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Abstract It is very important to detect and correct faults for
ensuring the validity and reliability of reversible circuits. Test
vectors play an important role to detect as well as correct the
faults in the circuits. The optimum number of test vector im-
plies the more capabilities for detecting several types of faults
in the circuits. In this paper, we have proposed an algorithm
for generating optimum test vectors. We have shown that the
proposed algorithm generates optimum test vectors with the
least complexity of time as compared to existing methods, i.e.,
we have proved that the proposed algorithm requiresO(log2N)
time, whereas the best known existing method requires O(N.
log2N) time, where N is the number of inputs. We have also
proposed another algorithm for detecting faults using the gen-
erated test vectors. This proposed method can detect more
faults than existing ones. We have proved that the proposed
fault detection algorithm requires least time complexity as
compared to the best known existing methods, i.e., the pro-
posed algorithm requires O(d. 1/N) time, whereas the best
known existing methods require O(d. N) time, where N is
the number of inputs and d is the number of gates in a revers-
ible circuit. Finally, we have proposed another algorithm for
correcting the detected faults. We have also proved that the
proposed methods require the least time complexity as com-
pared to the best known existing methods. In addition, the

experimental results using benchmark circuits show the effi-
ciency of the proposed methods.
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1 Introduction

Reversible logic computing has received significant re-
search attention recently [41]. Applications of the re-
versible circuits can be found in the emerging fields
of the quantum computation, low-power computation
and digital signal processing. Conventional irreversible
logic circuits necessarily dissipate energy due to the
erasure of information [6, 20]. But reversible computa-
tion can be performed with arbitrarily small energy dis-
sipation. Bennett showed that the power dissipation in
reversible logic computing is zero under ideal physical
circumstances [6].

Quantum computing is also a rapidly emerging area
[28]. Since quantum logic operations are inherently re-
versible, studying the testing of reversible circuits may
assist in the development of physical realizations of
quantum gates based on trapped ion technology, photons
and non-linear optical media, cavity-quantum electrody-
namic devices, spin in semiconductors, etc.

To ensure the validity and reliability of reversible logic
circuits, fault detection is necessary. Testing is one of the final
phases of the production of a circuit. A test set is a set of test
vectors that are applied to the circuit for detecting faults.
Generating efficient test vectors is hard for conventional irre-
versible circuits. On the other hand, for reversible circuits it is
significantly simpler. Fault detection probability is the greatest
when the test vectors of a reversible circuit are maximized [1].
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An increasingly important problem in digital circuit
design is the correction of detected faults. Traditionally,
these faults have been a major concern for space appli-
cations due to circuit exposure to high radiation levels.
With the introduction of smaller device geometries and
new process technologies, these faults are now becom-
ing an issue for ground-level applications as well [5].
Several methods have been proposed to protect circuits
from the effects of these faults. These range from the
use of specific manufacturing techniques to detect and
correct the faults in reversible circuits [27].

Testing can be performed either online or offline. Online
testing implies that the testing can be performed during the
normal mode of operation of the circuit with hardware over-
head. But offline testing needs a dedicated test mode without
any test hardware overhead. In addition, the offline techniques
of testing will not add any overhead in terms of hardware com-
plexity but they will have performance overhead since the cir-
cuit needs to be worked in test mode for offline testing [25].

Previous works regarding testing reversible circuits includes
ATPG (Automatic Test Pattern Generation) methods [34], fault
detection in quantum circuits [7], ILP (Integer Linear Program)
method for stuck-at faults [32], DFT (Design for Test) method
for missing gate faults [15] and fault modeling for reversible
circuits based on quantum technology [2, 36].

Five main contributions are addressed in this paper:

1) A test vector generation algorithm is proposed to generate
optimum number of test vectors which will be used to
detect the faults in reversible circuits.

2) The proposed test vector generation algorithm requires
the minimum complexity of time in the literature till now.

3) A fault detection algorithm is proposed to detect all pos-
sible single and multiple bit faults in reversible circuits.

4) The proposed fault detection algorithm requires the min-
imum complexity of time in the literature till now.

5) A fault correction approach has also been introduced to
correct the detected faults.

The remainder of this paper is organized as follows:
Section 2 provides some background information about
reversible logic gates/circuits, followed by overviews of
existing works on TPG (Test Pattern Generation), detection
and correction of faults in a reversible circuit in Section 3.
Section 4, 5 and 6 describes our proposed optimum test
vector generation algorithm, fault detection method and
fault correction techniques respectively. Some compari-
sons between best known existing methods and our pro-
posed method are shown in Section 7. Finally, a brief con-
clusion along with the goal of offering a new perspective
on our proposed optimum test vector generation algorithm,
detection and correction techniques of faults in a reversible
circuit are given in Section 8.

2 Background Studies

In this Section, we will discuss about some of the basic ele-
ments of reversible logic, fault model and reversible circuits.

2.1 Reversible Gate

A logic circuit is reversible if it computes a bijective (one-to-
one and onto) logic function, so that the circuit’s input can be
reconstructed from its output. A reversible circuit usually con-
sists of smaller sub-circuits or gates which are themselves
reversible. Reversible gates do not allow any fanout [29].
Commonly studied reversible gates include: NOT, Feynman
/CNOT (Controlled-NOT), Toffoli, Fredkin and generalized
Toffoli gates [12, 14]. Of these, NOT, CNOTand Toffoli gates
are basically n-bit Toffoli gate with n = 1, 2 and 3 respectively
which is defined as generalized Toffoli gates. The behavior of
some reversible gates is defined as follows:

NOT: i’ = 1 ⊕ i
CNOT: i’ = i, j’ = i ⊕ j
Toffoli: i’ = i, j’ = j, k’ = k ⊕ ij
Fredkin: i’ = i, j’ = j ⊕ ij, k’ = k ⊕ ij ⊕ ik

Fig. 1 shows the standard graphic symbols for some com-
mon reversible gates, where 0-CNOT, 1-CNOT and 2-CNOT
correspond to an ordinary NOT gate or inverter, Feynman and
Toffoli gates, respectively.

