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Abstract
Security against Hardware Trojans (HT) is an important concern in integrated circuits (IC) design and fabrication. Most of 
the current HT detection methods are based on the golden model of circuit design. Further, some approaches require test 
pattern for HTs activation. In this paper, we propose SC-COTD (Sequential/Combinational Controllability and Observability 
features for hardware Trojan Detection), an effective hardware Trojan detection to get rid of both golden chip and test pat-
tern limitations. SC-COTD uses both sequential and combinational testability measures to detect and locate HT signals by a 
machine learning approach. This method deploys an ensemble classifier based on k-means clustering. The clustering models 
have diverse variety in testability features along with size of clustering which inspect and reveal different aspects of netlist 
conventional for a collaborative scheme. The clustering results are filtered and then fed into a decision-making procedure 
based on majority voting to eliminate the limited flaws of each model. The evaluation results on TrustHUB benchmarks 
demonstrate that, SC-COTD can detect and locate HTs with 100% without any false negative, i.e., Recall = 1. Although our 
method has a limited number of false positive, it has the best performance in comparison to well-known previous approaches.

Keywords  Controllability and observability · Hardware testability · K -means clustering · Hardware Trojan detection · 
Hardware security

1  Introduction

In the last decade, increasing demand for hardware designs 
has forced manufacturers to get help from third-party ven-
dors to produce chips, i.e., the distributed form of chip pro-
duction [1]. However, the manufacturing relies on third-
party IP can lead to serious threats on the security and 
reliability of ICs such as hardware Trojan. Hardware Trojans 
(HTs), now as a major challenge in Integrated Circuit (IC) 
security, have raised serious concerns from industry, govern-
ment, military department and other critical communities.

HTs are malicious modifications to an IC that can trans-
form IC functionality, reveal valuable information, reduce 
reliability, and even incapacitate a chip. A hardware Trojan 
usually consists of two parts: the trigger and the payload. 
The former monitors signals within the chip, waiting for the 
occurrence of an event or a series of events to take place. 
The latter is responsible for the malicious behavior of the 
Trojan i.e. to transmit private data or to corrupt certain inter-
nal signals. When the triggering conditions are met, the trig-
ger circuit enables the payload part in order to execute the 
desired malicious function.

For Trojans with both payload and trigger, the payload 
remains inactive most of the time, since the trigger circuit 
is designed to active under rare conditions to avoid being 
detected. Further, for Trojans in logic or memory circuits, 
the faulty behavior may be activated either by a certain 
input or a sequence of input combinations, triggering the 
undesirable or faulty behavior [2]. These rare triggering 
events are usually designed to be stealthy and undetect-
able during simulation and test. This secret nature of HTs 
makes it difficult to identify them. Therefore, hardware 
Trojans detection needs more and more attention.
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HT detection can be classified into two major groups: 
post-silicon detection and pre-silicon detection. Post-
silicon detection mainly divides into three categories: 
side channel analysis, reverse engineering and functional 
testing. Among them, side channel analysis [3], which 
is widely applied, compares IC characteristics such 
as delay, power consumption, and temperature with a 
golden chip, i.e., malware-free chips. Detecting these 
malicious events usually requires a golden reference 
model [4] that is assumed to be Trojan-free. The main 
drawback of the golden reference model is that it may be 
inconclusive or too complex for exhaustive verification, 
especially for large designs [3]. Another fundamental 
limitation of side channel approach is that the effect of 
a small enough Trojan on both of the logic and side-
channel fingerprints of the circuit, can be masked by 
process variation and noise. Moreover, it is amplified 
by increasing the scale of integration and processing 
diversity in advanced nodes.

On the other hand, pre-silicon methods mainly apply 
HT detection on gate-level netlists. These methods are cat-
egorized into two types: the dynamic and static detection. 
Dynamic detection techniques are based on the activation 
of HTs parts. For example, FANCI marks gates with low 
activation probability as suspicious [5]. VeriTrust marks 
gates that are not driven by functional inputs as suspicious 
[6]. The implicit assumption here is that those gates are 
driven by Trojans, as they do not perform any computation 
on functional inputs. Finally, the SoC integrator manu-
ally checks for fewer suspected gates to determine whether 
they are a Trojan or genuine. However, HTs are rarely 
activated under ordinary functional verification constrains 
and accordingly it leads to complexity of detection [7]. By 
contrast, static detection techniques do not require any test 
pattern generation. Further, these techniques can detect 
various HTs with different functions by utilizing existing 
HTs related characteristics.

This paper proposes a golden chip free model by using 
ensemble clustering method based on gate-level netlists. 
More specifically, we discuss the following set of issues:

Use of Testability Features for Hardware Trojan 
Detection: In order to reduce the detectability, hardware 
Trojans designers will try to improve the stealth charac-
teristics and distribution of Trojan insertion. To hide the 
activity of Hardware Trojans, the trigger might be con-
nected to nets with low controllability and observability. 
Thus, such as prior work [8, 9], we use the controllability 
and observability of the circuit nets as the basic features 
for detection of HT signals.

Design of a Tool to Evaluate the Aforementioned Fea-
tures: Due to some limitations of testability measurement 
tools, we design and implement a new tool to compute 
controllability and observability of circuit nets. We take 

the HT benchmarks at the gate-level netlists as the inputs, 
and perform the testability analysis to determine the con-
trollability and observability values. This tool provides the 
computation of both sequential and combinational testabil-
ity features.

