
Journal of Electronic Testing (2019) 35:529–541
https://doi.org/10.1007/s10836-019-05816-w

Hardware Trojan Detection Leveraging a Novel Golden Layout
Model Towards Practical Applications

Yanjiang Liu1 · Jiaji He1 ·HaochengMa1 · Yiqiang Zhao1

Received: 27 January 2019 / Accepted: 26 June 2019 / Published online: 20 July 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Globalization trend in integrated circuit design and manufacturing process has increased the vulnerability of integrated
circuit. These vulnerabilities mainly caused by hardware Trojan have a serious impact on the security of integrated circuits.
Although side-channel analysis approach is the most promising Trojan detection approach, nearly all side-channel analysis
approaches rely heavily on the availability of golden chips, which are extremely difficult to obtain. In this paper, a golden
layout model instead of fabricated golden chips is introduced for the practical application of hardware Trojan detection
approaches. The simulated voltage variations generated from the golden layout model at different process corners serve
as golden reference, thus fabricated golden chips are not required during detection. Further, silicon measurements are
performed to obtain the voltage variations of fabricated chips, and a model calibration algorithm is utilized to calibrate the
golden model in the presence of process variations and random noise. Finally, the Trojan detection is formulated as a two-
class classification problem, and the Trojan is identified using the partitioning around medoids algorithm. Experimental
results demonstrate that the similarities between the simulated traces and measured traces are greater than 98.81%, and the
proposed approach distinguishes the Trojan chips correctly even under ±15% process variation.

Keywords Integrated circuit · Hardware trojan · Side-channel analysis · Golden layout model · Model calibration
algorithm · Partitioning around medoids algorithm

1 Introduction

With an ever growing of economic globalization, fabless has
become a main trend in the integrated circuits (ICs) market.
Although such trend dramatically lowers the fabrication
cost and reduces the time to market, it also provides
an opportunity for adversary to implant hardware Trojan
into the original design. Once the hardware Trojan is
triggered, it can cause functional changes, information
leakage, privilege escalation or even system failure. As
a well-designed malicious modification, hardware Trojan
has become a serious threat to the security of critical
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applications spanning on the domains of space, military,
communication, finance, and so on [45].

Given the catastrophic consequences caused by hardware
Trojan, various detection approaches have been explored
over the past decades. It can be broadly classified into:
1) destructive (e.g. reverse engineering) and 2) non-
destructive (e.g. logic testing, run-time monitoring and
side-channel analysis) [17]. Among all existing Trojan
detection approaches, side-channel analysis approaches
have been widely recognized by researchers. Starting with
the global power consumption-based method presented
in [1], numerous side-channel parameters, including the
leakage current [10, 40], transient current [29], path delay
[24, 26], electromagnetic emanation [4, 27, 43], temperature
[5], thermal signal [37, 46], as well as multiple parameters
combinations [33, 36], have been explored to strengthen
the side-channel analysis approaches. The primary part of
side-channel analysis approaches is golden chips, which
are exploited as golden reference to identify the existence
of hardware Trojan by comparing with chips under test.
However, the real case is that the golden chips are extremely
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difficult to achieve, thus, side-channel analysis approaches
have always been criticized for its applicability.

To address this issue, several golden chip-free Trojan
detection approaches are proposed over the past few years,
which shift the need of fabricated golden chips to golden
model and identify the Trojan by comparing with the
simulated traces of golden model [11, 13, 20–22, 30,
35, 47–49, 51, 53]. Majority of existing golden chip-free
Trojan detection approaches concentrate on the gate-level
simulation, however, several problems introduced by place
and route, such as the timing imbalances, parasitic effects
and coupling effects, are not taken into consideration during
the golden model establishment process. Only in [30], the
post-layout simulation data serves as the golden reference,
but the intra-die variations and random noise are not taken
into account during the model calibration process.

