
https://doi.org/10.1007/s10836-019-05831-x

Equivalence Checking and Compaction of n-input Majority Terms
Using Implicants of Majority

Rajeswari Devadoss1 · Kolin Paul1 ·M. Balakrishnan1

Received: 18 May 2019 / Accepted: 11 September 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Recent advances in nanotechnology have led to the emergence of energy efficient circuit technologies like spintronics and
domain wall magnets that use Majority gates as their primary logic elements. For logic synthesis methods targeted to such
technologies to be effective and efficient, they need to be able to use, manipulate, and exploit large Majority terms in their
synthesis flow. One of the problems that turn up in such an endeavor is the determination of equivalence of two n-input
Majority terms. As Majority gates implement more complex Boolean functions than traditional AND/OR gates, this is a non-
trivial problem—one that demands to be solved before proceeding to harder problems dealing with networks of Majority
gates. We provide an algorithm based on prime implicants as a solution to this problem. In addition, we provide an algorithm
that compacts an n-input Majority term to an equivalent n-input Majority term that has the fewest number of inputs. In this
quest, we extend the concept of implicants to two cases — 1-implicants and prime 1-implicants that imply that a function
evaluates to ‘1’, and 0-implicants and prime 0-implicants that imply that it evaluates to ‘0’. We exploit the properties of
Majority to create an efficient algorithm to generate the sums of all prime 1-implicants and all prime 0-implicants of an n-
input Majority term. As Majority and Threshold functions have been shown to be logically equivalent, our algorithms are
applicable to Threshold functions as well. Being based on implicants of Majority, our algorithms improve on the known
naive algorithms for equivalence checking and compaction for threshold logic terms.

Keywords Majority · Threshold · Prime implicants · Implicants · Canonical form · Equivalence checking · Compaction ·
Minimization

1 Introduction

Spintronics is an emerging technology where devices work
by manipulating spin rather than charge. It offers the 3-input
Majority as the primary logic element which produces an
output ‘1’ if at least 2 of its inputs are ‘1’s, and produces
an output ‘0’ otherwise [6, 8]. As it can be converted into

Responsible Editor: M. Chen

� Rajeswari Devadoss
rajidrc@gmail.com

Kolin Paul
kolin@cse.iitd.ac.in

M. Balakrishnan
mbala@cse.iitd.ac.in

1 Department of Computer Science and Engineering, IIT Delhi,
New Delhi 110016, India

a 2-input AND (or OR) gate by setting one of its inputs to
the constant ‘1’ (or ‘0’), it packs more computational power
than 2-input AND/OR gates while forming a functionally
complete set with the NOT gate. Not only are there more
upcoming fabrics based on 3-input Majority gates, some,
like Quantum-dot Cellular Automata (QCA) may even offer
Majority gates of more than three inputs [1]. It is established
that the 3-input Majority gate can be used to implement
Boolean functions in compact forms [9].

As the promise of building efficient logic circuits
increases by leaps with Majority gates coming into the
picture, so does the problem of creating logic synthesis
methods that can exploit them. The existing repository
of logic synthesis techniques based on and for AND/OR
logic, while readily available, under-perform when targeted
to Majority logic. It has become clear that the best way
to build logic synthesis techniques for Majority is to
use generic n-input terms to represent and manipulate
Boolean expressions [2]. This leads us to the turf of having
to frequently determine the equivalence of two n-input

/ Published online: 30 November 2019

Journal of Electronic Testing (2019) 35:679–694

http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-019-05831-x&domain=pdf
http://orcid.org/0000-0001-5918-1289
mailto: rajidrc@gmail.com
mailto: kolin@cse.iitd.ac.in
mailto: mbala@cse.iitd.ac.in


Majority terms.While it is trivial to check the equivalence of
two AND (or OR) terms, the same cannot be said of n-input
Majority terms. This becomes clear once we formally define
an n-input Majority operation and observe it in action.

Definition 1 (Majority Operation) When n is odd, the
Majority operation on amultisetWn of nBoolean elements
results in ‘1’ if there are more ‘1’s than ‘0’s in it, and in
‘0’ otherwise. That is, 〈Wn〉=1 if at least n+1

2 elements
of the multiset Wn are ‘1’s, and 〈Wn〉=0 otherwise. The
number of times an element m occurs in a multiset Wn is
called its multiplicity l, and is written as ml . The cardinality
n of a multiset Wn is the total number of elements in
it, including duplicates, and is marked as its subscript. A
Majority operation on a multiset is called a “Majority term”,
and the multiset its “underlying multiset”.

The fact that the Majority operation applies to a multiset
that might contain elements with different multiplicities
makes determining equivalence of two Majority terms
non-trivial. For instance, all of 〈a5 b4 c2〉, 〈a3 b3 c3〉,
〈a2 b2 c2 d〉, and the compact term 〈a b c〉 are logically
equivalent and represent the function ab+bc+ca. Table 1
shows 18 Majority terms that are all equivalent to
the compact term 〈a b c d e f 2 g2〉. Not only is their
equivalence not “trivially” evident (as with AND/OR
terms), it is hard to see that they implement the Boolean
function shown. It is even harder to compact any of them
to 〈a b c d e f 2 g2〉. As n grows in Wn, so do the number
of possible combinations of multiplicities of its elements,
and more complicated the determination of equivalence and
compaction.

As expected from a barely studied subject as the
mathematics of n-input Majority operations, little is known
about matters such as equivalence checking that is not naive
to the algebra of Majority terms. The intuitive solution
to this problem seems to be to use existing tools that
have been optimized to check the equivalence of not one
term, but whole logic networks. This approach brings up a
fundamental problem—translating an n-input Majority term

into AND/OR terms so that traditional tools understand the
Boolean function that it implements.

Thus, we have three problems that need solutions
informed by an awareness of Majority behavior:

– Generate a minimal representation of an n-input
Majority term that can be understood by traditional
AND/OR based tools

– Efficiently check for the equivalence of two n-input
Majority terms without translating them to other
representations

– “Compact” a given n-input Majority term to an
equivalent term with the least possible cardinality

Being fundamental to the understanding of a single n-input
Majority term, these problems need to be solved to be
able to proceed to bigger problems involving large Majority
networks. Hence, we focus on the single Majority term and
not address Majority networks in this paper.

In this paper, we study the mathematical behavior of the
n-input Majority operation and apply the insights derived to
solve these problems. We create an efficient algorithm that
checks for the logical equivalence of two n-input Majority
terms without handing the problem over to traditional
Majority-ignorant tools. For this purpose, we extend the
concept of implicants by introducing the 0-implicant as a
dual to the traditional (1-)implicant. We exploit symmetry
in Majority to compactly represent 1,0-implicants and prime
1,0-implicants of n-input Majority terms. We utilize the
recursive property of these implicants to provide an efficient
algorithm that is capable of producing two canonical
representations of a given n-input Majority term - sums
of prime 1,0-implicants. With implicants as the basis, we
apply duality to prune this process and use it to check for
the equivalence of two n-input Majority terms efficiently.
In addition, we provide an efficient algorithm to compact a
given n-input Majority term to minimize the cardinality of
its underlying multiset while keeping its Boolean function
the same.

Having provided a glimpse of the n-input Majority term
Equivalence Checking algorithm and the idea of implicants

Table 1 Multiple Majority Terms implementing the shown Boolean function

COMPACT TERM : 〈a b c d e f 2 g2〉

〈a3 b3 c3 d3 e3 f 6 g8〉 〈a3 b3 c3 d3 e3 f 5 g5〉 〈w a3 b3 c3 d3 e3 f 6 g7〉
〈a2 b3 c3 d3 e4 f 7 g7〉 〈a2 b3 c3 d3 e3 f 6 g7〉 〈w a2 b3 c3 d3 e3 f 6 g6〉
〈a3 b3 c3 d3 e3 f 7 g7〉 〈a3 b3 c3 d3 e3 f 5 g7〉 〈w a3 b3 c3 d3 e3 f 5 g6〉
〈a3 b3 c3 d3 e4 f 6 g7〉 〈a2 b3 c3 d3 e4 f 6 g6〉 〈w a3 b3 c3 d3 e4 f 6 g6〉
〈a3 b3 c3 d3 e5 f 6 g6〉 〈a3 b3 c3 d3 e3 f 6 g6〉 〈w a2 b2 c2 d2 e2 f 4 g4〉
〈a3 b3 c3 d4 e4 f 6 g6〉 〈a3 b3 c3 d3 e4 f 5 g6〉 〈w2 a3 b3 c3 d3 e3 f 6 g6〉
fg(a + b + c + d + e) + (f + g)(abc + abd + abe + acd + ace + ade + bcd + bce + bde + cde) + abcde

J Electron Test (2019) 35:679–694680



for Majority in our paper in VLSI Design 2019, we detail the
underlying mathematical proofs and show how our methods
compares with the existing method. We also present an n-
input Majority term Compaction algorithm based on similar
ideas [3].

