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Abstract Reversible logic has gained interest of
researchers worldwide for its ultra-low power and high
speed computing abilities in the future quantum information
processing. Testing of these circuits is important for ensur-
ing high reliability of their operation. In this work, we
propose an ATPG algorithm for reversible circuits using
an exact approach to generate CTS (Complete Test Set)
which can detect single stuck-at faults, multiple stuck-at
faults, repeated gate fault, partial and complete missing
gate faults which are very useful logical fault models for
reversible logic to model any physical defect. Proposed
algorithm can be used to test a reversible circuit designed
with k-CNOT, Peres and Fredkin gates. Through extensive
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experiments, we have validated our proposed algorithm for
several benchmark circuits and other circuits with family
of reversible gates. This algorithm produces a minimal and
complete test set while reducing test generation time as
compared to existing state-of-the-art algorithms. A testing
tool is developed satisfying the purpose of generating all
possible CTS’s indicating the simulation time, number of
levels and gates in the circuit. This paper also contributes to
the detection and removal of redundant faults for optimal
test set generation.

Keywords Exact algorithms · Testing · Redundant faults ·
Stuck-at faults · Missing gate faults

1 Introduction

According to Rolf Landauer [12], logical irreversibility is
associated with physical irreversibility which serves the pur-
pose of standardizing signals by minimal heat generation,
per machine cycle. The standardized signals are indepen-
dent of their exact logical history and the device is said to
be logically irreversible if the output of a device does not
uniquely define the inputs. For every bit of information lost
in the process, there is an increase in entropy by the fac-
tor of kT ln2 Joules [12] where k is the Boltzmann constant
(approximately 1.38× (10−23) J/K), T is the temperature of
the circuit in Kelvins, and ln2 is the natural logarithm of 2
(approximately 0.69315). Charles H. Bennett argued that for
zero power dissipation the computation has to be reversible,
but if a computation is reversible it is not zero power [1].
Basically the energy dissipation for each information bit lost
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in a reversible circuit is less than the energy limit proposed
by Landauer i.e., E < kT ln2. Hence reversible logic has
gained importance with its low power application.

Reversible circuits used with newer technologies such
as quantum computing [21], optical computing [28], Quan-
tum Cellular Automata (QCA) [14], trapped-ion technology
[23], adiabatic CMOS [18] offers reduction in power dissi-
pation. Testing is one of the most important procedures in
accomplishing a chip. The product quality confides in the
defect level. A defect in an electronic system is the inadver-
tent difference between the implemented hardware and its
intended design. An embodiment of a defect at the abstract
function level is a fault. Detection of these faults before
releasing the chip into the market is very essential. Oth-
erwise it would be a huge setback for the manufacturing
company. The benefits of testing are quality and economy
[22].

Fault detection and fault diagnosis are the two impor-
tant phases of testing. The role of the former is to detect
whether the circuit/chip is functioning properly or not; while
the latter determines exactly what went wrong and where
the process needs to be altered. Both these phases have
their own complexities and the latter depends on the for-
mer. Hence fault detection is the basis for fault diagnosis.
There are several faults which may occur during fabrica-
tion or manufacturing of chips. These physical defects are
mapped to fault models such as stuck-at faults, missing gate
faults, bridging faults, cross point faults and many more
[23, 24]. The detection of these faults in reversible logic
circuits is relatively easy compared to irreversible counter-
part. Several works have been done in this area with certain
assumptions or constraints. The authors in [24] have pro-
posed an ATPG algorithm which detects only stuck-at faults
in a circuit comprising of only k-CNOT gates with few gate
overheads due to incorporation of DFT technique to detect
faults. The work in [7] proposes an ATPG algorithm for
detecting Single Missing Gate Fault (SMGF) for k-CNOT
circuits with an assumption that at most one gate can be
faulty at a time and are detectable only at circuit’s primary
outputs. As an extension to the work in [7], the same authors
in [23] proposed an ATPG for Multiple Missing Gate Fault
(MMGF) and Partial Missing Gate Fault (PMGF) consid-
ering only k-CNOT gate. The authors in [26] optimized
the test set generation for the combination of SMGF and
PMGF whereas the optimized test set generation for MMGF
is presented in [11] and have also proved that test set for
MMGF is sufficient to test SMGF and Repeated Gate Fault
(RGF).

Generating complete test set for a combinational circuit
with minimal test set is a NP-hard problem and the solution

can be obtained using an exhaustive search technique [33].
Exact algorithms aim at computing optimal solution, with
the algorithm passing through the same sequence of oper-
ations. These exact algorithms (deterministic algorithms)
are expensive in terms of run time or memory and hence
not suitable for very large input size. On the other hand,
the solution can be obtained for this problem with various
heuristic approaches. Heuristic approaches use optimization
techniques for solving and they may not give minimal
solution. In this work we have used an exact approach to
determine CTSwith minimal test set for reversible combina-
tional circuits. Although the complexity of the problem may
become exponential in some rare cases, an optimal solution
is found. The detailed analysis of algorithms are presented
in next sections.

In this work, we have proposed an ATPG algorithm for
reversible circuits using exact approach to generate CTS
which can detect single stuck-at faults, multiple stuck-at
faults, repeated gate fault, partial and complete missing gate
faults either exclusively or combining different fault mod-
els. This is the first work in the literature to generate CTS
combining both stuck-at fault models and missing gate fault
models considering all kinds of standard reversible gates
such as k-CNOT, Peres and Fredkin gates (we will be refer-
ring these gates as the family of reversible gates). The
synthesis algorithms for reversible circuits using Toffoli-
Fredkin and k-CNOT-Peres-Fredkin gates are proposed in
[5, 17, 27] for which test algorithms are not proposed in lit-
erature. This is one of the main motivations for this work.
A testing tool is developed to generate CTS with minimal
test set for reversible circuits which take inputs either in
the form of .tfc, .real, .jpg, .bmp, .png or .fig. The output
panel displays the minimal test set for that particular circuit
and also the simulation time of the CPU, number of gates,
and number of lines in a circuit. The tool also generates all
possible CTS’s for a given circuit with an additional fea-
ture of redundancy detection and removal. All the proposed
algorithms are validated on the benchmark circuits from the
source available in [16].

The main contributions of this work are as follows:

1. An exact ATPG algorithm to generate CTS with mini-
mal test set for a given reversible circuit.

2. Algorithm to test reversible circuits designed with the
family of reversible gates.

The rest of the paper is organized as follows. A gen-
eral discussion on reversible logic, basic reversible gates,
fault models and prior work on fault detection in reversible
logic is given in Section 2. In Section 3, we present the
ATPG algorithms with detailed illustrations and complexity
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analysis to detect stuck-at fault, complete missing gate fault
and partial missing gate fault in reversible circuits. Perfor-
mance evaluation and the experimental results are reported
in Section 4. Concluding remarks and future work are
materialized in Section 5.

2 Preliminaries

2.1 Reversible Logic

Reversible logic is one of the forerunners of post-CMOS
technology with ultra-low power applications. For a circuit
to be called as reversible, it should satisfy certain condi-
tions: there should be no fan-out and no feedback and also
the function should be bijective. The No-fan-out theorem of
reversible logic circuits has a correlation with No-cloning
theorem of quantum circuits which states that an unknown
quantum state cannot be copied [13]. On the other hand, the
reversible circuit function should be bijective means that,
it maps each input pattern to a unique output pattern. In
general sense, for logic function f : Bn ⇒ Bm the number
of inputs should be equal to number of outputs, i.e., n = m.

2.2 Basic Reversible Gates

For a logic gate to be reversible, there must be equal number
of inputs and outputs satisfying the bijective property other-
wise some information in the input can be lost in the output
and vice versa [22]. Some of the reversible gates are NOT
gate, CNOT/FEYNMAN gate, TOFFOLI gate, FREDKIN

Table 1 Truth table for 3 17tc reversible circuit with faulty and fault-
free outputs

Inputs Fault-free output Faulty output

SMSF SMGF RGF PMGF MMGF

000 111 010 010 010 111 001

001 000 100 000 000 000 000

010 001 101 001 001 001 010

011 011 110 011 011 110 011

100 100 100 100 100 100 100

101 010 010 111 111 010 101

110 110 110 110 110 011 110

111 101 101 101 101 101 111

gate and PERES gate. The circuits designed using these
gates are called reversible circuits and are governed by per-
formance parameters such as Gate Count (GC), Quantum
Cost (QC), Ancilla Inputs (AI), Garbage Outputs (GO) and
Delay (�).

