
J Electron Test (2015) 31:549–559
DOI 10.1007/s10836-015-5554-0

Design and Implementation of an FPGA-Based Data/Timing
Formatter

Yu-Yi Chen1,2 · Jiun-Lang Huang1 ·Terry Kuo2 ·Xuan-Lun Huang3

Received: 27 June 2015 / Accepted: 17 November 2015 / Published online: 3 December 2015
© Springer Science+Business Media New York 2015

Abstract The data/timing formatter is a key module in
automatic electronics test equipment; it formats the test data
to the desired wave shape and places the timing edges at the
designated locations. In this work, we investigate the design
and implementation of the FPGA-based data/timing format-
ter. Compared to its ASIC counterpart, the FPGA-based for-
matter is more flexible because it can be reconfigured to best
fit the target test specifications. However, routing uncer-
tainty and limited types of available logic and interconnect
resources also pose great challenges. This work proposes
a formatter design that is suitable for FPGA implemen-
tation. Several high-linearity FPGA-based programmable
delay lines are developed. According to its characteristics,
each type of delay lines is assigned a different role in the for-
matter. The formatter is also equipped with a calibration unit
to further improve the edge placement resolution and accu-
racy. A 100-Msps FPGA-based data/timing formatter with
20-ps edge placement resolution has been implemented on
an FPGA development board to validate our ideas.

Responsible Editor: V. D. Agrawal

� Jiun-Lang Huang
jlhuang@ntu.edu.tw

1 Graduate Institute of Electronics Engineering, Department
of Electrical Engineering, National Taiwan University,
Taipei, Taiwan

2 OpenATE Inc. Taipei, Taiwan

3 Industrial Technology Research Institute, Zhudong,
Hsinchu, Taiwan

Keywords FPGA · Timing circuit · Test equipment ·
Data/timing formatter

1 Introduction

For digital IC testing, to guarantee that AC parameters are
fully tested according to the specifications, the wave shape,
edge placements, and voltage levels of the input signals
supplied to the device under test (DUT) must meet the
test specific requirements [14]. In automatic test equipment
(ATE), these are handled by the data and timing formatter
(called formatter hereafter for convenience). Due to the high
timing accuracy requirements, ASIC design is the main-
stream for (data/timing) formatter implementation. In [16,
17], the authors presented an 800-Msps (Mega symbol per
second) formatter with 81-ps resolution and the correspond-
ing calibration procedures. In [13], the reported formatter
speed is 100 to 250 Msps with a 20-ps edge setting res-
olution. The Analog Devices ADATE207 quad pin timing
formatter [2] is capable of 100 Msps and 39.06 ps resolu-
tion. Several ATE vendors are also known to have their own
formatter ASICs.

In this work, we are interested in FPGA-based format-
ter implementation; the goal is to offer the wave shaping
and edge placement functions. Compared to their ASIC
counterparts, FPGA-based formatters have the following
advantages.

• There are no NRE (non-recurring engineering)
expenses and manufacturing delay.

• One can take advantage of the FPGA off- and on-line
re-configuration capability and optimize the formatter
parameters or even architectures according to the test
specifications.

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10836-015-5554-0-x&domain=pdf
mailto:jlhuang@ntu.edu.tw


550 J Electron Test (2015) 31:549–559

• Modern FPGAs support millions of logic gates, mem-
ory blocks, high-speed serial I/Os and even embedded
processors; this allows one to realize the calibration cir-
cuits (for resolution and accuracy enhancement) on the
FPGA.

FPGA-based formatters, on the other hand, have the follow-
ing limitations.

• The maximum operating speed is bounded by those of
available FPGAs.

• The FPGA intrinsic jitter degrades the timing accuracy.
• A custom design flow that involves low level FPGA

primitives is needed because direct mapping of timing
circuits onto FPGA is in general nontrivial.

• The choice of timing circuit architectures is limited by
the FPGA logic and routing resources.

1.1 FPGA-Based Timing Circuits

Recently, several FPGA-based timing circuits have been
reported [3, 4, 6–10, 15, 18–20]. In [9], a 250-ps resolution
programmable delay line is realized by utilizing MUX-
based delay elements. The time-to-digital converter in [6]
can achieve very high resolution (up to 1.58 ps); however,
the pulse width resolution depends on the FPGA perfor-
mance and the latency is input dependent. In [7], coarse and
fine delays with 105-ps and 13-ps resolutions are reported.
In [3, 4, 8, 15, 18, 20], FPGA-based time-to-digital conver-
sion (TDC) circuit designs and calibration techniques are
reported.