2 RelatedWork

It is well-established that Majority gates and Threshold
gates are logically equivalent and interchangeable [7].
Hence, the mathematical properties and algorithms that
apply to Majority logic networks apply to Threshold logic
networks, and vice versa. However, in this work we
deal only with individual Majority/Threshold functions by
considering their inputs as literals and not logic networks.

To our knowledge, the only work that has contributions
towards presenting the Boolean function implemented by
a Threshold function is by Gowda et. al [4]. This work
presents an algorithm that produces the Maximally Factored
form of a given threshold function, and uses the result in
combination with a Boolean Expression Diagram (BED)
based tool to check the equivalence of Threshold circuits
[5]. Instead of using a Maximally Factored form that can
produce very large expressions for Majority gates with large
number of inputs, we use a compact count-based form.
Since we are concerned with only a single Majority gate
and not logic networks, the algorithm that we provide is
much more efficient and tuned to the properties of a single
Majority/Threshold gate. For instance, Gowda et. al. would
need to generate the Maximally Factored forms of two given
Threshold gates and run BED based equivalence checking
on the results. Our equivalence checking method applies
the mathematics of Majority and performs equivalence
checking without generating the Boolean expressions of
the functions. This is helpful in Majority (Threshold) logic
synthesis where there is a necessity to quickly check the
equivalence of two Majority/Threshold terms.

On the other hand, early exploration of Majority and
Threshold logic has led to various studies of constructing
a minimized representation of a given Threshold/Majority
function. To our knowledge, the best culmination of
these studies is an algorithm that appears in the book
“Threshold logic and its applications” by Saburo Muroga
(1971). The Algorithm 6.4.1.1 (page 175 of the book)
proceeds to attempt to minimise the weights of a self-
dual positive unate Threshold function by building an
inequality representing each prime implicant of the function
and solving the resulting linear programming problem [7].
This, or any similar algorithm in Majority/Threshold logic
literature fails to exploit the mathematics of Majority to
reduce the complexity of the problem being solved. Our

method applies the properties of implicants of Majority
terms to greatly reduce the search space for a compact
representation.

3 Implicants andMajority

The canonical form — the computational signature of a
Boolean function — helps us understand the conditions
under which it evaluates to ‘1’ and to easily verify the
equivalence of Boolean functions. The Blake canonical
form, the sum of all prime implicants of a Boolean function
is one of the more interesting canonical forms of any
Boolean function. An implicant in this representation of a
Boolean function is a term that implies the function — that
is, the function evaluates to ‘1’ whenever the implicant does.
Another way to look at implication is to knowwhen the truth
of a term implies that the function evaluates to ‘0’. These
two approaches are in fact duals in the context of canonical
forms. We extend the concept of implicant to two cases —
the 1-implicant which implies that the function evaluates
to ‘1’, and the 0-implicant which implies that the function
evaluates to ‘0’.

Definition 2 (Implicants) A product term T is a 1-
implicant of a Boolean function F if T implies F , that is,
if F evaluates to ‘1’ whenever T evaluates to ‘1’. Similarly,
a product term T is a 0-implicant of a Boolean function F

if T implies F , that is, if F evaluates to ‘0’ whenever T

evaluates to ‘1’.

Similarly, we extend the concept of a prime implicant to
two cases — prime 1-implicant and prime 0-implicant.

Definition 3 (Prime Implicants) A prime 1-implicant of
a Boolean function F is a 1-implicant that cannot be
covered by a more general 1-implicant. Similarly, a prime
0-implicant of a Boolean function F is a 0-implicant that
cannot be covered by a more general 0-implicant. A prime
0-implicant of F is a prime 1-implicant of F , and vice-
versa.

Not only is the sum of all prime 1-implicants a canonical
representation of Boolean functions, the negation of the sum
of all prime 0-implicants is one too.

As we know, the Majority operation is based on counting
the number of ‘1’s and ‘0’s among its inputs. This means
that, the implicants of a Majority operation too can be
constructed using counts of ‘1’s and ‘0’s in its multiset - that
is, using count-terms of the form X≥k (mincount-term) and
X≤l (maxcount-term) that represent “at least k ‘1’s in X”
and “at most l ‘1’s in X” respectively.

J Electron Test (2019) 35:679–694 681



Definition 4 (Count Terms) Given a multiset Xm, the
Mincount-term X≥k on it evaluates to ‘1’ if and only
if at least k elements of Xm are ‘1’s. Similarly, the
Maxcount-term X≤k on it evaluates to ‘1’ if and only
if at most k elements of Xm are ‘1’s. They can be
implemented by Majority terms of the form 〈Xm cl〉 with
the appropriate number of copies of a constant c as shown
below:

X≥k =

⎧
⎪⎪⎨

⎪⎪⎩

1 if k ≤ 0
〈Xm1m+1−2k〉 if 0 < k ≤ m+1

2
〈Xm02k−m−1〉 if m+1

2 ≤ k ≤ m

0 if k > m

X≤k =

⎧
⎪⎪⎨

⎪⎪⎩

0 if k < 0
〈Xm0m−1−2k〉 if 0 ≤ k ≤ m−1

2
〈Xm12k−m+1〉 if m−1

≤ k < m

1 if k ≥ m

We propose that products of mincount-terms (or
maxcount-terms) of subsets of the elements with the same
multiplicity in a Majority term are ideal for the representa-
tion of its implicants and prime-implicants.

Let us define a Scenario A for use in our con-
siderations of implicants in this work: Function F = 〈
1-Wl1

n1
2−W

l2
n2 · · · m−W

lm
nm
1p0q〉 is defined on the variables

in the set V = { 1−Wn1 ,
2−Wn2, · · · , m−Wnm} where

each i−Wni
, called a Symmetry-group, is the set of vari-

ables {wi1 , wi2, . . . , wini
}; and a subset of these variable

sets { k1−Wnk1 ,
k2−Wnk2, · · · , ks−Wnks

} ⊆ V . This func-
tion F is a positive unate Majority/Threshold function, and
its properties can be applied to all Majority/Threshold func-
tions after transforming them into positive unate Majority
terms.

The products of mincount-terms (or maxcount-terms)
on the underlying multiset of F are easily recognized
as its implicants by checking the conditions specified in
Theorems 1, 2, 3 and 4

Theorem 1 (1-implicant of Majority) Consider a func-
tion F as described by Scenario A. The product term
k1−W≥ck1

k2−W≥ck2
· · · ks−W≥cks

is a 1-implicant of F if
and only if F evaluates to ‘1’ when exactly ck1 , ck2 , · · · , cks

variables of the sets k1−Wnk1 ,
k2−Wnk2 , . . . ,

ks−Wnks

respectively are ‘1’s. That is, the product of mincount-terms
k1−W≥ck1

k2−W≥ck2
· · · ks−W≥cks

is a 1-implicant of F if
and only if its truth assures at least the number of ‘1’s that
the Majority-term implementing F needs to evaluate to ‘1’.
This condition is written as

ck1 lk1 +· · · + cks lks + p ≥ n1l1+n2l2 + · · · + nmlm+p+q+1

2

Proof The product term k1−W≥ck1
k2−W≥ck2

· · · ks−W≥cks

evaluates to ‘1’ if and only if at least ck1 , ck2 , · · · , cks

variables of the sets k1−Wnk1 ,
k2−Wnk2 , . . . ,

ks−Wnks

respectively are ‘1’s.
This term can imply the function F only if its base

case of exactly ck1 , ck2 , · · · , cks variables of the sets
k1−Wnk1 ,

k2−Wnk2 , . . . ,
ks−Wnks

respectively being ‘1’s
provides the sufficient number of ‘1’s for the Majority-term
〈 1−W

l1
n1

2−W
l2
n2 · · · m−W

lm
nm
1p0q〉 to evaluate to ‘1’. That is

ck1 lk1 + ck2 lk2 + · · · + cks lks + p

≥ n1l1 + n2l2 + · · · + nmlm + p + q + 1

2
If this condition is true, the similar condition

dk1 lk1 + dk2 lk2 + · · · + dks lks + p

≥ n1l1 + n2l2 + · · · + nmlm + p + q + 1

2
holds true as long as each dki

is greater than or equal to the
corresponding cki

. Hence, the function F evaluates to ‘1’ if
the product k1−W≥ck1

k2−W≥ck2
· · · ks−W≥cks

evaluates to
‘1’. Thus proved.