The k-CNOT gate is a k-input, k-output reversible
gate having transformation from [I1, I2, ...Ik−1, Ik] to
[I1, I2, ..., Ik−1, (I1 · I2 · .... · Ik−1) ⊕ Ik]. If k = 2, then it
is called CNOT gate and if k = 3, it becomes TOFFOLI
gate. TOFFOLI gate is the most popular reversible gate hav-
ing a quantum cost of 5. FREDKIN gate is a 3X3 reversible
gate which basically operates as a conditional router or mul-
tiplexer [31]. Depending on the bit value in one line (Control
Line), the outputs at other two lines (Target Lines) are either

Fig. 1 Illustration of Reversible Circuit 3 17tc for various fault conditions
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Table 2 Implementation table of equation (d) of SMSF algorithm

Row of SaFarray All possible Stuck at Faults of 3 17tc circuit for test set [0 1 6]

0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0

1 0 1 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1

6 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1

l0|l1|l6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

passed through unchanged or swapped with each other. The
FREDKIN gate is also known as controlled swap(CSWAP)
gate [22] having a quantum cost of 5. FREDKIN gate has a
special property that it preserves parity. Hence FREDKIN is
regarded as Fault Tolerant gate, in other words conservative
gate. FREDKIN gate has transformation from [I1, I2, I3]
to [I1, Ī1 · I2 ⊕ I1 · I3, Ī1 · I3 ⊕ I1 · I2]. When I1 = 1,
it becomes SWAP gate. The PERES gate is also a 3X3
reversible gate having transformation from [I1, I2, I3] to

Table 3 Fault coverage table for 3 17tc benchmark circuit with 2 test
vectors

Test vector 1 Test vector 2 Faults covered % Fault coverage

0 1 15 83.33333

0 2 13 72.22222

0 3 14 77.77778

0 4 13 72.22222

0 5 15 83.33333

0 6 14 77.77778

0 7 15 83.33333

1 2 15 83.33333

1 3 12 66.66667

1 4 13 72.22222

1 5 13 72.22222

1 6 16 88.88889

1 7 15 83.33333

2 3 14 77.77778

2 4 15 83.33333

2 5 15 83.33333

2 6 14 77.77778

2 7 13 72.22222

3 4 16 88.88889

3 5 14 77.77778

3 6 15 83.33333

3 7 14 77.77778

4 5 15 83.33333

4 6 12 66.66667

4 7 15 83.33333

5 6 14 77.77778

5 7 13 72.22222

6 7 14 77.77778

[I1, I1 ⊕ I2, I1 · I2 ⊕ I3]. The quantum cost of PERES is 4.

2.3 Fault Models

In reversible logic, in addition to traditional fault models, a
few more fault models need to be considered for complete test-
ing of these circuits and testing a circuit for these specific
fault models will give high confidence over the designs. For
a reversible circuit designed with k-CNOT based gates, sev-
eral fault models were introduced in literature [23] and [24].
Single andMultipleStuck-at Faults (SMSF) [23], SingleMiss-
ing Gate Fault (SMGF) [23], Repeated Gate Fault (RGF)
[24], Partial Missing Gate Fault (PMGF) [24] and Multiple
Missing Gate Fault (MMGF) [24]. In this section, we dis-
cuss these faults in detail and their effects on functionality
of reversible circuits. 3 17tc as shown in Fig. 1a is used as
the reference in the following sections for explanation.

2.3.1 Single and Multiple Stuck-at Fault (SMSF)

Stuck-at faults are the traditional fault models. A single-
bit error or the cell fault which makes a particular signal
permanently stuck at a value and thus does not allow a
signal transition. (Eg: When the circuit implemented using
QCA, or adiabatic CMOS [18] and [4]). Figure 1b shows
the effect of single stuck at fault in 3 17tc bench mark cir-
cuit. In Fig. 1b, a stuck-at 0 fault is present on line ‘a’ in
level 3. In any test pattern generation methods for stuck-
at faults, there are three necessary and sufficient steps [2]:
Fault Activation, Fault Propagation and Back Tracing. On
applying these steps, the test vector needed to test this
fault is: 000 or 001 or 010 or 011. The truth table for the
above circuit with and without Sa-0 fault is as depicted in
Table 1.

2.3.2 Single Missing Gate Fault (SMGF)

In this fault model, any one k-CNOT gate completely dis-
appears from the circuit. Technically CNOT gate behaves
as a simple wire connection. This also has an impact on
circuit functionality. The pulse implementing the gate oper-
ation may be short, missing, misaligned, or mistuned. Let us
consider the 4th gate that is, TOFFOLI gate is missing from
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the circuit as shown in Fig. 1c. If we apply {1 0 1} to the
circuit, the output would be {0 1 0}, whereas in the presence
of SMGF fault highlighted by a box, the output will be {1
1 1}. Hence the vector {1 0 1} detects this fault. The func-
tional error in the circuit for all other inputs due to this fault
is depicted in Table 1. The total number of SMGFs is equal
to total number of gates in the circuit.

2.3.3 Repeated Gate Fault (RGF)

If a gate is repeated due to multiple instantiation of a par-
ticular gate, then RGF models are used to define the effects
of this fault on functionality of reversible circuit. The phys-
ical justification for an RGF is the occurrence of long or
duplicated pulses [23]. Figure 1d shows the RGF model in
3 17tc reversible circuit. Let {0 0 0} be the input applied
to the circuit and the expected fault-free output is {1 1 1},
whereas with the presence of RGF the output evaluates to
{0 1 0}. Hence {0 0 0} is one of the test vector to detect
RGF in the circuit shown in Fig. 1a. Table 1 shows fault-free
and faulty outputs for all other input combinations. From
the truth table it is evident that the test patterns for SMGF
and RGF are the same. Both these fault types have same
characteristics in terms of test patters. Based on this obser-
vation, the following theorem holds when generalized:

Theorem 1 (RGF Fault Effect on Reversible Circuit) Con-
sider a Reversible Circuit RC having RGF fault effect which
replaces a reversible gate by r instances of the same gate.
Then the

T est Set f or RGF =
{

T est Set of SMGF ; if r is even
No T est Set Required; if r is odd

Proof According to the truth table shown in Table 1 for the
circuits depicted in Fig. 1a and Fig. 1d, the output values in
the presence of RGF (even number of gate instances i.e., for
r being even) differs from the actual value for two inputs {0
0 0} and {1 0 1}. For the same inputs, the output values in
the presence of SMGF also differs from ideal value. Hence
{0 0 0} and {1 0 1} can detect both RGF and SMGF. When
r is odd, the fault is redundant since the fault effect gets
cancelled and hence there is no need of any test set to detect
this redundant fault.

2.3.4 Partial Missing Gate Fault (PMGF)

This fault models the defects caused in a reversible gate if
any control is missing due to physical alignment or tuning
of the gate pulses. In case of k-CNOT gate, PMGF reduces
the gate to p-CNOT gate, with p < k; whereas in case of

FREDKIN gate, the presence of PMGF converts the gate
functionality from FREDKIN gate to SWAP gate. Let us
consider a case where control of the TOFFOLI gate is miss-
ing as shown in Fig. 1e. For the applied input {0 1 1}, the
output will be {1 1 0} instead of {0 1 1} due to the pres-
ence of PMGF. Hence the vector {0 1 1} detects this fault.
The corresponding fault-free and faulty outputs for all other
inputs are depicted in Table 1. It has been shown in [23]
that the test vector which detects first order PMGF is suffi-
cient to detect higher order PMGF as well. This statement is
exclusively for k-CNOT gates as higher order PMGF occurs
only in k-CNOT gate.

2.3.5 Multiple Missing Gate Fault (MMGF)

If a physical defect causes multiple gates or a subset of
reversible gates to disappear from the circuit, then those
type of faults are modeled as MMGF. Even this requires a
detailed analysis to detect the fault from the functional anal-
ysis of the circuit. According to the authors in [24], a fault
is said to be MMGF, if and only if two or more consecutive
gates are missing. This is justified by the assumption that
the gate operations implemented using laser is more likely
to be disturbed for a period of time exceeding one gate oper-
ations. Hence always consecutive gates are affected rather
than distinct gates here and there. Consider a case where
two consecutive gates are missing as shown in Fig. 1f. Let
the input applied be {0 1 0}. The fault-free output is {0 0
1} whereas, the faulty output is {0 1 0} which differs from
expected output. Hence the vector {0 1 0} detects MMGF.
The functional errors for other inputs are described in
Table 1.

