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Abstract
In this paper, a security analysis of the pseudo-random number generator based on piecewise logistic map is made, which
reveals the existence of a serious problem. Although the assumed safety of this pseudo-random number generator (PRNG)
is estimated at 2136, it is possible to carry out successful brute-force attack whose complexity is about 2103. Furthermore,
the attack on the analyzed PRNG based on a known sequence of output bits is presented which can reduce the complexity
of the brute-attack to about 295. The examples of both attacks are provided in this paper. For the above mentioned reasons,
the analyzed PRNG cannot be considered safe for the use in cryptographic systems. An improved version of the analyzed
PRNG is proposed, which can eliminate the perceived shortcomings.

Keywords Chaos · Pseudo-random number generator · Cryptanalysis · Cryptography · Image encryption · Video encryption

1 Introduction

Chaos has been widely used for secure communications
and encryption which enabled the development of a num-
ber of chaotic cryptosystems [10]. Chaotic systems are often
used as the core component of PRNG [4, 22]. PRNGs
have a wide application, especially in cryptographic systems
developed for encryption of image and video files which
require a large amount of randomly generated bits. Crypto-
graphic properties of a PRNG are very important because
cryptographic security of stream encryption schemes
depends largely on quality of a produced pseudo-random
sequence [22].

In recent years a great number of chaos based PRNGs
have been proposed. However, a significant percent of
these PRNGs have serious shortcomings which makes them
inadequate for the use in secure cryptographic systems. The
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key space of chaos-based PRNGs could be very vulnerable
in the case when the secret key is used for generation
of control parameters of the underlying chaotic system.
For example, in the pseudo-random bit generator based on
multi-modal maps, initial values of chaotic map are used as
a secret key but some features of the used multi-modal map
caused the existence of a certain number of weak keys [11].
The inadequate selection of interval for control parameters
of quantum chaotic map in PRNG [2] caused a situation
in which 99 percent of the key space is composed of weak
keys [9]. In the efficient chaos PRNG applied to video
encryption, initial conditions of two chaotic maps were used
as a part of a secret key, but a considerable number of
these conditions leads to the fixed points which reduced the
security of this PRNG [10]. Moreover, it is demonstrated
that a stream cipher based on the symbolic dynamics of
the logistic map and tent map can satisfy certain security
conditions only in the case when the parameters of these
maps are selected conveniently [4]. Otherwise, in the case
of a random selection of parameters, this stream cipher can
suffer from some cryptographic weaknesses [4].

In many cases, the features of chaotic map used in cryp-
tographic system are the main cause of its security deficien-
cies [3]. For example, the logistic map was used extensively
in PRNG design but a significant number of such PRNGs
have some security problem [12–14, 17, 18].

The logistic map has one parameter μ ∈ [0, 4] whose
value significantly affects the behaviour of this chaotic
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map. When the value of μ is closer to 4, there is a
greater probability that the non-chaotic behaviour of this
continuous-space chaotic map will be avoided. For this
reason, it is desirable to use μ = 4 or values which are very
close to 4 but in this way the key space of the logistic map
for this parameter is significantly reduced which diminishes
the applicability of this chaotic map in cryptography. The
logistic map has two fixed points regardless of value of its
parameter, which can also cause some security problems in
certain cryptographic applications.

Apart from the aforementioned chaotic properties there
are other features of the logistic map which indicate its inad-
equacy for cryptographic applications [5]. Efficiency of the
encryption process depends greatly on the uniformity of a
probability of occurrence of values from each subinterval of
the domain in which applied chaotic map is defined. Val-
ues near fixed points of the logistic map are obtained more
often than other values which negatively affects efficien-
cy of cryptographic systems based on Logistic map [5].

Another significant problem of the logistic map is the
relation between the maximal length of orbits and value of
the parameter μ. Depending on the type of cryptographic
system there are various ways in which an attacker can
estimate the maximal length of orbits of a chaotic map used.
When an attacker knows the maximum value of orbit length,
he or she can estimate value of the control parameter μ and
therefore reduce the security of a cryptographic system [5].