In this paper, a golden model instead of fabricated golden
chips is proposed for practical application of hardware
Trojan detection approaches. For the golden modeling,
layout data is used to perform the post-layout simulation,
and the simulated voltage variations at different process
corners are regarded as golden reference. Further, a model
calibration algorithm, including the data denoising process
and model compensation process, is proposed to calibrate
the golden model with the measured traces. During the
model calibration, a data denoising algorithm is exploited
to reduce the random noise mixed into the measured traces,
and then a model compensation algorithm is proposed to
compensate the golden model with the denoised traces.
Finally, the partitioning around medoids algorithm (PAM)
is used to classify the calibrated traces and denoised traces,
and the hardware Trojan is identified when it falls outside
the class of golden model. The main contributions are listed
as follows.

• A golden layout model is established and the simulated
voltage variations generated from the golden layout
model serve as golden reference. There is no need for
fabricated golden chips during detection.

• A model calibration algorithm is exploited to calibrate
the golden model, which makes the golden model
matches well with the actual silicon measurements.

• Fabricated chips instead of Field Programmable Gate
Arrays (FPGAs) are utilized to validate the proposed
approach, and the Trojan chips are identified correctly
using the PAM algorithm.

The remainder of this paper is organized as follows.
Section 2 investigates the attack model, related works about
the golden chip-free Trojan detection approaches and power
simulation methods. Section 3 presents the theoretical
analysis of golden layout modeling methodology, and
Section 4 gives the Trojan detection framework, model
calibration algorithm and partitioning around medoids

algorithm. Section 5 analyzes the experimental results and
Section 6 concludes this paper.

2 Background

2.1 Attack Model

Through outsourcing the manufacturing process to the third
party foundry, a malicious adversary in foundry may insert
hardware Trojans into the fabricated chips. Therefore, the
hardware Trojan attack scenario is mainly at the third party
foundry, and the synthesized gate-level netlist and layout
are assumed to be trusted. The supply voltage variation
is chosen as the side-channel parameter instead of other
parameters like electromagnetic emanation, delay, thermal
and so on, because there exist several matured commercial
simulation tools (e.g. HSPICE, Nanosim [23] and Spectre
[8]) to obtain the voltage variations accurately.

2.2 Golden Chip-Free Trojan Detection Approaches

Most existing side-channel analysis approaches require
several golden chips for reference, however, fabricated
golden chips are not always available during detection.
To address this problem, several golden chip-free Trojan
detection approaches have been proposed over the past
decades, which replace the requirement of golden chips
with golden model. The method presented in [20] proposes
golden electromagnetic model. In [30], a golden current
model is built using the HSPICE. Besides, authors regard
the hardware Trojan detection as a two-class classification
problem in [48] and train the classification algorithms
using the simulation data. The Trojan chips are identified
when it fall outside the classification boundary. Due to
the randomness over the manufacturing process, it is
extremely difficult to obtain an accurate model of process
variations and thus there exist obvious differences between
the simulated traces of golden model and the measured
traces of fabricated chips in real applications. Therefore,
such approaches suffer from low detection sensitivity with
ever-decreasing Trojan size because the influences of well-
designed Trojans are minute and carefully hidden within the
design margins allowed for process variations.

Taking the side-channel traces as its own reference,
self-referencing method eliminates the influences of inter-
die variations and avoids the requirement of fabricated
golden chips at the same time, which has become a popular
research direction. A regional self-referencing approach is
proposed to divide a large design into several small sub-
regions, and then the relationship of transient current among
the different sub-regions is analyzed and the hardware
Trojan is identified when the relationship is changed [11,
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22, 47]. This idea is also extended to detect the recycled
chips [53]. However, some types of Trojans, like always-
on and parametric changes type, this approach is unable to
detect it. Besides, a temporal self-referencing approach is
presented in [35], the transient current with its own at two
different time windows is compared to detect the Trojan
and improvements are made in [21]. Such approaches
are effective in identifying the rarely-activated sequential
Trojans, but it is only applied to the case that fully aware of
the implementation of Trojan during detection. Moreover,
a spatial self-referencing approach is proposed in [13, 49,
51], which identifies the path of implanted hardware Trojan
when the delay differences among the symmetry paths
exceed the threshold value. Indeed, there exist millions of
paths that possibly inserted the hardware Trojan and the
verification effort has increased exponentially for achieving
a high detection sensitivity.

