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Abstract
Several fault models are introduced for efficiently identifying the faults in the reversible circuits, where some of the fault
models are borrowed from the conventional circuits. In this work, we consider the Missing Gate Fault Model (MGF) which
is specifically used for reversible circuits. The proposed work provides a scheme for generating the complete test set for
detecting the single and any number of consecutive multiple missing gate faults in k-CNOT based reversible circuits. The
complete test set generation method is twofold. First, a local test pattern is applied to each level of k-CNOT gates and the
reverse simulation method is used for identifying all the possible Single Missing Gate Faults (SMGFs). Second, using the
complete test set for SMGFs and based on the structure of the k-CNOT based circuit, a test set is formulated. The generated
test set is capable of detecting all the MMGFs and as well as the SMGFs in reversible circuits. However, the generated
complete test set is not minimal. For achieving the minimality, a table is constructed covering row and column faults and an
integer linear programming (ILP) problem is formulated to achieve the minimality of the test set. The experimental results
demonstrate that the size of the generated minimized test set is smaller or similar as compared to the existing methods and
attains 100% fault coverage.

Keywords Reversible logic · Single missing gate fault · Multiple missing gate fault · Complete test set ·
Minimal complete test set

1 Introduction

In conventional logic, the operations are logically irre-
versible, i.e., the input of logic circuits can not be deter-
mined uniquely from the output. This is because of loss of
information during logic computation. On the other hand,
the reversible logic performs the lossless computation and
due to that the input can be uniquely derived from the given
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output. In 1961, Rolf Landauer [2] showed that if the com-
putation is irreversible, then the energy dissipated is kT ln2
Joules due to the loss of every bit of information, where k is
the Boltzmann constant and T is the temperature of the sys-
tem in Kelvins. According to MooreFLs law [1], the number
of transistors doubles in every 18 months and circuits are
becoming larger. As a result, todayFLs technologies have
more power dissipation due to information loss and with
that heat generation is becoming severe. It has also been
postulated that the information is lossless if the operations
are performed in a reversible way [3]. It has motivated the
researchers to explore reversible logic as a circuit design
alternative.

In every computing device, there may be a possibility
that an incorrect state is reached during the computation.
This incorrect state can be considered as a fault and the
occurrence of the fault(s) causes an effect on the functional
behavior of a system. The fault models represent the
physical description of these faults. Several fault models
have been introduced for the reversible circuit such as stuck-
at faults [4], bridging faults [5, 6], missing gate faults [7]
and crosspoint faults [9]. Some of the fault models are
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common to the conventional logic circuits. More precisely,
a fault model is generally used to abstract the effects of
physical failures and also helps to simplify the complexity to
detect the faults [10]. The detail discussion and connection
between different fault models on reversible circuits can be
found in [11].

The test patterns generation for a reversible circuit
are relatively simple as compared to a conventional
circuit because the property of reversibility ensures high
controllability and observability [4]. The property of
controllability ensures that any test vector produces a unique
test pattern at a particular level in the reversible circuit
using the reversible gate operation. Due to the property of
observability, if a fault occurs at an intermediate level in
the reversible circuit, then it also affects the primary output
of the circuit. These two properties make the backtracking
process simple for reversible circuits, which is considered to
be difficult for conventional circuits [12]. The properties of
controllability and observability of reversible circuit help to
generate the test set to detect faults and we propose methods
to generate the minimal test set to detect single missing gate
faults and consecutive multiple missing gate faults in such
circuits. A test set is a collection of input test vectors to
apply in a given reversible circuit to observe and detect the
faults. The goal of the test pattern generation process is to
generate a set of test vectors to detect all possible faults in
a given reversible circuit. The test set is called a minimal
complete test set if it contains a minimum number of test
vectors to detect all possible faults.

In this work, an ATPG (Automatic Test Pattern Genera-
tion) method is proposed to generate the complete test set
for detecting the single and consecutive multiple missing
gate faults (MMGF) in the reversible circuits. To extract
the minimal complete test set an ILP (Integer Linear Pro-
gramming) formulation is used. The proposed method is
designed for the k-CNOT based reversible circuit structure
and it gives the minimal complete test set with nearly 100%
fault coverage. Moreover, the correlation with other fault
models like stuck-at faults, appearance crosspoint faults and
partial missing gate faults to the MMGF model is also
established.

The main contributions of this work are as follows:

1. ATPG algorithms are proposed to generate the complete
test set for SMGFs and MMGFs, and extract the
minimal complete test set for detecting these faults in
the reversible circuits.

2. Correlate the fault coverage range with other fault
models such as stuck-at faults, partial missing gate
faults, and appearance crosspoint faults.

The rest of this paper is organized as follows: Section 2
provides a general discussion on reversible logic function
and reversible gates, k-CNOT based reversible logic

circuits, and an overview of the relevant fault models.
The related works on fault detection in reversible circuits
are also discussed in this section. Section 3 describes the
proposed ATPG algorithms for generating the complete
and minimal test set to detect the SMGFs and MMGFs in
reversible circuits. The comparison with other fault models
is also included in this section. The experimental results
of proposed test set generation method and comparison
with other fault models are reported in Section 4. Finally,
concluding remarks are presented in Section 5 with some
possible directions for future works.

2 Background

2.1 Reversible Logic Function and Gates

A logic function f (x1, x2, . . . , xn) of n Boolean variables is
called a reversible function if it realizes bijective functions,
i.e., f : Bn ⇒ B

m that maps each possible input pattern to
a unique output pattern, where the number of input patterns
should be equal to a number of output patterns (i.e., n = m).
The bijective function allows a permutation on the set of
input patterns to produce an output pattern such that each
possible input pattern can uniquely determine an output
pattern [13]. Also, an output pattern can uniquely restore the
input pattern.

A logic gate is reversible if it realizes a reversible logic
function. A necessary condition of the reversible gate is that
it has same number of inputs and outputs and every single
input gives a unique output. The formulation of a reversible
gate consists of k-input and k-output wires called as a
reversible k×k gate [4]. Therefore, the reversible k×k gate
has the capability to reconstruct the input states from the
output states. For the construction of the reversible circuit,
several gates have been proposed over the past decades.
Some of the basic reversible gates are NOT gate, CNOT
gate [14], TOFFOLI gate [15], FREDKIN gate [16], PERES
gate [17], and SWAP gate [18]. The most commonly used
gate libraries are NOT-CNOT-TOFFOLI (NCT) library and
Multiple Controlled TOFFOLI (MCT) or k-CNOT library
which can be used to synthesize a reversible circuit.

2.2 k -CNOT Reversible Circuits

The structure of the reversible circuit is a linear cascade
structure [19]. A reversible circuit C consists of a gate set
G, where G={g1, g2, . . . , gN } and N is the number of gates
in the circuit C. The gate gi is the ith gate for the circuit
C where 1 ≤ i ≤ N . Gate gi is only active when the gate
gi−1 has produced an output. Each gate of the reversible
circuit is categorized by level, and the number of levels
always depends on the number of gates present in the circuit.
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If the reversible circuit contains only the k-CNOT gates,
then it is called a k-CNOT based reversible circuit. The
logical extension of a TOFFOLI gate is represented as a k-
CNOT gate, where k is the number of input control lines
x1, x2, . . . , xk and one input target line t . Therefore, k-
CNOT gate has (k + 1)-inputs and (k + 1)-outputs wires.
The reversible logic function of this gate is expressed as
(x1, x2, . . . , xk, t) → (x1, x2, . . . , xk, t ⊕ x1, x2, . . . , xk).
Figure 1 shows the structure of the k-CNOT circuit, where
four gates process the four signals (“wires”) from gate g1
to g4. The gate g1 to g4 are 1-CNOT gate (also called as
CNOT gate), 2-CNOT gate, 3-CNOT gate, and 1-CNOT
gate, respectively. Figure 1, illustrates the propagation of
input vector “1010” to the primary output vector “ 1100”.
Since all the k-CNOT gates are reversible, so each gate
produces a unique output in each level during the gate
operation. Here, the output vector “1110” is generated in
gate g3 which lies between levels 3 and 4, when the input
vector “1010” is applied. Furthermore, if any gate produces
different vector at their corresponding level, then a different
output vector is produced in place of “1100” at the primary
output level in the circuit.