Several attempts have been made to realize low-cost
FPGA-based ATE [5, 11, 12]. In [11, 12], the FPGA-based
ATE applies the stored patterns to the DUT and samples
the DUT output responses. The prototype in [12] operates
at a maximum speed of 6 MHz, supports three data types,
including RZ (return to zero), NRZ (non return to zero), and
RO (return to one), and has a timing resolution of 16.66
ns, which is one-tenth of the operating speed. In [5], an
FPGA-based test and diagnosis platform for SRAM was
presented.

While the performance of the FPGA-based testers is well
behind that of high-end testers that use ASIC solutions,
FPGA-based testers are suitable for (1) IC validation by
ASIC designers during the development phase, (2) test pro-
gram development and validation, and (3) manufacturing
testing of low to mid-end ICs.

1.2 The Proposed FPGA-Based Data/Timing Formatter

The capability of precise timing edge placement is crucial
for ATE to fully test the DUT’s timing related specifications.
In high-end ATE, precise timing is achieved by dedicated
ASICs, which is impossible for FPGA-based ATE.

In this work, we focus on the ATE data/timing format-
ter which converts the test data to the desired format and
places the timing edges at the specified locations. Com-
pared to [12] that can only align wave transitions to the
FPGA internal clock edges, the proposed formatter utilizes
high-resolution FPGA-based programmable delay lines to
provide the needed timing resolution. As a result, it delivers
much higher edge placement resolution — 20 ps vs. 16.66
ns in [12].

A prototype formatter is implemented on an Altera DE-
II development board; it achieves a 100-Msps symbol rate
with 20-ps edge placement resolution. The contributions are
as follows.

• The choice of FPGA-based programmable delay lines
is limited by the FPGA architecture. We develop three
different programmable delay lines. According to their
characteristics, they are assigned different roles in the
formatter to improve the FPGA resource usage effi-
ciency.

• Alignment and characterization circuits are developed
to push the edge placement resolution beyond the FPGA
incurred limits, including routing, placement, and logic
resources.

The rest of the paper is organized as follows. In Section 2,
we give a brief overview of the data/timing formatter and the
Altera FPGA architecture. The proposed formatter architec-
ture and implementation details are illustrated in Section 3.
Experimental results are shown in Section 4 and we con-
clude this work in Section 5.

2 Preliminaries

2.1 The Data/Timing Formatter [14]

Figure 1a depicts the typical data/timing formatting process.
Many test signals require, in addition to the logic value,
the unique timing (signal transition points), format (wave
shape), and voltage levels (VIL/VIH). For example, to spec-
ify a symbol which is a one-pulse from 30 % to 80 % of
a clock cycle, the logic value is set to one, the two timing
edges (rising and falling) are at 30 % and 80 % of the clock
cycle, respectively, and the data format is “return to zero”
(RZ in Fig. 1b).

The commonly used data formats include NRZ (non
return to zero), DNRZ (delayed non return to zero), RZ
(return to zero), RO (return to one), SBC (surround by com-
plement), and ZD (impedance drive); some of them are
depicted in Fig. 1b.

Finally, the output driver forces the specified high and
low voltage levels (VIH and VIL) according to the DUT
specifications.



J Electron Test (2015) 31:549–559 551

Fig. 1 The a data formatting
process and b example
waveforms

(a)

(b)

By properly specifying the logic value, the edge loca-
tions, the data format, and the voltage levels, the desired AC
test waveform can be generated.

2.2 The Programmable Delay Line

For programmable delay lines, the main performance
parameters include resolution, linearity, minimum delay,
and dynamic range.