2.2 Garbage Output

Unwanted or unused output of a reversible gate (or circuit) is
known as garbage output [3], i.e., the output(s) which is (are)
needed only to maintain the reversibility is (are) known as
garbage output(s). Heavy price is paid off for each garbage
output.

Example 1 Feynman Gate (FG) [1] is used to perform
Exclusive-OR between two inputs. But in this case, one extra
output will be generated as well, which is the garbage output
as shown in Fig. 2 with *.

2.3 Constant Input

Constant inputs are the inputs of a reversible gate (or circuit)
that are either set to 0 or 1 [1].

Example 2 If the complement of the input A from Fig. 2 is
needed, then set B to 1 and get Q = A’.
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2.4 Reversible Circuits

A reversible circuit can be divided into several levels [32]. The
dotted lines of Fig. 3 represent the levels in the 3_17tc circuit.
Any state of any level of a reversible circuit can be generated by
appropriate input and any single fault changes an intermediate
level in the circuit; it also changes the output of the circuit. An
example reversible benchmark circuit 3_17tc in Fig. 3 shows that
the inputs are at level 0 and the outputs are at 1 plus themaximum
level of its inputs. The depth d is used interchangeably with level
and is defined as the maximum level [31]. It can be no longer
than the number of gates in the circuit. We will often find it
convenient to use an n-bit vector to refer to the value of the wires
at a given level in the circuit [32].

2.5 Quantum Cost

Reversible circuits can be measured in terms of quantum cost.
Every quantum circuit is built using 1 × 1 and 2 × 2 quantum
primitives and its cost is calculated as a total sum of 2 × 2 gates
used since 1 × 1 gate has no cost, i.e., zero [17]. Basically, the
quantum primitives are matrix operation which is applied on
qubits state [38]. All the gates of the form 2 × 2 has equal
quantum cost and the cost is unity, i.e., one [9]. Since every
reversible gate consists of 1 × 1 or 2 × 2 quantum gate, the
quantum cost of a reversible circuit calculates the total number
of 2 × 2 gates used.

Example 3 The quantum costs of Feynman gate [9], Feynman
Double gate (F2G) [9], Fredkin gate (FRG) [38], Peres gate
[33] and DPG gate (as full adder) [17] are one, two, five, four
and six respectively.

2.6 Quantum Fault Model

There are different types of fault models in the literature such
as initialization faults, bit-flips and faded control faults [8]. A
line (qubit) is incorrectly initialized to some erroneous starting
value at initialization faults where in bit-flips a qubit changes
its value at an undesired location/time [13]. In faded control
faults, the control of a gate does not behave as desired.

However, the focus of our paper is on bit-flips faults which
can be considered to be at the switch level of abstraction,
where the SAF (Stuck-at-Fault), MGF (Missing-Gate-Fault)
and other fault models can be considered to be at the structural
level.

3 Existing Test Pattern Generation, Fault Detection
and Correction Approaches

It has been pointed out that finding a test vector for a given fault
is a trivial task in the reversible case. A traditional way of gener-
ating a complete test for quantum bit faults would be to generate
a test vector for each individual fault and then compress the test
set. There are two types of testing: offline testing and online
testing. In offline testing, a circuit under test is taken out of its
normal mode of operation. In contrast, online testing is carried
out while the circuit is being used for normal operations. In the
case of online testing, additional circuitry is attached to the orig-
inal circuit to determine whether the system is faulty or fault free.
Many researchers focus on online testing and many others also
focus on offline testing. There are many current researches on-
going focusing on the offline testing approach [23–25]. In this
paper, we use the offline testing approach for fault detection and
correction of the faults. In this section, we show some existing
methods for finding test vectors in reversible circuits.

When we get some test vectors which are generated for a
particular circuit, the fault detection of that circuit is necessary.
The faults of a circuit can be detected using the generated test
vectors. After detection of faults, it is required to correct that faults
in an efficient way. In this section, we also show some existing
approaches for detecting and correcting of faults in a circuit.

3.1 Existing Test Pattern Generation Approaches

In this subsection, we discuss some of the existing test pattern
generation approaches with their limitations compared to our
proposed optimum test vector generation algorithm.

Fig. 3 Reversible Benchmark Circuit 3_17tc

Fig. 1 Reversible Classical
Gates: (a) 0-CNOT, (b) 1-CNOT
(Feynman), (c) 2-CNOT (Toffoli)
and (d) Fredkin

Fig. 2 Illustrating Garbage Output
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3.1.1 Test Generation Algorithm [10]

In [10], a DFT method is proposed to make an arbitrary revers-
ible logic circuit composed of n-bit Toffoli gates fully testable
for single intra-level bridging faults and single stuck-at faults.
This method gives a test generation algorithm to generate the
log2N test vectors for testing bridging faults at any level.

But, [10] considered testing of circuits composed of only
n-bit Toffoli gates. We know that, adding one control point
increases the cost of 3, 4, 5 and 6-bit Toffoli gates by 8, 16, 32
and 64 respectively [30]. As a result, the overhead becomes
large for smaller circuits.

3.1.2 Automatic Test Pattern Generation [35]

An overview of some recent developments in the testing and
design validation of reversible circuits is provided in [35].
This method gives a classification of ATPG algorithms for
reversible circuits which is divided into two classes: exact
algorithms and heuristics.

[35] shows that, reversible circuits have very small test sets
for most fault models. But in this paper, we describe that
optimum test set can detect more faults in a circuit.

3.1.3 Deterministic ATPG Algorithm [24]

The method described in [24] is developed on the basis of set
cover approach where the minimal test set is chosen from
superset of test vectors. This approach is validated for various
benchmark circuits and also few circuits are designed with
family of Toffoli, Peres and Fredkin gates to generate com-
plete test set which can detect all the intra level Bridging
Faults in a given reversible circuit.