Theorem 2 (0-implicant of Majority) Consider a func-
tion F as described by Scenario A. The product term
k1−W≤ck1

k2−W≤ck2
· · · ks−W≤cks

is a 0-implicant of F if
and only if F evaluates to ‘0’ when exactly ck1 , ck2 , · · · , cks

variables of the sets k1−Wnk1 ,
k2−Wnk2 , . . . ,

ks−Wnks

respectively are ‘1’s. That is, the product of maxcount-terms
k1−W≤ck1

k2−W≤ck2
· · · ks−W≤cks

is a 0-implicant of F if
and only if its truth assures at least the number of ‘0’s that
the Majority-term implementing F needs to evaluate to ‘0’.
This condition is written as

(nk1 − ck1)lk1 + (nk2 − ck2)lk2 + · · · + (nks − cks )lks + q

≥ l1n1 + l2n2 + · · · + lmnm + p + q + 1

2

Proof The product term k1−W≤ck1
k2−W≤ck2

· · · ks−W≤cks

evaluates to ‘1’ if and only if at most ck1 , ck2 , · · · , cks

variables of the sets k1−Wnk1 ,
k2−Wnk2 , . . . ,

ks−Wnks

respectively are ‘1’s.
This term can imply the function F only if its base

case of exactly ck1 , ck2 , · · · , cks variables of the sets
k1−Wnk1 ,

k2−Wnk2 , . . . ,
ks−Wnks

respectively being ‘1’s
provides the sufficient number of ‘0’s for the Majority-term
〈 1−W

l1
n1

2−W
l2
n2 · · · m−W

lm
nm
1p0q〉 to evaluate to ‘1’. As the

number of ‘0’s is the difference between the number of
variables and the number of ‘1’s in a set, this condition is:

(nk1− ck1)lk1 + (nk2−ck2)lk2 + · · · + (nks −cks )lks + q

≥ l1n1+l2n2+ · · · +lmnm+ p + q+1

2

J Electron Test (2019) 35:679–694682



If this condition is true, the similar condition

(nk1−dk1)lk1+(nk2−dk2)lk2+ · · · +(nks −dks )lks + q

≥ l1n1 + l2n2+ · · · +lmnm+p+q+1

2

holds true as long as each dki
is less than or equal to

the corresponding cki
. Hence, the function F evaluates to

‘0’ if the product term k1−W≤ck1
k2−W≤ck2

· · · ks−W≤cks

evaluates to ‘1’. Thus proved.

Theorem 3 Consider a function F as described by
Scenario A with lk1 as the smallest of the multiplicities lki

.
The product term k1−W≥ck1

k2−W≥ck2
· · · ks−W≥cks

is
a prime 1-implicant of F if and only if it implies F

but the product term k1−W≥(ck1−1)
k2−W≥ck2

k3−W≥ck3
· · ·

ks−W≥cks
does not.

Proof By Definition 3, T = k1−W≥ck1
k2−W≥ck2

· · ·
ks−W≥cks

is a prime 1-implicant of F only if it is a
1-implicant of F . Also, it is a prime 1-implicant only
if it is not covered by a more general 1-implicant.
Any term that covers the term T is of the form
k1−W≥dk1

k2−W≥dk2
· · · ks−W≥dks

where each di ≤ ci .
Such a term ensures (ck1− dk1)lk1 + (ck2 − dk2)lk2 + · · · +
(cks − dks )lks fewer ‘1’s than the term T does. Of these, the
term T ′= k1−W≥(ck1−1)

k2−W≥ck2
k3−W≥ck3

· · · ks−W≥cks

ensures lk1 fewer ‘1’s than the term T does. Since lk1 is
the smallest of the multiplicities lki

, any other term of the
considered form ensures even fewer ‘1’s, and cannot imply
the function F unless T ′ does. Hence, the term T is a prime
1-implicant of the function F only if the term T ′ is not.

Conversely, if the term T implies F but T ′ does not, it
means that no other term that covers T implies F either.
Hence, the term T is a prime 1-implicant of the function F

in this case.

Theorem 4 Consider a function F as described by
Scenario A with lk1 as the smallest of the multiplicities lki

.
The product term k1−W≤ck1

k2−W≤ck2
· · · ks−W≤cks

is

a prime 0-implicant of F if and only if it implies F

but the product term k1−W≤(ck1+1)
k2−W≤ck2

k3−W≤ck3
· · ·

ks−W≤cks
does not.

Proof By Definition 3, T = k1−W≤ck1
k2−W≤ck2

· · · ks−
W≤cks

is a prime 0-implicant of F only if it is a 0-implicant
of F . Also, it is a prime 0-implicant only if it is not covered
by a more general 0-implicant. Any term that covers the
term T is of the form k1−W≤dk1

k2−W≤dk2
· · · ks−W≤dks

where each di≥ci . Such a term ensures

(dk1−ck1)lk1+(dk2−ck2)lk2+ · · · +(dks −cks )lks more
‘1’s than the term T does. Of these, the term
T ′= k1−W≤(ck1+1)

k2−W≤ck2
k3−W≤ck3

· · · ks−W≤cks

ensures lk1 more ‘1’s than the term T does. That is, it
ensures lk1 fewer ‘0’s than the term T does. Since lk1 is
the smallest of the multiplicities lki

, any other term of the
considered form ensures even fewer ‘0’s, and cannot imply
the function F unless T ′ does. Hence, the term T is a prime
0-implicant of the function F only if the term T ′ is not.

Conversely, if the term T implies F but T ′ does not, it
means that no other term that covers T implies F either.
Hence, the term T is a prime 0-implicant of the function F

in this case.

4 Sum of all Prime Implicants of a Majority
term

Having found a way to recognize prime implicants of a
Majority term, we now proceed to the task of generating
the canonical form of a Majority term — the sum of all
of its prime 1-implicants (or prime 0-implicants). Rather
than a brute force or iterative examination of all possible
implicants of a Majority term, we opt for a recursive
method. We use the observation that a product term
including a mincount-term i−W≥k implies a Majority term
if and only if its cofactor with respect to i−W≥k implies the
Majority term where k and ni − k elements of i−Wni

are
substituted with ‘1’ and ‘0’ respectively. This can be used
as the basis of recursion in implicants of a Majority term as
shown in Lemma 1 and Theorem 5.

Lemma 1 (Recursion in Implicants) Consider a func-
tion F as described by Scenario A. The product term
k1−W≥ck1

k2−W≥ck2
· · · ks−W≥cks

is a 1-implicant of F

if and only if the product term k1−W≥ck1
k2−W≥ck2

· · ·
k(s−1)−W≥ck(s−1)

is a 1-implicant of the function G imple-
mented by the Majority-term

〈1−Wl1
n1

2−Wl2
n2

· · · (ks−1)−W
l(ks−1)
n(ks−1)

(ks+1)−W
l(ks+1)
n(ks+1)

(Ks+2)−W
l(ks+2)
n(ks+2) · · · m−Wl

n

1p+cks lks 0q+(nks −cks )lks 〉
Similarly, the product term k1−W≤ck1

k2−W≤ck2
· · ·

ks−W≤cks
is a 0-implicant of F if and only if the

product term k1−W≤ck1
k2−W≤ck2

· · · k(s−1)−W≤ck(s−1)
is a

0-implicant of the function G.

Proof Both the functions F and G are implemented by
Majority-terms on multisets of the same cardinality, and

J Electron Test (2019) 35:679–694 683



hence need the same lim number of ‘1’s (or ‘0’s) to evaluate
to ‘1’ (or ‘0’).