Static Trojan Detection using Ensemble Classifier: 
Based on both corresponding testability feature and the size 
of clustering, we have different classifications. For final deci-
sion, we use a smart filtering and then an ensemble classifier 
to aggregate the results, separating HT inserted netlist from 
normal netlist. This ensemble classifier is based on k-means 
algorithm with different values for k.

1.1 � Prior Work on Static Hardware Trojan Detection

In the past decade, various static hardware Trojan detection 
methods have been proposed. The latest of them have been 
integrated with machine learning based approaches. In the 
dominant work COTD [8], the controllability and observ-
ability analysis are used to detect hardware Trojans. Con-
trollability and observability of a signal are two important 
attributes related to testability of a design. Controllability 
of a signal is the ability to force the value of the signal to 
become ‘0’/ ‘1’ by applying suitable input vectors. Observ-
ability is the ability to observe the signal state at a primary 
output [10]. COTD uses the Sandia Controllability and 
Observability Analysis Program (SCOAP) [11] to compute 
the controllability/observability values for each signal in 
the netlist. The signals are clustered based on these features 
using a k-means clustering algorithm with k = 3. However, 
COTD uses only combinational measurements, sequential 
testability measures are also necessary because some Tro-
jans manipulate not only the combinational signals but also 
sequential signals [12].

The work in [13] proposed a Trojan net detection 
method by training supervised classifiers using both com-
binational and sequential testability values as features in 
gate-level netlists with considerably large circuit size. 
Then the model is learned based on four popular super-
vised machine learning algorithms for binary-class clas-
sification: Fine Tree, Weighted k-NN, Fine Gaussian SVM 
and Bagged Trees.

In [9], the inter-cluster distance was calculated and 
combined with the number of primitives, such as “AND” 
and “OR” gates in the circuit, as a four-dimensional vec-
tor to input to a SVM (Support Vector Machine) clas-
sifier for HT detection. Here, the primitives are all the 
information of inputs/outputs, DFFs, BUFs, MUXs and 
other gates.

Hasegawa proposed new learning structure features for 
Trojan detection [14]. Thus 51 features are extracted based 
on (1) the logic fan-in; (2) the number of flip-flops away 
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from the input and output of the target net; (3) the level of 
the nearest flip-flop to the input and output of the target net; 
(4) the number of multiplexers away from the input and out-
put of the target net; (5) the level of the nearest multiplexer 
to the input and output of the target net; (6) the number of 
nets that are assigned a constant value of 0 or 1 and (7) the 
number of n-level-loops. The computation level is up to 5 
from the input and output of the target net. After feature 
extraction, these 51 features reduced to most-important 11 
features using random forests classifier.

Bian et al. [15]. Provides another machine learning based 
approach for HT detection. The machine learning algorithm 
is k-means which uses two types of clustering models, the 
partitioning-based and the density-based clustering.

Wang et al. [16]. Detects gate-level hardware Trojans 
by identifying the Trigger nets of potential Trojan-infected 
circuits with the use of an ensemble learning algorithm. 
The authors claim that the proposed algorithm detects both 
combinational and sequential Trojans, based on the Trigger 
characteristics of the Trojans.

In [17], the structural features in gate-level netlist of both 
the HT circuits and the host circuits are examined and com-
bined for HT detection. This method is based on the fact 
that the elusiveness of HTs relies on not just HT structure 
design but also on the insertion positions in the host circuits, 
in which HTs are usually inserted at either the low control-
lability position or the low observability position owning the 
stealth characteristic.

In [18], some characteristics such as the number of 
DFFs, MUXs, loops, logic gate fan-ins, logic levels to prim-
itive input/output ports are extracted as Trojan-net features. 
These features are feed to a neural network with two units 
in the output layer. One unit corresponds to the normal nets, 
and the other corresponds to the Trojan nets. When the out-
put value of the former is larger than that of the latter, the 
net is considered as a normal net; otherwise, identified as a 
Trojan net. However, as previously mentioned, the common 
problem of most of these approaches is the requirement for 
a golden chip. Further, some other approaches have limita-
tion in detecting sequential HTs. [19]. Moreover, in spite 
of detection the existence of hardware Trojans based on 
static methods, they are incapable of locating the Trojan 
signals [20].

1.2 � Contribution of the Work

The main contributions of this paper can be summarized 
as follows:

•	 We use both sequential and combinational SCOAP fea-
tures for proposed algorithm which improves the pre-

cision of our signal classification. In other words, our 
scheme finds the Trojan which previous methods are 
incapable of identifying them.

•	 We propose a machine learning based algorithm that 
classifies the Trojan signals from genuine signals based 
on Ensemble Classifier with:

◦	 Identification of Trojan-Signals: The proposed 
method, in addition to detecting the existence of 
a Trojan, specifically distinguishes Trojan signals 
from the genuine ones.

◦	 Golden chip free method: All the steps are done 
without a need for golden reference model.

Our proposed method basically is an extension of COTD 
[8] with two differences: first we use both sequential and 
combinational testability measures instead of one of them 
and second we classify normal nets from HT inserted nets 
based on ensemble classifier instead of a single k-means 
clustering method. Further, although the COTD claimed 
that achieve 100% TPR and TNR in TRUST-Hub bench-
marks, it fails in some circuits such as S38417-T200 and 
S38417-T200 due to closeness of combinational features of 
Trojan and genuine nets. However, our method is capable to 
detect Trojans in all TRUST-Hub benchmarks.

The rest of the paper is organized as follows. Section 2 
describes our hardware Trojan detection approach of using 
proposed tool STMT. Section 3 describes the experimental 
setup, analysis, and evaluation results. Finally, Section 4 
concludes the paper.