The choice of a value of N in [24] does not have much
impact on the smaller circuits, but, for large circuits, when
the value of N increases, the execution time grows exponen-
tially. Also, the approach in [24] only detects intra level
Bridging Faults, it does not detect inter level Bridging Faults.

3.2 Existing Fault Detection Approaches

In this subsection, we discuss some of the existing fault de-
tection approaches with some of their limitations compared to
our proposed fault detection algorithm.

3.2.1 Detection of Missing Gate Faults [23]

[23] presents the testability issue of reversible circuits under
the missing gate fault model. Boolean difference technique for
deriving the test set for detecting all faults in a reversible
circuit is implemented with k-CNOT gates. Then an optimiz-
ing algorithm is used to derive optimal test set to detect all
possible partial missing faults in a reversible circuit.

[23] shows that for anN × N reversible circuit with d gates,
realized with quantum k-CNOT gates, the time complexity of
the generation of Boolean difference isO(d.N), whereN is the
number of inputs and d is the number of gates in a reversible
circuit. A Boolean difference technique is found to be suffi-
cient for testing all such detectable faults, but, in the proposed
method, we have shown that the time complexity of the test
vector generation method is O(log2N) and O(log2N) time is
also sufficient for testing all such detectable faults.

3.2.2 Error Detection using Reversible Gates [18]

Single error correction-double error detection (SEC-DED) is pro-
posed in [18]. The design is done using a new 4 × 4 reversible
gate called `HCG’ for implementing hamming error coding and
detection circuits are shown. Detection of faults generated in a
circuit is done by using parity-preserving reversible logic gates.

Different implementations for the reversible (7,4) hamming
error coding and detection circuits are presented in [18]. But,
in our proposed method, we have shown the self-
complemented fully redundant reversible circuit which re-
quires less complexity of running time compared to [18].

3.2.3 Detection of Single and Multiple Missing-gate Faults
[11]

Two methods are given to generate the complete test set for
reversible circuits to detect missing-gate faults is given in [11].
The methods are dividing subcircuit method and the set cov-
ering method. If more than one missing-gate faults appeared
in a subcircuit, then [11] adds other vectors to detect them.

But in [11], the dividing subcircuit method does not need
any additional optimal software, so it can deal with larger
circuits, but the complete test set generated by this is not
optimum. On the other hand, the set covering method can
generate the minimal test set and it depends on the optimal
software, such as CPLEX and LINDO.

3.3 Existing Fault Correction Approaches

In this subsection, we discuss some of the existing fault cor-
rection approaches with some of their limitations in the liter-
ature till now. It is noted here that, there is no such fault
correction approaches for reversible circuits in the literature.
So, in this subsection, any fault correction approaches for
reversible circuits is not given.

3.3.1 Error Correction using Self-checked Circuits [21]

A group of error detecting/correcting code (EDC-ECC) based
self checked/corrected/timed circuits for logic robustness and
performance scalability in nanoscale VLSI design is proposed
in [21]. The EDC self-checked circuits achieve increased
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reliability enhancement with comparable hardware overhead,
or reduced hardware overhead for the same level of reliability.

But, a self-checked circuit slows down at the occurrence of
a soft error or a timing violation for logic correctness, similar
to a Razor logic circuit. A self-timed circuit has the same
performance scalability as an equivalent handshaking
protocol-based asynchronous circuit in the presence of para-
metric variations.

3.3.2 Error Correcting Code in SRAMs [26]

In [26], a double error correcting error-correcting codes
(DEC-ECC) implementation technique suitable for SRAM
applications is presented. For binary vectors, an erroneous
bit is corrected merely by complementing an error location
decoder. The error corrector circuit shown in [27] is simply a
stack of XOR gates.

[26] shows that, the ECC encoders and decoders can be
implemented without a significant area impact. But it is not
notified in [26] that, the extra redundancy required within the
memory array for a particular code is a function of the fault
detection and correction capability of that code and block size.

3.3.3 Error Correction of Digital Circuits [16]

An efficient symbolic method for automatic fault correction of
both combinational and synchronous sequential circuits is pre-
sented in [16]. Several optimizations are also introduced in
[16]. All optimizations are safe, meaning that they neither
affect the number of computed solutions nor do they decrease
the quality of results.

The methods shown in [16] are efficient for digital circuits.
But, when the mechanisms are imposed to a reversible circuit,
rectification is increased due to a combinational problem.
Then the strategies shown in [16] become unoptimized.

4 Proposed Optimum Test Vector Generation
Algorithm

A fault is a logical model of a physical disturbance, which
changes the Boolean function of the circuit. Faults are detect-
ed by applying a test vector at input of the circuit and observe
whether the output is same as the input. If it does, then we
proceed to the next test vector. If it does not, then some wire(s)
of the circuit must be faulty.

It is proved that optimum test vectors can detect more faults
in a circuit [1]. Our proposed algorithm, unlike other greedy
algorithms, does not search exhaustively to find a minimum
test set. Yet it aims to generate test vectors comparably opti-
mum in size by the method of heuristics.

While generating test vectors, it is much time consuming to
generate all possible combinations, since some of the test vec-
tors have logically no operation for testing a circuit. For this
reason, 000 and 001 patterns are discarded in the proposed
Algorithm 1 (Step 3.a), because from the beginning of testing
of a circuit, one or more control bit is logic 0. Algorithm 1 also
discards the pattern consisting of all 1’s, because when all
inputs of a circuit become logic 1, every gate of the circuit
remains simultaneously active. Testing a circuit with all active
control bits require more times and more calculation complex-
ity. As a result, the pattern 111 (Step 3.b) is discarded.

In this paper, we have proposed such a test vector genera-
tion algorithm which generates optimum test vectors for de-
tecting faults in a circuit compared to existing researches. Our
algorithm also requires less complexity of execution time
compared to others [10, 24, 35]. Total number of inputs in a
reversible circuit is expressed with N in our algorithm. The
method is stated in Algorithm 1.