According to Theorem 1, the product term
k1−W≥ck1

k2−W≥ck2
· · · ks−W≥cks

is a 1-implicant of F if
and only if

ck1 lk1+ck2 lk2+ · · · + ck(s−1) lk(s−1)+cks lks +p ≥ lim

Also, the term k1−W≥ck1
k1−W≥ck2

· · · k(s−1)−W≥ck(s−1)
is a

1-implicant of G if and only if

ck1 lk1+ck2 lk2+ · · · +ck(s−1) lk(s−1)+p + cks lks ≥lim

These two conditions are identical. Hence, the term k1−W≥ck1
k2−W≥ck2

· · · ks−W≥cks
is a 1-implicant of F if and only

if the product k1−W≥ck1
k2−W≥ck2

· · · k(s−1)−W≥ck(s−1)
is a

1-implicant of G.
Similarly, according to Theorem 2, the term

k1−W≤ck1
k2−W≤ck2

· · · ks−W≤cks
is a 0-implicant of F if

and only if

(nk1−ck1)lk1+(nk2−ck2)lk2 + · · · + (nk(s−1) −ck(s−1) )lk(s−1)

+(nks − cks )lks + q ≥ lim

Also, the term k1−W≤ck1
k2−W≤ck2

· · · k(s−1)−W≤ck(s−1)
is a

0-implicant of the function G if and only if

(nk1−ck1)lk1+(nk2−ck2)lk2 + · · · + (nk(s−1) −ck(s−1) )lk(s−1)

+q + (nks − cks )lks ≥ lim

These conditions are identical. Hence, the product
k1−W≤ck1

k2−W≤ck2
· · · ks−W≤cks

is a 0-implicant of F if

and only if the product k1−W≤ck1
k2−W≤ck2

· · · ks−W≤cks
is

a 0-implicant of G.

Theorem 5 Consider a function F as per Scenario A
with lk1 as the smallest of the multiplicities lki

. The
product term k1−W≥ck1

k2−W≥ck2
· · · ks−W≥cks

is a prime
1-implicant of F if and only if the product term
k1−W≥ck1

k2−W≥ck2
· · · k(s−1)−W≥ck(s−1)

is a prime 1-
implicant of the cofactor function G implemented by the
Majority-term

〈1−Wl1
n1

2−Wl2
n2

· · · (ks−1)−W
l(ks−1)
n(ks−1)

(ks+1)−W
l(ks+1)
n(ks+1)

(ks+2)−W
l(ks+2)
n(ks+2) · · · m−Wl

n

1p+cks lks 0q+(nks −cks )lks 〉
Similarly, the product term k1−W≤ck1

k2−W≤ck2
· · ·

ks−W≤cks
is a prime 0-implicant of F if and only if the

product term k1−W≤ck1
k2−W≤ck2

· · · k(s−1)−W≤ck(s−1)
is a

prime 0-implicant of the function G.

Proof As per Theorem 3, the product term T = k1−W≥ck1
k2−W≥ck2

· · · ks−W≥cks
is a prime 1-implicant of F if and

only if it is a 1-implicant of the function F but the term T ′ =
k1−W≥(ck1−1)

k2−W≥ck2
k3−W≥ck3

· · · ks−W≥cks
is not.

Also, S = k1−W≥ck1
k2−W≥ck2

· · · k(s−1)−W≥ck(s−1)
is a

prime 1-implicant of G if and only if it is a 1-implicant
of G, but S′ = k1−W≥(ck1−1)

k2−W≥ck2
k3−W≥ck3

· · ·
k(s−1)−W≥ck(s−1)

is not. Additionally, according to Lemma 1,
the term T is a 1-implicant of F if and only if the
term S is a 1-implicant of G. Also, the term T ′ is not a
1-implicant of F if and only if the term S′ is not a 1-
implicant of G. Hence, the term T is a prime 1-implicant
of F if and only if the term S is a prime 1-implicant of
G.

Similarly, as per Theorem 4, the term T

is a prime 0-implicant of the F if and only
if it is a 0-implicant of F but the term
T ′′= k1−W≥(ck1+1)

k2−W≥ck2
k3−W≥ck3

· · · ks−W≥cks

is not. Also, the term S is a prime 0-implicant of the
G if and only if it is a 0-implicant of G but the term
S′′= k1−W≥(ck1+1)

k2−W≥ck2
k3−W≥ck3

· · · k(s−1)−W≥ck(s−1)

is not. Additionally, as per Lemma 1, the term T is
a 0-implicant of F if and only if the term S is a 0-
implicant of G. Also, the term T ′′ is not a 0-implicant of
F if and only if the term S′′ is not a 0-implicant of G.
Hence, the term T is a prime 0-implicant of F if and
only if the term S is a prime 0-implicant of G.

We now use this knowledge to construct a recursive
method that generates the sum of all prime 1-implicants
and the sum of all prime 0-implicants of a given Majority
term. This function shown in Algorithm 1 builds the
prime implicants of a Majority term from the bottom
up. It requires the Majority term to be in the form
〈 1−W

l1
n1

2−W
l2
n2 · · · m−W

lm
nm
1p0q〉 with the multiplicities

occurring in ascending order li ≤ li+1. It begins with a
single count-term on the set of variables with the highest
multiplicity W

lm
nm
. Then, it includes more count-terms to

this product term till it becomes a prime implicant. It uses
the recursive nature of prime implicants to generate these
additional count-terms.

Note that if the term k1−W≥ck1
k2−W≥ck2

· · · ks−W≥cks

is not a 1-implicant of a function f , then neither is
k1−W≥(ck1−1)

k2−W≥ck2
k3−W≥ck3

· · · ks−W≥cks
, and it need

not be checked for being one. Similarly, if the term
k1−W≤ck1

k2−W≤ck2
· · · ks−W≤cks

is a 0-implicant

of a function f , then so is k1−W≤(ck1−1)
k2−W≤ck2

k3−W≤ck3
· · · ks−W≤cks

, and it need not be checked for
being one.

J Electron Test (2019) 35:679–694684



Fig. 1 The sum of all prime
1-implicants and sum of all
prime 0-implicants of the
functions f and g implemented
by the Majority terms
〈X2Y

2
2 Z3

30
2〉 and 〈X2Y

2
2 Z3

31
2〉

respectively can be generated
recursively using Algorithm 1

In Fig. 1, we illustrate the workings of this function
on the two Majority terms 〈X2Y

2
2 Z3

30
2〉 and 〈X2Y

2
2 Z3

31
2〉.

These terms contain three groups of symmetric variables
X2, Y2 and Z3 with multiplicities one, two and three
respectively. Hence, the recursion trees generating the prime
implicants of these terms grow to three levels - one level
each for the three groups (X, Y, Z) in descending order of
their multiplicities. In each level of these trees, a prime 1-
implicant is represented in green and a prime 0-implicant is
represented in red.

At each level, the function checks if any the mincount-
term on the group of variables with the largest multiplicity
is a prime 1-implicant of the term being processed. For
example, in the first level of Fig. 1a, Z≥3 is a prime 1-
implicant while Z≥2 is not. Next, it checks if any maxcount-
term on the group of variables with the largest multiplicity
is a prime 0-implicant of the term being processed. For
example, in the first level of Fig. 1a, Z≤0 is a prime 0-
implicant while Z≤1 and Z≤2 are not. For a given count k,
it makes a recursive call to generate the prime implicants
only when neither case is true. Hence, in the first level of
Fig. 1a, recursive calls are made for the cases that two and
one elements of Z3 are ‘1’s.

When it makes a recursive call for count k on i−Wni
,

the function multiplies the sum of prime 1-implicants that it
receives by i−W≥k and adds it to the sum of all of its prime

J Electron Test (2019) 35:679–694 685



1-implicants. Similarly, it multiplies the sum of prime 0-
implicants that it receives by i−W≤k and adds it to the sum
of all of its prime 0-implicants. For instance, the call for the
node for c = 2 in the first level of Fig. 1a returns the sums
Y≥2+X≥1Y≥1 and X≤0Y≤1+Y≤0. The former is multiplied
by Z≥2 and added to the sum of prime 1-implicants while
the latter is multiplied by Z≥2 and added to the sum of
prime 0-implicants. The function returns the sums of all
prime 1-implicants and prime 0-implicants generated across
counts.