Consider a programmable delay line that can produce k

different delay values, τ0, τ1, · · · , τk−1. It has a minimum
delay of τ0 and a dynamic range of τk−1 − τ0. Using the
end-point line, which is suitable for the proposed formatter
as the fit line, the resolution τLSB is defined as

τLSB = τk−1 − τ0

k − 1
. (1)

The delay line linearity is quantified by integral non-
linearity (INL) and differential non-linearity (DNL). INL

describes the deviation of the actual delay values from the
ideal values. For input code i, it is defined as

INL (i) = (τi − τ0) − i · τLSB

τLSB
LSB (2)

where 1LSB = τLSB. DNL, on the other hand, describes the
uniformity of the delay values, i.e.,

DNL (i) = (τi+1 − τi) − τLSB

τLSB
LSB. (3)

Finally, we further define the overhead ratio � of a
programmable delay line as

� = τ0

τk−1 − τ0
. (4)

The overhead ratio characterizes the minimum delay
needed for a delay line to achieve the specified dynamic
range. It should be as small as possible.

Fig. 2 The Cyclone II LAB
structure (a) and irregularity (b)

(a) (b)



552 J Electron Test (2015) 31:549–559

Fig. 3 The simplified LE diagram

2.3 The FPGA Architecture

In this work, we implement the proposed FPGA-based for-
matter on an Altera DE II development board; the embedded
FPGA is Cyclone II 2C70. As shown in Fig. 2a [1], inside
the FPGA, the basic logic constructing block is Logic Ele-
ment (LE). A simplified LE schematic is shown in Fig. 3 [1]
— the combinational part consists of a four-input lookup
table (LUT) and the carry chain logic; the memory por-
tion has a D-type flip-flop. A Logic Array Block (LAB)
consists of sixteen LEs. The routing resources include row
interconnect, column interconnect, local interconnect, and
inter-LAB interconnect.

Note that there is a special carry chain interconnect (from
Cout to Cin) between adjacent LEs; this carry chain inter-
connection is LAB internal and unaffected by the physical
design “place & route” process. As stated in [19], FPGA
delay lines should utilize the dedicated carry chain to con-
nect delay elements; this takes advantage of the regular LAB
structure and avoids the routing uncertainty which degrades
the delay line linearity. In Fig. 2b, the thick red line indi-
cates the intra and inter-LAB carry chain. As shown, there is
a larger carry chain gap inside each LAB and an even larger
gap between LABs. These larger gaps result in more inter-
connect delay and introduce non-linearity to delay lines that
use carry chains to connect delay elements.

In general, the intrinsic delay line resolution is limited by
the FPGA architecture, physical implementation, and rout-
ing uncertainty; as a result, post processing and calibration
become mandatory for FPGA-based delay lines.

3 The Proposed Formatter

The proposed formatter architecture is illustrated in Fig. 4;
it consists of a multi-phase clock generator, alignment delay
lines ADi’s, symbol generators Gi’s, a symbol combiner,
and the calibration unit.

The symbol generators are the main components of the
proposed formatter; they are responsible for generating and
placing the timing edges (rising or falling) of a symbol
at the specified locations to produce the target waveforms.
The g symbol generators, G0, G1, · · · , Gg−1, operate in
a time-multiplexed manner, i.e., symbol generator Gi is
responsible for generating symbols Sn·g+i where n is a
non-negative integer. Figure 5 gives an example of the time-
multiplexed operation for g = 3. In this example, G0

generates symbols S3n, G1 generates symbols S3n+1, and
G2 generates symbols S3n+2.

Note that the output of a symbol generator stays at con-
stant zero or one except for during its assigned symbols.
Since the symbol durations do not overlap, a simple XOR
gate can be used as the symbol combiner to combine the
symbols generated by the g generators.

The FPGA built-in multi-phase clock generator is uti-
lized to generate the g clock signals, φ0, φ1, · · · , φg−1, with
evenly spaced phases. Between the clock generator and each
symbol generator Gi , there is an alignment delay line ADi

to compensate for (1) the skew between the paths from the
clock generator to the symbol generators, and (2) the mis-
match between symbol generators. The output of ADi is
denoted by φ̂i . As shown in Fig. 5, each rising edge of φ̂i

triggers the generation of a new symbol by generator Gi

Fig. 4 The proposed formatter architecture



J Electron Test (2015) 31:549–559 553

Fig. 5 Time-multiplexed symbol generation

(after τmin, to be discussed later). A reference clock sig-
nal φref which combines φi’s is also generated to facilitate
symbol generator alignment.

Due to the FPGA structure irregularity (Fig. 2b) and
the routing uncertainty, calibration is mandatory for FPGA-
based timing circuitry. The proposed formatter incorporates
a calibration unit to (1) align the symbol generators to pro-
duce non-overlapping symbols, and (2) measure the delay
values of the programmable delay lines inside each symbol
generator for linearity enhancement.