2.4 Prior Work on Fault Detection in Reversible Logic

2.4.1 Single and Multiple Stuck-at Faults

These are the classical fault models defined for reversible
and quantum circuits. Testing can be performed either
online or offline or with DFT. Online testing implies that
the testing can be performed during the normal mode of
operation of the circuit with hardware overhead. But offline
testing needs a dedicated test mode without any test hard-
ware overhead, whereas DFT refers to Testing with definite
test input and with minimal additional test hardware [2].
The authors in [24] have proposed an ATPG with DFT for
detecting all single stuck-at faults in a k-CNOT reversible
circuit. But the methodology proposed by them does not
consider any general n-bit reversible circuit. In [9], an ATPG
with DFT methodology is proposed to detect all stuck-at
faults. Here stuck-at faults are tested using minimal vec-
tors with the gate replacement technique which increases the
quantum cost of a testable circuit.
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Various researchers have proposed online testing tech-
niques to detect all single and multiple stuck-at faults
which can detect the faults by designing new testable gates
[10, 15, 20, 29, 30]. Among these techniques, the work
in [20] has 100 % fault coverage with minimum gate
overhead and all other techniques have partial fault cov-
erage with high gate overhead. The offline techniques of
testing will not add any overhead in terms of hardware
complexity but they will have performance overhead since
the circuit needs to be worked in test mode for offline
testing.

2.4.2 Missing Gate Faults

Missing gate faults were proposed by the authors in
[26] for the first time. They proposed a DFT method-
ology for detection of missing gate faults in k-CNOT
gates. But this work does not deal with multiple miss-
ing gate faults. The complexity of the methodology
developed depends on number of gates in the circuit
and considers one gate missing at a time. Hence this
method does not take multiple missing gate faults into
consideration.

The authors in [6] have proposed an ATPG algorithm
using linear programming model for detecting SMGF for
circuits designed with k-CNOT gates. The authors in [25,
26] have proposed a technique of detecting SMGF in
k-CNOT reversible circuit. An algorithm for CTS gener-
ation for all subset of missing gate faults was proposed
in [11] for reversible circuits with k-CNOT gates. Also
this technique has not dealt with stuck-at fault models. All
the above mentioned methodologies were offline method
of fault detection. The authors in [34] has proposed an
online testing methodology which can detect missing gate
faults when the circuit is operating in normal mode. But
this can detect only odd number of repeated or miss-
ing gate faults. The offline testing techniques requires the
circuit to operate in test mode for fault detection. The
authors in [32] has proposed an offline testing method-
ology to test reversible circuits using Boolean Satisfiabil-
ity (SAT) based approach which tests SMGF faults along
with Single Missing Control Fault (SMCF) and Single
Additional Control Fault (SACF). SMCF and SACF fault
models are subsets of PMGF. The work in [35] has pro-
posed a ping pong test to detect SMGF and multiple
SMGF in a k-CNOT reversible circuit with 86 % fault
coverage in average. In [19], the test set for SMGF is
generated using a boolean difference method which has
reported both test set and test vector set for detecting
100 % SMGF in a reversible circuit designed with k-CNOT
gates.
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So from the literature review, we can conclude that all the
existing offline test methodologies have either concentrated
on a particular fault type or adopted DFT for generating
minimal test set and CTS. In this work, we target both
stuck-at and super-set of missing gate fault detection in a
reversible circuit designed with family of reversible gates
and hence proposed algorithm does not restrict the testing
of circuits designed with only k-CNOT gates.

3 Proposed Algorithms

3.1 Algorithm for Single and Multiple Stuck-at Fault
Detection

In this algorithm, minimal CTS for single and multiple
stuck-at faults are generated with Reversible Circuit (RC)
as Input. The algorithm follows deterministic approach. We
consider all the faults in each level of the circuit and gen-
erate minimal CTS and test sets which covers 100 % of
faults.

3.2 Illustration/Analysis of Proposed SMSF Algorithm
Using an Example

Let 3 17tc benchmark circuit is provided as input to the
SMSF algorithm having number of lines n = 3 and num-
ber of gates N = 6. The complete flow of the algorithm to
determine CTS for single and multiple Stuck-at faults is as
represented in Fig. 2.

SaFarray obtained in Fig. 2 is an 2n × p matrix where
p is the number of all possible Stuck-at Faults (including
Sa-0 and Sa-1) for a given circuit. Figure 2 also shows all
possible minimal test set to detect SMSF. Test vector is the
n-bit binary equivalent of each element in the test set. Let us
verify whether the test set [0 1 6] covers all the faults. From
c we get

(l0 | l1 | l6) = 1 (d)

Table 2 shows the implementation of equation d. The
last row indicates that this test set covers all possible SMSF
faults in 3 17tc circuit.

Table 4 Comparison of CTS for Single and Multiple stuck-at faults in Reversible circuits containing k-CNOT gates

Bench mark No. of No. of Work in Ibrahim [8]a Work in Chakraborty [3]a Proposed work

circuits gates lines No of DFT No. of test No of DFT No. of test No. of

Gates in [8] vectors in [8] gates in [3] vectors in [3] test vectors

2of5d1 18 6 8 2 7 3 2

4 49tc1 16 4 6 2 5 3 3
3 17tc 6 3 5 2 4 3 3
5mod5tc 17 6 7 2 7 3 3
6symd2 20 10 11 2 11 3 3
9symd2 28 12 13 2 13 3 3
Ham 3tc 5 3 4 2 4 3 3
Ham 7 23 7 8 2 8 3 3
Hwb4tc 17 4 5 2 5 3 3
Hwb5tc 55 5 6 2 6 3 4
Hwb6 126 6 7 2 7 3 4
Hwb7tc 289 7 8 2 8 3 4
Hwb8-637 637 8 10 2 9 3 5

Mod 5 8 5 6 2 6 3 3

Rd32 4 4 5 2 5 3 3

Rd53rcmg 30 7 9 2 8 3 2

Rd73d2 20 10 11 2 11 3 3

Rd84d1 28 15 16 2 16 3 3

Xor5 4 5 6 2 6 3 3

awith DFT
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The same procedure is repeated for any circuit and apply-
ing appropriate equations required variables are determined.
Figure 3 illustrates the SMSF test set generation for a
Reversible circuit comprised of k-CNOT, FREDKIN and
PERES gates.

Lemma 1 Proposed Algorithm generates minimal CTS for
a given Reversible circuit with 100 % fault coverage.

Proof As explained in Section 3.2 and Table 2, for 3 17tc
benchmark circuit 100 % fault coverage is achieved with
number of test vectors = 3. Let us consider the mathe-
matical induction method of proving this lemma. Hence
it is sufficient to prove that 2 vectors are not enough to
detect all possible SMSaF.Let the number of test vectors

Table 5 Comparison of CTS for single missing gate fault for bench-
mark circuits

Circuit N n [23] [7] Proposed

Gr. B&B DFT

gate

cost

2of5d1 18 6 4 4 4 10 4

2of5d2 12 7 2 2 2 5 2

3 17tc 6 3 2 2 2 11 2

4 49tc1 16 4 3 3 3 7 3

5mod5tc 17 6 1 1 1 0 1

6symd2 20 10 2 2 2 10 2

9symd2 28 12 3 3 3 18 3

ham3tc 5 3 2 2 2 1 2

ham7tc 24 7 4 4 4 5 4

hwb4tc 17 4 2 2 2 7 2

hwb5tc 56 5 5 5 5 38 4

hwb6tc 126 6 8 9 8 83 9

hwb7tc 291 7 13 15 >4 190 14

mod5adders 21 6 3 3 3 8 3

mod5d1 8 5 1 1 1 0 1

mod5d2 9 5 1 1 1 0 1

rd32 4 4 2 2 2 1 2

rd53d1 12 7 2 2 2 3 2

rd53d2 12 8 2 2 2 5 2

rd53rcmg 30 7 3 4 3 19 3

rd73d2 20 10 3 3 3 11 3

rd84d1 28 15 3 3 3 14 3

xor5d1 4 5 1 1 1 0 1

ham15tc1 162 15 – 7 >2 47 7

= 2. Total number of SMSF for 3 17tc benchmark cir-
cuit are 18. The fault coverage for all possible 2 vectors
set is as shown in Table 3. Hence we have proved that
3 vectors are sufficient to detect all SMSaF which is
minimal for 3 17tc benchmark circuit. In general, our pro-
posed algorithm generated minimal CTS for all reversible
circuits.

3.3 Redundancy Detection and Removal

In the proposed algorithm, redundancy detection is per-
formed by analyzing the entries in SaFarray, which contains
the information on whether a particular vector detects all
the fault or not. From the SaFarray, if any of the column
contains all zeros then that particular fault is said to be
redundant since the condition for fault detection is governed
by equation c and hence to remove this redundant fault the
algorithm ignores that column and processes further for test
vector generation. Total number of redundant faults in the
circuit is directly proportional to number of columns with
all zero entries.