In this figure, the nodes that are implicants but not prime
implicants are uncolored. Also, the 0-implicants that are
not prime 0-implicants are never visited by the algorithm.
Hence, these nodes representing 0-implicants are marked by
a red cross.

Note that this technique provides a canonical representa-
tion of the given Majority term when no two variables from
different Symmetry-groups are symmetric to each other.
When this is not the case, the technique produces a correct
and compact representation, though not canonical.

Thus, we have a method to generate a compact
representation of the sum of all prime 1-implicants and the
sum of all prime 0-implicants of a Majority term.

5 Equivalence of Majority Terms

The foremost use of a canonical representation of Boolean
functions is that it reduces the task of checking the
equivalence of two functions to transforming them to their
canonical forms. Such a canonical form is crucial to the
Majority operation since multiple Majority terms on a
set of variables often implement the same function. For
instance, all 3-input Majority terms 〈ap bq cr 〉 that do not
have a variable with absolute Majority over the remaining

variables implement the function ab + bc + ca. The fact
that no variable has absolute Majority means that the other
two variables together contribute more ‘1’s or ‘0’s than
it. Hence, the term evaluates to ‘1’ whenever two of its
variables are ‘1’s, and implements the same function as
〈a b c〉.

The sum of all prime 1-implicants (or all prime 0-
implicants) generated using Algorithm 1 is a canonical form
that can be used to detect equivalence of two Majority
terms on the same set of variables with the same symmetry
grouping. For example, as shown in Fig. 2, the sum
of all prime 1-implicants (or all prime 0-implicants) of
the Majority term 〈X2 Y 3

2 Z4
3 0

3〉 is the same as that of
〈X2Y

2
2 Z3

30
2〉 shown in Fig. 1a.

In fact, their equivalence is evident from the fact that
their recursion trees are structurally identical - including
the qualification of leaf nodes as 1-implicants, prime 1-
implicants and prime 0-implicants. Also, the differences
in the recursion trees of 〈X2Y

2
2 Z3

30
2〉 and 〈X2Y

2
2 Z3

31
2〉

in Fig. 1. make it clear that they do not implement the
same Boolean function. This means that two Majority
terms on the same set of variables are equivalent if and
only if their recursion trees for Algorithm 1 are identical.
Hence, the equivalence of two Majority terms can simply
be determined by growing their recursion trees together as
long as they form identical nodes, doing away with the need
to generate the complete sum of all prime implicants.

Interestingly, this process can be made more efficient by
observing the relationship between the recursion trees of
dual Majority terms. Observe that, in Fig. 1, the recursion
tree of the node 〈X2 17 08〉 is the mirror image of that of its
dual 〈X2 18 07〉 along the horizontal axis with the red and
green colors swapped. Similarly, the recursion tree of the
node 〈X2 Y 2

2 18 03〉 (in Fig. 1b) is the mirror image of that
of its dual 〈X2 Y 2

2 13 08〉 (in Fig. 1a) along the horizontal
axis with the red and green colors swapped. The same is
true for the node 〈X2 Y 2

2 15 06〉 (in Fig. 1b) and its dual
〈X2 Y 2

2 16 05〉 (in Fig. 1a). In fact, this is true for the whole

Fig. 2 The recursion tree
generating all the prime
implicants of the function h

implemented by the Majority
term 〈X2 Y 3

2 Z4
3 0

3〉 is identical
to that of 〈X2Y

2
2 Z3

30
2〉 in Fig. 1a

J Electron Test (2019) 35:679–694686



recursion trees in Fig. 1b and a, which represent the dual
Majority terms 〈X2Y

2
2 Z3

30
2〉 and 〈X2Y

2
2 Z3

31
2〉.

This leads us to examine the relationship between the
implicants of a Majority term and its dual.

5.1 Duality of Implicants

We have noticed that there exists symmetry between the
set of all prime implicants of a Majority term and that of
its dual. We see in Lemma 2 that there exists a one-to-one
correspondence between the 1-implicants of a Majority term
and the 0-implicants of its dual.

Lemma 2 (Duality of Implicants) Consider a
function F as per Scenario A. The product term
k1−W≥ck1

k2−W≥ck2
· · · ks−W≥cks

is a 1-implicant

of F if and only if the product term k1−W≤(n1−ck1 )

k2−W≤(n2−ck2 )
ks−W≤(ns−cks ) is a 0-implicant of its dual

Fd = 〈 1−W
l1
n1

2−W
l2
n2 · · · m−W

lm
nm
1q0p〉. Both of these

implicant terms represent the same constraints on the
variables.

Proof Both the functions F and Fd are implemented by
Majority-terms on multisets of the same cardinality, and
hence need the same lim number of ‘1’s (or ‘0’s) to evaluate
to ‘1’ (or ‘0’).

According to Theorem 1, the product term k1−W≥ck1
k2−W≥ck2

· · · ks−W≥cks
is a 1-implicant of F if and only if

ck1 lk1 + ck2 lk2 + · · · + cks lks + p ≥ lim

Similarly, according to Theorem 2, k1−W≤(n1−ck1 )

k2−W≤(n2−ck2 )
ks−W≤(ns−cks ) is a 0-implicant of Fd if and

only if

(nk1 − (nk1 − ck1))lk1 + (nk2 − (nk2 − ck2))lk2 + · · ·
+(nks − (nks − cks ))lks + p ≥ lim

These two conditions are identical. Thus proved.

Naturally, as noted in Theroem 6, such a one-to-one
correspondence exists between the prime 1-implicants of a
Majority term and the prime 0-implicants of its dual too.

Theorem 6 (Duality of Prime Implicants) Con-
sider a function F as per Scenario A. The product
k1−W≥ck1

k2−W≥ck2
· · · ks−W≥cks

is a prime 1-implicant

of F if and only if the product term k1−W≤(n1−ck1 )

k2−W≤(n2−ck2 )
ks−W≤(ns−cks ) is a prime 0-implicant of its

dual Fd = 〈 1−W
l1
n1

2−W
l2
n2 · · · m−W

lm
nm
1q0p〉.

Proof Without loss of generality, it can be assumed that lk1
is the least of the multiplicities lki

. According to Theorem 3,
the product T = k1−W≥ck1

k2−W≥ck2
· · · ks−W≥cks

is a
prime 1-implicant of the Boolean function F if and only
if it is a 1-implicant of F but the product term T ′ =
k1−W≥(ck1−1)

k2−W≥ck2
k3−W≥ck3

· · · ks−W≥cks
is not. As

per Theorem 4, the product term S = k1−W≤(n1−ck1 )

k2−W≤(n2−ck2 )
ks−W≤(ns−cks ) is a prime 0-implicant of Fd

if and only if it is a 0-implicant of Fd but the term
S′ = k1−W≤(n1−ck1+1)

k2−W≤(n2−ck2 )
k3−W≤(n3−ck3 ) · · ·

ks−W≤(ns−cks ) is not. Additionally, according to Lemma 2,
the term T is a 1-implicant of F if and only if the term S is
a 0-implicant of Fd . Also, the term T ′ is not a 1-implicant
of F if and only if the term S′ is not a 0-implicant of Fd .
Hence, the term T is a prime 1-implicant of F if and only if
the term S is a prime 0-implicant of its dual Fd .

The one-to-one correspondence between implicants of
dual Majority terms and the structural symmetry that it
causes between the associated recursion trees is interesting
in itself. However, this duality of implicants has a
greater significance. An implicant of a Majority term is a
representation of a condition under which the term evaluates
to ‘1’ or ‘0’. We have described this condition in our
discussion of implicants of a Majority term (Theroems 1
and 2). These conditions of 1-implicants and 0-implicants
together represent the Boolean function implemented by
the Majority term. The one-to-one correspondence between
implicants of dual Majority terms suggests that these
conditions derived from a Majority term are the same as
those derived from its dual. In Theroem 7, we note that not
only is this true, even the Majority term obtained by self-
dualizing a Majority term (substituting the constant with a
dummy variable) represents the same set of conditions.