2.3 Fault Models in Reversible Circuit

In general, a fault model is a mathematical model that
describes the different levels of abstraction of physical
faults in a system. The level of abstraction can be defined
as behavioral, functional, structural, and geometric [10].
The fault models help to evaluate faults and reduce the
complexity of generating test vectors [11]. Apart from the
traditional fault models, few more fault models need to be
considered for describing the faults that occur in the k-
CNOT based reversible circuit and these faults are Single
Missing Gate Fault (SMGF) [7], Multiple Missing Gate
Fault (MMGF) [7], Repeated Gate Fault (RGF) [8], and
Partial Missing Gate Fault (PMGF) [8] under the Missing
Gate Fault model. In this work, the main emphasis is given

Fig. 1 k-CNOT reversible circuit comprising of two 1-CNOT, one
2-CNOT, and one 3-CNOT gate

on SMGF and MMGF, which are structural fault models in
the reversible circuit.

2.3.1 Single Missing Gate Fault Model

A single missing gate fault (SMGF) causes removal of one
k-CNOT gate from the circuit. The occurrence of an SMGF
is that the generated signal(s) for operating the gate is (are)
short, missing, misaligned or mistuned [7]. Consider the
circuit of Fig. 2a, if we apply x1=1, x2=1 and x3=0 at the
input of the circuit, the normal output would be 1, 0, 1 for
y1, y2 and y3, respectively. Consider the SMGF, where the
second CNOT gate is missing, due to the presence of SMGF
in the circuit; the output would be y1=1, y2=1, and y3=1.
The behavior of this fault model shows that the maximum
number of SMGF faults in a circuit is equal to the total
number of gates N present in the circuit.

2.3.2 Multiple Missing Gate Fault Model

A multiple missing gate fault (MMGF) causes the removal
of two or more consecutive k-CNOT gates [8]. An example
involving two missing gates is shown in Fig. 2b. The second
and third k-CNOT gates are missing and due to this, the
output would be y1=1, y2=1,and y3=1 instead of y1=1,
y2=0, and y3=0. In 2005 Polian et al. [8] showed that the
complete test set of SMGFs is not capable of detecting all
the MMGFs. Furthermore, based on the characteristic of
SMGF, every SMGF is a subset of MMGF. Therefore, the
total number of consecutive MMGFs in an N-gate circuit is
N(N + 1)/2.

2.4 RelatedWork

Some of the existing research works that are compatible
with our work are briefly reviewed in this section. In 2004,
Hayes et al. [7] showed that �N/2� test vectors detect
all Missing Gate Faults (MGFs) in an N-gate k-CNOT
circuit. Here, the MGF considers one gate missing at a time.
Also, this method proposed that a single vector is capable
of detecting all the MGFs of a given k-CNOT circuit by
adding one wire and several 1-CNOT gates. The proposed
a design for testability (DFT) method inverts the values that
correspond to the undetectable faults such that all detection
conditions can be satisfied simultaneously. Based on the
concept of the previous work, the authors in [8] proposed
a different type of fault that occurs under the Missing-Gate
Fault model. This work presented a method to generate the
optimal test sets computed by integer linear programming
(ILP) to detect the various types of MGFs such as Single
Missing Gate Fault (SMGF), Repeated Gate Fault (RGF),
Multiple Missing Gate Fault (MMGF), and Partial Missing
Gate Fault (PMGF). Also, this work showed that the
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Fig. 2 a Single missing gate
fault bMultiple missing gate
fault

(a) (b)

complete test set of SMGFs is not capable of detecting all
the MMGFs. The total number of consecutive MMGFs in
an N-gate circuit is N(N + 1)/2. In 2008, authors in [20]
proposed a scheme that divides the circuit into sub-circuits
to get the complete test. The division of the circuit is based
on the dominant and independent relationship of the gates.
If the consecutive k-CNOT gates are dominant, then they
are divided into the same sub-circuit; otherwise, these gates
belong to different sub-circuits. This work generated the test
vectors for each sub-circuits to obtain the complete test set.
However, the generated complete test set by dividing the
sub-circuit method is not minimal. The authors proposed
the set covering method to get the minimal test set for
detecting the SMGFs and MMGFs in k-CNOT circuits.
The methodology proposed by them does not cover all the
MMGFs and several additional test vectors are required to
detect all the MMGFs. In 2008 and 2011, Rahaman et al.
[21, 24] proposed a DFT method for an (n × n) reversible
circuit by adding only one extra line along with duplication
of each k-CNOT gate to get a universal test set of size
(n + 1), which is sufficient to detect all SMGFs along with
other faults like RGFs and PMGFs. In 2010, Kole et al. [22]
proposed an algorithm for detecting SMGFs, MMGFs and
RGFs. The proposed algorithm derived an optimal test set
(OTS), where each gate is represented by a gate Id and each
Id is used as a key to represent the permutation produced by
the k-CNOT corresponding gate. Here, all permutations of
size n for each gate Id are generated in a given an n-input
reversible circuit andN(N+1)/2 sets are constructed where
circuit depth is N . The minimal set cover is used to derive
an OTS from these sets. It is observed that if the circuit size
is large in terms of a number of gates, then the construction
of permutations for each gate Id is complex. In 2010, Zhang
et al. [25] proposed an ATPG method using the concept
of Boolean satisfiability (SAT) for generating the complete
test set, which can detect the single missing control fault
(SMCF), single additional control fault (SACF), and single
missing-gate fault (SMGF) in reversible circuits. However,
this method does not provide any guarantee to generate
a minimal complete test set. In 2011, the work presented
by Wille et. al [26] proposed an ATPG method using a
simulation-based technique, Boolean satisfiability (SAT)
based, and pseudo-Boolean optimization (PBO) based
approach to test reversible circuits. These approaches are
used for detecting the single missing control fault (SMCF)

along with the single missing-gate fault (SMGF), and a
single additional control fault (SACF). The authors in [26]
have mentioned that the PBO-based approach is more
effective in terms of the size of the test set as compared to
the simulation-based and SAT-based approaches. In 2011,
Zhang et al. [27] proposed an SAT-based algorithm for
determining the minimal complete test set to detect SMCF
and SMGF in reversible circuits. This work is basically
an improvement over the existing works presented in [25],
and [26]. In 2011, Zamani et al. [23] proposed a technique
named as Ping-Pong testing that provided a test vector to
the circuit and generated output is considered as the next
vector to detect the SMGFs and RGFs. This technique
showed 100% fault coverage for SMGF as well as single
RGF. But, for the multiple MGF (MMGFs) fault coverage
is 86% on an average. In 2013, Mondal et al. [28] proposed
a DFT technique for detecting all faults PMGFs, SMGFs,
and detectable RGFs in a (n × n) k-CNOT based reversible
circuit. The proposed DFT method can be implemented by
the addition of only two extra input lines along with the
insertion of a few k-CNOT gate to generate a universal
test set of size (n+1) to detect all the faults. However,
the quantum cost of the testable circuit increases when the
circuit size is large. In 2014, Mondal et al. [31] proposed
a Boolean generator which is developed by the Boolean
difference method to derive the test set. The derived test is
in the form of Boolean expression only, and it is capable
of detecting all the SMGF in k-CNOT based reversible
circuits. In 2016, Nagamani et al. [32] proposed an ATPG
algorithm using the exact approach for generating the
complete test set which can detect the single and multiple
stuck-at faults, single and multiple missing gate faults,
repeated gate faults, and partial missing gate faults. These
algorithms provided an optimal solution, but the complexity
of these algorithms is exponential to the gate count and
the number of lines in the circuit, which is not suitable
for large circuits. In 2017, Kole et al. [29] discussed the
effort of evaluation for generating the test pattern of testing
reversible circuits. For this purpose, this work presented
two ATPG approaches (i) naive test generator and (ii) SAT-
based test generator to test the SMGF along with SACF,
and PMGF in reversible circuits. In this work, the SAT-
based exact approach produces a smaller number of test
patterns as compared to the naive test generator approach,
but it requires an extensive run time and is not scalable.
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In 2017, Prakash Surhonne et al. [33] provided a method
to generate Automatic test patterns for MMGFs detection
(considered only two gates are missing). It is based on the
generated SMGFs which are stored in a Binary Decision
Diagram (BDD) and test patterns to detect all MMGFs are
generated by dependency analysis between the two gates. In
2018, Nagamani et al. [30] proposed a genetic algorithm-
based heuristic test generation method for detecting the
complete missing-gate fault (CMGF), PMGF, bridging
fault and stuck-at fault in Toffoli-based, Peres-based and
Fredkin-based reversible circuits. Based on the concept of
a genetic-based heuristic method, the authors provide two
approaches, namely as a random search approach and a
directed search approach. The random search approach does
not achieve high fault coverage for every test. The directed
search approach is an improvisation over a random search
approach.