The return map is used to show the relationship between
two consecutive values of some chaotic map. The return
map can provide valuable information regarding some
characteristics of chaotic map. The return map of the
logistic map provides sufficient information required for
the calculation of value of the control parameter μ. For
example, in the paper [21] it is demonstrated how chosen
cipher-text attack can be used in order to obtain the return
map which provided sufficient information for estimation of
the value of the control parameter μ.

Another important characteristic of the logistic map
which could be used by an attacker is structural complexity.
The statistical complexity of the logistic map is closely
related to the value of the control parameter μ [5].
The statistical complexity of the logistic map is almost
a bijective application of the control parameter and it
decreases when the control parameter μ increases [5].

All previously mentioned features of the logistic map
indicate that the control parameter of the logistic map
μ should not be used as a secret parameter of some
cryptographic system. Therefore, the only parameter of this
continuous-space chaotic map which can be used as a part
of the secret key of some cryptographic system is its initial
value. For this reason new versions of the logistic map with
variable parameter μ are developed.

In some cases inadequate design of PRNG or crypto-
graphic system is the main cause for low security, regardles
of the features of used chaotic map. For example, initial con-
dition and control parameter of the pseudorandom number
generator based on the pseudorandomly enhanced logistic
map, are calculated on the basis of a secret key. However,
the inadequate design enabled the relations between differ-
ent values of the secret key which caused that approximately
250 different secret keys produce the same initial condition
and control parameter of the enhanced logistic map, which
makes this PRNG non-resistant to a brute-force attack [8].
The inadequate design of the image cipher based on the
chaotic standard and logistic maps leads to the creation
of equivalent cipher which enabled the chosen plain-text
attack [18]. Although the mentioned cipher was modified in
order to resist the chosen plain-text attack, further research
has shown that the modified version is still insecure [12, 13].
The above mentioned examples indicate that key space of
the existing PRNGs and their design should be thoroughly
analyzed from the aspect of security, in order to eliminate
possible shortcomings which could enable cryptographic
attacks.

In [22] a pseudorandom number generator based on
piecewise logistic map is proposed. The proposed PRNG is
designed for the application in a stream cipher for secure
communication, but the security analysis revealed the exis-
tence of a serious security problem. The detected security
problems of PRNG [22], which are described in this paper,
are not directly caused by the piecewise logistic map but
they are a consequence of the auxiliary mechanism which
is used to change value of the parameter μ. If the attacker
has found a weakness in the cryptosystem which can be
exploited with the complexity lower than an estimated
key space, then we can consider that the analyzed cipher
is broken [20]. PRNG must have more than 2128 diffe-
rent secret keys in order to resist a brute-force attack [6].
Although the safety of PRNG presented in [22] is estimated
at approximately 2136, it is possible to carry out a successful
brute-force attack with the complexity of less than 2128.

The main contribution of this paper is the security ana-
lysis of the pseudo-random number generator based on
piecewise logistic map [22] which has shown that esti-
mated security of this PRNG, which was not cryptanalized
before, is much higher than its real security level. In order
to demonstrate the deficiencies of this PRNG, a brute-force
attack and an attack based on known sequence of output
bits are presented. Presented attacks are important for two
reasons. First, users of PRNG [22] will know the real secu-
rity level of this PRNG and therefore can decide whether
this security is appropriate for their intended applications.
Second, designers of PRNGs will know that this particu-
lar auxiliary mechanism (and similar ones) used to change
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value of some secret parameter of a chaotic map is not
secure enough and therefore should be avoided in this form
in PRNG design.

A secondary contribution of this paper is the proposed
improvement of the analyzed PRNG which could serve as
a quick patch to prevent proposed attacks until users of
this PRNG switch to a new PRNG. Bearing in mind that
this improvement is designed only with the goal to prevent
attacks presented in this paper, its application in systems
which require very high security is not recommended before
more thorough tests prove that it is completely safe.

The rest of this paper is organized as follows. In
Section 2, the analyzed PRNG is described. The security
analysis and examples of the attacks on the analyzed PRNG
are presented in Section 3. In Section 4, the improvement of
the analyzed PRNG is presented. The performance analysis
of the proposed improvement is presented in Section 5. The
conclusions are drawn in Section 6.