2.3 Power SimulationMethods

Concerning the power simulation of circuit, several papers
have been explored over the past several decades. In
general, some circuit simulators, like the HSPICE, Nanosim
and Spectre, are exploited to carry out the power
simulation. Four models, including the Hamming distance
[9], Hamming weight [7], Hamming distance zero to one
and Hamming distance one to zero [32, 39], are proposed to
obtain the power traces of cryptographic circuit. Moreover,
Daisuke et al. [14] introduce a time series divided parasitic
capacitance model to acquire the power traces quickly
for performing the side-channel attacks. From [34], the
ON current of a switching gate is presented and the total
transient current is obtained by adding up all the switching
gates. In [19], a failure physics model is proposed, which
simplifies the digital circuit as a second-order band pass
filter.

While there are some works giving similar solutions
already, they mainly concentrate on the gate-level simu-
lation [7, 9, 14, 20, 30, 32, 34, 39, 48]. However, some

problems, like the timing imbalances, parasitic effects and
coupling effects and so on, introduced by the place and route
have not taken into account in the gate-level simulation.
As the technology today has shrunk to nanometer dimen-
sions, these problems become more and more evident which
affect the side-channel traces seriously. Addressing this
issue, the post-layout simulation has been explored over the
past decades, including the side-channel attack evaluation
[6, 44], circuit performance prediction [25, 31, 52], Trojan
detection [30] and so on. Accordingly, the post-layout sim-
ulation is performed and regarded as golden reference in
this paper, and this golden reference matches well with the
actual silicon measurements by comparing with the [30].
This is mainly because the inter-die variations, intra-die
variations and random noise are all considered during the
model calibration process.

3 Golden Layout ModelingMethodology

In this section, the switching characteristics of a basic
logic gate, i.e. inverter, are analyzed firstly, and then the
simplified switch-based model of an inverter is given.
Further, the simplified switch-based model of chip is
deduced by summing over all the switching gates, and
the Trojan detection based on the simplified switch-based
model is presented finally.

Figure 1 illustrates the traditional structure and simplified
switch-based model of an inverter. When the input Vin

switches from logic “1” to logic “0”, the load capacitance
C is charged and the charging current Ic flows from the
power port VDD to the ground port GND. Contrarily, C is
discharged and there exist a discharging current Id between
the C and NMOS. The charge-discharge process of an
inverter is illustrated in Fig. 1a. The I-V characteristics of
an inverter can be modelled as charging and discharging
process of a series RLC circuit depicted as the Fig. 1
(b). Where R1, L1 and C1 respectively are the lumped
resistance, inductance and capacitance, which can be

Fig. 1 Traditional structure and
simplified switch-based model
of an inverter. a Traditional
structure and charge-discharge
process of an inverter. b
Simplified switch-based model
and charge-discharge process of
an inverter
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extracted from the layout using the Calibre xRC [8]. When
the Vin switches from logic “1” to logic “0”, the switch
K1 and K1 are turn on and off respectively, and C1 is
charged. On the contrary, K1 and K1 are turn off and
on respectively, and C1 is discharged. According to the
engineering circuit analysis theory [18], the transient current
Ig(t) flows through the ground port is presented in Eq. 1.
Where the voltage VC1(0) across the C1 is equal to VDD and
0 respectively before the C1 is discharged and charged.

L1
dIg(t)

dt
+ R1Ig(t) + 1

C1

∫ t

0
Ig(t)dt − VC1(0) = 0 (1)

The Laplace transformation of Eq. 1 is presented in Eq. 2.

L1C1s
2Ig(s) + R1C1sIg(s) + Ig(s) = 0 (2)

By using the inverse Laplace transformation to Eq. 2, Ig(t)
is obtained and depended on the R1, L1 and C1.

For a large-scale digital chip which consists of millions
or billions of gates, the total transient current flows to
the ground plane is determined by adding up the transient
current of all switching gates of chip. Thus, the simplified
switch-based model of a gate described in Fig. 1b is parallel
with each other to form the switch-based model of chip
which is depicted in Fig. 2.