Theorem 7 Consider Scenario A. The set of all prime
1-implicants and prime 0-implicants of the function
F = 〈 1−W

l1
n1

2−W
l2
n2 · · · m−W

lm
nm
0r 〉 represents the same

constraints on the variables in V as the set of all
prime 1-implicants and prime 0-implicants of the function
G = 〈 1−W

l1
n1

2−W
l2
n2 · · · m−W

lm
nm
1r 〉. Also, for a Boolean

variable x, the same constraints on the variables in V are
represented by the set of all prime 1-implicants and prime
0-implicants of the function H formed by self-dualizing F

with x:

H = 〈 1−Wl1
n1

2−Wl2
n2

· · · m−Wlm
nm

xr 〉.

Proof According to Theorem 6, each term that is prime 1-
implicant of F has a corresponding term that is a prime

J Electron Test (2019) 35:679–694 687



0-implicant of G, and these terms pose the same constraints
on the variables in V . This means that the set of all prime
1-implicants of F represent the same constraints on the
variables in V as does the set of all prime 0-implicants
of G. Similarly, each term that is prime 0-implicant of F

has a corresponding term that is a prime 1-implicant of G,
and these terms pose the same constraints on the variables
in V . This means that the set of all prime 0-implicants of
F represent the same constraints on the variables in V as
does the set of all prime 1-implicants of G. Thus, the set of
all prime 1-implicants and prime 0-implicants of F and G

represent the same constraints on the variables in V .
The prime implicants of the function H can be obtained

by using Theorem 5 with respect to the variable x. That
is, the set of all prime implicants of F and G combined
with the state of the variable x represent the function H .
Disregarding the variable x, this means that set of all prime
1-implicants and prime 0-implicants of the function H

represent the same constraints on the variables in V as those
of functions F and G.

5.2 Detecting Equivalence of Majority terms

We use this insight to construct an efficient recursive
method that checks if two Majority terms on the same set
of variables implement the same Boolean function. This
function shown in Algorithm 2 works from the bottom up,
similar to Algorithm 1. It begins with a single maxcount-
term— preferably one on the variable group with the largest
multiplicity in one of the Majority terms. It checks if it
is an implicant of one or both the terms. If it is not, the
algorithm includes more maxcount-terms to this product
term recursively, checking at each point if the product is an
implicant of one or both the terms. If the product term is
a 1-implicant (or 0-implicant) of both the Majority terms
at the level, or is a 1-implicant (or 0-implicant) of neither,
then the twoMajority terms might be equivalent. Otherwise,
they implement different Boolean functions. The function
checks for equivalence recursively until either a mismatch
is encountered or all cases are exhausted.

Note that if the product k1−W≤ck1
k2−W≤ck2

· · ·
ks−W≤cks

is a 0-implicant of both the functions, then
so is the product k1−W≤(ck1−1)

k2−W≤ck2
k3−W≤ck3

· · ·
ks−W≤cks

, and it need not be checked for being one. Also,
this algorithm uses Theorem 7 to reduce the cases checked.
If the Majority term at any level of recursion is clearly
self-dual (has no constant elements), then this algorithm
checks equivalence for only half the counts of ‘1’s possible
in the group of variables under consideration. The other
half counts lead to duals of these cases, and can be dropped

since they represent the same set of constraints on the
variables as the first half.

Algorithm 2 needs the two Majority terms that need to be
checked to be in the form 〈 1−W

l1
n1

2−W
l2
n2 · · · m−W

lm
nm
1p0q〉

and 〈 1−W
l′1
n1

2−W
l′2
n2 · · · m−W

l′m
nm
1p′

0q ′ 〉. Any variable that
occurs in one Majority term and not the other can be
included with zero multiplicity in the other term.We provide
for the inclusion of non-overlapping variables because there
exist cases where some variables in a Majority term do not
appear in its canonical form. For instance, 〈a2 b2 c2 d〉 is
equivalent to 〈a b c〉.

In Fig. 3, we illustrate the workings of this function
in verifying the equivalence of two pairs of Majority
terms. These terms contain three groups of symmetric
variables X2, Y2 and Z1 with multiplicities one, two and
three respectively. Hence, the recursion trees checking the
equivalence of these terms grow to at most three levels —
one level each for the three groups (X, Y, Z) in descending
order of their multiplicities.

At each level, the algorithm checks if the terms match
in behavior. It checks if any maxcount-term on the group
of variables with the largest multiplicity is a 1-implicant of
both or one of the terms being processed. For example, the
green nodes in the second levels of both the recursion trees
in Fig. 3 show that Y≥2 and Y≥1 are 1-implicants of both
the Majority terms being processed. Next, it checks if any

J Electron Test (2019) 35:679–694688



mincount-term on the group of variables with the largest
multiplicity is a 0-implicant of both or one of the terms
being processed. For example, the green node for c = 1 in
the third level of Fig. 3a shows that X≤1 is a 0-implicant of
both the Majority terms being processed. On the other hand,
the red node in Fig. 3b shows that Y≥0 is a 0-implicant of one
of the Majority terms but not the other. For a given count k,
the function makes a recursive call to check the equivalence
of the Majority terms only when neither case is true. The
function returns TRUE if it encounters no mismatch in the
behaviors of the terms at any level, and gets TRUE from
every recursive call it makes.

Thus, we have a method to check if two Majority
terms on the same set of variables implement the same
Boolean function that exploits the fundamental mathematics
of Majority logic.

6 Compaction of n-Majority Term

We know that multiple Majority terms can implement the
same Boolean function. It is critical in logic synthesis for
Majority gates that equivalent Majority terms be identified
and that the smallest possible equivalent of a Majority term
be used. As we gear Majority algebra towards Majority
logic synthesis, we seek to identify the Majority term

on the smallest possible multiset that is equivalent to
a given Majority term. We call it a compact Majority
term, and examine how it can be derived from a Majority
term.

We could use Algorithm 2 to check the equivalence of
the given Majority term with many possible Majority terms
until we find the compact Majority term. But such a brute
force method is highly inefficient, and may not guarantee
the Compact Majority term. Hence, we develop a method to
compact a Majority term based on the knowledge of prime
implicants and duality of implicants of Majority that we
have developed thus far.

We know that the sum of all prime 1-implicants and the
sum of all prime 0-implicants of a Boolean function identify
it uniquely. We know the inequalities on the multiplicities
of a Majority term that represent the prime implicants of a
Majority term too (Theroem 3). This means that the compact
Majority term may be obtained by solving the inequalities
representing the set of all prime 1-implicants and prime 0-
implicants of a Majority term with an objective to minimize
the size of the multiset.

We have constructed a method to compact a Majority
term using this idea. The COMPACT MAJORITY function
in Algorithm 3 treats the problem of compacting a
self-dual Majority term as that of finding new multiplicities
for each group of symmetric variables in it. This function

Fig. 3 The equivalence of two
Majority terms can be verified
using Algorithm 2

J Electron Test (2019) 35:679–694 689



assigns each group of symmetric variables i−Wni
an integer

variable l′i to represent its new multiplicity. First, it specifies
the current multiplicities of the Symmetry-groups as the
upper limits of these variables. Next, it specifies zero as
the lower limit of all multiplicities except the largest since
the function implemented by the Majority term might be
independent of some variables. It sets the lower limit of the
variable representing the largest multiplicity to one since
the Majority term does not have an absolute Majority on
any variable. Further, it includes constraints that maintain
the order of the multiplicities. Most importantly, it uses
the CONSTRAINTS function to include the constraints
representing the prime 1-implicants and prime 0-implicants
of the Majority term.

The CONSTRAINTS function in Algorithm 3 begins with
a self-dual Majority term and recursively constructs the
inequalities using the l′i variables. It treats l′i as variables
and lim′, 1-contrib, and 0-contrib as expressions involving
these variables, and builds a set constraints using these.
At any level of recursion, the parameters 1-contrib and
0-contrib are expressions involving variables l′i that
represent the combination of the multiplicities and ‘1’
counts that gave rise to the number of constant ‘1’s and ‘0’s
in the current Majority term.

The CONSTRAINTS function follows the same pattern
of recursion as the PRIME IMPLICANTS function in
Algorithm 1, except that it trims the recursion tree using
Theroem 7 as does Algorithm 2. Whenever a node
represents a self-dual Majority term, the function visits only
the top half of the recursion tree that would have been
obtained using Algorithm 1. When the function encounters
a prime implicant, it includes the appropriate inequality in
constraints.