The proposed algorithm works with four steps. The work-
ing principle of the algorithm is described below:

Step 1: The algorithm checks whether there is any con-
stant inputs (input is set 0 or 1 [30]) and garbage outputs
(unused output [37]) in the circuit. Consider the example
circuit 3_17tc in Fig. 3. The circuit has no constant input

Algorithm 1: Optimum Test Vector Generation Algorithm 

1. Read in the specification of a reversible circuit and compute the number of 
Constant Inputs and Garbage Outputs.

2. If the circuit has i number of Constant Inputs, then generate test vectors V for 
N = N - i inputs.

3. Produce test patterns for all possible combinations while
a. Discard test vectors consisting of first [N/2] 0’s. [These test vectors 

have logically no operation for testing a circuit, since from the 
beginning of testing of a circuit, one or more control bit is logic 0]

b. Discard test vectors consisting of all 1’s. [Testing a circuit with all 
active control bits require more times and more calculation 
complexity]

4.    Get the test vectors V for testing a reversible circuit to detect faults.
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and no garbage output while Fig. 4 illustrates rd32 circuit
with one constant input and two garbage outputs.
Step 2: Since the example circuit 3_17tc in Fig. 3 has no
constant input and garbage output, our proposed algorithm
generates test vectors for three inputs and three outputs.
Step 3:Now generate all possible combinations of inputs
and discard the patterns which are not needed.
Step 3.a: Test patterns 000 and 001 are discarded.
Step 3.b: Test pattern 111 is discarded.
Step 4: Get the test vectors V = {010, 011, 100, 101 and
110}.

Finally, we can conclude from our proposed algorithm, the
generated test vectors for 3_17tc are 010, 011, 100, 101 and
110. These test vectors have to pass through a circuit for de-
tecting the faults in that circuit.

The comparison table in Section 7 shows that our proposed
algorithm generates five test vectors for 3_17tc, where other
methods generate a less number of test vectors.

Theorem 1 The proposed Optimum Test Vector Generation
Algorithm requires O(log2N) complexity of time, where N is
the number of inputs.

ProofAssume thatN is the number of inputs and we represent
the algorithm as the following expression, where a constant
term log24 is used to indicate the discarded test vectors. For
example, the 4-bit with maximal gate count circuit has differ-
ent log2N = log24 = 2 types of control inputs, i.e., 0 and 1.
Therefore, the expression is as follows:

T Nð Þ ¼ 2:T √N
� �þ log24

Then with a change of variables, we can simplify the re-
currences. For the recurrence, let m = log24. The value of m
yields T(2m) = 2. T(2m/2) + m.

We can now rename the recurrence with S(m) = T(2m) to
produce a new recurrence:

S mð Þ ¼ 2:S m=2ð Þ þm

Indeed, the new recurrence has the same solution:

S mð Þ ¼ O m:logmð Þ

So, T(N) = T(2m) = S(m) = O(m.logm).
= O(log24.loglog24).
= O(2.log2).
Now, if we think, N = 100, then we replace N = 100 by

N = log−12, and we get, 2 = logN as log100 = 2.
So, the resulting recurrence is: T(N) = O(2.log2).
= O(logN.log2).
= O(log2N) [since (logkN).(logk2) = (log2N)].

Finally, the complexity of Algorithm 1 is gained i.e.,
O(log2N).

Example 4 For computing the running time of the proposed
optimum test vector generation algorithm, we see that, for 2, 4
and 8 bits, it requires 1, 2 and 3 ms of running time respec-
tively. So, all the above calculations prove that the time com-
plexity of the proposed algorithm is O(log2N).

Lemma 1 Let N be the number of inputs, then the 4-bit with
maximal gate count circuit requires at least 2N – (N + 1) test
vectors to detect the faults.

Proof Assume that an N input reversible circuit consisting of
m number of k – CNOT gates, where m > = 0 is required for
generating optimum test vectors. From the specification of the
4-bit with maximal gate count circuit, we see that the circuit
has no constant inputs and no garbage outputs [22]. So, if we
have 0 – CNOT and/or 1 – CNOT gates in the circuit, the
previous value is passed through the circuit without changing
its value. Thus, without losing any generality, we assume that
we have only k – CNOT gates.

Let any test vector V be V1V2...Vn where Vi is i
th bit and gi

be the set of positions, i.e., wire indices, where gate gi has
control inputs 1 < = i < = m, then gi = {gi1, gi2, ..., gip}
(1 < = p < = N – 1)means gate gi has control inputs on wires
having indices gi = gi1, gi2, ..., gip.

If m = 0, then 2N test vectors are generated and no speciality
of the circuit belongs to the V, but, in the 4-bit with maximal gate
count circuit has m number of k - CNOT gates, where m > =7.

As a result, by using Algorithm 1, the first N/2 0k and 1k

(where 0k and 1k means k consecutive zeros and ones) is
discarded for the 4-bit with maximal gate count circuit. The
test vectors of the first N/2 0k is the same as the number of N
for gi of the circuit.

So, resulting number ofV be at least 2N - N - 1which is 2N –
(N + 1) thus completes the proof.

Example 5 In rd32 circuit shown in Fig. 4, we can see that it
has four inputs and four outputs, where one input is control
input and two outputs are garbage outputs. If we apply the
proposed Algorithm 1 into the rd32 circuit, then we get the
test vectors are V = {010, 011, 100, 101 and 110}.

Fig. 4 rd32 circuit with Constant input and Garbage outputs
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5 Proposed Fault Detection Algorithm

A problem that may arise during fault detection in a circuit is that
the given set of test patterns is not sufficient in order to distin-
guish all faults. Then, further test patterns have to be generated.
Therefore, Algorithm 1 is applied to reversible circuits which
determine not only an arbitrary test pattern, but also a pattern
which distinguishes a fault from another. In addition, sometimes
not all faults are distinguishable from each other [39].