2 � Proposed Method for Hardware Trojan 
Detection

In this paper we proposed a method named SC-COTD 
(Sequential/Combinational Controllability and Observ-
ability features for hardware Trojan Detection). This novel 
method, uses both sequential and combinational testability 
measures based on SCOAP to detect and locate HTs.

2.1 � Definitions and Background

Hardware testing is used to ensure that each component of 
a system is operating as it should be. In the last decade, 
increasing the density of transistors at the chip surface makes 
the testing process difficult. Thus, vendors are tending to 
design and fabricate circuits in a way that the testability pro-
cess are facilitated. The adoption of testable design imposes 
some constraints to the designer. It is a beneficial method 
where in the resulting digital circuit will have features to 
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facilitate the production of test sequences as well as test 
processes. In summary, testability is related to the difficulty 
of controlling and observing the logical values of internal 
nodes from circuit inputs and outputs, respectively. SCOAP 
is a well-known method to calculate the testability measure-
ment. In SCOAP, controllability and observability are two 
primary metrics which can be calculated in two structural 
methods: Sequential (SC0, SC1 and SO) and combinational 
(CC0, CC1 and CO).

Controllability is the difficulty of setting and control-
ling intermediate/output signal to 0 or 1 by means of pri-
mary input signals. Observability is difficulty of observing 
changes in the input/intermediate signals at the primary out-
puts. A circuit with low values for signal controllability and 
observability is testable.

Table 1 summarizes the controllability formulation for 
primary logical gates. Further, Table 2, shows the rules cor-
responding to observability calculation for primary combi-
national elements. For a comprehensive manual of SCOAP 
computation, you can refer to [11].

Throughout this paper, we denote SCOAP measurements 
for combinational controllability-0/1 by CC0/CC1, combi-
national observability by CO, sequential controllability-0/1 
by SC0/SC1 and sequential observability by SO, respec-
tively. The higher the value of controllability/observability, 
the more difficult for the net to be controlled or observed. 
The SCOAP values for each net can be extracted according 
to the logic of circuit. For primary element without loop, 
controllability is defined for outputs while observability is 
defined for inputs.

The SCOAP features for each signal can be represented 
by both triples < CC0, CC1, CO > and < SC0, SC1, SO > . 
As CC0/SC0 and CC1/SC1 introduces the same property, 
we can integrate them into a single feature with the Euclid-
ian distance. More specifically, the CC/SC features for each 
signal s are defined by:

The above definitions allow us to represent the SCOAP 
features by the pairs < CC, CO > and < SC, SO > instead of 
triples < CC0, CC1, CO > and < SC0, SC1, SO > . This leads 
to reduction of the dimension of algorithm and accordingly 
its complexity.

2.2 � SC‑COTD Basic Architecture

Testability measures are useful for design for test because 
they are initially developed to analyze the testing difficulty 
and estimate the fault coverage. In normal circuit, a design 
with good testability will keep the testability measures of 
each net as low as possible, so that a fault could be easily 
tested. HT signals are always stealthy and the triggering con-
dition is a very rare event. Such design makes the Trojan nets 
difficult to be controlled and observed and thus Trojan nets 
tend to have a much higher average of testability measures 

(1)CC(s) =

√
CC0(s)

2
+ CC1(s)

2

(2)SC(s) =

√
SC0(s)

2
+ SC1(s)

2

Table 1   Combinational 
Controllability Calculation 
Formulas For Primary Logical 
Gates

0-Controllability 1-Controllability

Primary 
Input

1 1

AND min(CC0(a),CC0(b)) + 1 CC1(a) + CC1(b) + 1
OR CC0(a) + CC0(b) + 1 min(CC1(a),CC1(b)) + 1
NOT CC1(a) + 1 CC0(a) + 1
NAND CC1(a) + CC1(b) + 1 min(CC0(a),CC0(b)) + 1
NOR min(CC1(a),CC1(b)) + 1 CC0(a) + CC0(b) + 1
BUFFER CC0(a) + 1 CC1(a) + 1
XOR min(CC0(a) + CC0(b), CC1(a) + CC1(b)) + 1 min(CC0(a) + CC1(b), CC1(a) + CC0(b)) + 1
XNOR min(CC0(a) + CC1(b), CC1(a) + CC0(b)) + 1 min(CC0(a) + CC0(b), CC1(a) + CC1(b)) + 1

Table 2   Combinational 
Observability calculation 
formulas

Input “a” observability Input “b” observability

Primary Output 0 0
AND/NAND CO(z) + CC1(b) + 1 CO(z) + CC1(a) + 1
OR/NOR CO(z) + CC0(b) + 1 CO(z) + CC0(a) + 1
NOT/BUFFER CO(z) + 1 CO(z) + 1
XOR/XNOR CO(z) + min(CC0(b),CC1(b)) + 1 CO(z) + min(CC0(a),CC1(a)) + 1
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than the normal nets. Figure 1, shows the basic steps of the 
proposed method. In the first step, the controllability and 
observability values of each signal base on SCOAP method 
are calculated. In the second step, the signals are clustered 
by the k-means algorithm using the extracted features. Based 
on the size of clustering and the sequential/combinational 
SCOAP values, we will have four classifications. Finally, the 
clusters are filtered using a smart method and are aggregated 
to result the final decision, i.e., labelling each signal as genu-
ine or Trojan.