Summing over all the switching gates in the chip, the
total transient current Itot g(t) of golden chip is described in
Eq. 3. Where n is the total number of switching gates of
chip. In addition, several correlations between the switching
characteristics of the different CMOS gates are also taken
into account. For example, the output of a CMOS gate feeds
to the input of another gate would certainly cause their
switching times to cascade, overlap, and so on.Where�tg is
the switching time difference of Ig(t) caused by correlations
between the switching gates.

Itot g(t) =
n∑

g=1

Ig(t − �tg) (3)

In the presence of a hardware Trojan in the chip, the total
transient current Itot t(t) of Trojan chip is shown in Eq. 4.

Fig. 2 The simplified switch-based model of chip

Where Iht(t) is the total transient current incurred by h
switching gates of hardware Trojan. Although hardware
Trojan keeps silence in the majority of life, the Trojan’s
trigger part keeps active and monitors the internal logic
value or state all the time. Therefore, h is always greater
than 0 and the Iht(t) makes it possible to detect the Trojan.
Moreover, the structural changes of chip introduced by
the hardware Trojan, may change the value of parasitic
parameters of m switching gates near the hardware Trojan,
and the �Itot g(t) is the total current fluctuations of these
switching gates.

Itot t(t) = Itot g(t) + Iht(t) + �Itot g(t) (4)

Comparing the Eqs. 3 and 4, hardware Trojan distorts
the total transient current of chip, and these distortions
(�Itot g(t) and Iht(t)) make it possible to detect the Trojan.

4 Golden Chip-Free Statistics Side-channel
Analysis and Hardware Trojan Detection

4.1 Trojan Detection Framework

The overall framework of golden chip-free Trojan detection
is shown in Fig. 3, including the pre-silicon simulation
phase, model calibration phase, and Trojan detection phase.
In the pre-silicon simulation phase, the spice netlist,
parasitic parameters, and stimuli are feed into the power
simulator and the simulated traces of golden model at
different process corners are obtained, which is IS(t). In
the model calibration phase, the measured traces IF(t) of
fabricated chips are acquired using the ASIC-platform,
and a data denoising algorithm is utilized to eliminate
the random noise mixed into the IF(t), and a model
compensation algorithm is exploited to calibrate the IS(t)
with the IDG(t). The denoised traces of golden chips and
chips under test respectively are IDG(t) and IDC(t), while
the calibrated traces of golden model are IM(t). Finally, the
partitioning around medoids algorithm (PAM) is exploited
to classify the IM(t) and IDC(t), and the chips under test are
classified as golden chips or Trojan chips during the Trojan
detection phase.

4.2 GoldenModel Calibration

The principal basis of golden chip-free Trojan detection
methodology is to find the differences between the simu-
lated traces generated from golden model and the measured
traces of chips under test. To ensure a better Trojan detection
sensitivity, golden model should be designed for match-
ing well with the actual silicon measurements. However,
random noise and process variations exist in the real exper-
iment, and affect the side-channel traces of fabricated chips
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Fig. 3 Overall framework of Trojan detection

seriously. For a well-designed Trojan, the influences of Tro-
jan are minor and easily hidden within these differences,
thus, the detection sensitivity is reduced with decreasing
Trojan sizes and increasing circuit sizes [20, 21]. There-
fore, process variations and random noise should be taken
into consideration during the golden model establishment
process, and a model calibration technique is necessary in
order to make the golden model matches well with the actual
silicon measurements.

4.2.1 Denoising Analysis

As for the random noise, a data denoising algorithm
combines empirical mode decomposition (EMD) with the
Savitzky-Golay filter is exploited to reduce the influences
of random noise mixed into the measured traces. Compared
with the other traditional decomposition methods, EMD
decomposes the signal into a set of intrinsic mode functions
(IMFs) without any predefined basic functions [3]. After the
decomposition process, the random noise mixed into each
IMF is filtered out using the Savitzky-Golay filter [42], and
several denoised IMFs are summed to obtain the denoised
signal.