Therefore, Algorithm 2 is introduced here for three reasons:

1) Use the optimum test vectors generated from Algorithm
1, test a reversible circuit whether there is any fault or not.

2) Discard the patterns if there is some garbage outputs.
3) Provide a list of fault detection patterns. This enables the

efficient use of special programs (Algorithm 3) to correct
the faults.

Definition of the Complemented Reversible Circuits
Reversible circuits can be measured in terms of quantum

realization of that circuit. Quantum realization of a reversible
circuit consists of dividing the circuit into several levels. Fig. 3
shows the quantum realization of reversible benchmark 3_17tc
circuit. It is possible to reorganize the circuit from higher number
of levels to the lower number of levels. When such kind of
reorganizes occurs in a reversible circuit, the resulting circuit is
called the complemented reversible circuits. Fig. 6 represents the
complemented reversible benchmark 3_17tc circuit.

There is a technique for complementing a reversible circuit of
its own [4]. The method in [4] uses redundancy to make a re-
versible circuit to self-complemented reversible circuit. The pro-
posed fault detection algorithm is based on redundancy for the
purpose of fault detection in self-complemented reversible cir-
cuits. A general schema of this kind of redundancy is shown in
Fig. 5. Most of the occurred faults in a reversible circuit can be
detected using the method of duplication. In order to duplicate,
we use self-complement feature of some reversible benchmark
circuits. Accordingly, we complement the duplicated circuit. In
view of the fact, if all the gates of a circuit are self-complemented,
the whole circuit is self-complemented. Afterwards, we connect
the output of the original circuit to the complemented one.

Algorithm 2: Algorithm for Detecting Faults in a Reversible Circuit (RC)

INPUT : Test Vector V from Algorithm 1
OUTPUT : Detection of faults in a Reversible Circuit

1. begin
2. V[] = Test Vector Array 
3. PI = Primary Input
4. PO = Primary Output (Input to the Complemented RC)
5. FO = Final Output (Output from the Complemented RC)
6. F[] = Fault List Array
7. d = level of the RC
8. for i 0 to n - 1 do
9. V[] Test Vectors from Algorithm 1
10. end for
11. for   i 0 to n - 1 do
12. F[i]      V[i] = PI
13. end for
14. for   i 0 to d - 1 do
15. Pass V[i] to the RC
16. Get F[i]      PO
17. end for
18. for   i 0 to d - 1 do
19. Pass F[i] to the Complemented RC
20. Get F[i]      FO
21. end for
22. for   i 0 to n - 1 do
23. if (P[i] = FO) then
24. No Fault Detected
25. end if
26. else
27. Fault Detected
28. end if
29. end for
30. return Boolean (Detection of Faults)
31. end 
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The circuit shown in Fig. 5 is fully redundant with two
types of outputs: 1) Main outputs of the reversible circuits
and 2) Outputs of the complemented reversible circuits.
Main outputs of the reversible circuits are the outputs of the
first part and outputs of the complemented reversible circuits
are the outputs of the redundant part. As two parts of the
circuit are complement, it is clear that the values of inputs
and outputs of the complemented reversible circuits are the
same.

5.1 Contributions of the Proposed Fault Detection
Algorithm

In this paper, we consider the detection of single and multiple
bit faults. The contributions of the proposed fault detection
algorithm are:

& All possible single and multiple bit faults of the faulty
circuits can be detected.

& To detect the faults by the minimum time in the literature
till now.

& The proposed algorithm can detect bit faults for any re-
versible circuit.

The proposed fault detection algorithm works with five
main steps. In the first step, the generated test vectors V using
Algorithm 1 are stored as strings. In the second step, a fault list
F is created which acts as primary input (PI). The proposed
fault detection algorithm passes F to a circuit and checks
whether there is any fault or not. The value of V is initially
assigned to F. In the third step, pass the test vectors to the
reversible circuit and get primary outputs (PO). The primary
outputs are then updated in the fault list array (F[]) . In the
fourth step, pass the updated fault list array to the
complemented reversible circuit and get final outputs (FO).
The fault list array is then updated with the final outputs. In the
last step, check the value of FO with PI. To do this, we use a
comparator to check whether the value of FO is equal to the
value of PI or not. The `0′ result of the comparator indicates
that there is no change betweenFO and PI, as a result no faults
are detected. But a nonzero result of the comparator indicates
that there is a change between FO and PI as well as the circuit
is faulty. If faults are detected in the circuits, we should make a

way to correct the detected faults which we will show in
Section 6.

The proposed fault detection method considers the follow-
ing issues which have been discussed in Example 6:

i. Use the optimum test vectors generated from Algorithm 1
and test a reversible circuit whether there is any fault or
not.

ii. Make a fully redundant circuit with the help of main and
complemented reversible circuits.

iii. Provide a list of fault detection patterns. This enables the
efficient use to correct the faults.

Example 6A simple reversible circuit 3_17tc is shown in Fig.
3, in which Algorithm 2 is used to detect the faults. The circuit
has three inputs, three outputs, six gates and six levels.
Considering Fig. 3 as the main circuit, the circuit shown in
Fig. 6 is the complemented 3_17tc circuit. After connecting
these two parts, the whole circuit will be a fully redundant
circuit which is shown in Fig. 7. The process of detecting
faults is accomplished using a comparator to compare primary
inputs and outputs of the complemented reversible circuits. A
`0′ in the output of the comparator indicates that there is no
fault in the circuit and a nonzero output indicates that the
circuit is faulty.

Theorem 2 The proposed fault detection algorithm requires
O(d. 1/N) complexity of time, where d is the number of gates
and N is the number of inputs of the circuit.

