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Abstract
In this letter, a microwave cavity for investigating the effect of external microwave fields on the dielectric behavior of
semiconductor material is proposed. We use a dual-mode rectangular cavity where the stimulus and test signals are supplied
by two different swept frequency microwave sources. By adjusting the power level of the stimulus signal, the intensity of
microwave field in the cavity is changed. Two band-stop filters are introduced to isolate the signals coming from the stimulus
signal. Measurement results show that the dielectric properties of indium phosphate manifest nonlinear behavior under the
electronic field intensity of 105V/m. From the experimental result and theoretical analysis, we conclude that the nonlinear
behavior is caused by the material’s inherent characteristics.
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1 Introduction

Research on the measurement of dielectric property of
materials is important because those properties are needed
before the materials can be used. The cavity perturbation
technique is the most common resonator-based approach for
measurements of low loss materials [3, 4].

Due to the increasing miniaturization of microwave
integrated circuits and the rapid development of high power
microwave technology, the properties of the materials as
affected by the external microwave field have attracted
the attention of researchers. It is found that the dielectric
property of polar liquids and primary alcohol mixtures
changes under microwave field [5, 7]. Lots of research has
been reported about ionizing radiation effects on electrical
properties of dielectric materials [1, 2, 6]. An increase in the
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conductivity of pentacene, a kind of organic semiconducting
material, is found when exposed to ionizing radiation. This
is a controlled method of doping organic semiconducting
materials [6]. However, the investigation of materials’
dielectric property under strong microwave field is still very
relevant.

In this letter, we have developed a dual-mode rectangu-
lar cavity to investigate the influence of external microwave
field on the dielectric property of semiconductor material.
One mode is used to create a strong electrical field, while the
other mode is for measuring. In order to prevent the stim-
ulating signal from affecting the testing signal, two band-
stop filters, whose center frequencies are the same as that
of the stimulating signal, are introduced. Upon measure-
ment, the dielectric property of indium phosphate (InP) is
found to slightly change under the strong electromagnetic
environment, which shows that it is an inherent characteris-
tic of the material itself than microwave heating causing the
nonlinear phenomenon.

2 Design of the Dual-Mode Rectangular
Cavity

A rectangular cavity was designed to have two modes,
T E102 and T E103. The former mode is used to produce a
strong microwave field and the latter mode measures the
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Fig. 1 A structure schematic of rectangular cavity

dielectric property with a low power signal. The structure
schematic of the rectangular cavity is given in Fig. 1. By
adjusting the size of the cavity, the T E102 and T E103 modes
work at the frequencies around 2.45GHz and 3.13GHz
respectively. The cavity parameters are as follows: width =
83.36mm, height = 43.18mm, L = 172mm.

Figure 2 shows the model of the cavity and the electric
field distributions of both resonant modes in the cavity
by High Frequency Simulator Structure. The electric field
distributions of both resonant modes in the cavity are shown
in Fig. 2. The strongest electric field of the T E102 mode lies
at L/4 and 3*L/4 in the cavity. The strongest electric field of

the T E103 mode lies at L/6, 3*L/6 and 5*L/6 in the cavity.
From Fig. 2, it is easy to see that if the stimulating signal

is injected through a probe at L/4 of the cavity, T E102 will
be activated. The sample under test is put at the 3*L/4 in
the cavity, which is the strongest electric field location for
the T E102 mode. If the power level of stimulating signal
changes, the electric field strength around the sample will
be changed too. Finally, the dual-mode rectangular cavity
is fabricated and coated with silver. By adjusting the probe,
a good match is achieved at the stimulating port, which
ensures high power signal being injected into the cavity.

3 Experimental Setup

Using the dual-mode rectangular cavity, a test system setup
is shown in Fig. 3.