Currently, a host PC is utilized to realize most of the
digital operations, including

• issuing the formatter control signals for calibration and
functional operations,

• analyzing the delay line characterization results and
deriving the calibration parameters, and

• converting the symbol information, including the value,
format, and timing, into symbol generator edge enable
and delay control signals.

Nonetheless, with the abundance of FPGA digital resources,
one can also implement these functions on the FPGA.

In the following, we will give more details of the symbol
generator and the calibration unit.

3.1 Determination of Required Symbol Generators

Due to the inevitable dead-time associated with a symbol
generator, the formatter has to incorporate multiple sym-
bol generators that work in a time-multiplexed manner. The
dead-time of a symbol generator consists of the following
(Fig. 5).

• τmin: the minimum delay from the input to the output of
a symbol generator.

• τs : the setup time needed for a generator to be ready
to generate next symbol, which includes (1) the time
needed for an input clock pulse to leave the generator
after the symbol duration ends, (2) the time to load the
new control and delay signals for next symbol, and (3)
the time for the delay line to settle to the new setup.

Denote by Tg the time a symbol generator takes to
generate a symbol. We have

Tg = τmin + UI + τs, (5)

where UI (unit interval) is the symbol length, e.g., UI equals
1 μs for 1-Msps symbol rate. Then, the minimum number
of symbol generators that a formatter needs is

g =
⌈

Tg

UI

⌉
(6)

and the resulting formatter period, Tf , is

Tf = g · UI. (7)

For example, to achieve a 100-Msps symbol rate, i.e., UI =
10 ns, if the symbol generator dead-time is τmin+τs = 15ns,
the formatter will need at least g = �(10 + 15) /10� = 3
generators and it will operate at 33.3 MHz, i.e., Tf = 30 ns.

3.2 The Symbol Generator

Figure 6 shows the symbol generator structure. The input
clock signal φ̂ is delayed by the three hybrid delay lines,
HDi’s, to generate three delayed clock signals, λ0, λ1, and
λ2. Three delay paths are needed because a symbol may

Fig. 6 The symbol generator
structure



554 J Electron Test (2015) 31:549–559

have a maximum of three transitions (Fig. 1b). The XOR
gate and the D flip-flop at the end of a hybrid delay line
determine whether to pass or block a clock pulse. To pass a
clock pulse, the enable signal ei is set to one; this way, the D
flip-flop and the XOR gate together convert a delayed clock
pulse in λi into an edge in wi . On the contrary, setting ei to
zero blocks the clock pulse. The delay line inputs, Ii’s, set
the edge locations. Finally, the edge combining XOR gate
combines wi’s to form the specified symbol.

A multiplexer is added in front of each hybrid delay line
to facilitate calibration. During delay line characterization,
it will select the complemented delay line output to form an
oscillator for delay value measurement. (The circle at the
multiplexer input indicates inversion.)

For each symbol, the transition that occurs at its time 0 is
called edge 0, and the following transitions are called edge 1
and 2, respectively. In the proposed symbol generator, edge
i will be placed in wi . If edge i exists in a symbol, ei will be
set to one to generate a transition (rising or falling) at wi . It
should be noted that each symbol has at most one transition
in wi .

Consider a formatter that utilizes four symbol generators.
Figure 7 shows an example timing diagram for symbol gen-
erator G0. In this example, two symbols are generated by
G0: RZ/1 (RZ with logic value one) and SBC/0 (SBC with
logic value 0). In the generator output waveform W , the
grey regions denote the durations whereG0 should place the
symbols assigned to it — the other three symbol generators
are responsible for the gaps between grey regions. To gener-
ate the RZ/1 symbol, only edges 1 and 2 are required. Thus,
before the φ̂0 pulse arrives, e0 is set to 0, e1 and e2 are set
to one, and I1 and I2 are set according to the desired edge
locations. This way, the rising edges of the delayed pulses
on λ1 and λ2 will be where the two RZ/1 transitions
should be. The λ1 and λ2 pulses are further converted into
transitions and then combined to form the RZ/1 symbol.

Generation of the SBC/0 symbol is similar and not repeated
here.