Proof Suppose, the number of detected faults using Algorithm
2 is n and the number of gates of the circuit is d for any circuit,
s.t., ∀n is positive and n ∈ N. Then a recurrence T(N) defined
by Algorithm 2 is as follows:

Fig. 5 Self-Complemented Fully
Redundant Reversible Circuit

Fig. 6 Complemented Circuit of 3_17tc
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T Nð Þ ¼ n:T N=2ð Þ ð1Þ

A function is required to compute the complexity of time.
Let f(N) be a function, where a, b ∈ N and ∀(a, b) > =1. Then
f(N) is calculated as follows:

f Nð Þ ¼ O d: logba=Nð Þ−∈

By considering T(N) = a. T(N/b) + f(N), we get a = N and
b = N from Eq. (1), where f(N) = 1.

Since, f(N) = 1 = O(d. logNN / N) - ∈, case 1 of Master
Theorem [40] proves that d. logNN / N = d. 1/N, which isO(d.
1/N); where ∈ > 0.

Now, we use the lemma of Master Theorem [40] to get the
following:

T Nð Þ ¼ n:T N=2ð Þ þ 1
¼ O d:logNN=Nð Þ

¼ O d:1=Nð Þ

So, the claim T(N) = O(d. 1/N) is correctly proved.
Table 1 summarizes our proposed Algorithms 1 and 2. We

show the generated optimum test vectors and detection of
faults using generated test vectors for some of the reversible
benchmark circuits described in [22]. A 1 in the Detected
Faults column of Table 1 indicates that there exists a fault
for corresponding test pattern and 0 indicates there is no fault.

Example 7 For computing the running time of the proposed
fault detection algorithm, we see that, for 2, 4 and 8 bits, it
requires 1, 2 and 3 ms of running time respectively. So, all the
above calculations prove that the time complexity of the pro-
posed algorithm is O(log2N).

Example 8 For computing the running time of the proposed
fault detection algorithm, we see that, for 2, 4 and 8 bits, it
requires 1, 2 and 3 ms of running time respectively. So, all the
above calculations prove that the time complexity of the pro-
posed algorithm is O(log2N).

Lemma 2 Let n be the number of inputs, then minimum num-
ber of detected faults in the 4-bit with maximal gate count
circuit is log2N + 1.

Proof According to the specification of Lemma 1, the 4-bit
with maximal gate count circuit is tested for V patterns, since

Table 1 Optimum Test Vector Generation and Fault Detection in the
Reversible Benchmark Circuits [22]

Benchmark Circuit Test Vector Detected Faults

3_17tc 010 0

011 1

100 0

101 0

110 0

rd32 010 0

011 1

100 0

101 0

110 1

4b15g_1 0100 0

0101 0

0110 0

0111 1

1000 0

1001 0

1010 1

1011 0

1100 1

1101 1

1110 0

hwb4tc 0100 1

0101 0

0110 0

0111 1

1000 1

1001 0

1010 1

1011 0

1100 0

1101 1

1110 1

rd53rcmg 11,001 1

11,010 0

11,011 0

11,100 1

11,101 0

11,110 0

Fig. 7 Fully Redundant Circuit of 3_17tc
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the circuit has no garbage outputs. Actually, DF(Detected
Faults) consists of the outcome from V of a circuit using
Algorithm 2.

A circuit is tested with the help of gi = {gi1, gi2, ..., gip} and
some V can detect faults and some can not. This means ithwire
is tested for detecting the faults. We must make sure that every
gate fixes some V i.e., each gate contains at least one control
input which is 0 i.e., there should be no gate such that gi □DF.
So, at least one control input of gi must have 0 value.

When we get the control point is 0, pass the V to the circuit
without changing its value. The 4-bit with maximal gate count
circuit has different log2N = log24 = 2 types of control inputs
i.e., 0 and 1.

So, the resulting number ofDF be the minimum number of
log2N + 1, thus completes the proof.

6 Proposed Fault Correction Algorithm

There are many ways to correct the detected faults in a revers-
ible circuit. The proposed method is based on the existence of
implications, i.e., fully invariant relations between pairs of
wires in a circuit. An implication from an input pattern to an
output pattern indicates that a value assignment at the input
wire forces a consistent value assignment at the output wire. It
is noted here that consistent value assignment means that for
any pattern, there is a corresponding output pattern. The out-
put patterns are also known as the fault list array F[] men-
tioned in the proposed Algorithm 2. Such forced relations
provide a source of invariant that can be used to correct the
detected faults. Suppose that a fault distorts the output pattern
by changing the value of a bit on the implication path between
the input pattern and the output pattern. Then, if the input
pattern is added as an input to the gates of a reversible circuit
driven by the faulty output pattern, the effect of the distorted
value can be corrected and the output of the circuit will still be
correct. Addition of such patterns, however, is possible only if
the function realized is preserved, i.e., if the added pattern is
functionally redundant.

6.1 Working Principle of the Proposed Approach

Here we describe the idea of utilizing logic implications to add
redundant patterns to the circuit. Let (Ip,u)→ (Op,v) denote an
implication, i.e., the fact that a value of u on the input pattern
Ip will cause a value of v on the output pattern Op, where u,v
ϵ{0,1}. If a detected fault flips the value of any bit on the
implication path, then the output will obtain a faulty value.
However, if we add the functionally redundant pattern, then
the detected fault will be corrected at the implication path
before reaching the final output. The addition of the redundant
pattern introduces a new source where bit faults may appear,
and propagate to the output. Essentially, a detected fault that

distorts the value of a bit on an implication path can be
corrected by adding a pattern from the input of the implication
to the gates driven by the output pattern. When such a pattern
is added to a reversible circuit, the operation of the circuit in
the presence of a fault is more reliable.

6.2 Identification of Redundant Patterns

Nowwe will discuss how to find candidate redundant patterns
that can be added to a reversible circuit to correct a particular
detected bit fault. Functionally redundant patterns are identi-
fied when there exists an implication (Ip,u)→ (Op,v). Given a
specific output pattern and value pair (Op,v), several methods
can be used to find implicating input patterns and values (Ip,u).
The method of indirect implication is discussed in the
following.