The stimulating signal can be amplified by an amplifier,
whose frequency is the same as that of the T E102 mode,
and the maximum output of the amplifier is about 53dBm.
The reflection between the source and the power amplifier
is reduced by isolators. The testing signal is provided by
the vector network analyzer (VNA), whose frequency is
around the working frequency of the T E103. Through a
coupling loop and a probe, the testing signal is injected into
and coupled out of the cavity for measuring the dielectric
property. In addition, the two band-stop filters with a more
than 30dB attenuation in the stop band, are introduced to
isolate the signals coming from the stimulating source. The

Fig. 2 Electric field distribution
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Fig. 3 Schematic of the experimental setup for nonlinearity test

center frequency of the two band-stop filters is around the
frequency of the stimulating signal. The experimental setup
is shown in Fig. 4.

4 Experiment and Discussion

An InP sample is placed at 3*L/4 of the cavity and the
source is switched-off initially. The transmission curve of
the testing signals is obtained by the VNA, shown as the
black curve in Fig. 5. Then the output of the source is
adjusted to 0dBm and the red transmission curve is obtained
as shown in Fig. 5. Mark the red curve and hold the output

Fig. 4 Photograph of the experimental setup
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Fig. 5 Test curves of InP

of the source at 0dBm for 10s. After that, the output of the
source is shut down, and the red transmission curve changes
to the blue curve shown in Fig. 5.

According to the cavity perturbation method, as expressed
by equations (1) and (2), the real part of the dielectric constant
is determined from the shift of the resonant frequency, while
the imaginary part causes the variation in the Q of the cavity
[4]. Therefore, it can be easily deduced that the dielectric
constant of the InP has changed at different microwave field
intensities.

ω − ω0
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where ω and ω0 are the angular resonant frequencies before
and after the perturbation, respectively. Q and Q0 are the
quality factors before and after the perturbation. �E and
�E0 are the electric field strengths before and after the
perturbation in the cavity. W is the total store energy in the
cavity. And ε′ and ε′′ are the real and imaginary parts of the
dielectric constant, respectively.

In the experiment, the output of the source remains at
0dBm for 10s. Suppose the sample has been heated and
the nonlinearity is caused by the heating. The thermal
conductivity of InP is only 0.7W ·cm−1 K−1, which means
that the heat dissipation of the InP sample is not very good.
That is to say, after we shut down the output of the source,
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Fig. 6 Test curve of InP as the output of the source is held on at 0 dBm
for 1 min

the red curve will not change to the blue one immediately.
However, in the experiment, the red curve changes to the
blue one immediately when we shut down the source.

To further examine the conclusion that the nonlinear
behavior of the dielectric property of InP is largely caused
by the material itself than by heating, an additional
experiment is conducted. In the experiment, the output of
the source remains at 0dBm for 1min and then the source is
shut down. The results are shown in Fig. 6.

In Fig. 6, we can see that the blue curve is no longer
coincides with the black one as the holding time is increased
from 10s to 1min. The frequency shift starts to change with
the hold time increasing. The reason is that after a longer
time under microwave heating, the sample was heated a
little bit, and its dielectric property changed a little bit.
However, the frequency difference between the blue curve
and the black curve is far less than the difference between
the red curve and the black curve. Thus, we think that it is
the non-thermal effect that influences the dielectric property
of InP in the microwave range.

5 Conclusion

In this contribution, a new experimental method and
apparatus are introduced for investigating the dielectric
property of microwave semiconductor materials under
microwave field through a dual model rectangular cavity.
The stimulation signal and the test signal are supplied by
two different frequency microwave sources. By changing

the power level of the signal, the local electric field around
the sample can be changed. Two band-stop filters isolate the
two signals. In the experiment, more than 50W of power
is injected into the cavity when the source output is 0dBm,
and the electric field strength around the sample is nearly
105V/m. Under the strong microwave field, the nonlinear
characteristic of InP is evaluated in the microwave range.
Through the experimental observation, we deduced that it
is a kind of non-thermal effect that causes the interaction
between the external microwave field and the material.
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