It is observed that many of the approaches considered the
DFT methodology for generating the test vectors to cover
all the faults. In DFT methodology, there is an additional
circuit overhead which is incorporated by additional input
lines or control lines and additional gates. Moreover, by
using an exact approach the minimal complete test set
can be generated, but the computational complexity grows
exponentially for large reversible circuits.

In this work, we propose an ATPG method to determine
the complete test set for detecting all SMGFs and MMGFs
using the reversible circuit properties (controllability and
observability) without changing the structure of the circuit
and the time complexity of the method is O(N2) with
N number of gates in a k-CNOT circuit. Moreover, the
proposed complete test set generation method that can be
applied to any large k-CNOT based reversible circuit.

3 ProposedMethod

In this section, a method is proposed for k-CNOT reversible
circuit to generate the complete test set which can detect
the SMGFs and MMGFs. The proposed method starts with
the generation of the complete test set for detecting all
the SMGFs. A local test pattern is applied to each gate of
the circuit and by using the reverse simulation technique,
the complete test set is generated to detect the SMGFs of
the given k-CNOT based reversible circuits. After analysis
of the complete test set for SMGF, it is observed that the
generated complete test set for SMGF is unable to detect all
the possible MMGFs in a given reversible circuit. Therefore,
a solution is formulated to generate the complete test set
for detecting all the MMGFs considering the structure of
the k-CNOT circuit and the complete test set for detecting
SMGFs. The generated complete test set is able to detect
all the SMGFs and MMGFs. The generated test set to

detect SMGF and MMGF is not minimal. To obtain the
minimality, a table is constructed by using fault simulation
with the generated test set. Integer Linear Programming
(ILP) is formulated by using the fault simulation table and
the minimal test set is obtained for a given circuit by the
Branch and Bound technique of ILP.

Some terms are defined formally which are used to
describe the proposed solution.

Definition 1 A test vector TVi is a combination of binary
inputs that are applied to a reversible circuit for testing.
The binary inputs 〈b1 b2 . . . bn〉 are assigned to the input
lines, where bi is the ith bit that refers to the ith line of the
reversible circuit.

Definition 2 The test set TS is the set of test vectors
that are required to test all the possible faults (SMGFs
and MMGFs) in the reversible circuit. Let the test set be
T S={T V1, T V2..., T Vk}, for 1 ≤ i ≤ k, then the test vector
is T Vi=〈b1i b2i . . . bni〉, where bji is the j th bit of ith test
vector and bji ∈ {0, 1}.

Definition 3 A local test pattern TVlp is a combination of
binary inputs that are applied to each k-CNOT gate of the
reversible circuit to activate the gate for detecting any faults
therein. Let the local test pattern be T Vlp=〈b1 b2 . . . bn〉,
where bi is ith bit that refers to the ith line for 1 ≤ i ≤ n

and bi = 1.

Definition 4 The test set TSSMGF is the complete test set to
detect all the single missing gate faults (SMGFs) in a given
reversible circuit. In other words, the test set T SSMGF is
capable of detecting all the SMGFs, which occur at any level
in the reversible circuit and T SSMGF ⊂ T S.

Definition 5 The test set TSMIN is the minimal complete
test set to detect all the single and multiple missing gate
faults in a given reversible circuit.

Definition 6 FSMGF and FMMGF are the sets consisting of
all single and multiple missing gate faults, respectively in a
given n-input reversible circuit.

The notation fgi
for SMGF is used to denote a single

missing gate fault of the ith gate for 1 ≤ i ≤ N . The
multiple missing gate fault for missing of q number of gates
is denoted as fg1,g2 ...gq .

3.1 DetectionTechnique forSingleMissingGateFault

Consider a reversible circuit consisting of N gates
{g1, g2, . . . , gN }. For every gate gi , i=1 to N , there are
some control line(s) (denoted as •), some unconnected
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line(s) and a target line (denoted as ⊕). To generate the test
set for SMGFs, the gates are scanned from left to right. To
activate the gate gi for detecting any faults therein, a local
test vector is applied to the gate gi by assigning the logic
value 1 on the lines where control connections are present,
and randomly we set the logic value to either 0 or 1 on
all other lines (unconnected and target lines). In this work,
the logic value 1’s is considered for all lines in a given k-
CNOT based circuit, and a local test pattern T Vlp represents
it. With the applied local test pattern T Vlp to the gate gi ,
the back propagation toward the input side is used to obtain
the required test vector (T Vi) to detect the missing gate
fault for gate gi . We carry out fault simulation with test
vector T Vi to detect SMGFs, and then we remove the faults
that are detected by T Vi . These detected faults need not be
considered for further iteration and we repeat this process
until all the faults are covered for the fault set FSMGF .

3.2 Complete Test Set Generation for Single Missing
Gate Fault

In this section, the proposed method to generate a complete
test set for detecting all single missing gate faults in a
given reversible circuit is described. The complete test set
generation method for single missing gate faults is presented
in Algorithm 1.

Example 1 The complete flow of Algorithm 1 for
generating the test set T SSMGF of the reversible benchmark
circuit rd32-v0 66 is represented in Fig. 3.

Let the benchmark circuit rd32-v0 66 be provided as
input to Algorithm 1 having n-lines and N-gates. In Step 1,
the required parameters n = 4 and N = 4 are extracted from
the given circuit. Now, we construct the local test pattern
T Vlp=〈b1 b2 b3 b4〉, where bit bi is assigned to logic value
1, where i = 1 to 4. In Step 2, the fault set FSMGF = {fg1,
fg2, fg3, fg4} is generated based on the connections of
N gates. In Step 3, we apply and back propagate T Vlp =
〈1 1 1 1〉 to the gate g4 and obtain the corresponding test
vector T V4 = 〈1 0 0 1〉 at the input level. Similarly, the same
process is repeated for the remaining gates g3, g2, and g1
and the corresponding test vectors are T V3 = 〈1 0 1 0〉, T V2

= 〈1 0 1 1〉, and T V1 = 〈1 1 1 0〉, respectively. In Step 4,
the fault simulation process for each fault fgi in the fault set
FSMGF is carried out with the help of each test vector T Vi

at the input level. For this example, the faults fg1, fg2, fg3,
and fg4 are identified by test vectors T V1 = 〈1 1 1 0〉, T V2 =
〈1 0 1 1〉, T V3 = 〈1 0 1 0〉, and T V4 = 〈1 0 0 1〉, respectively.
Finally, complete test set T SSMGF = {1110, 1011, 1010,
1001} is constructed for the benchmark circuit rd32-v0 66
as mentioned in Step 5.