2.3 � Feature Extraction

As explained earlier, to hide Trojans, it is necessary to 
insert them in somewhere that is not activated during the 

test phase. Therefore, in the design of the Trojan's trigger  
circuit, signals are used that cannot be easily controlled by 
the primary inputs. The Trojan's payload affects the parts of 
the circuit that are not easily observed at the primary out-
puts. Therefore, one of the most important features of HT 
signals is the low value of testability measures. The COTD 
method uses only combinational controllability/observabil-
ity features to detect HTs. This issue raises a problem for 
detecting Trojan whose trigger-part is a sequential circuit, 
i.e., activating the Trojan is subject to the system's arrival 
in a particular state. Thus, in SC-COTD, in addition to the 
combinational features, sequential features are consid-
ered. We represent the SCOAP features in two pairs < CC, 
CO > and < SC, SO > by the Eqs. (1) and (2).

2.4 � Classification

By collecting the required features, the classification step 
can start. To analyze the features, we use unsupervised 
classification method with k-means clustering. The input 
of the clustering is either two-dimensional vector < CC, 
CO > or < SC, SO > . The first challenge is the selection of 
the number of clusters, namely k, for the algorithm. The 
second challenge is to decide whether a clustering is valid 
or not valid for involving it in final decision.

In the following two sub-sections, the initial parameters of 
the k-means algorithm and the decision criterion are discussed.

2.4.1 � Number of clusters

Primary, we consider different number of clusters for clas-
sification to achieve high precision. Empirically, we found 
that choosing k = 4 and more does not lead to meaningful 
clustering. Let INF denotes the infinity value. As we expect 
that large value for either controllability or observability 
implies Trojan signal, we predict that the clusters near to (0, 
INF), (INF,0) and (INF,INF)are likely to be Trojan signals 
while the ones near to (0,0) is likely to be genuine signals. 
Thus, it is likely to converge the clustering algorithm to four 
different zones around the points (0,0), (0,INF), (INF,0) and 
(INF,INF). The experimental results not only show that k > 4 
is not a suitable choice but also implies that k = 4 does not 
lead to a meaningful clustering. Thus, we ignore the case 
k ≥ 4 and limit the options to k = 2 and k = 3. Consequently, 
regarding with the sequential/combinational features, we 
will have four clustering models:

•	Clustering < CC, CO > with k = 2
•	Clustering < CC, CO > with k = 3
•	Clustering < SC, SO > with k = 2
•	Clustering < SC, SO > with k = 3

Gate-level netlist

Controllability and 
Observability calculation

Signals Controllability and 
Observability values

Unsupervised 
clustering analysis

<CO,CC>
K=2

<SO,SC>
K=3

<SO,SC>
K=2

<CO,CC>
K=3

Validation

Decision making

Trojan signals list

Fig. 1   The overview of SC-COTD approach
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Throughout this paper, we denote these clusterings as 
ΓC2, ΓC3, ΓS2 and ΓS3, respectively. Further, the resulting 
clusters for ΓC2 and ΓS2 are denoting by σ(0,0) and σ(I,I). While 
the clusters which are given by either ΓC3 or ΓS3 are denoting 
by σ(0,0), σ(0,I) and σ(I,0). It is worth noting that COTD which 
use k = 3 with < CC, CO > for clustering, is the same as our 
second clustering.

2.4.2 � Determining the Initial centroid of the Cluster

The k-means clustering method is an exploratory method, and 
accordingly the correct determination of the initial points of 
centers plays an important role in the resulted clusters. In each 
of the four clustering models proposed above, the cluster of 
genuine signals is supposed to be formed near the origin, i.e., 
the primary centroid of the genuine cluster is set to (0,0) for.

each of the four models. However, as there is no negative 
value in SCOAP features, the center of the genuine cluster is 
converged to a point different than the origin.

The remaining cluster(s) which likely contain the Trojan 
signals, are expected to contain the large testability values 
either for controllability or observability.

Signals that are related to the Trojan trigger are less con-
trollable and are expected to be located around the (INF,0) 
while the payload signals are mostly less observable and are 
expected to be placed around the (0,INF). Thus, for k = 3 clus-
tering, we set the initial point of centroids to (0,0), (0,INF) and 
(INF,0) respectively. Further, for k = 2 clustering, we set the 
initial point of centroids to (0,0) and (INF,INF) respectively. 
We select (INF,INF) as centroid of Trojan cluster since it close 
to both (0,INF) and (INF,0) signals. It is worth mentioning 
that INF is finally replaced with the maximum amount of 
controllability/observability measurement are given for each 
experiment. Therefore, the cluster centers are different for each 
circuit and for each clustering model.

2.5 � Decision Making

This step, decision making phase, starts with filtering of the 
clustering models and continues with voting. We discuss them 
in the next two subsections.

2.5.1 � Filtering

At this step, the validity of each clustering model is examined. 
Since the Trojan's circuit should occupy only a small portion  
of the original circuit in order to remain hidden, it is expected 
that after the clustering, there is a single large cluster corre-
sponds to genuine signals and one/two small cluster(s) corre-
sponds to Trojan signals. Let α denotes the maximum accept-
able value for the percentage of the Trojan signals to total 
signals. The filtering procedure is described in Algorithm 1.