3.4 Algorithm for Partial and Complete Missing Gate
Fault detection

Complete missing gate fault algorithm proposed in Algo-
rithm 2 covers three different types of missing gate faults
such as SMGF (Single Missing Gate Fault), MMGF (Mul-
tiple Missing Gate Fault) and RGF (Repeated Gate Fault)
whereas Algorithm 3 generates minimal CTS for PMGF
faults.

Table 6 Comparison of CTS for Single Missing Gate Fault with [19]

Benchmark N n SMGF test Proposed

circuit vectors [19] work

ham3tc 5 3 3 or 4 2

rd32 4 4 6 or 7 2

xor5d1 4 5 2 1

3 17tc 6 3 2 2

mod5d1 8 5 2 1

4 49d3 12 4 4 3

hwb4d1 17 4 7 4

mod5d2 9 5 2 1

rd32d1 4 4 6 or 7 2

mod5d4 5 9 4 1
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Fig. 2 Demonstration of SMSF algorithm for 3 17tc benchmark circuit

3.5 Illustration/Analysis of Proposed Complete Missing
Gate Fault Algorithm with an Example

Let us consider 3 17tc benchmark circuit as an input cir-
cuit for the proposed algorithm to generate CTS to detect
partial and complete missing gate faults. The algorithm

flow remains the same as explained in Figs. 2 and 3 for
SMSF algorithm. The same flow holds good for all pro-
posed fault models but fault det is evaluated using equation
d for CMGF and equation h for PMGF. Hence Figs. 2 and 3
can be considered as a general flow diagram for all fault
models but the final evaluation equation differs from one
fault model to other.



J Electron Test (2016) 32:175–196 185

Fig. 3 Demonstration of SMSF algorithm for MBRC 2 circuit

4 Results and Discussions

The ATPG algorithms proposed in this work detects Sin-
gle and Multiple stuck-at faults, SMGF, MMGF, PMGF and

RGF exclusively or combining different fault models. The
test sets are generated using exact approach and is found
to be minimal compared to existing state-of-the-art work.
The proposed SMSF has the computation complexity of
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O([2n(n + N)log2(n) + ∑n
r=1

2n
Cr ]) and SMGF, RGF

and PMGF has the complexity of O([2n(N + 1)log2(n) +∑n
r=1

2n
Cr ]). The complexity of an exact algorithm is

exponential - polynomial and in our work, the exponential
complexity is due to the generation of fault table and search-
ing of minimal test set with CTS from this fault table. Since
the size of fault table is 2n ·L the search also has complexity
of O(2n).

4.1 Single and Multiple Stuck-at Faults

Couple of attempts are made in the literature to gener-
ate test sets for stuck-at-fault models using DFT approach.
In all these approaches there is an extra overhead due to
adaptation of DFT method. In this work, there is no over-
head as the design is completely exact and is found to
be more optimal approach satisfying the requirements. The
comparison of the proposed work with the existing works in
[8] and [3] is described in Table 4. It is found that though
the numbers of test vectors are one or two more than those

proposed in [8], there is no extra overhead in terms of gate
cost. Hence there is no area overhead in proposed work.
Similarly, the required number of test vector in [3] is 3 for
few benchmark circuits with an additional gate cost due to
incorporation of DFT approach. Hence the proposed method
generates minimal test vectors to detect all single and mul-
tiple stuck-at faults with no extra overhead. The proposed
algorithm is applied to all the benchmark circuits and the
results are tabulates along with the CPU simulation time as
shown in Table 12.

4.2 Missing and Repeated Gate Faults

There are various variants of missing gate fault model. A
complete gate or any control line or two or more consecu-
tive gates may disappear to cause fault effect on the circuit.
Contrary to the missing gate, there may be gates which are
repeated two or more times causing functional errors in the
circuit. The test vector to detect all these variants of fault
types is not found in the literature. This work is supposed to

Table 7 Comparison of CTS for single missing gate fault with [35]

Benchmark circuit N n SMGF % fault Test vectors from pro-

test vec- coverage posed work with 100 %

tors in [35] with [35] fault coverage

ham3tc 5 3 3 80.02 2
3 17tc 6 3 2 78.44 2
mod5d1 8 5 1 47.09 1
2of5d2 12 7 3 82.84 2
mod5adders 17 6 3 86.25 3
5mod5tc 17 6 1 48.63 1
ham15tc1 70 15 9 98.57 7
5mod5 10 10 71a 10 6 2 64.65 2
mspk nth primes4 11 11 4 4 96.92 2
mspk 4 49 14 14 4 6 84.86 2
mspk nth prime4 14 14 4 4 89.41 2
4b15g 3 15 4 4 90.78 3
cycle10 2 19 12 12 94.74 2
gf2 4mult 19 83 19 12 1 88.89 1
ham7 21 69 21 7 3 94.39 3
nth prime5 inc 25 103 25 5 4 93.84 3
mspk hwb5 31 91 opt 38 80 38 5 7 97.28 3

hwb6 47 107 47 6 7 97.78 3
nth prime6 inc 55 667 55 6 33 99.98 6
nth prime7 inc 1427 3172 1427 7 27 99.99 11
nth prime8 inc 3346 7618 3346 8 73 99.99 –
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Table 8 Comparison of CTS for SMGF,MMGF and PMGF for benchmark circuits

Circuit N n MMGF PMGF SMGF, MMGF and PMGF SMGF and PMGF

[23] Proposed [23] Proposed [23] Proposed [26] Proposed

2of5d1 18 6 5 5 8 4 11 6 7 6
2of5d2 12 7 2 2 3 2 4 4 8 4
3 17tc 6 3 2 2 2 2 3 2 4 2
4 49tc1 16 4 3 3 5 3 5 4 5 4
5mod5tc 17 6 6 6 5 1 7 2 7 2
6symd2 20 10 2 3 3 2 4 4 11 4
9symd2 28 12 3 3 – 3 – 5 13 5
ham3tc 5 3 2 2 3 2 3 3 4 3
ham7tc 24 7 4 4 4 4 4 6 8 6
hwb4tc 17 4 4 4 5 2 6 4 5 4
hwb5tc 56 5 5 5 9 4 9 6 6 6
hwb6tc 126 6 8 9 15 9 16 13 7 13
hwb7tc 291 7 14 14 24 15 – – – –
mod5adders 21 6 4 4 6 3 8 4 7 4
mod5d1 8 5 4 4 2 1 4 2 6 2
mod5d2 9 5 2 2 2 1 3 2 6 2
rd32 4 4 2 2 3 2 3 4 5 4
rd53d1 12 7 3 3 8 2 8 4 8 4
rd53d2 12 8 2 2 3 2 4 4 9 4
rd53rcmg 30 7 4 4 8 3 10 6 8 6
rd73d2 20 10 3 3 4 3 4 4 11 4
rd84d1 28 15 3 3 4 3 – 4 16 4
xor5d1 4 5 1 1 1 1 2 2 6 2

be first in the literature to generate test vectors for all these
types of faults.

The authors in [7] have used Greedy and Branch &
Bound algorithm to generate test vectors to detect SMGF
with some additional gates due to DFT method. Our pro-
posed algorithm also generates the test sets whose cardinal-
ity matches with those proposed in [7] with an advantage

Table 9 Comparison of CTS for SMGF, MMGF and RGF for bench-
mark Circuits

Circuit N n [9] Proposed

2of5d1 18 6 5 4

4 49tc1 16 4 3 3

hwb4tc 17 4 4 2

rd53d1 12 7 3 2

rd53rcmg 30 7 4 3

mod5adders 21 6 4 3

5mod5tc 17 6 3 1

ham3tc 5 3 2 2

of zero overhead. The results are tabulated and compared in
Table 5.

The authors in [23] have proposed an algorithm which do
not uses any DFT approach and detects SMGF, MMGF and
PMGF. The test set cardinality for the proposed SMGF algo-
rithm also matches with the one proposed in [23], but for
few benchmark circuits the proposed algorithm gives better
test sets. The comparison of CTS for SMGF are as described
in Table 5. The proposed MMGF and PMGF algorithms are
found to give minimal test set when compared to the results
in [23]. For 5mod5tc benchmark circuit, the number of test
vectors needed to test PMGF is reduced by 80 % compared
to [23].