2 Description of the Analyzed PRNG

The analyzed PRNG is based on the piecewise logistic map
(PLM) which is proposed and described in the paper [22].
PLM is defined by
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State value of the PLM is xi ∈ (0, 1), the control parameter
is μ ∈ (0, 4] and N is the number of segments of the PLM.
Secret key of the analyzed PRNG consists of the initial
status value x0 ∈ (0, 1) and parameters μ0 ∈ (0.01, 3.99),
m ∈ (0.01, 0.1) and R0 ∈ [0, 255] [22]. The key space of
this PRNG is estimated at 9.17 · 1040 ≈ 2136, when the
precision of a floating-point number is 10−13 [22]. For the
precision of a floating-point number of 10−15, the estimated
key space is approximately 2156. PRNG proposed in [22] is
described by following steps.

1. Choose the PLM with N = 64. Set the initial values of
the secret key x0, μ0, m, R0.

2. Iterate the PLM one time. Transform the current status
value xi of the PLM to the binary format. Use 8 bits, 9th
to 16th bits after the decimal point, to obtain integer Ki .

3. Calculate Pi = Ki ⊕ S(Ri), where S(Ri) returns the
substitution value ofRi according to the AES S-box [1].

4. Update the value of R by Ri+1 = Ki .
5. Adjust the value of μ based on the following rules:

(i) μi+1 = μi + Pi

256
(ii) if μi+1 > (4 − m) then μi+1 = μi+1 − (4 − m)

(iii) if μi+1 < m then μi+1 = m

6. Omit the first 1024 generated numbers in order to get
rid of the transient effect of the chaotic map. If the
sufficient quantity of pseudorandom numbers have been
generated, stop this PRNG. Otherwise, go to Step 2 to
generate another 8-bit pseudorandom number Pi .

3 Security Analysis

The security level of the analyzed PRNG will be
demonstrated based on its resistance to a brute-force attack
and an attack based on known sequence of output bits.

3.1 The Brute-force Attack on the Analyzed PRNG

It is very important that the secret key is selected in a
random manner. If there is any connection between the
parameters, which are parts of the secret key, the attacker
can take advantage of this connection in order to speed
up the process of cryptanalysis. In step 5 of the analyzed
PRNG [22], a very strong connection between parameters
μi and m is established, which significantly accelerates the
brute-force attack.

In step 5, if μi+1 < m then the value of parameter μi+1

is set to m (μi+1 = m) in order to restore the parameter
μi+1 in the set of allowed values μ ∈ (m, 4 − m]. For that
reason the attacker can guess the secret key xi+1, m, Ri+1

instead of x0, m, μ0, R0 (because some μi+1 = m) which
reduces the complexity of the brute-force attack for 245

times which represents the complexity of the search for μi

when the precision of a floating-point number is 10−13 (or
251 times for precision of 10−15). Here we must bear in
mind that the attacker must repeat the attack for each i > 0
until μi+1 = m is found, which to some extent slows the
described attack.

In order to determine how many attempts are approxi-
mately required to find the case in which μi = m, testing
of the analyzed PRNG was conducted. The number of the
required attempts largely depends on the value of the param-
eter m. When the value of m is lower, the probability of fin-
ding the case in which μi = m is also lower. For this reason,
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tests were conducted for m = 0.01 and m = 0.1. For both
values of parameter m, 200 tests with different values of Pi

were conducted. For m = 0.01 the maximal value of i for
which μi = m was found is i = 2599 and the average value
of i is 530. For m = 0.1 the maximal value of i for which
μi = m was found is i = 223 and the average value of
i is 38.

In order to estimate the total complexity of the described
attack, the worst case scenario for the attacker will be
used. The maximal number of attempts to find the case
in which μi = m was 2599 < 212. Therefore the total
complexity of the brute-force attack on the secret key

xi, m, Ri is approximately 2136·212
245

= 2103 when the pre-

cision of a floating-point number is 10−13. In the case
when the precision of a floating-point number is 10−15, the
total complexity of the brute-force attack on the secret key

xi, m, Ri is approximately 2156·212
251

= 2117. In both cases,

the estimated complexity of the attack is less than 2128 reco-
mmended in [6].