The first trace IF1 of IF(t) is used to explain the whole
denoising process, and the decomposed signal IMFa after
the decomposition process is presented in Eq. 5. Where c is
the number of IMFs, r is the final residue, and IMFi is the
i-th IMF.

IF1 = IMFa + r =
c∑

i=1

IMFi + r (5)

The decomposition process is completed until the current
residue r is monotonic. The decomposition process is
described in Eq. 6. Where IMF0 is the measured trace IF1 ,
and mi−1 is the mean value of the upper and lower envelope
of IMFi−1.

IMFi = IMFi−1 − mi−1 (6)

After decomposed by the EMD, all IMFs are denoised using
the Savitzky-Golay filter, and the denoised trace ID1 is
obtained as described in Eq. 7. Where IMF′

i is the denoised
IMFi .

ID1 =
c∑

i=1

IMF′
i (7)

4.2.2 Golden Model Compensation

Radial basis function neural network (RBFNN) is a feed-
forward neural network, which is consisted of three layers
shown in Fig. 4: input layer, pattern layer and output
layer. For the RBFNN, the multilayer feed-forward network
structure not only avoids the cumbersome calculations in
back-propagation network, but also overcomes the problem
of local minimum in the gradient descent algorithm.
Moreover, RBFNN involves a hybrid learning process and
the weights between hidden layer and output layer are
adaptive adjusted dynamically. In summary, the simple
structure, fast learning process and high approximation
accuracy have made RBFNN an ideal choice to be
used in the nonlinear regression applications. For the
influences introduced by process variations, there exist
some mismatches between the simulated traces and
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Fig. 4 Traditional structure of
RBFNN

measured traces, however, these mismatches between the
IS(t) and IDG(t) can be determined with any given accuracy
using the radial basis function neural network (RBFNN) [2,
16, 28, 41]. The IS(t) and IDG(t) are used to explain
the nonlinear regression process of RBFNN, and the
relationship f between IS(t) and IDG(t) is presented in
Eq. 8.

IS(t)
f→ IDG(t) ⇒ IDG(t) = f (IS(t)) (8)

The input layer with n neurons (e.g. x1, x2, · · · , xn)
receives n-dimensional input data set IS(t)={IS1 , IS1 , · · · ,
IS1}. The hidden layer calculates the radial basis function
value �(X, C, D) of each hidden neuron, which is presented
in Eq. 9. To ensure the local approximation ability, the
Gaussian function is used as the radial basis function in this
paper. Where the C(i)={ci1, ci2, · · · , cin} and D(i)={di1, di2,
· · · , din} are the center and spread of i-th hidden neuron
respectively. The value of output layer is the sum of the
multiplications of the weights and the output values of
hidden neurons and shown in Eq. 10. Where yj is the j-th
output neuron and wij is the weight between the j-th output
neuron and i-th hidden neuron.

�(IS(t), Ci, Di) = exp

(
−

∥∥∥∥IS(t) − Ci

Di

∥∥∥∥
2
)

(9)

yj =
m∑

i=m

wij�(IS(t), Ci, Di) (10)

Finally, in the following Eq. 11, the root mean square
error RMSE between the output layer and expect output
(denoted as IDG(t)) is calculated to evaluate the fitting
performance. Where k is the number of output neurons and
IDG(t)={IDG,1, IDG,2, · · · , IDG,k}. The nonlinear regression
process is completed when the RMSE is less than the fitting
error ε, otherwise, the weight wij , center Ci and spread Di

are adjusted iteratively using the gradient descent algorithm.