The work in [19] targets for determining test set for
SMGF. Table 6 gives the comparison of our work with [19].
On an average, test set cardinality is reduced by 60 %.
Table 7 shows the comparison of the proposed work with
[35]. The test set proposed in [35] has variations in fault
coverage for different benchmark circuits. Compared to [35]
the test vectors required to test a given reversible circuit is
reduced by an average of 40 % with 100 % fault coverage.
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Table 10 Comparison of CTS for SMGF, MMGF and PMGF for benchmark circuits

Circuit N n PMGF SMGF

SMCF- SAT [32] SACF - SAT [32] Proposed SAT [32] Proposed

One-two-three-v0 97 11 5 3a 3a 2 3 2

4gt4-v0 78 13 5 7 5 3 4 3

4gt12-v0 86 14 5 10 5a 2 3 2

Mini-alu 84(mini alu 305) 20 10 5 7a 1 5 1

Rd53 131 28 7 11 9 5 5 5

Sym6 63(sym6 316) 29 14 10 16a 2 7 2

Sym9 148 210 10 120 57 1 32 1

aTest set with Un-testable faults

The comparison of the proposed work with the existing
work is tabulated in Table 8 for MMGF and for PMGF. The
number of test vectors needed to detect the combined effect
of SMGF, MMGF and PMGF are compared with the work
done in [23] and is tabulated in Table 8. It is found that,
for 5of 5d1 benchmark circuit, there is an improvement of
45.45 % wrt [23] in number of test vectors needed to detect
SMGF, MMGF and PMGF. The authors in [23] does not
discusses on repeated gate faults and stuck-at faults.

Not much work have been found in the literature which
discusses all types of fault models which takes combinations
of all fault types. The authors in [26] discusses on test
vector generation for the combined fault model of SMGF
and PMGF. The proposed algorithm for combined effect
of SMGF and PMGF is compared with [26] and tabulated
as depicted in Table 8. The proposed algorithm gener-
ates minimal test sets compared to the counterpart with
an improvement of 66.66 % for xor5d1 and 71.42 % for

Table 11 CTS with simulation time for reversible circuits designed with k-CNOT, Fredkin, and Peres gates

Circuits with # Test Vectors -,#Test Set,-,#Lines,-,#Gates

Toffoli-Fredkin- Test Vector Generation Time (sec)
Peres gates

Name Single/Multiple Complete Partial [i] and [ii] [i] and [iii] [ii] and [iii] [i], [ii] and [iii]

Stuck-at Fault [i] Missing Gate Missing Gate

Fault [ii] Fault [iii]

RFA 4 3-7974-13-16 2-32-13-16 2-32-13-16 3-24-13-16 3-32-13-16 4-480-13-16 4-344-13-16

81.5341 23.2026 24.0136 50.0567 52.2644 27.8082 49.7823

PBC 2 3-328-5-2 1-16-5-2 1-16-5-2 3-328-5-2 3-328-5-2 2-256-5-2 3-328-5-2

0.1291 0.0144 0.0167 0.1343 0.1302 0.0203 0.1365

RBC 3-44-4-4 1-2-4-4 1-2-4-4 3-20-4-4 3-24-4-4 2-8-4-4 3-8-4-4

0.0351 0.0157 0.0153 0.0426 0.0431 0.0174 0.0417

PBC 1 3-20-3-2 1-2-3-2 1-2-3-2 3-10-3-2 3-10-3-2 2-4-3-2 3-4-3-2

0.0115 0.0072 0.0067 0.0124 0.0124 0.0069 0.0125

MBRC 2 3-2560-7-8 2-540-7-8 2-540-7-8 3-608-7-8 3-900-7-8 2-168-7-8 3-270-7-8

6.7564 0.3357 0.3066 6.9523 6.9617 0.3199 6.8944

MBRC 4 3-9332-14-18 2-48-14-18 2-48-14-18 4-48-14-18 3-44-14-18 2-256-14-18 3-40-14-18

(2 RF) (2 RF) (2 RF) (2 RF) (4 RF) (4 RF)

458.9209 47.0389 46.0430 129.0482 134.9654 53.7973 144.6939
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Fig. 4 Reversible Circuits designed using standard gates for validating the algorithm

5mod5tc benchmark circuit. Though for one or two of the
benchmark circuits the number of test vector are slightly
more compared to [26], for most of the cases, the proposed
algorithm is found to be optimal.

The author in [11] discusses on the test vector genera-
tion for combined effect of SMGF, MMGF and RGF whose
results are compared with the proposed work as depicted in
Table 9. It is found that the test set cardinality is improved
by 50 % and 66.66 % for hwb4tc and 5mod5tc benchmark
circuits respectively when compared to [11]. Other fault
models are not discussed and also it is applicable only for
circuits containing k-CNOT gates.

The authors in [32] has defined variants of missing con-
trol faults as a Single Missing Control Fault (SMCF), Single
Additional Control Fault (SACF) and Single Missing Gate
Fault (SMGF). In the proposed work, both SMCF and SACF
are subsets of PMGF and are detected using Algorithm 3.
SMGF faults are detected using Algorithm 2. It is evident
from Table 10 that the number of test vectors are reduced by
98.24 % for PMGF and 96.875 % for SMGF for Sym9 148
benchmark circuit. For some of the circuits in [32], there
are some un-testable faults present which is not the case in
the proposed work which detects all the faults present in the
circuit with minimal test set cardinality.

The main objective of this work is to test circuits con-
taining other reversible gates such as Fredkin, Peres and

k-CNOT. Some of the reversible circuits designed using all
these gates are considered and tested for all kinds of fault
models. The results obtained are tabulated in Table 11. The
reversible circuits for validating the proposed algorithms are
as shown in Fig. 4.

The CTS for most of the benchmark circuits along
with the simulation time for Single/Multiple Stuck-at Fault,
SMGF, MMGF, PMGF and their combinations are tabulated
in Table 12. # Test Vectors indicates the number of mini-
mal test vectors needed to test a particular fault and #Test
Set indicates CTS i.e., all possible minimal test vector
sets. #Lines and #Gates indicate number of lines and gates
present in a circuit under test.

In this work, we have proposed an ATPG algorithm
using an exact approach to generate minimal test vectors
with CTS for a given reversible circuit consisting of fam-
ily of reversible gates. Based on these proposed algorithms,
a testing tool is developed which can take inputs either in
the form of circuit image (.bmp, .jpg, .png, .fig) or in .tfc
or .real format. This tool is capable of generating test vec-
tors for different fault models such as Single and Multiple
stuck-at fault, Missing gate fault model and its variants. The
tool generates the all possible test vectors needed to test a
particular fault in a circuit indicating the number of lines and
number of gates in the circuit along with CPU time required
for processing. There is an option to write the results in to
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Fig. 5 Snapshot of Testing Tool for ham3tc as input circuit

a text file for future reference. The tool also display the cir-
cuit under test at the left pane. The snapshots of the tool for
ham3tc benchmark circuit as input is as shown in Fig. 5.

5 Conclusion and Future Work

In this paper, we have developed a generalized platform to
generate CTS for various fault models in a reversible cir-
cuit comprising of family of reversible gates. This is the
first attempt in literature which combines all types of fault
models and for circuits designed using family of reversible
gates. So far in the existing state-of-the-art approaches, only
k-CNOT gate is taken into consideration and any one or
two fault models are combined for offline testing. In this
work, we have also considered other standard reversible
gates such as FREDKIN and PERES gates along with k-
CNOT gates. All variants of stuck-at faults and missing Gate
Faults are tested either exclusively or by grouping. A testing
tool is developed based on the proposed ATPG algorithms.
The tool is developed with flexibility in providing inputs

and detailed analysis in output. The proposed algorithm is
implemented in MATLAB 2011a on an Intel Core i7 −
3612QM processor with 2.10GHz processing speed. The
CPU simulation time quoted in this work is strictly based
on the processor specifications mentioned. The algorithm
can be used independent of the implementation technol-
ogy. Because of the exponential complexity of algorithm,
for some benchmark circuits that have large gate count
and lines, we are not able to use our tool successfully. In
our future work we will report some heuristic approach
for reducing the time complexity of test generation based
on a divide-and-conquer strategy using circuit partitioning.
Hence our future work includes reducing the time complex-
ity of test generation by using Heuristic approaches and to
work on circuit partitioning methods for large circuits which
will divide the exponential complexity of the algorithm. Our
future work also include detection of other quantum circuit
fault models.