Note that while a transition in wi corresponds to a tran-
sition in W , the transition directions (rising or falling) may
be different. Take the RZ/1 symbol in Fig. 7 for example. Its
rising and falling edges are produced by the rising edges on
w1 and w2, respectively.

3.3 The Calibration Unit and Host PC

In the proposed formatter, the calibration unit and the host
PC together are responsible for (1) symbol generator align-
ment, (2) delay line characterization, and (3) calibration
parameter derivation.

3.3.1 Symbol Generator Alignment

The goal of symbol generator alignment is to make sure that
the output symbols from different symbol generators do not
overlap (Fig. 5). Symbol misalignment occurs due to the
following reasons.

• Skew-induced φ̂i misalignment:
Ideally, the phase differences between φ̂i’s should be
the same as those between φi’s. In practice, this is
impossible due to routing uncertainty and process vari-
ations.

• τmin variation:
From Fig. 5, τmin mismatch will also cause symbol
misalignment.

In the proposed formatter, symbol generator alignment is
achieved through the delay lock mechanism. Figure 8 illus-
trates the alignment process. At the beginning, all the hybrid
delay lines are set to their minimum delay values and dis-
abled (by setting ei’s to zero). Then, the symbol generators
are aligned one by one. For the generator under alignment

Fig. 7 The symbol generator
timing diagram



J Electron Test (2015) 31:549–559 555

Fig. 8 The symbol generator alignment process

(GUA), HD0 is enabled; this establishes the loop and the
delay lock process starts. During the delay lock process,
only the alignment delay line AD can be adjusted, i.e., “AD
delay lock.” Once delay lock is achieved, HD0 is disabled
and the alignment delay line is fixed at its current input
hereafter.

Note that further fine alignment is needed because (1)
the alignment delay line is a coarse delay line, and (2) the
alignment is only valid for HD0. During fine alignment, the
hybrid delay lines are aligned one at a time. Each time, only
the hybrid delay line under alignment (HUA) is enabled and
adjusted to achieve delay lock, i.e., “HD delay lock.” Upon
delay lock, the HUA input value is recorded; this value will
be the “time 0” for the symbols it generates.

3.3.2 Delay Line Characterization

The delay line characterization process measures the delay
values that each hybrid delay line produces. As shown in
Fig. 6, this is achieved by configuring the hybrid delay line
under characterization into an oscillator. (All but the delay
line under characterization is disabled.) Then, the frequency
counter (inside the calibration unit) counts the number of
cycles within a specified duration to calculate the oscillation
period. Due to the unknown delays of other elements in the
oscillation loop, the calibration process can only measure
the delay differences, not the true delay values. However,
this is not a problem because we only need to know the delay
relative to the “time 0” recorded during the fine alignment
process.

3.3.3 Calibration Parameter Derivation

As mentioned earlier, calibration is mandatory to ensure the
hybrid delay line linearity. The alignment delay lines are not

calibrated as they are for coarse alignment only and their
values are fixed.

The proposed hybrid delay line consists of a coarse delay
line and a fine delay line. The delay step of the coarse
delay line is much larger than that of the fine delay line.
As a result, the coarse delay line becomes the linearity
limiter.

In the proposed calibration approach, the fine delay line
is utilized to compensate for the coarse delay line non-
linearity. For each coarse delay line input code i, the amount
of fine delay line input adjustment δ (i) is

δ (i) = τ coarseLSB

τ
fine
LSB

· INL (i) . (8)

A lookup table is constructed for each hybrid delay line
to store δ (i)’s. During functional operation, according to
the coarse delay line input i, δ (i) is added to the fine delay
line’s input.

3.4 FPGA Delay Lines

Three types of FPGA delay lines are utilized in the proposed
formatter. They play different roles according to the follow-
ing factors: monotonicity, linearity, resolution, minimum
delay, and overhead ratio.

3.4.1 Alignment Delay Line

The alignment delay lines facilitate symbol generator align-
ment. For delay lock to succeed, the alignment delay line
must be monotonic. Minimum delay is not a concern for the
alignment delay line because its input is fixed (after align-
ment) and thus does not contribute to τmin. The linearity
and resolution requirements are moderate as the only goal is
coarse alignment.