Algorithm 1 Filtering

input: Γ : Clustering, k : Clustering size
α : Validity threshold

output: IsValid, SG, ST , RG , RT

1. N← number of signals in netlist

2. Let the clusters of Γ denoted by {σ(0,0),σ(I,I)} when k=2 and 

{σ(0,0),σ(0,I), σ(I,0)} when k=3

3. SG← σ(0,0)

4. if (k=2) then
5. ST← σ(I,I)

6. else
7. for each σ in {σ(0,I), σ(I,0)} do begin
8. if (|σ| ≥ . ) then
9. Insert signals of σ into SG

10. else
11. Insert signals of σ into ST

12. end if
13. end for
14. end if
15. if (ST ≠ ∅ and | | ≤ . ) then
16. IsValid ←True

17. else
18. IsValid ←False
19. go to line 32

20. end if 
21. DISTG =DISTT←0.0
22. for each signal s in netlist do begin
23. cent ←centroid of the cluster where in s is located
24. if (s belongs to a cluster in SG)

25. DISTG← DISTG +| ( ) − |

26. else
27. DISTT← DISTT +| ( ) − |

28. end if
29. end for
30. RT ← DISTT / | |

31. RG ← DISTG / | |

32. return (IsValid, SG, ST , RG , RT)

The primary candidate for genuine signals is the clus-
ter around the centroid (0,0), namely σ(0,0). Further, when 
k = 2 (for clusterings ΓC2 and ΓS2), the set of Trojan signals 
is initialized by the cluster around the centroid (INF,INF), 
namely σ(I,I). The case for k = 2 (for clusterings ΓC3 and 
ΓS3) has a little different since there are two candidates for 
Trojan signals, the clusters σ(0,I) and σ(I,0). We insert each 
of them into set of Trojan signals if the number of signals 
is less than α-percentage of total signals. Otherwise, we 
insert each of them into set of genuine signals.

After categorization signals into either SG and ST, we 
check the Trojan set. If it is either empty (ST ≠ ∅ ) or larger 
than the α-percentage of entire signals ( ||ST || > 𝛼.N  ), the 
clustering is set to invalid and accordingly is filtered from 
the decision-making procedure. Otherwise, it is accepted 
and entered into decision-making. Further, we compute 
two additional parameters RG and RT which respectively 
denote the average distance of genuine and Trojan signals 
from the cluster centroid. Since the Euclidean distance is 
used for clustering metric, we further involve it in average-
distance measurement. The average distance is used during 
decision-making procedure when the Trojan and genuine 
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votes of a specific signal becomes equal. Finally, the five- 
tuple (IsValid, SG, ST, RG, RT) is returned by the algorithm.

2.5.2 � Final Decision

At this step, four clustering models are fed as the inputs 
into the algorithm. At the beginning loop, each of the clus-
terings ΓC2, ΓC3, ΓS2 and ΓS3 is verified by Algorithm 1 
to select the valid of them. If none of them is valid, the 
whole circuit is labeled as Trojan-free and algorithm ends. 
Otherwise, the algorithm entered into majority-voting loop 
by SVALID containing the valid clusterings. Each cluster-
ing model has one vote per sample, and each vote has the 
same weight.

Algorithm 2 Majority Voting Procedure

input: ΓC2, ΓC3, ΓS2, ΓS3

output: Signal labels

1. SVALID ← ∅
2. for each Γ in (ΓC2, ΓC3, ΓS2, ΓS3) do begin
3. (IsValidi, SG, ST , RG , RT) ←Filtering of Γ using Algorithm 1
4. if (IsValid)

5. Insert (SG, ST , RG , RT) into SVALID

6. end if
7. end for
8. if (SVALID= ∅) then
9. The circuit is TROJAN-FREE

10. return;

11. end if
12. for each signal s in netlist do begin
13. int vt = vg ← 0; 

14. float dt = dg ← 0.0;

15. for each (SG, ST , RG , RT) in SVALID do begin
16. cent ←centroid of the cluster in which s is located;
17. if (s belongs to a cluster in SG) then
18. Vg++
19. ← + | ( ) − |/
20. else 
21. vt++
22. ← + | ( ) − |/
23. end if
24. end for
25. if (vg > vt) or (vg =vt and dg ≤ dt)
26. Mark s as GENUINE;

27. else
28. Mark s as TROJAN;

29. end if
30. end for

For each signal s of the netlist, by inspecting the valid 
clustering in SVALID, we compute four variables vt, vg, dt 
and dg which respectively denote the vote(s) for Trojan, 
the vote(s) for genuine, the normalized Trojan-distance 
and the normalized genuine-distance. The distance is 
normalized by dividing the distance of s from its cluster 
centroid to either RG or RT acquired by the filtering algo-
rithm. Particularly, if the signal s is located in a cluster 
in genuine section SG, vg is incremented by one. Other-
wise, the Trojan-vote counter vt increments by one. At 
the same time, the normalized genuine-distance dg and 
Trojan-distance dt corresponding to signal s is updated 
at each iteration.

In the case of vt ≠ vg, s is simply marked as either Tro-
jan or genuine signal based on majority voting. Precisely, 
when vt > vg, s is labeled as Trojan and vice versa is hap-
pened when vt < vg.

On the contrary, the case of equal votes (vt = vg) is a 
challenge. It can be occurred when the number of valid 
clusters is even, i.e., vt = vg = 1 or vt = vg = 2. This chal-
lenge is resolved by regarding the weight for each vote. 
As mentioned above, the weight is chosen as the normal-
ized distance from the cluster centroid. Thus, if the sum 
of normalized genuine-distance is less than the sum of 
Trojan-distance, i.e., dg ≤ dt, it is marked as genuine sig-
nal. Otherwise it is marked as Trojan.