Acknowledgments Authors like to thank PES Institute of Technol-
ogy, Bengaluru, INDIA for the support provided during this work.
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Appendix

Table 12 CTS and minimal test set with Simulation Time for the benchmark Circuits

MASLOV # Test Vectors -,#Test Set,-,#Lines,-,#Gates

benchmark Circuits Test Vector Generation Time (sec)

Name Single/Multiple Complete Partial [i] and [ii] [i] and [iii] [ii] and [iii] [i], [ii] and [iii]

Stuck-at Fault [i] Missing Gate Missing Gate

Fault [ii] Fault [iii]

2-4dec 2-4-6-3 1-2-6-3 1-2-6-3 3-320-6-3 3-522-6-3 2-8-6-3 3-56-6-3

0.3130 0.1315 0.1205 0.9859 0.9893 0.1616 0.9884

2of5d1 2-5-6-18 4-23-6-18 4-23-6-18 4-10-6-18 4-13-6-18 6-1-6-18 6-16-18

0.2338 14.8834 14.7497 15.9838 17.1745 16.4448 16.6221

2of5d1s 2-5-6-15 3-22-6-15 3-22-6-15 3-5-6-15 3-2-6-15 4-33-6-15 4-19-6-15

0.1893 0.9580 0.9711 1.1526 1.1602 14.9549 17.6501

2of5d2 3-564-7-12 2-12-7-12 2-12-7-12 4-2-7-12 3-30-7-12 4-25-7-12 4-9-7-12

6.8528 0.3958 0.3889 7.2525 7.1275 6.8231 7.4051

2of5d3 3-126-6-17 3-64-6-17 3-64-6-17 3-2-6-17 3-2-6-17 6-9-6-17 6-7-6-17

1.0346 0.9904 1.0045 1.2268 1.1925 15.3202 16.6217

3 17tc 3-8-3-6 2-5-3-6 2-5-3-6 3-2-3-6 3-4-3-6 2-1-3-6 3-1-3-6

0.0182 0.0174 0.0164 0.0267 0.0261 0.0158 0.0302

4 49 fc 3-9-4-12 2-3-4-12 2-3-4-12 4-38-4-12 3-1-4-12 4-12-4-12 4-2-4-12

0.0700 0.0500 0.0529 0.1567 0.1018 0.1250 0.1571

4 49-12-32 3-13-4-12 3-38-4-12 3-38-4-12 4-102-4-12 4-108-4-12 4-29-4-12 4-15-4-12

0.0589 0.0585 0.0568 0.1526 0.1491 0.1070 0.1411

4 49tc1 3-1-4-16 3-15-4-16 3-15-4-16 4-24-4-16 4-36-4-16 4-7-4-16 4-3-4-16

0.0796 0.0724 0.0701 0.1678 0.1654 0.1201 0.1650

4b15g 1 3-2-4-15 3-7-4-15 3-7-4-15 4-46-4-15 4-46-4-15 4-5-4-15 4-2-4-15

0.0627 0.0614 0.0593 0.1694 0.1585 0.1210 0.1570

4b15g 2 3-17-4-15 4-37-4-15 4-37-4-15 4-12-4-15 4-13-4-15 6-76-4-15 6-76-4-15

0.0612 0.1212 0.1121 0.1538 0.1624 0.6048 0.6851

4b15g 3 3-9-4-15 3-11-4-15 3-11-4-15 4-39-4-15 4-38-4-15 3-2-4-15 4-22-4-15

0.0785 0.0647 0.0592 0.1529 0.1571 0.0593 0.1622

4b15g 4 3-21-4-15 3-7-4-15 3-7-4-15 4-55-4-15 4-59-4-15 5-70-4-15 5-57-4-15

0.0875 0.0620 0.0606 0.1515 0.1597 0.2682 0.3130

4b15g 5 3-10-4-15 2-1-4-15 2-1-4-15 3-2-4-15 4-53-4-15 4-17-4-15 4-6-4-15

0.0626 0.0469 0.0445 0.0970 0.1549 0.1112 0.1552

5bitadder 3-451-11-29 2-2-11-29 2-2-11-29 4-2-11-29 3-2-11-29 2-4-11-29 4-4-11-29

29.6312 9.3405 9.5173 18.5539 18.7116 9.2762 19.1209

5mod5 fc 3-912-6-10 2-64-6-10 2-64-6-10 3-72-6-10 3-80-6-10 2-4-6-10 3-8-6-10

0.9418 0.1425 0.1432 1.0534 1.0319 0.1426 1.0875

5mod5-8 3-2184-6-8 1-2-6-8 1-2-6-8 3-152-6-8 3-198-6-8 2-4-6-8 3-44-6-8

0.9142 0.0906 0.0837 0.9970 0.9913 0.1154 1.0155

5mod5-10-71a 3-1328-6-10 2-64-6-10 2-64-6-10 3-80-6-10 3-120-6-10 3-128-6-10 3-24-6-10

0.9500 0.1426 0.1426 1.0529 1.0600 0.9230 1.0627

5mod5tc 3-472-6-17 1-2-6-17 1-2-6-17 3-4-6-17 3-26-6-17 2-4-6-17 3-4-6-17

1.0532 0.1963 0.1955 1.2351 1.2639 0.2221 1.2763

6symd2 3-649-10-20 2-2-10-20 2-2-10-20 4-4-10-20 4-4-10-20 4-20-10-20 4-8-10-20

9.8886 3.3090 3.2846 6.4955 6.6713 3.5032 6.8259
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Table 12 (continued)

MASLOV # Test Vectors -,#Test Set,-,#Lines,-,#Gates

benchmark Circuits Test Vector Generation Time (sec)

Name Single/Multiple Complete Partial [i] and [ii] [i] and [iii] [ii] and [iii] [i], [ii] and [iii]

Stuck-at Fault [i] Missing Gate Missing Gate

Fault [ii] Fault [iii]

9symd2 3-1369-12-28 3-2-12-28 3-2-12-28 4-2-12-28 4-2-12-28 5-42-12-28 5-50-12-28

48.7271 18.4493 18.4373 37.2094 36.5676 18.8827 38.1186

cycle10 2 3-3582-12-19 2-4-12-19 2-4-12-19 4-4-12-19 3-1-12-19 4-15-12-19 5-13-12-19

34.5715 14.9016 14.8557 29.3721 29.2128 14.5255 29.7550

gf2∧4mult 19 83 3-3524-12-19 1-2-12-19 1-2-12-19 3-2-12-19 3-2-12-19 2-8-12-19 3-4-12-19

38.6134 12.4453 12.4530 25.4651 26.1726 12.8029 26.0375

gf2∧5mult 29 129 3-26877-15-29 1-2-15-29 1-2-15-29 3-2-15-29 3-2-15-29 2-16-15-29 3-16-15-29

1218.7000 176.9768 170.4569 395.4593 398.9618 162.6005 398.2599

ham3 fc 3-9-3-4 1-1-3-4 1-1-3-4 3-2-3-4 3-4-3-4 2-3-3-4 3-2-3-4

0.4213 0.1543 0.1917 0.1364 0.1390 0.1290 0.1389

ham3tc 3-6-3-5 2-4-3-5 2-4-3-5 3-4-3-5 3-3-3-5 3-8-3-5 3-2-3-5

0.0207 0.0162 0.0139 0.0265 0.0269 0.0169 0.0264

ham7-21-69 3-96-7-21 3-2856-7-21 3-2856-7-21 4-1-7-21 4-1-7-21 5-4-7-21 5-4-7-21

7.2371 6.7703 6.7480 7.6630 7.6881 6.9831 7.8969

ham7-25-49 3-48-7-25 3-4676-7-25 3-4676-7-25 4-1-7-25 4-1-7-25 4-4-7-25 4-1-7-25

7.4618 7.0233 6.9395 7.9281 7.9289 7.1432 8.2473

ham7tc 3-160-7-23 4-3-7-23 4-4-7-23 4-2-7-23 4-3-7-23 6-12-7-23 6-12-7-23

7.1260 6.9357 6.8309 8.0462 7.9583 7.2269 8.1977

ham15-70 – 8-12-15-70 8-12-15-70 – – 12-64-15-70 –

404.5184 411.1473 – – 443.9390

ham-15-109-214 – 4-2-15-109 4-4-15-109 – – 7-24-15-109 –

626.3074 634.1340 – – 645.9290

ham15tc1 – 7-3-15-132 7-7-15-132 – – 13-24-15-132 –

794.1442 804.5426 – – 823.1376

hwb4 fc 2-1-4-9 2-4-4-9 2-4-4-9 4-33-4-9 3-2-4-9 3-8-4-9 4-6-4-9

0.6674 0.2061 0.1653 0.2774 0.2080 0.1718 0.2665

hwb4-11-21 3-5-4-11 2-8-4-11 2-8-4-11 4-156-4-11 3-3-4-11 3-16-4-11 4-47-4-11

0.0717 0.0416 0.0436 0.1475 0.0895 0.0619 0.1452

hwb4-11-23 3-4-4-11 2-3-4-11 2-3-4-11 3-1-4-11 4-157-4-11 3-16-4-11 4-57-4-11

0.0640 0.0382 0.0369 0.0891 0.1437 0.0544 0.1468

hwb4tc 3-12-4-17 2-1-4-17 2-1-4-17 3-1-4-17 4-56-4-17 4-28-4-17 4-13-4-17

0.0839 0.0580 0.0540 0.1162 0.1754 0.1370 0.1723

hwb5 31 91 4-25-5-31 3-13-5-31 3-13-5-31 4-25-5-31 4-20-5-31 4-21-5-31 5-483-5-31