Figure 9a depicts the alignment delay line structure.
To ensure monotonicity, it is constructed with unit weight
buffers; the cost is more input signals and more complicated
control. Each unit weight buffer of the alignment delay
line occupies one LAB. As shown in Fig. 9c, depending
on the control signal seli , path A or path B (as indi-
cated by the red lines) is selected. Path A incurs larger
delay than path B as it passes through more carry chain
stages; the delay difference defines the resolution. Note
that the both paths are LAB internal; this reduces routing
uncertainty.

A 64-stage alignment delay line is implemented and char-
acterized; the results are shown in the second row of Table 1.
The resolution is 564.7 ps and the maximum INL and DNL
are 0.25 and 0.20 LSB, respectively. The overhead ratio �

of the alignment delay line is 1.56.



556 J Electron Test (2015) 31:549–559

(a)

(b)

(c)

(d)

Fig. 9 The delay line schematics and delay elements

3.4.2 Coarse Delay Line

The hybrid delay line consists of a coarse and a fine delay
line. Figure 9b shows the coarse delay line schematic; it
consists of binary weighted delay taps in which tap i con-
tributes zero or 2i unit delays (path A of Fig. 9c) depending
on seli . Compared to the alignment delay line, the coarse
delay line will have a lower overhead ratio because of the
zero delay path; however, the binary weighted architecture
is more prone to non-monotonicity.

Table 1 Measurement results of 64-stage FPGA delay lines

type LSB max INL max DNL �

alignment 564.7 ps 0.25 LSB 0.20 LSB 1.56

coarse 866.1 ps 0.39 LSB 0.47 LSB 0.19

fine 12.8 ps 4.7 LSB 1.5 LSB 51.22

The third row of Table 1 show the measurement results
of a 8-tap (64-stage) coarse delay line. It has a low overhead
ratio of � = 0.19 but worse linearity (maximum INL/DNL
= 0.39/0.47 LSB) due to LAB-external routing.

3.4.3 Fine Delay Line

The fine delay line schematic is the same as the alignment
delay line (Fig. 9a); however, it is constructed with the LUT-
based delay elements (Fig. 9d [7]) to provide the required
fine resolution. As shown in Fig. 9d, by filling the LUT’s
table values with alternating 0’s and 1’s, the LUT becomes
a buffer with terminal A being its input. Although the B, C,
and D inputs have no impact on the output logic value, they
can affect the input to output delay. In the LUT-based delay
element, B and C are fixed at 0 and D is used as the select
signal to determine the delay value.

The measurement results of a 64-stage fine delay line are
listed in the bottom row of Table 1. The fine delay line has a
resolution of 12.8 ps, which is needed to achieve high edge
placement resolution. The maximum INL and DNL are 4.7
and 1.5 LSB, respectively. Note that the fine delay line has
a high overhead ratio of � = 51.22; as a result, the use of
the fine delay line should be limited.

4 Experimental Results

The proposed formatter is implemented on an Altera DE II
development board. Measurement results are shown in the
following sub-sections to validate its feasibility.

Based on the previous measurement results of 64-stage
delay lines, a rough estimate of the hybrid delay line’s

Fig. 10 The coarse delay line measurement results



J Electron Test (2015) 31:549–559 557

Fig. 11 The fine delay line measurement results

minimum delay τmin is 39 ns. To tolerate the physical design
uncertainty and the settling time, the formatter utilizes eight
symbol generators.

4.1 Delay Line Measurement Results

In the formatter, both the coarse and fine delay lines have 32
stages. Figure 10 shows the coarse delay line measurement
results. The resolution is 865.3 ps and the maximum INL
and DNL are 0.39 and 0.47 LSB, respectively, which are
close to those in Table 1. Note that a maximum INL of 0.39
LSB corresponds to a maximum deviation from the ideal
delay value by 337 ps; this will be calibrated by the fine
delay line.

Figure 11 shows the 32-stage fine delay line measure-
ment results. It has a resolution of 19.72 ps and the

(a)

(b)

Fig. 12 The pre and post-alignment output waveforms

Fig. 13 The hybrid delay line calibration results

maximum INL and DNL are 1.00 and 0.53 LSB, respec-
tively. Note that these results are significantly different from
those in Table 1. With its high resolution, the fine delay line
can be used to calibrate the coarse delay line. Note that the
dynamic range of the fine delay line is about 70 % of the
coarse delay line step size. A fixed delay line of about 500
ps is added to bridge the gap; this also helps reduce τmin.

