are only 3 cases (functions alu_9 , apex2_101,  and 
hwb9_65 ) where Algorithm 1 only increases the number 
of lines. In the other 27 cases, Algorithm 1 outperforms 
BDD+GA in terms of #lines and NCV-cost. Furthermore,  
Algorithm 1 reduces the number of lines and the NCV-cost  
by up to 66.90% and 78.41% (function apex5_104 ), respec-
tively. The average reductions achieved by Algorithm 1 in 
the number of lines and NCV-cost are 22.39% and 40.33% ,  
respectively.

With regard to the runtime of the algorithms, Stojković 
et al. [23] did not report the runtime of their algorithms. It 
can be observed from Table 5 that, the time efficiency of 
Algorithm 1 is better than BDD+GA.

As can be seen from the above analyses, while using NCV 
library to realize reversible circuits, using KFDDs to gen-
erate reversible circuits is also better than using FDDs or 
BDDs.

6 � Conclusion

While synthesizing reversible circuits using the KFDD, 
although how to reduce the quantum cost and the number 
of qubits has been extensively researched, the restricted 
interactions between qubits are rarely considered. In this 
work, focusing on the NN-constraints, an attempt to com-
bine reversible logic synthesis, gate decomposition, and 
qubit mapping in one synthesis flow is conducted. Based 
on the Clifford+T gate library, by defining NNC metrics 
for the NCT and MPP gates for the reversible logic level, 
we address the reduction of the NNC of reversible circuits 
synthesized from the KFDD. The ordering of nodes to be 
mapped influences the quality of reversible circuits syn-
thesized from the KFDD. Thus, for reducing the NNC of 
the resulting reversible circuits, the ordering of nodes to be 
mapped is ranked by applying strategies guided by NNC 
metrics. For further improving the quality of the resulting 
circuits, local transformations are applied on node functions 
while mapping a node to a cascade of reversible gates.

In the Clifford+T quantum mappings of NCT and MPP 
gates, two SWAP-gates are applied in order to decrease the dis-
tance between the control and the target line of each CNOT gate 
by one. One SWAP-gate is used for moving the control and the 
target line together, another is used to restore the original order 
of lines [11, 19]. As a result, the NNC metrics defined for the 
NCT and MPP gates and the NNC evaluation of the reversible 

Table 6   Improvement (%) results of Algorithm 1 wrt. 
OFPFDD+DDM and BDD+GA 

Function Algorithm 1 vs. 
OFPFDD+DDM

Algorithm 1 vs. 
BDD+GA

#lines NCV-cost #lines NCV-cost

4mod5_8 0 33.33 28.57 50.00
9symml_91 – – 55.56 49.51
alu_9 0 7.14 –14.29 10.34
apex2_101 – – –2.13 36.86
apex5_104 – – 66.90 78.41
bw_116 9.46 26.01 22.09 50.82
cordic_138 – – 14.29 37.07
cycle10_2_61 78.35 86.59 – –
decod24_10 0 0 0 14.81
e64_149 – – 0 28.22
ex5p_154 13.78 34.22 5.83 39.80
ham15_30 – – 0 34.81
ham7_29 –13.33 16.47 19.05 49.65
hwb5_13 5.56 18.37 37.04 40.30
hwb6_14 –26.47 6.35 2.27 29.62
hwb7_15 8.77 16.81 31.58 38.02
hwb8_64 22.35 16.10 42.11 41.24
hwb9_65 – – –1.78 27.78
mini–alu_84 0 4.65 20.00 31.67
mod5adder_66 15.00 13.33 41.38 56.89
pdc_191 – – 27.30 54.88
plus127mod8192_78 0 –2.74 4.00 23.47
plus63mod4096_79 0 –4.55 4.35 22.47
plus63mod8192_80 – – 4.00 21.65
rd53_68 0 –2.27 38.46 54.08
rd73_69 0 –1.32 60.00 64.52
rd84_70 0 0.89 55.88 63.49
spla_202 – – 8.51 51.80
sym6_63 0 10.14 28.57 33.33
sym9_71 0 1.89 55.56 49.51
xor5_195 – – 16.67 25.00
Average 5.67 14.07 22.39 40.33
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circuits are pessimistic. On the other hand, it is usually consid-
ered that the NN-constraints imposed by lattice models are less 
restricted than the coupling constraints imposed by IBM quan-
tum architectures. Combining reversible logic synthesis, gate 
decomposition, and qubit mapping in a more general synthesis 
flow for handling the coupling constraints at the reversible logic 
level by defining more exact NNC metrics and designing more 
exact strategies is future work.
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