3 � Evaluations

In this section, the precision of our HT detection scheme 
is compared with other well-known schemes. First, we 
introduce the STMT [21], our self-designed tool for com-
puting testability measurements of a netlist, its architecture 
and basic algorithms. Next, we explained the Datasets and 
parameters regulation. Finally, the evaluation results along 
with comparison with previous work are presented.

3.1 � Design a Tool for Evaluating SCOAP Features

As mentioned before, most testability-based HT detec-
tion schemes used Synopsys’s TetraMAX tool to calcu-
late SCOAP values. Although TetraMAX is a well-known 
powerful testability tool, it has some basic limitations.

Firstly, it has a threshold value of 254 for SCOAP val-
ues calculations. Indeed, it is specialized for ATPG and 
generated SCOAP values with it are just indicate roughly 
the testability of each net. Thus, the corresponding value 
larger than 254 will be replaced by the symbol of asterisk 
(*). However, it is very likely even for the medium-size 
design that net’s SCOAP values cross this threshold and 
accordingly using TetraMAX for computing will decline 
the accuracy of the scheme. Secondly, TetraMAX can only 
compute the sequential SCOAP values (SC0/SC1) while 
we need both sequential and combinational values.

Furthermore, there is some other tools, such as “Test-
ability Measurement Tool [22] which is free from the 
above limitations but does no support Verilog format of 
netlist. Indeed, it supports a special non-standard format 
of netlist and correspondingly does not cover the Trust-
HUB benchmarks.

Therefore, the above restrictions triggered us to develop 
our self-designed tool, namely STMT, acronym of Static 
Testability Measurement Tool. We implement this tool as 
a C +  + program. The benefits of STMT are:
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•	 There is no limitation on upper bound of SCOAP  
value and accordingly we can set its infinity to  
desired value suitable for test, leading to reduce false 
positive classification and give more precise results.

•	 The computation of both combinational and sequen-
tial SCOAP measurements are simultaneously  
achieved in a single traversing the netlist graph, i.e. 
taking the benefits of computation overlapping.

•	 Although the primary goal of STMT is the compu-
tation of SCOAP values, its modular architecture 
allows us to easily extending the calculation in order 
to support non-SCOAP testability measurements such 
as FANCI [5].

The details about STMT architecture along with its algo-
rithms are explained in Appendix A.

3.2 � Datasets

For evaluation, we use Trust-HUB Benchmarks [23], which 
have been investigated in prior work. Trust-hub netlists are 
based on both 90 and 180 nm standard library. There is a 
diverse variety in both size and functionality of the Trojan 
infected circuits.

3.3 � Parameters regulation (selection of α)

The parameter α has a crucial role in Filtering algorithm. 
Thus, correct adjustment of α is important. The low value 
of α causes the clusters corresponds to Trojan signal are 
rejected and accordingly leads to false negative. Further, 
the high value for α results in acceptance of large cluster as 
Trojan which in its turn produces false positive. By inspec-
tion 50% of Trust-HUB benchmarks, we found that appropri-
ate value for α is between 0.03 and 0.15. The lower bound 
0.03 is originated from the fact that the benchmark such 
as RS-232 contains a Trojan circuit that is about 2.5% of 
original circuit. Against, the upper bound 0.15 is stem from 
the large circuit such as Ethernet that has a continuous dis-
tribution of testability features. Thus, clustering of this cir-
cuit usually tends to produce approximately balanced parts 
and accordingly generation of false positive. Thus, from the 
acceptable range, we empirically select 0.075 for α.

3.4 � Evaluation Results

The clustering along with majority voting is implemented 
in MATLAB, a well-known and flexible tool. As mentioned 
earlier, the input of clustering is coming from the STMT in 
the CSV format. Further, both Algorithm 1 and Algorithm 2 
are implemented as m-files in MATLAB.

The results of implementing SC-COTD on Trust-HUB 
benchmarks are shown in Tables 3 and 5. The former shows 
the filtering results while the latter illustrates the majority 
voting procedure.

The first column of Table 3 indicates the target benchmark. 
The four preceding columns respectively show the maximum 
testability value of CC, CO, SC and SO computed by the 
STMT. We can see that the maximum value for all the bench-
marks except the Ethernet ones are less that 1000. For Ethernet 
group, the maximum testability measures are close to10000.

During the adjustment and configuration of the 
k-means algorithm, we set INF to the maximum values 
obtained from STMT, indicating the initial centroid of 
the intended clusters. Furthermore, Euclidean distance 
is chosen for measurement metric. The detail of cluster-
ing is described in the columns entitled by ΓC2, ΓS2, ΓC3 
and ΓS3, respectively. For instance, ΓC2 which denotes 
clustering on < CC,CO > with k = 2 has two columns that 
shows the size of its clusters, σ(0,0) and σ(I,I). The invalid 
clusters are identified in red color. We can see that four 
ΓC2, one ΓS2, one ΓC3 and one ΓS3 are identified as invalid 
clustering and accordingly excluded from majority voting 
procedure. The last group of columns indicates the set 
of Trojan signals for each clustering. We see that for ΓC2 
and ΓS2 the set of Trojans is always equal to σ(I,I). Further, 
for ΓS3, the set of Trojans is union of the clusters σ(0,I) 
and σ(I,0). However, for ΓC3, the set of Trojans is equal to 
σ(0,I)⋃σ(I,0) for six benchmarks and σ(I,0) for other non-
filtered benchmarks. More specifically, in the benchmarks 
RS232-T1200, RS232-T1300, RS232-T1600 and Ethernet-
T720, the cluster σ(0,I) is larger than α-percentage of total 
signals and accordingly is considered as genuine signals.