1.8237 0.3717 0.4166 1.6166 1.5967 1.4056 9.0708

hwb5 fc 2-1-5-16 3-3-5-16 3-3-5-16 4-2-5-16 5-126-5-16 4-15-5-16 5-9-5-16

0.3043 0.3025 0.2677 1.4759 8.3768 1.2578 8.3818

hwb5-24-114 3-6-5-24 3-2-5-24 3-2-5-24 4-20-5-24 4-12-5-24 4-17-5-24 4-1-5-24

0.2784 0.2810 0.2699 1.4557 1.4624 1.3020 1.4726

hwb5ps 3-66-8-23 4-2-8-23 4-2-8-23 5-1-8-23 5-2-8-23 5-3-8-23 5-1-8-23

2.7389 1.2392 1.2289 2.4192 2.4199 1.2221 2.4304

hwb5tc 4-327-5-55 4-1-5-55 4-1-5-55 5-4-5-55 5-6-5-55 6-6-5-55 8-2-5-55

1.5777 1.4777 1.4656 9.5898 9.5420 45.3169 55.7468

hwb6 47 107 4-4272-6-47 3-144-6-47 3-144-6-47 4-193-6-47 4-63-6-47 4-207-6-47 4-1-6-47

17.6966 1.5457 1.5443 18.9772 19.1182 17.3831 20.5470
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Table 12 (continued)

MASLOV # Test Vectors -,#Test Set,-,#Lines,-,#Gates

benchmark Circuits Test Vector Generation Time (sec)

Name Single/Multiple Complete Partial [i] and [ii] [i] and [iii] [ii] and [iii] [i], [ii] and [iii]

Stuck-at Fault [i] Missing Gate Missing Gate

Fault [ii] Fault [iii]

hwb6 fc 2-1-6-25 4-2-6-25 (3 RF) 4-2-6-25 (3 RF) 6-2-6-25 (3 RF) 5-2-6-25 (3 RF) 5-8-6-25 (6 RF) 6-2-6-25 (6 RF)

0.5425 16.2640 16.0012 18.2514 18.4219 16.3194 18.6992

hwb6-42-150 4-2519-6-42 4-223-6-42 4-223-6-42 4-1-6-42 4-1-6-42 5-2-6-42 6-2-6-42

17.2462 16.1501 16.0682 18.5645 18.4655 16.9252 19.9843

hwb6ps 3-118-9-27 4-1-9-27 4-1-9-27 5-1-9-27 6-1-9-27 5-1-9-27 6-2-9-27

5.5933 2.5563 2.5970 5.0624 5.0522 2.5891 5.0988

hwb6tc 4-449-6-126 9-1-6-126 9-1-6-126 9-1-6-126 10-1-6-126 13-1-6-126 12-1-6-126

22.1752 18.7732 18.6450 26.8373 27.1740 22.5011 32.1969

hwb7 fc 2-1-7-38 4-1-7-38 4-2-7-38 6-3-7-38 6-2-7-38 5-2-7-38 7-7-7-38

1.3112 7.7146 7.8096 10.4030 10.2875 8.0551 10.9789

hwb7-236 4-12-7-236 12-1-7-236 13-1-7-236 13-1-7-236 12-1-7-236 21-1-7-236 19-1-7-236

19.2195 16.5462 16.2939 33.8152 31.4848 955.4152 1075.6300

hwb7-331-2609a 5-74-7-331 12-1-7-331 13-2-7-331 12-1-7-331 13-2-7-331 18-1-7-331 19-2-7-331

25.5628 19.4453 20.3498 39.7577 37.0916 571.5173 1574.3589

hwb7ps 3-86-10-35 5-2-10-35 5-2-10-35 6-2-10-35 6-2-10-35 6-1-10-35 8-1-10-35

14.7413 6.5048 6.4758 12.8333 12.8146 6.5518 14.3243

hwb7tc 4-13-7-289 14-1-7-289 15-1-7-289 14-1-7-289 15-1-7-289 – –

22.3727 16.8538 18.8977 31.0356 39.2918 – –

hwb8-749-6197a 5-5-8-749 18-1-8-749 18-1-8-749 19-1-8-749 19-1-8-749 – –

56.8533 181.7448 106.3085 500.0458 485.4238 –

hwb8ps 3-315-12-38 5-2-12-38 5-2-12-38 6-2-12-38 6-2-12-38 6-2-12-38 7-5-12-38

86.1770 31.8000 30.9391 63.7427 64.1434 30.2390 64.5245

hwb9ps 3-255-13-57 5-2-13-57 6-4-13-57 6-1-13-57 7-4-13-57 7-4-13-57 8-4-13-57

315.4491 96.7060 102.0703 206.2935 203.3331 96.4637 201.5791

hwb10ps 3-480-14-62 5-1-14-62 5-1-14-62 7-3-14-62 7-3-14-62 8-4-14-62 7-1-14-62

917.0504 209.4136 211.1549 460.6636 464.0232 210.2953 463.9036

hwb11ps 3-574-15-73 7-1-15-73 6-1-15-73 9-1-15-73 7-1-15-73 8-4-15-73 8-1-15-73

3302.0000 557.6415 492.8986 1162.6000 1148.4000 576.6186 1291.8000

mod5adder-15 2-1-6-15 2-4-6-15 2-4-6-15 3-3-6-15 3-11-6-15 4-457-6-15 4-122-6-15

0.1978 0.1916 0.2021 1.1892 1.2373 15.4477 16.5944

mod5adder-17-81 3-1131-6-17 2-8-6-17 2-8-6-17 3-6-6-17 3-8-6-17 3-16-6-17 4-392-6-17

1.0706 0.2177 0.2256 1.2481 1.2754 1.0534 17.0354

mod5adders 3-1064-6-21 3-57-6-21 3-57-6-21 4-645-6-21 3-4-6-21 4-344-6-21 4-136-6-21

1.1206 1.0567 1.0768 17.0445 1.3358 16.1636 17.0355

mod5d1 3-134-5-8 1-2-5-8 1-2-5-8 3-16-5-8 3-26-5-8 2-4-5-8 3-10-5-8

0.1866 0.0479 0.0486 0.2225 0.2447 0.0844 0.2070

mod5d2 3-176-5-9 1-2-5-9 1-2-5-9 3-66-5-9 3-86-5-9 2-4-5-9 3-20-5-9

0.1792 0.0604 0.0504 0.2148 0.2482 0.0580 0.2207

mod5d4 3-192-5-5 2-72-5-5 2-72-5-5 3-128-5-5 3-128-5-5 2-32-5-5 3-128-5-5

0.1730 0.0448 0.0449 0.1689 0.2025 0.0445 0.2036

mod5mils 3-432-5-5 1-2-5-5 1-2-5-5 3-160-5-5 3-176-5-5 2-16-5-5 3-64-5-5

0.1516 0.0384 0.0498 0.1799 0.1775 0.0429 0.2059
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Table 12 (continued)

MASLOV # Test Vectors -,#Test Set,-,#Lines,-,#Gates

benchmark Circuits Test Vector Generation Time (sec)

Name Single/Multiple Complete Partial [i] and [ii] [i] and [iii] [ii] and [iii] [i], [ii] and [iii]

Stuck-at Fault [i] Missing Gate Missing Gate

Fault [ii] Fault [iii]

mspk 4 49 12 3-13-4-12 3-38-4-12 3-38-4-12 4-102-4-12 4-108-4-12 4-29-4-12 4-15-4-12