Lemma 1 The test set, T SSMGF , generated using the
proposed method detects all single missing gate faults in a
given reversible circuit with N-gates.

Proof Let us consider the k-CNOT circuit C consisting of
gates {g1, g2, . . . , gN }. To activate the SMGF at gate gi

(i=1 to N), the local test pattern T Vlp=〈b1 b2 . . . bn〉
= 〈1 1 . . . 1〉 is applied at the output level of gate gi .The
controllability property ensures that on backtracking from
any gate gi with local test pattern T Vlp it is always possible
to generate a unique vector (say T Vi) at the input gate-
level. The observability property ensures that the generated
test vector T Vi for each gate gi produces fault-free output
and the same test vector T Vi produces faulty output at the
primary gate-level, if a fault occurs. Therefore, each test
vector T Vi ∈ T SSMGF detects all the individual faults in
the fault set FSMGF . Hence, the test set T SSMGF is the
complete test set for detecting all the single missing gate
faults in a given reversible circuit.

3.3 Complexity Analysis of Complete Test Set
Generation

For an n-input reversible circuit with N number of gates,
the local test pattern T Vlp is applied for each gate gi

for detecting the SMGFs in the circuit. Construction of
the local test pattern T V requires constant time (say C1)
due to assigning the logic value 1 to all the lines n in a
given reversible circuit with N number of gates. The back
propagation for each gate gi requires N steps to obtain the
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Fig. 3 Demonstration of
Algorithm 1 for rd32 v0 66
benchmark circuit

corresponding input vector T Vi at the input level. Now,
recursively we simulate all the faults in the fault set FSMGF

with the test vector T Vi , where |FSMGF |=N . For checking
the presence of a test vector in the fault set FSMGF , it
requires constant time, say,C2N . Therefore, the overall time
complexity of the algorithm is C1+N+C2N=O(N).

3.4 Complete Test Set Generation for Multiple
Missing Gate Fault

The generated test set T SSMGF obtained by Algorithm 1
is sufficient for detecting all the single missing gate faults
(SMGFs) in a reversible circuit, but the test vector T Vi ∈
T SSMGF is not capable of detecting all the multiple missing
gate faults (MMGFs). Moreover, a complete test set for
SMGFs does not cover all the MMGFs [8]. For every gate

gi of a reversible circuit, there are some control line(s)
(denoted as •), some unconnected line(s) and a target line
(denoted as ⊕).

In k-CNOT circuit structure, some of the lines contain
only target connections, and in some lines both target
and control connections are available. If only the target
connections are present in a line, then some of the multiple
missing gate faults can not be detected by the test set for
detecting SMGFs. Consider the case that two consecutive
gates are missing whose targets are in the same line, then
the single missing gate fault of the first gate is nullified by
the missing of the second gate and so missing of two gates
cannot be detected by the test set of SMGFs. Therefore, for
this category of circuits, the test vector T Vi ∈ T SSMGF

cannot detect all the MMGFs in a given k-CNOT based
circuit. For detecting all the MMGFs, some additional test
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vectors are included in the test set T SSMGF . For this

purpose, the test set T S is constructed as: T S=
N⋃

i=1
S(gi) ∪

T SSMGF , S(gi) represents all the possible test vectors T Vi

for the corresponding SMGFs in gate gi . In the other case,
target and control connections are present on the same line.
Consider a case where a control point is followed by a target
point is a line. That is, gate gi is connected as target point
and gate gj is connected as a control point in the line l. So,
the missing of gate gi effects the control connections of gate
gj which eventually effects the output of gate gj . Missing
of both the gates gi and gj effect the control connects of
the next gate. The absence of the control and target in these
gates directly effect the control and target connection of the
next consecutive gates, and as a result, the primary output of
fault-free circuit gets effected. Therefore, the generated test
set T SSMGF for detecting SMGFs is capable of detecting
all the MMGFs in a given k-CNOT circuit for this category
of circuits. The construction of the complete test set T S for
detecting all MMGFs is given in Algorithm 2.

Example 2 Consider the benchmark circuit Toffoli double 4
as illustrated in Fig. 4. The circuit consists of two k-CNOT
gates (i.e., N=2) and four input lines (i.e., n=4). Based
on the circuit structure as shown in Fig. 4, there is an
occurrence of two consecutive target connections on the
same line ’d’. Hence, the generation of the complete test
set T S is according to the Step:4 of Algorithm 2. The
complete test set for SMGFs is T SSMGF={1110, 1111} for
the reversible circuit Toffoli double 4 according to Algo-
rithm 1. In the circuit of Fig. 4, if the gate g1 is missing
then all possible test vectors to detect the missing gate g1 is

Fig. 4 Reversible benchmark circuit: T off oli double 4 circuit

S(g1) = {1010, 1011, 1110, 1111} and similarly all possible
test vectors to detect the missing gate g2 is g2 = {1100,
1101, 1110, 1111}. Now, the required test set to detect
all MMGFs is T S={S(g1) ∪ S(g2)}∪T SSMGF={1010,
1011, 1110, 1100, 1101, 1111}. The obtained test set T S is
capable of detecting all the faults in fault sets FSMGF and
FMMGF . Thus, the test set T S is complete but not minimal
to detect all MMGFs in the reversible benchmark circuit
Toffoli double 4.

Lemma 2 The test set T S generated using the proposed
method detects all single and multiple missing gate faults in
a given n-input k-CNOT based reversible circuit.

Proof Let us consider that the target connections of the
gates gi and gi+1 which are in the same line. It means that
the operation of the gate gi does not effect the gate gi+1 if
they are missing together, i.e., fault-free and faulty output
are indistinguishable, since the missing of two consecutive
target connections does not effect the functional behavior of
the circuit. If the generated test vector T Vi ∈ T SSMGF is
applied, then missing of even number of consecutive gates
shows the similar functional effect as compared to the fault-
free circuit. Due to this, the test set T SSMGF is unable to
detect all the MMGFs. In this case, all the possible test
vectors S(gi) for all possible occurrence of SMGFs are
considered. However, each single missing gate fault is also a
multiple missing gate fault [8]. Thus, any test vector in S(gi)

involves detecting two or more multiple missing gate faults
where the target connection is in the same line for each

gate. Hence, the generated test set T S=
N⋃

i=1
S(gi)∪T SSMGF

is capable of detecting all multiple missing gate faults in
a given k-CNOT based circuit. In another case, the control
connection of gate gi is the target connection of the gate
gi+1 and vice versa; then control connection of gate gi

directly effects the gate gi+1. The complete removal of
two gates gi and gi+1 generate the faulty responses at the
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primary output of the circuit, which is distinguishable with
fault-free primary output responses. The multiple missing
gate faults in this scenario are detected by the test vector
T Vi ∈ T SSMGF . Since the back propagation of each gate
produces different vectors in subsequent levels, thus, at least
one generated test vector T Vi ∈ T SSMGF can detect the
multiple missing gates gi and gi+1. In the similar analogy,
it can be stated that the test set T S (T S = T SSMGF ) is
capable of detecting more than two multiple missing gate
faults.

3.5 Complexity Analysis of Complete Test Set TS
Generation

The generation of the complete test set T S for all possible
SMGFs and MMGFs is dependent on the number of input
lines n and the number of gates N in the circuit. All the lines
in the circuit are scanned to identify the type of connections
(target and control) present in a line for each gate, and for
checking the type of connection in a line requires constant
time (C1). The time complexity for checking the type of
connections is N × n × C1. Evaluation of the test vectors
for each gate also requires constant time (C2) and time
complexity for evaluation of the test set for all the gates is
N × C2. Hence, the time complexity for generating the test
set T S is N × n × C1 + N × C2 = O(N × n). The time
complexity in the worst case is O(N2), where n = N .