The direct implication identification procedure covers the
straightforward case where there is only a single possible val-
ue that justifies an unjustified gate. A gate is considered un-
justified if the current assignments of its inputs do not justify
the output value of the gate. For example, an AND gate that
has an output value of 0 with none of its inputs assigned a
value of 0 is an unjustified gate. In this case, there exist mul-
tiple possible input value combinations for justifying the gate.
As a result, the direct implication identification procedure will
stop. However, if all justifications of the unjustified gate yield
a common implication, then this implication holds true regard-
less of the actual justification. This type of implication is
called indirect implication.

The main idea of the proposed fault correction algorithm is
to identify the implications through Learning. The implica-
tions obtained through Extended Backward Learning are a
strict subset of the implications obtained using Recursive
Learning. In general, Recursive Learning [19] with unlimited
recursion depth is the most powerful method, because it is able
to identify all direct and indirect implications for a given out-
put pattern and value assignment (Op,v). When some detected
faults are corrected using Algorithm 3, the process Learning
starts and the rest of the faults are automatically corrected.

Fig. 8 A Recursion Tree for Eq. (2)
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Example 9 The circuit 3_17tc is shown in Fig. 3, in
which Algorithm 3 is used to correct the detected faults.
The detected faults are imported using Algorithm 2 and
number of expected corrected faults is saved to EMF.
Suppose that the input pattern is 101 and corresponding
faulty output pattern is 100. So, by using Algorithm 3
the value of the third bit is flipped on the implication
path and the fault is corrected. It is noted that when a
large number of corrections is needed, the process

Learning starts working. When the number of corrected
faults is closed to EMF, extended backward learning is
applied and the process of recursive learning starts and
the rest of the faults are corrected automatically.

Logic implications constitute a source of fully invariant that
can be exploited to correct the detected bit faults. More spe-
cifically, the addition of functionally redundant patterns that
realize these logic implications reduces the susceptibility of
reversible circuits.

Theorem 3 The proposed fault correction algorithm requires
O(N. log2N) time, where N is the number of inputs.

Proof Suppose that our proposed fault correction algorithm
works for all N, s.t., ∀N ∈ number of corrected faults from any
circuit. If we apply our fault correction algorithm ∃c, where c
is a constant, then we can represent the algorithm by the re-
currence as follows:

T Nð Þ ¼ T N=3ð Þ þ T 2N=3ð Þ þ c:N ð2Þ

A recursion tree for Eq. (2) is given in Fig. 8.
Assume that T(N) = O(N. log2N).
For the completion of the proof, we have to show that

T(N) < = d. N. log2N, s.t., d ∈ N.

From Eq. (2), we can write

T Nð Þ <¼ T N=3ð Þ þ T 2N=3ð Þ þ c:
<¼ d N=3ð Þ:log2 N=3ð Þ þ d 2N=3ð Þ:log2 2N=3ð Þ þ c:N

¼ d N=3ð Þ:log2 Nð Þ−d N=3ð Þ:log2 3ð Þ þ d 2N=3ð Þ:log2 2Nð Þ−d 2N=3ð Þ:log23þ c:N
¼ d N=3ð Þ:log2 Nð Þ−d N=3ð Þ:log2 3ð Þ þ d 2N=3ð Þ:log2 Nð Þ−d 2N=3ð Þ:log23=2þ c:N

¼ d:N :log2N–d N=3ð Þ:log23þ 2N=3ð Þ:log2 3=2ð Þf g þ c:N
¼ d:N :log2N–d N :log23– 2N=3ð Þ:log22f g þ c:N

<¼ d:N :log2N ; iffd >¼ c= log23ð Þ– 2=3ð Þ

This proves that T(N) < = d. N. log2N.
Therefore, T(N) = O(N. log2N)which completes the proof.

7 Experimental Results

In this Section, we show some comparisons between some of
the existing approaches in the literature and our proposed
methods described earlier in this paper.

Algorithm 3: Algorithm for the Correction of the Detected Faults in a Reversible 
Circuit (RC)

INPUT : Detected Faults from Algorithm 2
OUTPUT : Correction of faults in a Reversible Circuit

1. begin
2. Ip = Input Pattern 
3. Op = Output Pattern
4. u = A value of the Input Pattern
5. v = A value of the Output Pattern
6. DF[] = Detected Faults Array
7. EMF = Expected Number of Corrected Faults
8. for i 0 to n - 1 do
9. DF[]     Detected Faults from Algorithm 2
10. end for            
11. for i 0 to n - 1 do
12. (Ip, u) => (Op, v)
13. if (Redundant Pattern is added) then
14. Faults will be Corrected
15. end if
16. if (No. of Corrected Faults is close to EMF) then
17. Apply Extended Backward Learning
18. Apply Recursive Learning [To correct the faults automatically]
19. end if
20. end for
21. end 
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7.1 Comparison among Existing and Proposed Methods
of Test Vector Generation

Using our proposed optimum test vector generation algorithm,
we have constructed test vectors for detecting faults for some
of the benchmark circuits given in [22]. Table 2 summarizes
the results of the proposed algorithm for the benchmark cir-
cuits. The columns of the table give the circuit’s name, number
of inputs N, number of gates d and the size of the test vector
generated by the existing and proposed methods.

In Table 2, we have shown that, for most of the benchmark
circuits, our proposed method generates optimum test vectors
than the existing ones, e.g., for xor5d1 circuit, our proposed
method generates 13 test vectors, whereas the existing
methods [10] and [24] generate test vectors 5 and 3 respec-
tively. A comparison of generated test vectors for some bench-
mark circuits using the existing and our proposed methods is
illustrated in Fig. 9.