0.2868 0.1739 0.1627 0.2388 0.2561 0.2203 0.2602

mspk 4 49 13 3-6-4-13 2-1-4-13 2-1-4-13 3-1-4-13 3-1-4-13 3-2-4-13 4-23-4-13
0.0781 0.0510 0.0551 0.1058 0.1075 0.0736 0.1708

mspk 4 49 14 3-3-4-14 2-4-4-14 2-4-4-14 4-89-4-14 4-87-4-14 3-6-4-14 4-21-4-14
0.0767 0.0544 0.0571 0.1757 0.1668 0.0724 0.1659

mspk 4b15g 1 4-258-4-15 2-1-4-15 2-1-4-15 4-50-4-15 4-58-4-15 4-11-4-15 4-7-4-15

0.1401 0.0585 0.0552 0.1818 0.1808 0.1290 0.1680

mspk 4b15g 2 3-2-4-15 3-25-4-15 3-25-4-15 4-69-4-15 4-67-4-15 3-4-4-15 4-28-4-15

0.0772 0.0727 0.0734 0.1689 0.1722 0.0773 0.1728

mspk 4b15g 3 3-2-4-15 2-2-4-15 2-2-4-15 4-77-4-15 3-1-4-15 3-2-4-15 4-27-4-15

0.0821 0.0544 0.0579 0.1707 0.1106 0.0759 0.1762

mspk 4b15g 4 3-2-4-15 3-13-4-15 3-13-4-15 4-52-4-15 4-47-4-15 4-57-4-15 4-9-4-15

0.0814 0.0744 0.0721 0.1741 0.1788 0.1390 0.1756

mspk 4b15g 5 3-1-4-15 3-19-4-15 3-19-4-15 4-56-4-15 4-50-4-15 3-2-4-15 4-14-4-15

0.0816 0.0775 0.0789 0.1719 0.1756 0.0729 0.1753

mspk hwb4 12 4-335-4-12 2-1-4-12 2-1-4-12 4-135-4-12 4-114-4-12 3-12-4-12 4-49-4-12

0.1366 0.0504 0.0459 0.1642 0.1529 0.0648 0.1612

mspk hwb4 13 3-1-4-13 2-1-4-13 2-1-4-13 4-120-4-13 4-91-4-13 3-6-4-13 4-38-4-13

0.0718 0.0547 0.0477 0.1620 0.1604 0.0688 0.1549

mspk nth prime inc 29 91 opt 36 80 4-433-5-36 3-28-5-36 3-28-5-36 4-23-5-36 4-22-5-36 4-8-5-36 5-178-5-36

1.4706 0.5002 0.4984 1.7081 1.7118 1.4573 8.6296

mspk nth primes4 11 3-12-4-11 3-5-4-11 3-5-4-11 4-10-4-11 4-30-4-11 5-4-4-11 5-4-4-11

0.0687 0.0622 0.0669 0.1464 0.1439 0.2748 0.3216

mspk nth primes4 12 3-5-4-12 2-3-4-12 2-3-4-12 3-1-4-12 4-88-4-12 2-1-4-12 4-38-4-12

0.0666 0.0482 0.0516 0.0869 0.1597 0.0629 0.1561

mspk nth primes4 13 3-3-4-13 2-1-4-13 2-1-4-13 4-75-4-13 4-56-4-13 4-31-4-13 4-7-4-13

0.0673 0.0476 0.0476 0.1555 0.1814 0.1248 0.1476

mspk nth primes4 14 4-266-4-14 2-2-4-14 2-2-4-14 4-84-4-14 4-61-4-14 3-4-4-14 4-17-4-14

0.1504 0.0474 0.0486 0.1820 0.1818 0.0727 0.1824

nth prime3 inc 3-6-3-4 1-1-3-4 1-1-3-4 3-4-3-4 3-6-3-4 2-3-3-4 3-4-3-4

0.223 0.0118 0.0110 0.0270 0.0188 0.0115 0.0199

nth prime4 inc 15 51 3-1-4-15 3-20-4-15 3-20-4-15 4-43-4-15 4-41-4-15 3-2-4-15 4-7-4-15

0.0686 0.0603 0.0698 0.1708 0.1931 0.0634 0.1862

nth prime4 inc d1 3-9-4-12 3-11-4-12 3-11-4-12 4-36-4-12 3-1-4-12 4-2-4-12 4-1-4-12

0.0551 0.0574 0.0519 0.1421 0.1093 0.1370 0.1430

nth prime4 inc d2 3-13-4-11 3-5-4-11 3-5-4-11 4-10-4-11 4-31-4-11 5-4-4-11 5-4-4-11

0.0611 0.0498 0.0516 0.1611 0.1356 0.2911 0.3084

nth prime5 inc 25 103 3-6-5-25 3-4-5-25 3-4-5-25 4-13-5-25 4-23-5-25 5-34-5-25 5-16-5-25

0.2827 0.2458 0.2511 1.3585 1.4237 7.0901 7.8481

nth prime5 inc 29 91 3-1-5-29 3-6-5-29 3-6-5-29 4-10-5-29 4-23-5-29 5-188-5-29 5-69-5-29

0.2813 0.2716 0.2927 1.4132 1.4425 7.0739 8.0254

nth prime6 inc 55 667 4-9607-6-55 6-2-6-55 6-3-6-55 7-2-6-55 7-1-6-55 10-1-6-55 10-1-6-55

17.9921 16.2976 16.3334 19.5197 19.4009 17.2807 21.1762
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Table 12 (continued)

MASLOV # Test Vectors -,#Test Set,-,#Lines,-,#Gates

benchmark Circuits Test Vector Generation Time (sec)

Name Single/Multiple Complete Partial [i] and [ii] [i] and [iii] [ii] and [iii] [i], [ii] and [iii]

Stuck-at Fault [i] Missing Gate Missing Gate

Fault [ii] Fault [iii]

nth prime7 inc 1427 3172 7-84-7-1427 11-2-7-1427 11-1-7-1427 12-1-7-1427 11-1-7-1427 13-3-7-1427 14-3-7-1427

107.9474 58.7779 55.3596 130.7828 138.2252 84.6795 192.7920

Rd32 3-48-4-4 2-16-4-4 2-16-4-4 3-16-4-4 3-32-4-4 4-256-4-4 4-160-4-4

0.0408 0.0202 0.0196 0.0442 0.0463 0.0958 0.1003

Rd53-16-67 3-672-7-16 2-48-7-16 2-48-7-16 3-8-7-16 3-16-7-16 4-7-7-16 4-7-7-16

6.9771 0.4741 0.4497 7.3917 7.3146 6.8503 7.6004

Rd53d1 3-1888-7-12 2-32-7-12 2-32-7-12 4-4-7-12 3-64-7-12 4-15-7-12 4-17-7-12

6.8874 0.3837 0.3958 7.1870 7.1461 6.7558 7.3302

Rd53d1mils 3-692-7-16 2-112-7-16 2-112-7-16 3-24-7-16 3-28-7-16 2-16-7-16 3-8-7-16

6.8708 0.4530 0.4603 7.5159 7.4095 0.4618 7.5010

Rd53d2 3-190-8-12 2-2-8-12 2-2-8-12 4-2-8-12 3-2-8-12 4-14-8-12 4-14-8-12

1.2279 0.5007 0.5040 0.9970 1.0094 0.6018 1.0865

Rd53d15 3-2536-7-28 5-31-7-28 5-18-7-28 5-25-7-28 5-22-7-28 6-14-7-28 6-9-7-28

7.3589 6.9239 6.9174 8.1426 8.1461 7.3177 8.5092

Rd53d15s 3-1496-7-20 4-8-7-20 4-8-7-20 5-5-7-20 5-8-7-20 6-14-7-20 6-13-7-20

7.1606 6.7383 6.7833 7.7242 7.6860 7.0316 7.8442

Rd53rcmg 2-2-7-30 3-3-7-30 3-3-7-30 4-5-7-30 4-4-7-30 6-1-7-30 6-2-7-30

0.6912 7.1627 7.1263 8.2370 8.2662 7.1952 8.3856

Rd73d2 3-622-10-20 3-4-10-20 3-4-10-20 4-4-10-20 4-4-10-20 4-12-10-20 4-4-10-20

9.6205 3.5469 3.4140 6.8204 6.7236 3.2534 6.6281

Rd84d1 3-14695-15-28 3-8-15-28 3-9-15-28 4-8-15-28 4-8-15-28 4-12-15-28 5-16-15-28

1160.7234 155.3735 160.2758 367.3788 379.2576 158.1981 368.6052

Xor5d1 3-256-5-4 1-2-5-4 1-2-5-4 3-256-5-4 3-256-5-4 2-72-5-4 3-256-5-4

0.1376 0.0256 0.0245 0.1988 0.1562 0.0323 0.1658
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