3.6 Determination of Minimal Complete Test Set

The complete test set T S generated by Algorithm 2 to detect
all MMGFs is not a minimal one. A method is proposed
to derive the minimal complete test set T SMin. For this
purpose, firstly, a row and column fault covering table is
constructed with the help of the complete test set T S and
all possible faults present in FSMGF and FMMGF in a given
reversible circuit. Secondly, Integer Linear Programming
(ILP) Problem is formulated from the constructed row and
column fault covering table. Finally, using Branch and
Bound technique of ILP, the test set T SMIN is obtained for
detecting all SMGFs and MMGFs. The following steps are
carried out to generate T SMIN :

(i) Using fault simulation with each test vector T Vi ∈
T S, the corresponding faults in FSMGF and FMMGF

are determined. The row and column fault covering
table is constructed in the form of a matrix Mr×c,
where r is the number of test vectors present in
T S and c is the number of all possible faults in a
given reversible circuit. The value m(i,j)=1 denotes
that the test vector T Vi in the ith row detects
the corresponding j th fault; otherwise, the fault is
undetectable by the test vector T Vi of the ith row.

(ii) Formulate the ILP model with binary decision
variables ti associated with each test vector T Vi . Let
us consider |T S| = d , then there are d variables
ti , where i = 0 to d − 1 and ti ∈ {0, 1}. The
variable ti is represented as ith row of Mr×c and,
T = [t0, t1, . . . , td−1]T . Here, we define:

Mr×c.T =
[
d−1∑

i=0

mi1ti,
d−1∑

i=0

mi2ti, . . .

d−1∑

i=0

miN(N+1)/2ti

]T

where,
d−1∑

i=0
mij for all 1 ≤ j ≤ N(N + 1)/2 and

if ti=1, then corresponding test vector T Vi is able to
detect the faults of j th row ofMr×c.

The Objective function for ILP is formulated as
follows:

min f(t0, t1, . . . , td−1)= t0+t1+ . . .+td−1

subject to the constraintsMr×c.T ≥ [1, 1, . . . , 1]T
(iii) All the constraints

d−1∑

i=0
mij ti ≥ 1 are applied in

LINGO 17.0 [34] and shows that at least one test
vector T Vi ∈ T S is able to detect any fault in a given
circuit.

Example 3 Consider the benchmark circuit ham3tc as
shown in Fig. 5. The total number of faults in the circuit
ham3tc is 15. According to Algorithm 2, the extracted
complete test set T S={011, 101, 110, 100} for the reversible
benchmark circuit ham3tc. Using the fault simulation with
each test vector T Vi ∈ T S with the fault-free and faulty
circuit, the corresponding faults are extracted for the circuit
ham3tc. Based on this information, the row and column
fault covering table is constructed according to the Step (i)
to generate T SMIN . Table 1 shows the fault coverage by
each test vector T Vi . Next, we formulate the ILP model
as mentioned in Step (ii): min f(t0, t1, t2, t3)=t0+t1+t2+t3,
subject to the generated constraints as indicated in Table 1.
In Step (iii), all the constraints generated by the ILP
formulation are applied to the LINGO 17.0, and it gives t0=1
and t1=1. The respective test vectors for the binary decision
variables t0 and t1 are 011 and 101, respectively. Therefore,
the minimal test set is T SMIN={011, 101} for the reversible
benchmark circuit ham3tc.

Fig. 5 Reversible benchmark circuit: ham3tc circuit
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Table 1 Row and column fault coverage table of the ham3tc reversible benchmark circuit

T Vi FSMGF FMMGF

fg1 fg2 fg3 fg4 fg5 fg1,g2 fg2,g3 fg3,g4 fg4,g5 fg1,g2,g3 fg2,g3,g4 fg3,g4,g5 fg1,g2,g3,g4 fg2,g3,g4,g5 fg1,g2,g3,g4,g5

011 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1

101 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0

110 0 0 1 1 0 0 1 0 1 1 0 0 0 0 0

100 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1

following constraints are generated from the fault coverage
table

d−1∑

i=0

mij ti ≥ 1 =⇒ M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
1 1 0 0
0 1 1 0
1 1 1 1
0 1 0 1
1 1 0 0
1 1 1 0
1 0 0 1
1 1 1 1
1 1 1 0
1 1 0 1
1 1 0 1
1 1 0 1
1 0 0 1
1 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎣

t0
t1
t2
t3

⎤

⎥
⎥
⎦

≥

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

constraints=⇒

t0 ≥ 1
t0 + t1 ≥ 1
t1 + t2 ≥ 1

t0 + t1 + t2 + t3 ≥ 1
t1 + t3 ≥ 1

t0 + t1 + t2 ≥ 1
t0 + t3 ≥ 1

t0 + t1 + t3 ≥ 1

3.6.1 Complexity Analysis of ILP Formulation

For the determination of a complete minimal test set T SMin,
we consider 0-1 ILP, where each binary decision variable
t0, t1, . . . , td−1 can assume binary value either 0 or 1.
Suppose, consider the number of constraints is k, and all
the constraints are lower bound constraints. For the state
space, let us consider all possible 2d assignments of binary

decision variables t0, t1, . . . , td−1 in a non-deterministic
manner. Based on the ILP formulation, the time taken for
checking the feasible solution for each assignment is O(d ×
k). The minimized objective function is solved using the
Branch and Bound technique of ILP and computing the
value of the objective function for each feasible assignment
needs O(d) time.

Lemma 3 The test set T SMIN is a minimal complete test
set for detecting all the single and multiple missing gate
faults in a given n-input k-CNOT based reversible circuit.

Proof In Lemma 2, it is established that the test set T S

can detect all single and multiple missing gate faults of a
given reversible circuit. Moreover, each possible fault can
be detected by one of the test vector T Vi ∈ T S because
each T Vi satisfies the condition Mr×c.T ≥ [1, 1, . . . , 1]T.
Based on the ILP formulation, the objective function min
f(t0, t1, . . . , td−1) provides the smallest number of binary
variable(s) which is associated with their corresponding test
vector T Vi in the test set T S under the conditionMr×c.T ≥
[1, 1, . . . , 1]T. Thus, all the constraints of a given condition
are applied to optimal software that gives the least number
of variables, which are assigned to T SMIN . Hence, T SMIN

is a minimal complete test set for detecting all single and
multiple missing gate faults.

3.7 Fault Coverage Evaluation with Other Faults
Models

The fault coverage is defined as the ratio of the actual
number of detected faults to the total number of faults that
occur in a circuit. Several fault models are used to detect
different kinds of faults. In this work, methods are proposed
to generate the complete test set to detect SMGFs and
MMGFs in a reversible circuit. There exists a correlation
between different fault models and it is also a good exercise
to check the fault coverage of other fault models by the
generated test set of another fault model. Therefore, the
minimal test set generated by our proposed method to detect
SMGFs and MMGFs is applied for detecting the faults
in other fault models such as stuck-at fault (SAF), partial
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missing gate fault (PMGF), and appearance crosspoint
fault. The correlations between different fault models are
explained briefly.

1. Missing gate fault and Stuck-at fault model: Accord-
ing to Patel et al. [4], the stuck-at faults (SAFs) can be
detected by test vector such that each wire at every level
of the circuit can be set to both logic value 0 and 1,
while SMGFs and MMGFs are detected by setting the
control connections to logic value 1 and other connec-
tions (the target and unconnected) are set arbitrarily to
logic values 0 and 1. In the proposed method, a local
test pattern to each k-CNOT gate gi is applied and we
traverse back towards input to obtain the test vector T Vi

at the input level. During back propagation through the
gates present in the circuit, the operations performed in
each gate changes the local test patterns at each level
and are set to logic value 0 or 1, which are capable of
detecting stuck-at 1 (SA1) and stuck-at 0 (SA0), respec-
tively. Thus, the complete test set T S for SMGFs and
MMGFs satisfies the requirement for detecting most of
the SAFs in a given reversible circuit.