4.2 Calibration Results

The formatter calibration includes symbol generator align-
ment and the hybrid delay line calibration.

To demonstrate the alignment effectiveness, the for-
matter is set up to generate alternating zero’s and one’s.
Figure 12a and b show the output waveforms before and
after alignment; the generator-to-generator skews range
from -2 ns to 1.89 ns. Before alignment, the waveform
shows non-uniform edge spacing; the post-alignment wave-
form exhibits significant improvement.

Fig. 14 The edge placement demonstration



558 J Electron Test (2015) 31:549–559

Fig. 15 The arbitrary waveform generation demonstration

The hybrid delay line calibration results are shown in
Fig. 13 for output values up to 10 ns, which is the target
symbol length. After calibration, the hybrid delay line has a
resolution of 19.87 ps, and the maximum INL and DNL are
3.68 LSB and 4.84 LSB, respectively.

4.3 Demonstration

Figure 14 demonstrates the formatter’s edge placement
capability. In this demonstration, the formatter generates
four signal waveforms; they differ in the locations of the
first rising edge with a 2.3-ns step size. Figure 14 is obtained
by overlaying the four waveforms. In Fig. 15, an arbi-
trary waveform generation example is demonstrated. The
generated waveform consists of 32 symbols.

Finally, using the Altera Quartus Power Analyzer, the
estimated power consumption is 410 mW.

5 Conclusion

We have presented an FPGA-based 100-Msps formatter
that achieves 20-ps edge placement resolution. To overcome
the FPGA-imposed limitations, the formatter is capable of
aligning the symbol generators and compensating delay line
non-linearities. Furthermore, several FPGA-based delay
lines are developed to enhance the overall resource usage
efficiency. In the future, we will investigate to further
improve the formatter linearity and area efficiency.

References

1. Altera Corporation (2008) Cyclone II Device Handbook, Volume
1

2. Analog Devices Inc (2007) Quad Pin Timing Formatter
ADATE207

3. Bayer E, Traxler M (2010) A high-resolution (< 10 ps RMS)
32-channel time-to-digital converter (TDC) implemented in a
field programmable gate array (FPGA). In: Conference Record of
IEEE-NPSS Real Time Conference, pp 1–5

4. Bayer E, Zipf P, Traxler M (2011) A multichannel high-resolution
(< 5 ps rms between two channels) time-to-digital converter
(TDC) implemented in a field programmable gate array (FPGA).
In: Conference Record of IEEE Nuclear Science Symposium and
Medical Imaging Conference, pp 876–879

5. Carlo SD, Prinetto P, Scionti A, Figueras J, Manich S, Rodriguez-
Montanes R (2009) A low-cost FPGA-based test and diagnosis
architecture for SRAMs. In: Proceedings of International Confer-
ence on Advances in System Testing and Validation Lifecycle,
pp 141–146

6. Chen P, Chen PY, Lai JS, Chen YJ (2010) FPGA vernier
digital-to-time converter with 1.58 ps resolution and 59.3 min-
utes operation range. IEEE Transactions on Circuits and Systems
I 57(6):1134–1142

7. Chen YY, Huang JL, Kuo T (2013) Implementation of pro-
grammable delay lines on off-the-shelf FPGAs. In: Proceedings of
AUTOTESTCON, pp 1–4

8. Junnarkarm SS, Connor PO, Fontaine R (2008) Conference
Record of IEEE Nuclear Science Symposium, pp 3434–3439

9. Li J, Zheng Z, Liu M, Wu S (2006) Large dynamic range accu-
rate digitally programmable delay line with 250-ps resolution. In:
Proc. 8th International Conference on Signal Processing

10. Lin C, Shao B, Zhang J (2011) A multi-channel digital pro-
grammable delay trigger system with high accuracy and wide
range. In: Proceedings of International Conference on Electronics,
Communications and Control, pp 1835–1838

11. Mostardini L, Bacciarelli L, Fanucci L, Bertini L, Tonarelli M,
Giambastiani A, M D Marinis (2007) FPGA-based low-cost sys-
tem for automatic test on digital circuits. In: Proceedings of
International Conference on Electronics, Circuits and Systems,
pp 911–914

12. Mostardini L, Bacciarelli L, Fanucci L, Bertini L, Tonarelli M,
Marinis MD (2009) FPGA-based low-cost automatic test equip-
ment for digital integrated circuits. In: Proceedings of Interna-
tional Workshop on Intelligent Data Acquisition and Advanced
Computing Systems: Technology and Applications, pp 32–
37