Though the constraints representing all prime implicants
completely describe the logical behavior of the Majority
term, their solution may not be able to represent a valid
Majority term. A valid Majority term has an underlying
multiset of odd cardinality. Hence, it is crucial that this
oddness constraint be included at the first invocation of
CONSTRAINTS. Also, any self-dual node that appears in the
recursion tree has an equal number of ‘1’s and ‘0’s. This
condition has to be added to the description of the Majority
term. The CONSTRAINTS function includes a self-duality
condition for each self-dual node that it encounters in the
form of an equality between the expressions 1−contrib and
0−contrib. Further, the number of non-constant elements
in a self-dual Majority term is odd since the total number
of constant elements is even. The CONSTRAINTS function
includes an oddness condition on the non-constant elements
for each self-dual node.

- -

-

-

-

-

-

- -

- -

- -

-

-

-

-

--

With these constraints, the COMPACT MAJORITY func-
tion solves for integer values of the new multiplicities l′i
subject to these constraints with an objective to minimize
the cardinality of the multiset. This cardinality is dictated by
the new multiplicities and the number of variables in each
Symmetry-group.

In Fig. 4, we illustrate the workings of the COMPACT

MAJORITY and CONSTRAINTS functions on the Majority
term 〈X2

2 Y 3
3 Z6

2〉. The COMPACT MAJORITY begins by
assigning the variables x, y and z to represent the new
multiplicities of the sets X2, Y3 and Z2 respectively. It

J Electron Test (2019) 35:679–694690



Fig. 4 The majority term
〈X2

2 Y 3
3 Z6

2 can be compacted to
〈X2 Y3 Z2

2〉 using Algorithm 3

builds the constraints representing the bounds on these
variables and their ordering. It then calls the CONSTRAINTS

function with empty strings for the parameters 1−contrib

and 0−contrib. The CONSTRAINTS function checks for
1-implicants and 0-implicants at each level and adds the
appropriate constraint when it encounters a prime implicant.
For example, the green nodes in Fig. 4 represent prime 1-
implicant, and the corresponding constraint is built using
the count of ‘1’s under consideration and the 1−contrib

parameter of the call. Similarly, the red node in Fig. 4
represents a prime 0-implicant, and the corresponding
constraint is built using the count of ‘0’s under consideration
and the 0−contrib parameter of the call. If the node is not
an implicant, the CONSTRAINTS function makes a recursive
call with new 1−contrib and 0−contrib parameters.

The node for c = 1 in the first level of Fig. 4 is a self-
dual node, and hence the function adds one constraint for
oddness, and one for self-duality. Similarly, being on a self-
dual term, the first call to CONSTRAINTS adds an oddness
constraint. The COMPACT MAJORITY function solves for
the variables x, y and z under the nine constraints thus
generated by CONSTRAINTS and the ones it generated. It
solves for the values of these variables with the objective to
minimize 2x + 3y + z.

The optimal solution of this system of constraints is x =
y = 1 and z = 2. Thus, the Majority term 〈X2

2 Y 3
3 Z6

2〉 can
be compacted to 〈X2 Y3 Z2

2〉.
We now have an efficient method to minimize a Majority

term. Our method produces “a” compact Majority term of
the given Majority term. Whether it produces “the” compact
Majority term of the given Majority term depends on the
validity of three assumptions that we have made in the
construction of this algorithm :

Uniqueness Every Majority term has a unique compact
form — an equivalent Majority term on a multiset
of minimal size. Uniqueness ensures that the compact

Majority term is a canonical form of the Majority term,
and can be used to verify equivalence.

Symmetry and Multiplicity If the function implemented
by a Majority term is symmetric in two variables, then
these variables have the same multiplicity in the compact
Majority term. This allows us to use a single multiplicity
variable to represent a group of symmetric variables
rather than using one per variable.

Ordered Multiplicities If the multiplicity of a variable x

is greater than or equal to that of a variable y in the
Majority term, then the multiplicity of x is greater than or
equal to that of y in the compact Majority term too. This
reduces the search space and aids in the convergence of
the solution of the constraints.

We have observed that all these three conditions are true
for manyMajority terms. We have compacted all possible n-
input Majority terms for n up to 25. As evident from Table 2,
more than half the terms could be minimized. Even so,
we are yet to come across counter-examples that invalidate
our conjectures. Hence, though we are yet to prove these
conjectures, we have used them to construct an efficient
algorithm to derive the compact Majority term of a given
Majority term.

Note that, even if these assumptions are proved invalid,
the algorithm proposed is still useful in Majority logic
synthesis since it reduces the size of Majority terms
efficiently.

7 Efficiency of Algorithms

We have proposed the first known algorithms that use
insights from the fundamental mathematics of n-input to
generate minimal prime implicants of a Majority term, to
check equivalence of two Majority terms, and to compact
an n-input term to minimize the cardinality of its underlying
multiset.

J Electron Test (2019) 35:679–694 691



Table 2 A large subset of all
possible n-input terms for any
given n can be written as
smaller Majority terms

n 5 7 9 11 13 15 17 19 21 23 25

All n-Maj 3 8 18 37 71 131 230 393 653 1060 1686

(< n)-Maj 1 4 10 22 42 79 137 231 376 600 926

The only point of comparison that exists for our
algorithms is the work by Gowda et. al [4]. The exact point
of comparison is the TG2MFF algorithm that they propose
to generate a maximally factored form of a threshold gate,
since we do not deal with logic networks as they proceed
to do. The TG2MFF algorithm is based on generating a
binary recursion tree of cofactors by each variable. This

means that their recursion tree is of the order O(2n) (one
level per variable), whereas, all our algorithms work with
recursion trees of the order O(l1.l2. · · · .lm) where n =
l1 + l2 + · · · + lm (one level per Symmetry-group). Also,
the number of terms (and hence, literals) in the count-term
based prime implicants we generate are much smaller than
those in their Maximally factored form.

Table 3 PRIME IMPLICANTS

scales better than TG2MFF as
the number of calls in its
recursion tree grows
exponentially with the number
of Symmetry-groups (#S) in a
Majority Term rather than with
the number of variables (#V)
in it

#V #S Random Maj-term #1 Random Maj-term #2

TG2MFF PRIME IMPL TG2MFF PRIME IMPL

Calls Time Calls Time Calls Time Calls Time

11 1 923 1ms 1 0ms 923 1ms 1 0ms

15 1 1.2e4 11ms 1 0ms 1.2e4 10ms 1 0ms

21 1 7.0e5 0.5s 1 0ms 7.0e5 0.5s 1 0ms

21 5 3.7e5 0.3ms 203 0ms 9.6e5 0.7s 217 0ms

21 10 5.7e4 43ms 815 0ms 5.7e5 0.4ms 1027 1ms

21 15 8.9e4 70ms 7233 9ms 7.8e5 0.6ms 6188 7ms

21 20 8.8e4 75ms 3.2e4 43ms 7.6e5 0.5s 3.0e4 38ms

25 5 9.6e5 0.7s 64 0ms 4.2e6 2s 63 0ms

25 10 1.6e6 1s 2347 2ms 9.5e6 6s 3592 4ms

25 15 8.2e5 0.6s 1.9e4 23ms 1.8e6 1s 1.8e4 25ms

25 20 2.1e6 1s 1.9e5 0.2s 1.2e7 8s 1.9e5 0.2s

31 5 2.1e8 2m 484 0ms 6.2e8 7m 549 0ms

31 10 1.4e7 9s 3311 5ms 3.1e7 21s 3551 5ms

31 20 4.2e7 29s 9.5e5 1s 5.4e8 6m 1.2e6 1s

35 25 1.0e7 11s 1.4e7 12s

45 20 7.3e7 56s 7.4e7 1m

45 25 2.2e8 3m 2.0e8 3m

45 30 1.8e9 32m 1.3e9 19m

51 20 2.1e8 2m 2.2e8 2m

61 20 7.8e8 10m 7.7e8 10m

65 15 1.1e8 1m 1.5e8 1m

71 10 4.6e6 3s 4.2e6 2s

75 10 7.7e6 5s 8.2e6 5s

75 15 8.4e8 11m 8.9e8 10m

85 5 1.1e4 7ms 1.1e4 8ms

85 10 4.0e7 25s 4.4e7 26s

85 15 8.2e8 10m 1.2e9 14m

95 5 6.6e4 45ms 6.8e4 46ms

95 10 2.3e8 2m 2.3e8 2m

101 5 1.3e4 14ms 1.4e4 13ms

101 10 9.5e7 1m 7.9e7 52s

1001 5 4.4e8 6m 4.6e8 6m

J Electron Test (2019) 35:679–694692



We ported the TG2MFF algorithm to Majority terms
and compared its performance against our Algorithm 1
PRIME IMPLICANTS. Table 3 shows the run-time statistics
for TF2MFF and PRIME IMPLICANTS on a PC with
an Intel i7-6700HQ CPU @2.60GHz×8 processor and
16GB RAM. We generated two random n-input terms for
each pair of number of variables (#V ), and number of
Symmetry-groups(#S) (all variables in a group have the
same multiplicity) that they are grouped into.