RMSE =
√∑k

j=1(yj − IDG,j )2)

k
(11)

For n fabricated golden chips, the side-channel traces are
always differed from the pre-designed one due to the effect
of process variations, which are denoted as IDG1(t), IDG2(t),
· · · , and IDGn(t), thus, the corresponding relationship f is
not consistent with each other. The Eq. 8 can be re-written
as the Eq. 12. Where fi is the mapping relationship between
the IS(t) and IDGi

(t).
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

IDG1(t)

IDG2(t)
...
IDGn(t)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f1(IS(t))

f2(IS(t))
...
fn(IS(t))

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(12)

In the real scenario, only a small amount of fabricated
golden chips required from the model calibration process
can be verified using reverse engineering, which incurs
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additional verification cost and time undoubtedly. Consid-
ering the catastrophic consequences caused by hardware
Trojan, we have to sacrifice the cost and time to improve
the precision of the golden model. To further compress the
cost and time, Monte Carlo simulation is used to further
emulate the other fabrication processes for reducing the
number requirement of golden chips. The threshold value of
PMOS and NMOS is shifted with ±5%, ±10% and ±15%
Gauss random variations, and the circuit is simulated with
those modified predictive technology model, and k simu-
lated Monte Carlo traces (e.g. IS1(t), IS2(t), · · · , ISk

(t)) are
obtained. Using the relationship f presented in the Eq. 12,
the calibrated traces IM(t) are constructed as Eq. 13. Where
IMij

(t) is the image of j-th simulated trace ISj
(t) under the

mapping relationship fi .

IM(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

IM11(t), IM12(t), · · · , IM1k (t)

IM21(t), IM22(t), · · · , IM2k (t)
...

...
. . .

...
IMn1(t), IMn2(t), · · · , IMnk

(t)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f1(IS1(t)), f1(IS2(t)), · · · , f1(ISk
(t))

f2(IS1(t)), f2(IS2(t)), · · · , f2(ISk
(t))

...
...

. . .
...

fn(IS1(t)), fn(IS2(t)), · · · , fn(ISk
(t))

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(13)

4.3 Trojan Detection Based on Partitioning Around
Medoids Algorithm

After the model calibration, the golden model matches
well with the actual silicon measurements, thus, IM(t) is
approximate to IDG(t), i.e. IM(t) ≈ IDG(t). Accordingly,
the IM(t) of golden model can substitute for the side-
channel traces of fabricated golden chips in the real case.
As described in the Eq. 4, the hardware Trojan distorts the
side-channel traces of chips, so, the denoised traces IDT(t)
of Trojan chips can be re-written as the Eq. 14. Where
�Iht(t) is the difference between the IM(t) and IDT(t), and
�Iht(t)≈ �Iht(t)+Itot g(t).

IDT(t) = IDG(t)+Iht(t)+�Itotg (t) ≈ IM(t)+�Iht(t) (14)

Therefore, Trojan detection can be formulated as outlier
detection. Partitioning around medoids algorithm (PAM) is
a data clustering algorithm based on the similarity of data
sets [12, 38, 50], and is very suitable for identifying the
existence of Trojan. The IDG(t), IDC(t) and IM(t) form the
data sets D, and all samples in D are classified as two
classes: 1 (Golden class) and 2 (Trojan class). In the PAM, 2
centroids are chosen from theD randomly, and each sample
is assigned to the closest centroid based on the similarity

measureZ . TheZ ofDj is described in Eq. 15. Where ψi is
the centroid of the i-th class, and Dj is the j-th sample of D.

Z = argmin
Dj ∈ψi

∥∥Dj − ψi

∥∥2 (15)

After the data clustering, the cost functionF is used to evaluate
the clustering quality, which is shown in Eq. 16. F is defined
as the sum of total intra-class distance between the samples
and the centroid of each class. Where L1 and L2 are the
sample number of two classes, and N is the total sample
number of D, and L1+L2=N. The classes of all samples in
D are determined until the F reaches the minimum value,
otherwise, 2 centroids are chosen from the D randomly and
the clustering quality is evaluated iteratively.