The detail of majority voting for identification of Trojan 
signals is shown in Table 4. For each benchmark, the total 
number of signals along with the real Trojan signals are 
illustrated in the first group of columns. The next column 
shows the number of valid clusterings that identifies total 
votes for each benchmark.

In the seven leading columns, distribution of voting 
results for the signals labeled as Trojan are shown respec-
tively. Each column corresponds to a acceptable-value of 
pair (vt, vg). For example, the column “4:0” indicates the 
number of signals confirmed to be as Trojan by all of the 
clustering models or equally by 4-votes for Trojan and 0-vote 
for genuine. The columns “2:2” and “1:1” show the case 
of equal votes for Trojan/genuine where in the decision of 
Trojan-marking is made by the normalized distance.

Similarly, the five preceding columns show the distri-
bution of voting results for the signals labeled as genuine. 
Further, the columns “2:2” show the case vt = vg = 2 where 
in the decision of genuine-marking is made by the normal-
ized distance.
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In the last four columns, the number of Trojan detected 
signals, False Positive (FP), False Negative (FN), Preci-
sion and Recall are shown respectively. Note that Recall 
and Precision are defined as [24]:

where TP identifies the True Positive, i.e., the number of 
Trojan signals correctly detected as Trojan.

The results show that the filtering has crucial role in the 
final decision. Among the 15 experiments, four of them have 
two invalid clusterings and two of them have a single invalid 
clustering. This implies that a single clustering is incapable 
of producing the valid clusters to detect Trojan signals. In 
contrast, the collaborative approach by deploying different 
clustering models allows us to filter likely invalid cluster(s) 
and make the correct decision by majority voting procedure. 
By exploring voting-result distribution, we can see that the 
higher rates of Trojan detection are respectively correspond-
ing to “4:0”, “2:2”,“2:0”, “3:1” and “2:1” decisions with 
44%, 14%, 13%, 13% and 12%. Further, for genuine detec-
tion, the higher rates are obtained for “0:4”, “0:2” and “0:3” 
decisions with 66%, 20% and 13%.

(3)Recall =
TP

TP + FN

(4)Precision =
TP

TP + FP

In spite of invalid clustering models that most of them 
are taken place for ΓC2 and ΓC3, the rest of the valid models 
are successfully worked together in decision-making phase 
and accordingly SC-COTD reaches to Recall = 100% for 
Trust-Hub benchmarks. However, there are few numbers of 
FP which are appearing in the final decision. As shown in 
Table 4, the average precision of our scheme is equal to 88%. 
We can see a large set of true negative for each benchmark, 
i.e., correctly genuine detection rate. This makes the other 
indices to be hold in good ranges. More specifically, FPR 
(False Positive Rate), Accuracy and CSI (Critical Success 
Index) [24] are respectively equal to 0.3%, 99.7% and 2%.

3.5 � Comparison with Prior Work

Table 5, summarizes the comparison between the proposed 
method and other methods such as COTD [14], and [9]. It 
should be noted that COTD* (column 1) is our implementa-
tion of original COTD (column 3). As shown in the Table 5, 
COTD* and SC-COTD have similar performance except for 
five benchmarks in which SC-COTD outperforms COTD 
with higher accuracy and significantly smaller number of 
false alarms.

First of all, we focus on the RS232-T1200 circuit. We can 
see that SC-COTD finds all HT signals while COTD* has 
9 false negatives which is relatively high in comparison to 

Clustering graphs for (k = 2) Clustering graphs for (k = 3) Final decisiona. b. c.

Fig. 2   Evaluations for RS232-T1200

   

Clustering graphs for (k = 2) Clustering graphs for (k = 3) Final decision a. b. c.

Fig. 3   Evaluations for S38417-T100
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all 11 Trojan signals. Figure 2, shows the details of cluster-
ing graphs. We find that among the four possible cluster-
ing models, the ones correspond to k = 2 on < CC, CO > is 
invalid. This is due to fact that this clustering generates two 
clusters greater than the threshold (0.1). For SC-COTD, this 
cluster is filtered and the final decision is made by doing 
the majority-voting among the three remained clustering 
models. It is worth noting that the clustering corresponds 
to k = 3 on < CC, CO > also generates two clusters greater 
than threshold (identified by blue and red) and one clusters 
(green) below threshold. Thus, according to Algorithm 1 the 
first and second clusters (red and blue) are aggregated to 
form the genuine clusters while third cluster (denoted by 
green) is set as Trojan signals. As indicated in Fig. 2(c), 
SC-COTD produces the correct result, detecting all the 11 
Trojan signals from the genuine ones. All of the Trojan deci-
sions are made by a result of 2 votes for Trojan and 1 vote for 
genuine. However, the detection algorithm leaves two false 
alarms, identified two genuine signals as Trojan.

At the other hand, COTD also claims that successfully 
detects the Trojan signals for RS232-T1200 benchmark. This 
is while that, the authors of COTD throughout the paper 
asserted they employed the clustering on < CC, CO > with 
k = 3 which we found that it has some false negative in HT 
detection. Actually COTD*, our implementation of COTD, 
shows slightly different results.

It is basically originated from the testability measures 
which in COTD are evaluated by Synopsys TetraMAX while 
in COTD* the evaluation is made by our developed tool, 
STMT.