2. Missing gate fault and PMGF model: The detection
criteria for a PMGFs is that the missing control input is
set to logic value 0 and we assign the logic value 1 to
all other control inputs. The remaining input lines are
assigned arbitrarily to logic value 0 and 1. As per our
proposed method, when we apply a local test pattern
to a particular k-CNOT gate lying at a particular level
in the circuit, then the test vectors get changed due to
propagation through various gates at different levels.
Therefore, there is a possibility to get some test vectors
which satisfy the criteria for detecting the PMGFs. It
may happen that all PMGFs can not be detected by the
generated test set T S by our proposed method, then the
test set can be reconstructed to cover all PMGFs.

3. Missing gate fault and Crosspoint fault model: As
described above, to detect the SMGFs and MMGFs,
we apply a logic value 1 where control connections
are present in the gate and we randomly fill by logic
value either 0 or 1 for all other lines. To detect for
appearance crosspoint faults, we apply a logic value
1 to all control connections of the gate and set logic
value 0 to all other lines. Therefore, it is observed that
the test set for detecting both SMGFs and MMGFs is
capable of covering appearance crosspoint faults. In our
proposed method, the complete test set T S is generated
by a local test pattern for each gate with the help of
back-propagating through various levels in the circuit.
Therefore, some test vectors T Vi in the test set T S

satisfies the testing criteria for detecting the appearance
crosspoint faults. Moreover, the PMGFs are same as the
disappearance crosspoint faults.

4 Experimental Results and Discussions

The algorithms for the test set generation for single and
multiple missing gate faults have been implemented in
Python 3.4 and run on a Core-i5 machine with an Intel
Pentium (R) CPU-8250U@ 1.60GHz × 8 system, running
Ubuntu v16.04 (64-bit) with 8 GB RAM. The minimal test
set generation method has been implemented in LINDO
Extended 17.00 software and running on the same core-
i5 machine. The reversible benchmark circuits based on
the k-CNOT gates have been considered [35] to perform
the experiments. The number of test vectors required for
the detection of SMGFs and MMGFs before and after
minimization along with the CPU time taken as per our
proposed method are reported for the experimental results.
The experimental results are compared with some of the
previous works performed on SMGF and MMGF [7, 8, 26,
29–33]. The fault coverage range with other fault models
such as stuck-at fault (SAF), partial Missing gate fault
(PMGF) and crosspoint fault (appearance) in reversible
circuits are also reported.

The experimental results are reported in Table 2. The
first four columns in Table 2 provide the name of the
benchmark circuit, number of input lines (n), number of
gates (N), and the total number of faults for both SMGFs
and MMGFs respectively. Columns 5 and 7 in Table 2
present the number of test vectors required for detecting
both SMGFs and MMGFs before and after minimization,
respectively. The CPU time (sec) to generate the complete
test set T S and minimal test set T SMIN for the benchmark
circuits are presented in columns 6 and 8, respectively.
Column 9 indicates the percentage of difference between
the test set generated by the proposed method before and
after minimization. From the reported results in Table 2,
it is observed that the test set is minimized by more than
or equal to 50% by the proposed minimization method for
about 88% of the circuits, but still 100% fault coverage is
retained. The maximum reduction of 95% of the test set for
the reversible benchmark circuit 0410184-169 is achieved
by our reduction technique. The minimum reduction of 33%
of test set is observed for circuits Fredkin-6, ex-1-166, and
4gt11-84. From the experiments performed on reversible
benchmark circuits and the result reported in Table 2, it is
evident that our proposed method is scalable to handle large
circuits.

The results of our proposed method are compared with
the work of [33] and the comparison is shown in Columns
4, 5 and 11 of Table 3. The value ‘-’ indicates that the
results in the corresponding work [33] are not available. The
authors in [33] proposed a greedy and BDD based covering
method for generating the minimal test set for detecting all
possible cases of two consecutive missing gate faults. The
number of test patterns obtained in our proposed method
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Table 2 Complete and minimal test set for detection of SMGFs and MMGFS with CPU time (sec) for the benchmark circuits

Benchmarks circuit n N Total No. Faults T S Time (sec) T SMIN Time (sec) % Difference

(SMGF+MMGF) (SMGF+MMGF) T S (SMGF+MMGF) T SMIN (T S & T SMIN )

Peres 9 3 2 3 2 0.00 1 0.02 50

Fredkin 6 3 3 6 3 0.00 2 0.02 33.33

nth Prime 3 4 10 4 0.00 1 0.04 75

ex 1 166 3 4 10 3 0.00 2 0.04 33.33

ham 3 3 5 15 4 0.00 2 0.02 50

3 17 13 3 6 21 4 0.00 2 0.07 50

rd32 v0 66 4 4 10 4 0.00 2 0.06 50

mini alu 167 4 6 21 5 0.00 3 0.04 40

mod10 171 4 10 55 6 0.00 3 0.11 50

hwb4 52 4 11 66 8 0.00 2 0.09 75

4-49d3 4 12 78 8 0.00 3 0.11 62.50

4 49 16 4 16 136 7 0.00 4 0.17 42.85

hwb4tc 4 17 153 7 0.00 3 0.13 57.14

4gt11 84 5 3 6 3 0.00 2 0.06 33.33

Xor5d1 5 4 10 4 0.00 1 0.06 75

mod5d4 5 5 15 4 0.00 2 0.03 50

alu-v0 26 5 6 21 5 0.00 2 0.07 60

mod5d1 63 5 7 28 5 0.00 2 0.08 60

mod5d1 5 8 36 28 0.00 4 0.05 85.71

mod5d2 5 9 45 8 0.00 2 0.10 75

mod8-1- 177 5 14 105 8 0.00 3 0.12 62.50

rd32 273 5 20 210 15 0.00 7 0.06 53.33

hwb5 55 5 24 300 14 0.00 4 0.15 71.42

hwb5 53 5 55 1540 19 0.00 5 0.19 73.68

hwb5tc 5 56 1596 19 0.00 5 0.26 73.68

graycode6 47 6 5 15 5 0.00 1 0.06 80

ex3 229 6 7 28 7 0.00 3 0.05 57.14

Xor5-254 6 7 28 6 0.00 2 0.04 66.67

majority-239 6 8 36 6 0.00 3 0.06 50

mod5adder-128 6 15 120 7 0.00 3 0.16 57.14

2of5d1 6 18 171 15 0.00 5 0.05 66.67

mod5adder 6 21 231 10 0.00 4 0.06 60

hwb6tc 6 126 8001 40 0.03 8 0.67 80

rd53d1 7 12 78 11 0.00 2 0.11 81.81

2of5d2 7 12 78 12 0.00 2 0.13 83.33

ham7 105 7 21 231 15 0.00 3 0.13 80

ham7tc 7 24 300 15 0.01 4 0.17 73.33

rd53rcmg 7 30 465 23 0.01 4 0.11 82.60

rd53d2 8 12 78 12 0.00 2 0.10 83.33

cm82a-208 8 22 253 16 0.01 4 0.09 75

rd73-140 10 20 210 20 0.04 3 0.14 85

6symd2 10 20 210 19 0.04 3 0.15 84.21

9symd2 12 28 406 28 0.23 3 0.15 89.28

adr4-197 13 55 1540 47 0.82 6 0.11 87.23

0410184-169 14 46 1081 40 1.11 2 0.19 95

rd84-142 15 28 406 28 1.57 3 0.17 89.28

ham15-108 15 70 2485 53 3.60 8 0.20 84.90

hwb5 131 28 88 3916 13 3.08 7 0.33 35.71
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Table 2 (continued)