F =
2∑

i=1

Li∑
j=1

∥∥Dj − ψi

∥∥2 (16)

5 Experimental Results and Analyses

5.1 Experiment Setup

An ASIC-platform is set up to acquire the voltage variations
of fabricated chips, which is composed of a test board,
personal computer (PC), DC power supply (DP1380A),
dual-channel signal generator (DG5000) and mixed signal
oscilloscope (MSO4054), as depicted in Fig. 5. PC provides
the stimulus to test board and receives the feedback via
serial interface. The test board with a chip socket is
utilized to replace the fabricated chips, and 1 � precision
resistor (R) is used to measure the voltage variations of
fabricated chips and the voltage variations are recorded
by the oscilloscope with the 2.5 GHz/s sampling rate.
According to the Ohm’s law, the voltage variation across
the R is equal to the current flowing through the power pin
of chip. The DC power supply provides 3.3 V and 1.8 V
stable voltage source to the test board, and the dual-channel
signal generator supplies a 1.5 MHz clock signal to the
chip. A 128-bit advanced encryption system is adopted as
the golden circuit, which is denoted as AES G, and 4-bit
(denoted as Trojan1), 8-bit (denoted as Trojan2) and 12-bit
(denoted as Trojan3) counter are applied as Trojan, which
occupy 0.36%, 0.72% and 1.09% of the size of golden
circuit respectively. The average power of Trojan1, Trojan2,
and Trojan3 are 1.1μW, 1.6μW and 3.4μW respectively,
while the delay of Trojan1, Trojan2, and Trojan3 are 12 ps,
16.8 ps and 22.5 ps respectively. All parasitic parameters,
like the parasitic resistance, capacitance and inductance,
are extracted from the layout using the Calibre xRC. To
emulate the influences of process variations (PVs), both the
inter-die and intra-die variations are set to ±5%, ±10%
and ±15% Gauss random variations respectively. The chips
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Fig. 5 Experiment setup. a Block diagram of ASIC-Platform. b Photograph of ASIC-Platform

are fabricated in Chartered 180 nm technology [15], and
this library provided by foundry is utilized to carry out the
post-layout simulation.

5.2 Golden Reference Generation

Monte Carlo simulations under ±5% PV, ±10% PV and
±15% PV are performed in HSPICE, and 20 simulated
traces under ±5% PV randomly selected are illustrated
in Fig. 6. Each trace represents the voltage variations
of circuit during an encryption process. From Fig. 6,
it can be observed that all traces are similar and there
exist several differences at some points actually. Analysis
results show that process variations can vary the maximum
difference within 44.8 mV, and more than 90% differences
in magnitude fall in 8.7 mV. Euclidean distance is
an effective similarity measurement method, which can
be used to differentiate the hardware Trojan when the
differences exceed the threshold value. The Euclidean
distances between the voltage variations of golden circuit
and Trojan circuit are calculated and the results are shown

Fig. 6 20 simulated traces of golden model

in Fig. 7. Regarding Fig. 7, the Euclidean distances are
ranged from 0.1 to 0.22, and the Euclidean distances of
Golden, Trojan1, Trojan2 and Trojan3 overlap with each
other. This results indicate that the side-channel differences
caused by hardware Trojan are minor and easily masked
by the process variations. Therefore, the hardware Trojan
cannot be differentiated with simple measurement.

Besides, the voltage variations of fabricated chips are
exposed to all kinds of random noise in the real experiment
and thus the differences between the simulated traces and
measured traces are further increased. Therefore, a model
calibration technique is exploited to make the golden model
matches well with the real case.

5.3 GoldenModel Validation

The calibrated results are shown in Fig. 8. The denoised
traces IDG(t) are denoted as Golden actual, while the traces
denoted as Golden sim5, Golden sim10, and Golden sim15
respectively represent the IM(t) under ±5% PV, ±10% PV
and ±15% PV. From results in the Fig. 8a, Golden actual
is an over-damped response, and all traces are too similar
to distinguish the obvious differences from each other.
Actually, there exist a few differences at some points as
shown in Fig. 8b.

Figure 9 shows the distribution histogram of these
differences. The differences between the Golden actual and
Golden sim5, Golden sim10, Golden sim15 respectively
are denoted as Error 5, Error 10 and Error 15. More
specifically, the maximum difference is only 29.65 mV and
more than 90% differences in magnitude fall 10.86 mV. This
kind of differences mainly caused by the process variations,
the influences of ultra small Trojan are easily masked by
these differences. In this paper, Trojans are set as always
activated for validating the proposed approach better and
a test generation technique is considered to activate the
hardware Trojan effectively in the future.