3.2 The Example of the Brute-force Attack
on the Analyzed PRNG

In this section example of the brute-force attack on analyzed
PRNG [22] will be described. Assume that the user of the
analyzed PRNG randomly selected the initial values x0 =
0.519067023060468,μ0 = 2.881509362057897,R0 = 201
and m = 0.09 which will be considered as a secret key.
Based on these initial values, the user generates a sequence
of pseudo random numbers by using the analyzed PRNG.
During this process, the user must calculate the values of μi

for i ≥ 0 which are shown in Table 1.
The attacker does not know any of the secret values, but

know that some value μi will eventually be equal to m.
For this reason, the attacker first tries to find the secret key
x0, m, μ0 = m,R0 by checking all the combinations of
the values x0, m, R0 in order to generate the pseudorandom
number P0. Because μ0 �= m, the attacker cannot generate
P0 and therefore must continue the search. The attacker
repeats this procedure for all xi, m, μi = m,Ri until
the pseudorandom number Pi is successfully generated. In
Table 1 it can be seen that μ18 = m = 0.09. Therefore,
after checking all the combinations of the values x18, m, R18

the attacker can successfully generate the pseudorandom
number P18 and therefore find out the values of the
secret key x18 = 0.211869763952096, m = 0.09, μ18 =
0.09, R18 = 149. This secret key enables the attacker to
calculate all subsequent values of pseudorandom numbers.
The complexity of this search when the precision of a

floating-point number is 10−13 was 19 · 2136

245
< 296. In the

case when the precision of a floating-point number is 10−15,
the total complexity of the brute-force attack on the secret

Table 1 Calculation of μi

i μi Pi μi + Pi

256

0 2.8815093620579 10 2.9205718620579

1 2.9205718620579 81 3.2369781120579

2 3.2369781120579 107 3.6549468620579

3 3.6549468620579 209 4.4713531120579

4 0.561353112057897 76 0.858228112057897

5 0.858228112057897 51 1.0574468620579

6 1.0574468620579 157 1.6707281120579

7 1.6707281120579 182 2.3816656120579

8 2.3816656120579 127 2.8777593620579

9 2.8777593620579 10 2.9168218620579

10 2.9168218620579 253 3.9051031120579

11 3.9051031120579 54 4.1160406120579

12 0.206040612057897 166 0.854478112057897

13 0.854478112057897 113 1.2958843620579

14 1.2958843620579 216 2.1396343620579

15 2.1396343620579 200 2.9208843620579

16 2.9208843620579 161 3.5497906120579

17 3.5497906120579 96 3.9247906120579

18 0.09 33 0.21890625

19 0.21890625 109 0.6446875

key x18, m, R18 is approximately 19·2156
251

< 2110. In both
cases, the estimated complexity of the attack is less than
2128 recommended in [6].

3.3 The Attack on the Analyzed PRNG Based
on Known Sequence of Output Bits

An important feature of cryptographically secure PRNG is
that an attacker cannot obtain information on a secret key
based on known sequence of output bits. Unfortunately,
based on sequence of 8 output bits Pi of the analyzed
PRNG, the attacker can calculate value of Ki which
represents 8 bits, 9th to 16th bits after the decimal point of
part of the secret key xi .

Assume that the attacker knows the values of some 8
output bits Pi of the analyzed PRNG. Because there is no
information about cryptosystem in the paper [22], which is
intended to use the bits generated by the analyzed PRNG,
we can only assume the way in which the attacker can find
out the values of the sequence of output bits. It is fully
expected that the attacker can obtain the sequence of output
bits of the analyzed PRNG based on a certain number of
known plaintext bits.