The first difference is the limitation of TetraMAX for set-
ting the infinity value which is bounded to 254 [8]. Our tool 
has not such limitation. Further, we have some challenges 
with Synopsys TetraMAX to extract SCOAP measures. For 
example, the combinational metrics reported by TetraMAX, 
i.e., CC0, CC1 and CO, are always zero. Moreover, the 
reported sequential metrics (SC0, SC1 and SO), which are 
the only non-zero measures, are different than the accept-
ing results in the literature even for small-scale benchmarks. 

Finally, since the exact computation of SCOAP metrics is 
a NP-Complete problem [25] it is usual for different tools 
to report different metrics for a specific large digital circuit 
with complex feedback.

In Appendix B, we bring some details of challenge of 
SCOAP computations with Synopsys TetraMAX even for 
small-scale circuit. Getting back to our discussion, [14] 
could not find HT signals in the first three benchmarks. 
Furthermore, its FP and FN alarms in the other benchmarks 
are relatively high and accordingly is ineligible. The work 
in [9] only reported detection of Trojan-infected circuits. 
Actually, it does not localize the detection, namely to iden-
tify Trojan signals, Thus, a precise comparison with this 
method is impossible.

Now, we focus on two other specific benchmarks which 
COTD fails to detect Trojan signals. The first is S38417-T100 
and the second is S38417-T200. The details of HT detection 
for S38417-T100 are shown in Fig. 3(a) and Fig. 3(b). We 
can see that clustering on < CC, CO > for both k = 2 and k = 3 
becomes invalid since it generates two clusters larger than 
threshold. In contrast, clustering on < SC, SO > for both k = 2 
and k = 3 leads to valid clustering that detects Trojan signals 
without any false positive nor false negative. The final deci-
sion for this circuit is shown in Fig. 3(c). It is worth noting 
that the authors of COTD admitted the restriction of their 
algorithm for this circuit in [8].

The second example that SC-COTD outperforms COTD is 
S38417-T200. The details of the detection process are shown 
in Fig. 4(a) and (b). Similar to S38417-T100, we can see 
that the clustering on < CC, CO > with k = 2 produces invalid 
clusters and thus it is filtered. In contrast to S38417-T100, 
the clustering on < CC, CO > for k = 3 generates valid clus-
ters, σ(I,0) for Trojan signals and σ(0,0)⋃σ(0,I) for genuine 
signals. But it is not useful sine it contains a lot of false posi-
tive in σ(I,0). Actually, in spite the validation of clustering 
on < CC, CO > with k = 3, it produces a large number of false 
positive for Trojan signals. It is the way that COTD follows 
and thus reports a lot of false alarms (386 FP). But, as we 
seen, SC-COTD has a brilliant performance employing the 

Clustering graphs for (k = 2) Clustering graphs for (k = 3) Final decisiona. b. c.

Fig. 4   Evaluations for S38417-T200
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clustering on < SC,SO > for both k = 2 and k = 3. For these 
suspicious signals, the false alarms of the < CC, CO > with 
k = 3 are eliminated by the correct detections of cluster-
ing < SC,SO > for both k = 2 and k = 3. As we seen, the final 
decision of Trojan signals is made the result of 2 votes for 
Trojan and 1-vote for genuine. Further, the incorrect detec-
tion of Trojan signals by < CC, CO > with k = 3, is cleared 
by two genuine-votes given by < SC,SO > for both k = 2 and 
k = 3.

Furthermore, our action in the case of equal votes, leads 
to correct detection of Trojan signals in some benchmarks 
such as S38584-t100 and RS232-T1300. In the former, three 
of Trojan signals have 2-vote for Trojan along with 2-vote 
for genuine which the decision is made by examining the 
normalized distance from the cluster-centroids. In the lat-
ter circuit, among the nine Trojan detected signals, five of 
them face with equal-vote state which finally detected as 
Trojan by checking the normalized distances. Although, 
this method leads to correct detection in above mentioned 
benchmarks, it causes some false positives in benchmarks 
such as S15850-t100.

3.6 � Types of Trojans

SC-COTD successfully identifies both combinational and 
sequential hardware Trojans. It is basically originated from 
the fact that the attacker tries to insert Trojan in signals with 
high controllability and observability features to realize its 
stealthy. Further, if Trojan circuit uses sequential components, 
the controllability and observability of signals in their fan-
out will be increased. Since inserting flip-flops into a Trojan 
circuitry would considerably increase the controllability and 
observability, SC-COTD can identify Trojan signals easily.

Finally, evaluation result also approves our claim. As 
show in Table 5, the evaluated benchmarks consist of both 
combinational and sequential Trojan triggering. For exam-
ple, RS232-T1000 has combinational Trojan trigger while 
RS232-T1200 has sequential one. We can see that the pro-
posed method is able to find hardware Trojans for both 
sequential and combinational type.

4 � Conclusion

In this paper, we proposed a static method for detecting hard-
ware Trojans based on controllability and observability fea-
tures named SC-COTD. Further, we introduced a new tool for 
calculation of testability measures. Existing tools face limi-
tations such as infinite amount and format of the input file. 
Proposed tool receives the netlist at the gate-level as input and 
calculates the controllability and observability values ​​of all sig-
nals in a short time. By feeding testability measurement, SC-
COTD uses both sequential and combinational controllability 

and observability for HTs detection. We applied an ensemble 
classifier based on k-means clustering with specified initial 
parameters over testability measures. Results show that SC-
COTD can find Trojan inserted netlist without any need for 
HT free chip. Furthermore, proposed method can localize HTs 
which are not detected by previous scheme like COTD.
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