To further demonstrate the whole similarity between
the IM(t) and IDG(t), the correlation analysis is performed
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Fig. 7 Euclidean distances
between the golden circuit and
Trojan circuit
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after the model calibration, and the distribution histogram
of correlation coefficients between the Golden actual and
Golden sim5 is shown in Fig. 10. It is clear from this
figure, the correlation coefficients are greater than 98.85%.
Similarly, the correlation coefficients under ±10% PV and
±15% PV are greater than 98.81%. On the whole, the
calibrated golden model matches well with the actual silicon
measurements. Therefore, the simulated data of calibrated
golden model can substitute for the measured data of
fabricated chips even in the presences of process variations
and random noise.

5.4 Trojan Detection

After the model calibration, the calibrated traces IM(t) and
denoised traces (IDG(t) and IDC(t)) are clustered to two
classes using the PAM. The centroids of two classes are
determined when the cost function F reaches the minimum
value, and the Euclidean distance between each sample and
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Fig. 10 Distribution histogram of correlation coefficient results

the centroid (denoted as Centroid G) of golden class is
calculated to evaluate the Trojan detection results.

As mentioned in Section 4.2, the random noise can
not be eliminated in the real experiment completely, and
the process variations are extremely difficult to emulate
accurately, and the Euclidean distances vary accordingly.
Fig. 11 shows the fluctuation of Euclidean distances under
±5% PV. The Euclidean distances between the Centroid G
and IM(t) are denoted as S Dist, while the Euclidean
distances between the Centroid G and the IDC(t) of AES G,
AES Trojan1, AES Trojan2 and AES Trojan3 respectively
are denoted as G Dist, T1 Dist, T2 Dist and T3 Dist.
Regarding Fig. 11, S Dist and G Dist are more similar than
the others, and T1 Dist, T2 Dist and T3 Dist respectively
are all greater than the S Dist or G Dist. More specifically,
the maximum value of G Dist is 177.25, and the minimum
value of T1 Dist is 378.09, and thus the margin is 200.84.
Thus, any Euclidean distance that exceeds the 177.25 can
be considered as the hardware Trojan, otherwise, there does
not exist the hardware Trojan. This margin reduces with
the increasing process variations, and the margin is 135
under ±15% PV, however, it is large enough to identify
the hardware Trojan in the real experiment. Therefore, the
PAM is capable of detecting the hardware Trojan correctly
at different process corners.

Moreover, the averaged Euclidean distance of 100 traces
is used to represent the robustness of proposed approach
in the real experiment. Figure 12 illustrates the averaged
Euclidean distance at different process corners. From the
Fig. 12, G Dist is greater than the S Dist, and T1 Dist,
T2 Dist, T3 Dist respectively are much greater than the
S Dist at different process corners. The differences between
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Fig. 12 The averaged Euclidean distance at different process corners

S Dist and G Dist mainly caused by process variations,
however, the differences Trojan introduced can be identified
even under the process variations. Therefore, the proposed
approach is robust to the Trojan detection in the presence of
process variations and random noise.

6 Conclusion and FutureWork

In this paper, a hardware Trojan detection approach based
on the golden layout model is presented, which eliminates
the requirement of fabricated golden chips during detection.
The simulated voltage variations at different process corners
match well with the measured traces that can be used as
the golden reference, and the hardware Trojan is identified
using the PAM correctly in the presence of process
variations.

While the proposed approach is success, but it is not
limited to detect the Trojans in the cryptographic chips
and the scalability of large designs (e.g. microprocessor
and system on chip) may be explored in the future.
Simultaneously, efficient test generation techniques are
considered to activate the hardware Trojan and magnify
the influences of Trojan effectively, and the limitation of
the proposed approach against ultra-small Trojans is also
further analyzed. Furthermore, there exist numerous types
and insertions of hardware Trojan, and the side-channel
influences of Trojans may be varied, and the proposed
method against various Trojans are further studied.
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