The attacker guesses the value of part of the secret key Ri

and based on step 3 of the analyzed PRNG [22] calculates
the value of Ki by using the formula Ki = Pi ⊕ S(Ri),
where S(Ri) returns the substitution value of Ri according
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to the AES S-box [1]. Now the attacker knows the values of
8 bits of xi (9th to 16th bits after decimal point) and needs
to guess only the remaining bits of xi (in addition to μi

and m). For this reason, the complexity of the search for the

secret key xi, m, μi, Ri is 2136

28
= 2128 when the precision

of a floating-point number is 10−13 or 2156

28
= 2148 when the

precision of a floating-point number is 10−15. When used
alone, this attack does not lead to a more serious threat to the
analyzed PRNG security, because the required complexity
of the attack is still equal to or higher than 2128 guesses.
However, this attack can further reduce the complexity of
the attack described in the previous subsection.

Assume that the attacker knows the values of first 8 · (i +
1) output bits of the analyzed PRNG P0, ..., Pi . The attacker
guesses the value of Ri and calculates the value of Ki which
reduces the complexity of the search for xi by 28 times.
Then the attacker guesses the remaining bits of xi and m,
assuming that μi = m which further reduces the complexity
of the search for 245 or 251 times depending on the
precision of a floating-point number. The maximal number
of attempts to find the case in which μi = m was estimated
at 2599 < 212. Therefore the total complexity of the brute-
force attack on the secret key xi, m, Ri is approximately
2136·212
245·28 = 295 when the precision of a floating-point number

is 10−13. In the case when the precision of a floating-
point number is 10−15, the total complexity of the brute-
force attack on the secret key xi, m, Ri is approximately
2156·212
251·28 = 2109. In both cases, the estimated complexity of

the attack is less than 2128 recommended in [6]. For this
reason, the analyzed PRNG [22] cannot be considered safe
for the use in cryptographic systems.

3.4 The Example of the Attack on the Analyzed
PRNG Based on Known Sequence of Output Bits

In this section, an example of the attack on analyzed
PRNG [22] based on known sequence of output bits will
be described. In this example, the same initial values as
in the previous example will be considered as the secret
key x0 = 0.519067023060468, μ0 = 2.881509362057897,
R0 = 201 and m = 0.09. Based on these initial values,
the user generate sequence of pseudo random numbers Pi

presented in Table 1, by using the analyzed PRNG.
Assume that the attacker knows the values of first 8·20 =

160 output bits of the analyzed PRNG P0, ..., P19. Also, the
attacker knows that some value μi will eventually be equal
to m. First, the attacker guesses the value of R0 and based
on the known value of P0 = 10 calculates the value of K0

which represents 9th to 16th bits after the decimal point of
x0. After that the attacker tries to guess the remaining bits
of x0 and the value of μ0 = m. However, because μ0 �= m,

the attacker cannot recover the secret key and therefore must
continue the search for i > 0. The attacker repeats this
procedure for all Pi until whole secret key is found.

In Table 1 it can be seen that μ18 = m = 0.09. The
attacker knows the value of P18 = 33 and checks all
possible values of R18. When R18 = 149, the attacker
calculates bits of K18 by using the formula K18 = P18 ⊕
S(R18) and obtains a binary representation of K18 =
11101000. Because K18 represents 9th to 16th bits after the
decimal point of x18 the attacker only needs to guess the
remaining bits of x18 and the value of μ18 = m. In this
way, the attacker recovers values of the secret key x18 =
0.211869763952096, m = 0.09, μ18 = 0.09, R18 = 149
which enables the calculation of all the subsequent values
of pseudorandom numbers Pi for i > 18.

The complexity of this search when the precision of a

floating-point number is 10−13 was 19 · 2136

245·28 < 288. In
the case when the precision of a floating-point number is
10−15, the total complexity of the brute-force attack on the

secret key x18, m, R18 is approximately 19 · 2156

251·28 < 2102.
In both cases, the estimated complexity of the attack is less
than 2128 recommended in [6].

4 The Improvement of the Analyzed PRNG

Although the security of the analyzed PRNG is significantly
threatened, the perceived shortcomings can be removed. The
improvement of the PRNG proposed in [22] is described by
the following steps.