From Table 3, we can find that, the proposed algorithm is
very efficient since the best existing method [10] requires

O(N. log2N) execution time, whereas our proposed algorithm
requires only O(log2N), where N is the number of inputs. For
the larger circuits, the execution time is also very small, e.g.,
for a 8-input benchmark circuit, the proposed method requires
3 ms, whereas the best known existing method [10] requires
24 ms. So, our proposed algorithm can easily be adapted for
much bigger circuits.

7.2 Comparison among Existing and Proposed Methods
of Fault Detection

After generating optimum test vectors with lower times, now
we have to detect the faults in a circuit. For detecting faults in a
circuit, we use our proposed fault detection algorithm. Using
our proposed fault detection algorithm, we have detected
faults for some of the benchmark circuits given in [22].
Table 4 shows the number of detected faults for the bench-
mark circuits. The columns of the table give the circuits name,
Number of detected faults using existing [11, 23] and pro-
posed methods.

Table 2 Test Vector Generation in the Reversible Circuits

Benchmark Circuit No. of Inputs, N No. of gates, d Test Vector ([10]) Test Vector ([24]) Test Vector (Proposed)

3_17tc 3 6 4 2 5
2_4decd1 3 3 4 3 5
ham3tc 3 5 4 2 5
2of5d1s 5 15 5 4 3
rd32 3 4 5 3 5
xor5d1 5 4 5 3 13
4_49tc1 4 16 5 3 11
4b15g_1 4 15 5 3 11
4b15g_2 4 15 5 3 11
5mod5tc 5 17 5 3 3
4b15g_3 4 15 5 4 11
4b15g_4 4 15 5 4 11
rd53rcmg 5 30 5 2 6
4b15g_5 4 15 5 4 11
hwb4tc 4 17 5 3 11

Fig. 9 Generated Test Vectors for
the Benchmark Circuits using
Existing and Proposed Methods
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In Table 4, we have shown that, for most of the benchmark
circuits, our proposed method detects more faults than the
existing ones, e.g., for xor5d1 circuit, our proposed method
detects 9 faults, whereas the existing methods [23] and [11]
detect 4 and 3 faults respectively. A comparison of number of
detected faults for some benchmark circuits using the existing
and our proposed methods is illustrated in Fig. 10.

From Table 5, we can find that, the proposed algorithm is
very efficient since the best existing method [23] requiresO(d.
log2N) execution time where d is the number of gates in the
circuit, whereas our proposed algorithm requires only (log2N),
where N is the number of inputs. For the larger circuits, the
execution time is also very small, e.g., for a 8-input bench-
mark circuit, the proposed method requires 3 ms, whereas the
best known existing method [23] requires (3 × d) ms. So, our
proposed algorithm can easily be adapted for much bigger
circuits.

7.3 Comparison among Existing and Proposed Methods
of Fault Correction

After detecting more faults with lower times, now we have to
correct the faults of a reversible circuit. For correcting faults in a
circuit, we use our proposed fault correction algorithm. Using
our proposed fault correction algorithm, we have corrected
faults for some of the benchmark circuits given in [22].

From Table 6, we can find that, the proposed algorithm is
very efficient since the existing methods [16, 27] requires
O(N2) execution time, whereas our proposed algorithm re-
quires only O(N. log2N), where N is the number of inputs.
For the larger circuits, the execution time is also very small,
e.g., for a 8-input benchmark circuit, the proposed method
requires 3 ms, whereas the existing methods [16, 27] requires
64 ms. So, our proposed algorithm can easily be adapted for
much bigger circuits.

8 Conclusion

In this paper, we briefly explain the difference between offline
and online testing. In offline testing, a test vector consisting of
inputs identified to be useful in detecting errors is applied to
the circuit. This requires that the circuit be taken out of oper-

Table 4 Number of Detected Faults in the Reversible Circuits

Benchmark
Circuit

No. of Faults
[23]

No. of Faults
[11]

No. of Faults
(Proposed)

3_17tc 1 0 1

2_4decd1 2 0 2

ham3tc 1 1 2

2of5d1s 0 0 0

rd32 0 0 2

xor5d1 4 3 9

4_49tc1 2 1 3

4b15g_1 4 0 4

4b15g_2 2 1 3

5mod5tc 1 0 1

4b15g_3 4 1 4

4b15g_4 3 2 4

rd53rcmg 2 2 2

4b15g_5 2 1 3

hwb4tc 4 2 6

Table 3 Comparison
among Existing and
Proposed Methods of
Test Pattern Generation
w.r.t. Time

Method Required Time

Existing [10] O(N.log2N)

Existing [24] O(2N)

Proposed O(log2N)

N ≡ Number of Inputs

Fig. 10 Number of Detected
Faults for Benchmark Circuits
using Existing and Proposed
Methods
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ation for some time, and that the outputs resulting from the
tests be compared with a set of known correct outputs. In
contrast, online testing is carried out while the circuit is being
used for normal operations, and additional circuitry is used to
identify if a fault is occurred. In this paper, we proposed a
method for generating optimum test vectors to detect quantum
bit faults in reversible circuits. In our experiments, it is shown
that optimum test vectors can detect more faults in a circuit.
Simulation results using benchmark circuits show that the
proposed algorithm generates optimum test vectors than a
traditional ATPG algorithm [2]. It yields very good perfor-
mance at running time also. The proposed method may assist
in the development of physical realizations of quantum gates
based on trapped ion technology, spin in semiconductors, etc.
[10]. As the generation of optimum test vectors in reversible
logic circuits is very important [1], the proposed algorithm is
useful for detecting faults in the circuits [15, 26, 32]. An effi-
cient algorithm was proposed to detect the faults in a revers-
ible circuit. For detecting the faults, we used the test vectors
generated from the proposed optimum test vector generation
algorithm. The proposed fault detection algorithm outper-
forms the existing ones in terms of time complexity. The pro-
posed algorithm is useful for correcting faults in the circuits
[16, 27]. Another efficient algorithm was proposed to correct
the detected faults. It is shown in the comparison tables that,
the proposed fault correction algorithm corrects more faults
than existing ones with lower time complexity.
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