First, we ran TG2MFF and PRIME IMPLICANTS on all
the terms generated to populate Table 3 . This table shows
the number of recursive calls made to the algorithms and
the time taken to complete execution for each Majority
term. The entries for cases that took more than an hour
to complete execution have been left blank. The number
of calls in the recursion trees provide an indication of
both the number of terms produced and the complexity
of the algorithms. Note that TG2MFF and reaches this
mark early on. This is because it the number of terms
in the factored form that it generates grow exponentially
with the total number of variables #V , irrespective of the
symmetry present in the Majority term. For instance, the
number of TG2MFF calls (and factor terms) exceed 700000
for #V = 21 and #S = 1 as seen in row 3. This is
merely the term 〈W21〉 which PRIME IMPLICANTS treats
trivially with just one call that returns W≥11. However,
they perform comparably for #V = 21 and #S = 21.
Higher the symmetry present in a Majority term, the greater
the disparity between the number of calls to TG2MFF
and PRIME IMPLICANTS despite the same number of
variables. While both algorithms do grow exponentially,
PRIME IMPLICANTS does scale better than TG2MFF—for
instance, the number of calls to PRIME IMPLICANTS for
#V = 1001 and #S = 5 are comparable to those to
TG2MFF for #V = 31 and #S = 5.

The complexity of the number of calls seen in PRIME

IMPLICANTS apply to EQ and COMPACT MAJORITY

algorithms as well as they follow the same recursion
tree. Generally, the recursion tree is heavily pruned in EQ

using the duality and one-to-one correspondence of prime
implicants. For instance, the run-time for EQ algorithm on
all the pairs of Majority terms from Table 3 were under
10ms. However, as the Majority terms tend to be logically
closer to each other, the performances of EQ and PRIME

IMPLICANTS tend to be close as well.
The scalability of the COMPACT MAJORITY algorithm

depends not only the exponential nature of the number of
prime implicants (that PRIME IMPLICANTS generates), but
also on the ILP solver. For this reason, its runtime tended to
explode faster than that of PRIME IMPLICANTS. COMPACT

MAJORITY needed less than a microsecond to minimize any
Majority term with less than 31 variables, but took around
120ms to minimize a term with #V = 31 and #S = 20.

8 Conclusion

In this paper, we have solved three fundamental problems
of n-input Logic: a) Generating a sum of count-based Prime
Implicants representation of an n-input term, b) Efficient
equivalence checking of two n-input terms, and c) Efficient
compaction of an n-input term into one with fewer inputs.
We begin by posing the idea of 0-implicants and prime
0-implicants as duals to the traditional (1-)implicants and
prime (1-)implicants of Boolean functions and that the
sum of all prime 0-implicants too is a canonical form.
We utilize the properties of Majority to specially observe
the implicants of a Majority term. With implicants of a
Majority term as the basis, we have presented a recursive
algorithm the generates the sum of all prime 1,0-implicants
of a given Majority term. Stepping further ahead with the
help of duality in Majority terms and among implicants,
we have presented a recursive algorithm that checks for
logical equivalance between two given Majority terms.
Finally, we have presented a recursive algorithm that finds a
compact equivalent for a given n-input term by employing
Symmetry-groups and one-to-one correspondence of prime
implicants among dual Majority terms.

Furthur work based on results presented in this paper
may take multiple directions: a quantitative study of
the efficiency of the algorithms, a theoretical study of
the recursion trees built by algorithms based on the
mathematical results presented, extension of algorithms to
Majority networks, determination of the optimality and
canonicity of compact Majority terms etc.

References

1. Akeela R, WaghMD (2011) A five-inputmajority gate in quantum-
dot cellular automata. In: NSTI Nanotech, vol 2, pp 978–981

2. Devadoss R, Paul K, Balakrishnan M (2015) Majsynth : an n-
input majority algebra based logic synthesis tool for quantum-dot
cellular automata. In: Proc. 24th international workshop on logic
synthesis, 2015. IWLS’15

3. Devadoss R, Paul K, Balakrishnan M (2019) Majority logic:
prime implicants and n-input majority term equivalence. In: Proc.
32nd International conference on VLSI design and 2019 18th
international conference on embedded systems (VLSID). IEEE,
pp 464–469

4. Gowda T, Vrudhula S, Konjevod G (2007) Combinational equiva-
lence checking for threshold logic circuits. In: Proceedings of the
17th ACM great lakes symposium on VLSI. ACM, pp 102–107

5. Hulgaard H, Williams PF, Andersen HR (1999) Equivalence
checking of combinational circuits using boolean expression
diagrams. IEEE Trans Comput-Aided Design Integrated Circ Sys
18(7):903–917

6. Kang W, Zhang Y, Wang Z, Klein JO, Chappert C, Ravelosona D,
Wang G, Zhang Y, Zhao W (2015) Spintronics: emerging ultra-
low-power circuits and systems beyond mos technology. J Emerg
Technol Comput Syst 12(2):16:1–16:42

7. Muroga S (1971) Threshold logic and its applications, Wiley-
Interscience, New York

J Electron Test (2019) 35:679–694 693



8. Sharad M, Augustine C, Panagopoulos G, Roy K (2012) Proposal
for neuromorphic hardware using spin devices. CoRR, Cornell
University. arXiv:1206.3227

9. Zhang R, Walus K, Wang W, Jullien GA (2004) A method of
majority logic reduction for quantum cellular automata. IEEE
Transactions on Nanotechnology 3(4):443–450

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Rajeswari Devadoss is a researcher working on developing the
mathematics of Majority logic and logic synthesis techniques for
emerging technologies. She obtained her B.Tech in Computer Science
and Engg. from the National Institute of Technology Tiruchirapalli
in 2008, and Ph.D. from the CSE Dept. of the Indian Institute of
Technology Delhi in 2016. She was a post doctoral researcher at the
Nanyang Technological University, Singapore.

Kolin Paul is a Professor in the Department of Computer Science
and Engg. at I.I.T. Delhi. He obtainted his B.Tech in Electronics
& Comm. Engg. from REC Silchar, MS from Jadavpur University,
Kolkata, and Ph.D. in Computer Science from BEC, Kolkata. He
has been involved in teaching and research in the areas of Hardware
and Embedded Systems Security, Reconfigurable Computing with
Emerging Technologies for the past two decades. Over the years,
he has spent time working at Tallinn University, IIT Bombay, KTH,
Stockholm, and the University of Bristol. He has published more than
100 conference and journal papers.

M. Balakrishnan is a Professor in the Department of Computer
Science & Engineering at I.I.T. Delhi. He obtained his B.E.(Hons.)
in Electronics & Electrical Engg. from BITS Pilani and Ph.D. from
EE Dept. IIT Delhi in 1985. For more than three decades, he is
involved in teaching and research in the areas of digital systems
design, electronic design automation and embedded systems. He has
supervised 10 Ph.D. students, more than hundred B.Tech. and M.Tech
students and published nearly 100 conference and journal papers. More
recently the focus of his work has been in development of affordable
assistive devices for visually impaired. He is involved in a number of
projects that can enhance safe mobility as well as assist in education.
SmartCane is the first product from the ASSISTECH group that has
been launched as a product

J Electron Test (2019) 35:679–694694

http://arxiv.org/abs/1206.3227

	Equivalence Checking and Compaction of n-input Majority Terms Using Implicants of Majority
	Abstract
	Introduction
	Related Work
	Implicants and Majority
	Sum of all Prime Implicants of a Majority term
	Equivalence of Majority Terms
	Duality of Implicants
	Detecting Equivalence of Majority terms

	Compaction of n-Majority Term
	Efficiency of Algorithms
	Conclusion
	References
	Publisher's Note