1. Choose the PLM with N = 64. Set the initial values of
the secret key x0, μ0, m, R0.

2. In order to generate one value of Kj , two iterations
of PLM x2j , x2j+1 will be used in the following way.
Iterate the PLM one time. Transform the current status
value x2j of the PLM to the binary format. Calculate
the value of v = f loor(x2j · 32) where f loor(y)

denote a function which map a real number y to the
largest integer less than or equal to y. Let b denote
the bits of x2j after the decimal point. Use 4 bits
bv+8bv+9bv+10bv+11 of x2j as first four bits of integer
Kj . Iterate the PLM once again and transform the value
x2j+1 to the binary format. Calculate the value of w =
f loor(x2j+1 ·32) and use 4 bits bw+8bw+9bw+10bw+11

of x2j+1 as second four bits of integer Kj .
3. Calculate Pj = Kj ⊕ S(Rj ), where S(Rj ) returns

the substitution value of Rj according to the AES
S-box [1].

4. Update the value of R by Rj+1 = Kj .
5. Adjust the value of μ based on the following rules:

(i) μj+1 = μj + Pj

256
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(ii) if μj+1 > (4− m) then μj+1 = μj+1 − (4− m)

(iii) if μj+1 < m then μj+1 = μj+1 + m

6. Omit the first 1024 generated numbers in order to get
rid of the transient effect of the chaotic map. If the
sufficient quantity of pseudorandom numbers has been
generated, stop this PRNG. Otherwise, go to Step 2 to
generate another 8-bit pseudorandom number Pj .

In the proposed improvement, only the necessary
changes are made in order to avoid the perceived short-
comings, while at the same time most of the features of the
original PRNG are preserved. For this reason, steps 1, 3, 4
and 6 have remained unchanged. In step 2, two important
changes were made. First, two iterations of PLM are used in
order to obtain integer Kj , instead of one. In this way, based
on step 3, the attacker can discover only four bits of some xi

instead of eight bits in the original version of the analyzed
PRNG. Although the attacker can also discover four bits of
the next iteration of PLM xi+1, these bits cannot be used
in order to recover the value of xi . Second, the positions of
bits from xi used to obtain integer Kj are not fixed as in the
original version of the analyzed PRNG, but they depend on
value of xi . The attacker can calculate the values of four bits
of xi , based on step 3, which could reduce the complexity of
the attack on xi by 24 if the positions of these bits were fixed.
However, because there are 32 = 25 different positions in
which four bits from Kj could be located in xi , the attacker
cannot use this information to reduce the search complexity.

In step 5, the rule (iii) from the original version of the
analyzed PRNG is changed to:

(iii) if μj+1 < m then μj+1 = μj+1 + m.
In this way, a significant relationship between parameters

μj and m is avoided. Therefore, the attacker is forced to
guess the whole key x2j , m, μj , Rj , because the situation
in which μj+1 = m is highly unlikely. Based on the above
changes the perceived shortcomings of the original version
of the analyzed PRNG are removed. Therefore, the security
of this improvement of the analyzed PRNG is estimated at
2136 when the precision of a floating-point number is 10−13

and 2156 in the case when the precision of a floating-point
number is 10−15. This security level satisfies the general
requirement for resisting brute-force attack [6].

Also, the security of the improved PRNG can be
additionally improved by using additional parameters. Step
5 could be completely changed toμj+1 = f (μj )where f is
some chaotic map. For example, any of the chaotic maps [7,
15, 16] can be used with certain modifications. In this way,
the parameters of used chaotic map could be considered
as additional part of a secret key, so the complexity of the
brute-force attack would be increased.

5 Performance Analysis of the Proposed
Improvement

In this section a randomness analysis of the proposed
improvement will be conducted in order to determine
whether the proposed changes to the original PRNG affec-
ted the randomness of the generator. The randomness of
the original version of the analyzed PRNG was determined
according to the NIST 800-22 test suite so the same test will
be applied to the improved version. Also, some important
characteristics of the original and improved version of the
analyzed PRNG will be compared.