Benchmarks circuit n N Total No. Faults T S Time (sec) T SMIN Time (sec) % Difference

(SMGF+MMGF) (SMGF+MMGF) T S (SMGF+MMGF) T SMIN (T S & T SMIN )

rd84 313 34 104 5460 22 3.82 13 0.53 40.90

ham15 298 45 153 11781 30 4.12 10 0.67 66.66

bw 291 87 307 47278 14 5.31 9 0.88 50

is found to be less than the test patterns reported in [33].
Moreover, the method proposed in [33] can detect only
two consecutive missing gate faults, whereas our proposed
method can detect any number of consecutive missing gate
faults. So, the fault coverage of our proposed method for
multiple missing gate faults is more than that of [33]. The
reduction of test set by our proposed test pattern generation
method to detect MMGFs is more than or equal to 50% for
more than 77% of the benchmark circuits that are used in the
experiment. For the circuits hwb6tc and 0410184-169, the
test sets are reduced by 81.39% and 77.77%, respectively.
For the circuits, ex3 229 and rd32-v0 66, the size of test
sets are small [33] and so the scope of reducing the test set
is less.

The authors in [32] proposed an ATPG algorithm to
generate the complete test set using an exact approach
for detecting missing gate faults along with single and
multiple stuck-at faults, repeated gate faults, and partial
missing gate faults. The exact approaches aim to provide the
optimal solution, but these approaches are computationally
expensive (exponential complexity) for large circuits. Our
proposed method generates a minimal test for covering
all the single and multiple missing gate faults. From a
computational point of view, our method requires linear
time for obtaining the minimal test set. The comparison of
our results with the results of [32] is shown in Columns 6
and 11 of Table 3. It is observed that the size of the test set
generated by our proposed method is same as the size of test
set generated by the method of [32] for most of the circuits,
but the computational complexity of our proposed method
is less.

The authors of the work [7] proposed two approaches,
the first one is the greedy heuristic and the second one is
based on exact branch and bound algorithm for generating
the test vectors to detect the SMGFs. The method used
for generating the test set in [7] is a DFT based approach
which requires incorporation of additional testing circuits,
so there is extra overhead in the hardware. The experiment
results are presented and compared in Columns 7, 8 and 11,
respectively of Table 3. It is observed that due to the use
of DFT method, several gates are added to each circuit to
detect the faults. Also, the work reported in [7] can detect
only SMGFs, but our proposed method can detect both
SMGFs and MMGFs. For most of the circuits the size of

test set produced by our method is comparable to the size of
test given by the method of [7].

The authors in [8] used an exact automatic test patterns
generation method for detecting SMGFs and MMGFs based
on the integer linear programming. The comparison of our
result with the result of [8] is reported in Columns 9 and 11
of Table 3. It is observed that size of test set is same in both
the methods for most of the circuits, but the computational
complexity of an exact automatic test pattern generation
method is always more.

The experimental result in Columns 10 and 11 of Table 3
shows the comparison of the proposed work with the work
done in [31]. The authors in [31] targeted for generating
the test set for detecting only SMGFs using the method of
Boolean difference generator. It is observed that the size of
the generated test set is less in our proposed method for
most of the benchmark circuits as compared to the method
of [31]. The maximum reduction of 66.67% for the size of
test set is found for the circuit rd32d1.

For comparison purpose, we calculate the average
number of test vectors generated by each method. From
Table 3, it is observed that the average number of test vectors
generated by our proposed method is reduced to half in
comparison to the work of [33] and so the improvement
in performance is 2X. The average number of test vectors
generated by our proposed method is similar to the works
reported in [7, 8, 31, 32].

The performance of our proposed method is compared
with another set of works which are based on Boolean
satisfiability and genetic algorithm. The comparison results
are reported in Table 4. The circuits reported in [29, 30],
or [26] are considered for comparison. If the result of
a circuit is not reported in a particular paper, then the
corresponding values are shown by ‘-’ in the comparison
table.

The authors in [30] have introduced a genetic algorithm-
based test generation method to detect the complete
missing-gate fault (CMGF), partial missing-gate fault
(PMGF), bridging fault, and stuck-at fault. CMGF is
nothing but SMGF, i.e., complete gate is missing in the
circuit. However, this method does not consider multiple
missing-gate fault (MMGF). They have proposed two
methods based on random and directed approached, and
reported that directed approach gives better result then
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Table 3 Comparison of the complete test set with [7, 8, 31–33]

Circuit n N Number of test patterns

Gr. [33] BDD [33] [32] Gr. [7] B&B [7] [8] [31] Proposed

MMGF MMGF SMGF MMGF SMGF SMGF+MMGF

ham3 102 3 5 4 4 2 2 2 2 3 or 4 2

3 17 13 3 6 4 4 2 2 2 2 2 2

rd32 v0 66 4 4 2 2 2 2 2 2 6 2

mini alu 167 4 6 5 5 − − − − − 3

mod10 171 4 10 6 6 − − − − − 3

hwb4 52 4 11 6 6 − − − − − 2

4-49d3 4 12 − − − − − − 4 3

4-49tc1 4 16 − − 3 3 3 3 − 4

hwb4tc 4 17 − − 4 2 2 4 7 3

Xor5d1 5 4 − − 1 1 1 1 2 1

mod5d4 5 5 − − − − − − 4 2

mod5d1-63 5 7 4 4 − − − − − 2

mod5d1 5 8 − − 4 1 1 4 4 4

mod5d2 5 9 − − 2 1 1 2 2 2

mod18-10-177 5 14 6 6 − − − − − 3

hwb5-55 5 24 12 11 − − − − − 4

hwb5-53 5 55 21 21 − − − − − 5

hwb5tc 5 56 − − 5 5 5 5 − 5

graycode6 47 6 5 4 3 − − − − − 1

ex3 229 6 7 3 3 − − − − − 3

Xor5-254 6 7 3 3 − − − − − 2

majority 239 6 8 4 4 − − − − − 3

mod5adder 128 6 15 8 7 − − − − − 3

5mod5tc 6 17 − − 6 1 1 6 − 6

2of5d1 6 18 − − 5 4 4 5 − 5

mod5adders 6 21 − − 4 3 3 4 − 4

hwb6tc 6 126 43 43 9 9 8 8 − 8

2of5d2 7 12 − − 2 2 2 2 − 2

rd53d1 7 12 − − 3 2 2 3 − 2

rd53 137 7 16 9 8 − − − − − 3

ham7 105 7 21 9 5 − − − − − 3

ham7tc 7 24 − − 4 4 4 4 − 4

rd53rcmg 7 30 − − 4 4 3 4 − 4

hwb7tc 7 291 − − 14 15 4 14 − 12

rd53d2 8 12 − − 2 2 2 2 − 2

cma82a 208 8 22 9 8 − − − − − 4

6symd2 10 20 − − 3 2 2 2 − 3

rd73d2 10 20 6 − 3 3 3 3 − 3

9symd2 12 28 − − 3 3 3 3 − 3

addr 197 13 55 13 − − − − − − 6

0410184 169 14 46 9 − − − − − − 2

rd84-142 15 28 8 − 3 3 3 3 − 3

ham15 108 15 70 26 − 8 − − − − 8

Average 7 28 9 8 4 3 3 4 4 4
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Table 4 Comparison of the complete test set and CPU time with [26, 29, 30]

Benchmark n N Genetic SAT based PBO based Proposed

circuit algorithm [30] ATPG [29] ATPG [26]