13. Park J, Lee I, Park YS, Kim SG, Ryu KH, Jung DH, Jo K, Lee
CK, Yoon H, Jung SO, Choi WY, Kang S (2012) Integration
of dual channel timing formatter system for high speed mem-
ory test equipment. In: Proceedings of International Soc Design
Conference, pp 185–187

14. Perry G (2007) The Fundamentals of Digital Semiconductor
Testing. New Smyrna Beach, Florida: Soft Test Inc.

15. Qi J, Deng Z, Gong H, Liu Y (2010) A 20ps resolution wave
union FPGA tdc with on-chip real time correction. In: Conference
Record of IEEE Nuclear Science Symposium, pp 396–399

16. Syed AR (2003) RIC/DICMOS — multi-channel CMOS for-
matter. In: Proceedings of IEEE International Test Conference,
pp 175–184

17. Syed AR (2004) Automatic delay calibration method for multi-
chennel CMOS formatter. In: Proceedings of IEEE International
Test Conference, pp 577–586

18. Wu J (2009) An FPGA wave union tdc for time-of-flight applica-
tions. In: Conference Record IEEE Nuclear Science Symposium,
pp 299–304

19. Wu J (2010) Several Key Issues on Implementation Delay Line
Based TDCs using FPGAs. IEEE Transactions on Nuclear Science
57(3):1543–1548

20. Wu J, Shi Z. (2008) The 10-ps wave union TDC: Improving FPGA
TDC resolution beyond its cell delay. In: Conference Record of
IEEE Nuclear Science Symposium, pp 3440–3446



J Electron Test (2015) 31:549–559 559

Yu-Yi Chen was born in Taichung, Taiwan, in 1985. He received the
B.E. degree in electrical engineering from National Taiwan Uni- ver-
sity of Science and Technology in 2007, and M.S. degree in electrical
en- gineering from National Taiwan University in 2013. Since 2013,
he has been an ATE designer with OpenATE, Inc., Taiwan. His main
research interest is FPGA-based timing circuit.

Jiun-Lang Huang received the B.S. degree in Electrical Engineering
from National Taiwan University, Taiwan, in 1992, and the M.S. and
Ph.D. degrees in Electrical and Computer Engineering from the Uni-
versity of California at Santa Barbara in 1995 and 1999, respectively.
From 2000 to 2001, he served as an assistant research engineer in the
ECE department, UCSB. In 2001, he joined National Taiwan Univer-
sity and is currently a professor in the Graduate Institute of Electronics
Engineering and the Department of Electrical Engineering. His main
research interests include design-for-test (DfT) and Built-In Self-Test
(BIST) for mixed-signal systems, and VLSI system verification.

Terry Kuo received his B.S.E.E. degree from Chung Yuan Christian
University, Taiwan. He was with the Test Research, Inc. as the Digital
Tester Team leader. He is currently the General Manager of Ope- nATE
Inc.

Xuan-Lun Huang received his Ph.D. degree in electronics engineer-
ing from National Taiwan University, Taiwan, in 2010. In 2009, he
joined the Industrial Technology Research Institute (ITRI), Hsinchu,
Taiwan, as a research and development engineer with the Information
and Communications Research Laboratories. In 2014, he joined Medi-
atek Inc., Taiwan, where he is currently a system architecture design
engineer. His research interests include design and test of mixed-mode
SoC for wireless communication and wearable devices.


	Design and Implementation of an FPGA-Based Data/Timing Formatter
	Abstract
	Introduction
	FPGA-Based Timing Circuits
	The Proposed FPGA-Based Data/Timing Formatter

	Preliminaries
	The Data/Timing Formatter SoftTest
	The Programmable Delay Line
	The FPGA Architecture

	The Proposed Formatter
	Determination of Required Symbol Generators
	The Symbol Generator
	The Calibration Unit and Host PC
	Symbol Generator Alignment
	Delay Line Characterization
	Calibration Parameter Derivation

	FPGA Delay Lines
	Alignment Delay Line
	Coarse Delay Line
	Fine Delay Line


	Experimental Results
	Delay Line Measurement Results
	Calibration Results
	Demonstration

	Conclusion
	References