5.1 Randomness Analysis

The NIST test suite is a standard library of tests which
is used for statistical testing of randomness of binary
sequences [19]. The NIST test suite consists of 15 tests
which are aimed to detect various regularities in bit
sequences. In several papers, including the paper [22] in
which the analyzed PRNG is proposed, the randomness of
some PRNG is evaluated by using NIST library in the follo-
wing way. A certain number of sequences are generated and
tested, and afterwards the fraction of sequences that pass
each test are calculated. In order to confirm the randomness
of a generator the fraction should be from the interval

(1 − α) ± 3

√
α

n
(2)

where α = 0.01 and n is the number of tested sequences. In
order to determine the randomness of the improved version
of the analyzed PRNG, 1,000 sequences of 1,000,000 bits
each are tested by using the NIST test suite. The results are
shown in Table 2.

Random excursions, random excursions variant, and non-
overlapping template tests are actually families of subtests
which consist of more than one test. Random excursions
and random excursions variant consist of 8 and 18 tests
respectively (which is a reasonable amount of data) so all
results could be included in Table 2. The non-overlapping
template consists of 148 tests which is a significant amount
of data so only the minimum and maximum proportions
are presented in Table 2. All proportions for the non-
Overlapping template test are in the interval [0.984, 0.997].

Also, random excursions and random excursions variant
tests have certain limitations which prevented testing of
the whole sample. These tests are not applicable to the
binary sequences with an insufficient number of cycles
which is below 500. For this reason only 631 samples with
the number of cycles exceeding 500 were evaluated for
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Table 2 Results of the NIST statistical tests

Test name Number of sequences with Average Proportion of Result

P value ≥ 0.01 (success) P value successful sequences

Approximate entropy 988 0.185048 0.988 Success

Frequency within a block 997 0.447995 0.997 Success

Cumulative sums forward 987 0.508602 0.987 Success

Cumulative sums reverse 985 0.381264 0.985 Success

Discrete Fourier transform 988 0.331273 0.988 Success

Frequency 990 0.450657 0.990 Success

Longest run in a block 993 0.613824 0.993 Success

Non-overlapping template min 984 0.194456 0.984 Success

Non-overlapping template max 997 0.835112 0.997 Success

Overlapping template 993 0.287577 0.993 Success

Binary matrix rank 993 0.744921 0.993 Success

Runs 997 0.661632 0.997 Success

Serial 1 989 0.488778 0.989 Success

Serial 2 987 0.318319 0.987 Success

Linear complexity 995 0.517693 0.995 Success

Maurer’s universal 992 0.301948 0.992 Success

Random excursions (sample size 631)

x=-4 626 0.650356 0.992 Success

x=-3 623 0.388204 0.987 Success

x=-2 624 0.797707 0.989 Success

x=-1 622 0.501301 0.986 Success

x=1 629 0.790598 0.997 Success

x=2 622 0.382221 0.986 Success

x=3 629 0.738245 0.997 Success

x=4 625 0.267224 0.990 Success

Random excursions variant (sample size 631)

x=-9 624 0.470731 0.989 Success

x=-8 622 0.550339 0.986 Success

x=-7 628 0.719477 0.995 Success

x=-6 624 0.616291 0.989 Success

x=-5 625 0.423868 0.990 Success

x=-4 625 0.629319 0.990 Success

x=-3 628 0.751553 0.995 Success

x=-2 628 0.830396 0.995 Success

x=-1 623 0.939853 0.987 Success

x=1 625 0.461538 0.990 Success

x=2 625 0.423049 0.990 Success

x=3 623 0.665131 0.987 Success

x=4 623 0.676577 0.987 Success

x=5 622 0.741656 0.986 Success

x=6 623 0.821879 0.987 Success

x=7 626 0.856535 0.992 Success

x=8 626 0.519009 0.992 Success

x=9 623 0.601558 0.987 Success
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these tests [22]. According to the results from Table 2, we
can claim that the proposed improvement of the analyzed
PRNG successfully passed all NIST tests due to fact that
all proportions are within the interval defined by the Eq. 2.
Therefore, the proposed improvement of the original PRNG
can be used for pseudo-random number generation.