Directed

CMGF SMGF+SMCF SMCF SMGF+MMGF

No. of T S Time No. of T S Time No. of T S Time No. of T SMIN Time

faults (sec) faults (sec) faults (sec) faults (sec)

one-two

-three-v0 97 5 11 11 3 0.01 − − − 23 3 0.02 66 3 0.11

4gt12-v0 86 5 14 14 3 0.11 34 5 0.01 20 5 0.02 105 3 0.04

rd53 131 7 28 28 7 0.062 52 10 0.04 24 11 0.11 406 7 0.13

miller 5 8 16 − − − 40 5 0.02 24 4 0.03 136 4 0.01

mini-alu 84 10 20 − − − 47 3 0.03 27 4 0.03 210 3 0.02

sym9 148 10 210 210 1 0.29 − − − 756 14 1.79 22155 4 0.27

0410184 169 14 46 46 5 0.062 − − − 49 3 0.06 1081 2 0.19

rd84 142 15 28 28 5 0.046 77 5 0.09 49 8 0.14 406 3 0.17

4 49 7 15 42 − − − 103 5 0.06 61 5 0.10 903 5 0.12

ham15 108 15 70 − − − 195 11 0.17 125 9 0.21 2485 8 0.20

ham15 107 15 132 132 14 4.851 484 16 78.59 352 16 0.82 8778 14 0.57

hwb5 13 28 88 88 5 0.578 219 5 0.03 131 7 0.24 3916 7 0.38

rd84 313 34 104 143 19 1.33 − − − − − − 5460 13 0.73

ham15 298 45 153 157 1 0.09 − − − − − − 11781 10 0.93

bw 291 87 307 432 4 3.5 − − − − − − 47278 9 1.27

Average 21 85 117 6 0.9935 139 7 8.7822 137 7 0.2975 7011 6 0.3426

random approach, so we compare our result with the
directed approach.

The authors in [29] proposed two ATPG approaches
to generate the complete test set using the naive-based
and SAT-based approach for detecting the SMGF along
with SMCF (Single Missing Control Faults), and PMGF in
reversible circuits. It is reported that SAT-based provides
better results in terms of number of test vectors, so SAT-
based method is considered for comparison.

The authors in [26] proposed an ATPG method using
a simulation-based technique, Boolean satisfiability (SAT)
based, and pseudo-Boolean optimization (PBO) based
approach to detect the SMCF, SMGF, and SACF in
reversible circuits. The authors also mentioned that PBO
based method gives better result than other two approaches,
so the comparison is made with PBO based method. The
approach in [26] has been considered for generating the
complete test set to detect the individual fault model,
whereas in our proposed work, both SMGF and MMGF are
considered together.

For comparison purpose, we calculate the average
number of test vectors generated, number of faults, time for
test pattern generation, etc. by each method. It is observed
from Table 4, that the performance of our proposed method

is better than the results reported in [29, 30], and [26], which
are summarized as follows:

1. Single missing gate faults and consecutive multiple
missing gate faults are considered in our proposed
method, but mainly single missing gate faults are
consider in the works of [29, 30], and [26].

2. Number of faults covered in our proposed method is
much more than the faults covered in the works reported
in [29, 30], and [26]. On an average, the number of
faults considered in our proposed method is around 50X
more than that of the faults considered in these three
works.

3. The average number of test patterns generated by all the
methods are almost similar, but our proposed method
considers more number of faults.

4. Thoughwe have consideredmore faults, still the average
time taken to generate the test patterns by our method is
less than the methods proposed in [30] and [29].

Finally, experiments are performed to check the fault
coverage range of other fault models such as stuck-at faults
(SAFs), partial missing gate faults (PMGFs) and crosspoint
faults using the complete test set T S generated by our
proposed method.
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Table 5 Fault coverage range with SAF, PMGF and crosspoint fault models by the proposed complete test set T S

Benchmark n N No. of No. of No. of Faults coverage Faults coverage Faults coverage

circuit faults faults faults by T S [Proposed] by T S [Proposed] by T S [Proposed]

SAF PMGF Crosspoint SAF PMGF Crosspoint

4gt11 84 5 3 24 4 8 79.16% 50% 12.5%

xor5d1 5 4 26 4 12 76.92% 50% 58.33%

graycode6 47 6 5 32 5 20 87.50% 80% 50%

2of5d2 7 12 76 19 53 96.05% 89.47% 58.49%

3 17 13 3 6 32 7 5 100% 100% 100%

3 17 14 3 6 32 7 5 100% 71.42% 100%

fredkin 6 3 3 24 6 0 83.33% 50% 0

rd32 v0 66 4 4 28 6 6 89.28% 66.67% 50%

decode24 v0 38 4 6 36 8 10 94.44% 87.50% 40%

miller 11 3 5 32 8 2 100% 100% 100%

ham3 102 3 5 28 6 4 92.85% 83.30% 25%

ex 1 166 3 4 22 4 4 90.90% 75% 25%

nth Prime3 3 4 24 5 3 100% 100% 100%

peres 9 3 2 16 3 1 50% 33.33% 0

decode24 v2 43 4 6 34 7 11 100% 100% 90.90%

mini alu 167 4 6 52 16 2 100% 93.75% 100%

mod10 171 4 10 64 18 12 100% 94.40% 91.67%

4gt11-v1 85 5 4 26 4 12 80.76% 50% 16.67%

4mod5v1 24 5 5 32 6 14 87.50% 50% 42.85%

alu-v0 26 5 6 38 8 16 86.84% 50% 50%

Average 4 5 34 6 10 89.77% 73.74% 55.57

The total number of SAFs (SA0 and SA1) in a reversible

circuit is given by 2(n+
N∑

i=1
gi) [4], where gi is the size

of N gate of the circuit, and n is the total number of
input wires. For determining the fault coverage range of
PMGF fault model, the first-order PMGF is considered,
i.e., only one control connection is missing at a time.
The appearance crosspoint faults are considered in our
experiments for crosspoint fault model. Table 5 presents
the experiment results. The total number of SAFs, PMGFs
and crosspoint faults are shown in Columns 4, 5 and 6,
respectively. In Table 5, it is observed that SAFs, PMGFs
and crosspoint faults coverage is 100% for the reversible
benchmark circuits 3 17 13, miller 11, and nth prime3
by the test set T S generated by our proposed method.

A total of 20 benchmark circuits are considered, out of
these, only for the circuit peres 9 fault coverage of SAFs
is 50%, and the fault coverage of SAFs is more than 75%
for rest of the circuits. The fault coverage for PMGFs is
50% for 30% of the circuits and the fault coverage is more
than 65% for rest of the circuits. In the crosspoint fault
model, the highest deterioration of fault coverage is 12.50%
for the circuit 4gt11 84, and for the circuit peres 9, the
test set T S is unable to detect any faults. The average

fault coverage for stuck-at faults, partial missing gate faults
and appearance crosspoint faults are 89.77%, 73.74% and
55.57%, respectively.

5 Conclusion

This paper presents a scheme to generate the complete
test set for detecting single and any number of consecutive
multiple missing gate faults in the k-CNOT based reversible
circuits. The complete test set generation method is twofold.
First, the test vectors for SMGFs is generated by applying
the local test pattern to all the gates of reversible circuits
byusing the reverse simulation method. Secondly, based on
the complete test set T SSMGF for SMGFs and the structure
of the k-CNOT based circuit, the test set T S for detecting
all the MMGFs is constructed. The generated complete test
set is not a minimal one. For achieving the minimality, the
row and column fault covering table is constructed, which
is formulated as an ILP problem. Experimental results
show that the size of test set T SMIN generated by our
proposed method is smaller or similar as compared to the
methods available in the literature and covers more faults
by maintaining 100% fault coverage. The fault coverage
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ranges for the SAFs, PMGFs and appearance crosspoint
faults with our generated complete test set are also analyzed
and checked using experimental results. By looking into
the correlation between different fault models, there is a
possibility to reconstruct the generated complete test set to
cover these fault models such that all the possible faults in
reversible circuits can be detected by a single test set.
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