5.2 Comparison of the Analyzed and the Improved
PRNG

In this section, the analyzed PRNG [22] and its improve-
ment proposed in this paper will be compared according
to some basic criteria for which there is available data
in paper [22]. The comparison results are summarized in
Table 3.

The ability to produce a pseudo-random sequence is
an essential characteristic of every PRNG. According to
the NIST test suite, both versions of the analyzed PRNG
(original and improved) satisfy this requirement. Another
very important property of a random number generator is
its speed which depends on a number of operations required
to obtain one bit or certain number of bits which represent
the output of one iteration of a generator. The original and
improved version of the analyzed PRNG produce 8 bits per
one iteration. The original version of the analyzed PRNG
require only 18 basic operations in order to generate 8
bits. The improved version of the analyzed PRNG require
32 operations in order to generate 8 bits, which is almost
double compared to the original. However, this cost in
the complexity and speed is small if we consider that the
improved PRNG is much safer than the original PRNG.
Bearing in mind that the original version of the analyzed
PRNG has a very good reported speed of about 164

Table 3 Comparison of the analyzed and the improved PRNG

Analyzed Improved

PRNG [22] PRNG

NIST Pass Pass

ine Basic operations

per iteration 18 32

ine Security level

precision 10−13 295 2136

ine Security level

precision 10−15 2109 2156

ine Resistance to

the attack based

on known sequence No Yes

of output bits

ine Resistance to the

brute-force attack No Yes

Mbit/s [22], the speed of the improved version (which is
almost two time slower) should be sufficient for every
application of the original PRNG.

When we consider security levels of the original and
improved versions of the analyzed PRNG, the data from
Table 3 show that the improved version of the analyzed
PRNG has much better security than the original version.
Regardless of the precision used to represent floating point
numbers, the advantage of the improved version with
respect to security is so great that it fully justifyies the
reduced speed. When the precision of 10−13 is used, the
improved version is 241 times safer than the original version
of the analyzed PRNG.When the precision of 10−15 is used,
the security advantage is even greater because the improved
version is 247 times safer than the original version of the
analyzed PRNG.

If we consider safety against attacks based on known
sequence of output bits, the original version of the analyzed
PRNG suffers from the reduced security by 28 times if the
attacker knows sequence of 8 output bits. On the other hand,
the improved version of the analyzed PRNG is immune to
this type of attack and its security is the same regardless of
the attacker’s knowledge of output bits.

When the safety of a PRNG against a brute-force attack is
in question, a PRNG must have at least 2128 different secret
keys in order to resist this type of attack [6]. Although the
key space of the original version of the analyzed PRNG [22]
has more than 2128 different secret keys regardless of a
precision used, due to the connection between parameters
μi and m established in step 5, the number of possible keys
is reduced below the acceptable level after a certain number
of iterations. Because all the values of μi+1 < m are set to a
single value m it means that all the keys x0, m, μ0, R0 after
i + 1 iterations generate sequences which are equivalent to
sequences generated by a much shorter key xi+1, m, Ri+1.
Therefore, the original version of the analyzed attack cannot
resist a brute force attack on the secret key xi+1, m, Ri+1.
On the other hand, the improved version of the analyzed
PRNG has the same size of key space, which is larger
than 2128, regardless of the number of iterations. Therefore
we can consider that the improved version of the analyzed
PRNG is safe against a brute-force attack.

6 Conclusion

In this paper, a security analysis of the pseudorandom
number generator based on piecewise logistic map [22] is
presented. The security analysis revealed some defects in
the design of this PRNG which cause serious problems.
Although the assumed safety of this pseudo-random number
generator (PRNG) is estimated at 2136, it is possible to
carry out a successful brute-force attack with the complexity
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of about 2103. If an attacker knows some values of Pi ,
this attack can be further reduced to the complexity of
about 295. For this reason, the analyzed PRNG cannot be
considered safe for the use in cryptographic systems. In
order to eliminate the perceived shortcomings, the improved
version of the analyzed PRNG is proposed which satisfies
the general security requirements.
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10. Lambić D (2018) Security analysis of the efficient chaos pseudo-
random number generator applied to video encryption. J Electron
Test 34:709–715
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