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Abstract A newmethod to select an optimum test point set in
analog fault diagnosis is proposed in this paper. As the prob-
ability density of the circuit output approximately satisfies the
normal distribution, an accurate way for determining the fault
ambiguity gap is used to calculate the isolation probability of
the faults. The proposed fault-pair isolation table derived from
the mean and standard deviation values of node voltage can
exactly represent the fault-pair isolation capability of the test
points. The special test points that can uniquely isolate some
particular fault pairs are selected first. This step can help to
save the total cost of the computation time and even find the
final solution directly. After removing the isolated fault pairs
(rows) and the selected test points (columns), the size of the
fault-pair isolation table could reduce dramatically. If more
optimum test points are needed, the normalized fault-pair iso-
lation probability values in the table are used to select the right
test point that has the largest fault-pair isolation capability
among all the candidate test points. Analog circuits’ examples
and the statistical experiments are given to demonstrate the
feasibility and effectiveness of the proposed algorithm. The
other reported algorithms are also used to do the comparison.
The results indicate that the proposed algorithm has excellent
performance inminimizing the size of the test point set. There-
fore, it is a good solution and applicable to actual circuits and
engineering practice.
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1 Introduction

The analog circuit diagnosis methods are classified into two
main categories [1, 2, 4, 10]: the simulation before test (SBT)
and the simulation after test (SAT) approach. Since each cir-
cuit under test (CUT) consists of more than two test points,
especially for the medium and large scale circuits, it’s imprac-
tical and too expensive to test the responses of all the test
points to diagnose the faulty circuit. At the same time, not
every test point is measurable and some measurements are
redundant. Therefore, the optimum selection of test points is
especially important. But in the integer-coded technique, the
global minimum set of test points can only be guaranteed by
the exhaustive search method (search every candidate test
points and the combinations of them until all the listed faults
are isolated), which has been proven to be NP-hard [15, 17]. If
the optimal test points can be selected by other non-exhaustive
way, the testing time will be reduced greatly.

The fault dictionary is a very important and practical meth-
od of SBT approach, especially in the diagnosing of cata-
strophic faults. A fault dictionary is a set of measurements of
the CUTsimulated under potentially faulty conditions (includ-
ing fault-free case) and organized before the test. The mea-
surements could be at different test points, test frequencies,
and sampling times [17, 23]. There are three important phases
in the fault dictionary approach [14]. First of all, a network is
simulated for each of the anticipated faults (including fault-
free case) excited by the chosen stimuli (dc or ac), and the
signatures of the responses are stored and organized in the
dictionary for use. In order to obtain obvious differences be-
tween the faulty conditions, choosing proper stimulus is still
important. The genetic algorithm is used for choosing the
optimum test stimulus in reference [3]. The second phase is
the selection of test points. An optimum selection of test
points is the main work of this stage. By doing this, we can
achieve the desired degree of fault diagnosis with less test
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points and save the fault test and diagnosis time greatly. The
last phase is fault isolation. At the time of testing, the CUT is
excited by the same stimuli that are used in constructing the
dictionary, and measurements are made at the preselected test
points. They are compared with the responses stored in the
fault dictionary to identify the fault according to the preset
criteria. This is in essence a pattern recognition approach [8,
9]. This paper mainly focuses on the second phase.

The test-point selection problem for the analog circuit fault
dictionary has been studied extensively in many papers.
Varghese [21] proposed a heuristic method based on given
performance indexes to find the sets of test points. Hochwald
and Bastian [7] proposed the concept of ambiguity sets and
developed logical rules to select the test points. Lin and
Elcherif [10] proposed two heuristic methods based on the
two criteria proposed by Hochwald and Bastian. Stenbakken
and Souders [18] proposed QR factorization for the circuit
sensitivity matrix. Spaandonk and Kevenaar [16] proposed
to select the test-point set by combining the decomposition
method of the system’s sensitivity matrix and an iterative al-
gorithm. Prasad and Babu [14] proposed four algorithms
based on three strategies of inclusive approach and three strat-
egies of exclusive approach. Pinjala and Kim [13] proposed a
method to find the test point set by computing the information
content of all the candidate test points. An entropy-based ap-
proach was proposed by Starzyk [17] to select the near mini-
mum test-point set. Golonek and Rutkowsk [5] used a genetic
algorithm based method to determine the optimal set of test
points. Yang and Tian [23] used the graph node search method
to find the near minimum test-point set, and in paper [22], they
proposed a more accurate fault-pair Boolean table technique,
which overcame the shortcoming of not all the faults can be
isolated by the traditional integer-coded table technique. Luo
andWang [11] discussed the voltage gap of ambiguity set, and
proposed to determine the ambiguity gaps by the normal dis-
tribution characteristics. They used the extended fault dictio-
nary and the overlapped area values together to select the test
points. L. Milor and V. Visvanathan [6] proposed to select the
test points in conjunction with the test generation algorithm
and increase the accuracy of the test by using an iterative
search technique. Stratigopoulos, H.-G.D.and Makris, Y [19]
proposed to select the test points based on actual classification
rates. Zhang and He [25] proposed a method based on fuzzy
theory and ant colony algorithm to select the optimum test
points of analog circuits.

The integer-coded fault dictionary technique was first pro-
posed by Lin and Elcherif [10]. This technique has been prov-
en to be an effective tool for the optimum test-point selection
problem. The test-point selection algorithms in reference [5,
13, 14, 17, 23, 24] are all based on this technique. Therefore,
the accuracy of these algorithms is closely related to the
integer-coded fault dictionary. According to the existing
methods, the different test points may be selected to construct

the optimal test point set based on different criteria for the
same CUT. A selected test-point set without redundant test
points does not mean that this set is a minimum set. Seldom
references are related to how to judge the effectiveness of the
criterion until now. So the criterion is especially important for
the test-point selection problem.

As discussed above, the ambiguity gap calculation method
and the fault dictionary construction technique are the key to
the problem. In reference [22], the authors chose the constant
0.2 V as the ambiguity gap, and demonstrated that the fault-
pair Boolean table technique is more accurate than the integer-
coded table technique. There are two different kinds of values
in the fault-pair Boolean table (1 or 0). The value in the table
equals to 1 represents that the corresponding test node can
isolate this pair of faults, and 0 represents that the correspond-
ing test node cannot isolate this pair of faults. However, the
accuracy of their method is limited by the 0.2 Vambiguity gap
criterion. In reference [11], the authors proposed to calculate
the ambiguity gaps and the overlapped area values (represent
the failure probability for ambiguity faults) based on the nor-
mal distribution principle, which overcame the disadvantage
of keeping the ambiguity gap a constant value (such as 0.7 V
or 0.2 V). This method can be considered as an extension of
the integer-coded technique, and the accuracy of the method is
also limited by the way of constructing the integer-coded fault
table. In order to improve their methods and overcome the
disadvantages of them, we combined the fault-pair concept
in reference [22] and the ambiguity gaps calculation method
in reference [11] together, defined a new way to calculate the
fault-pair isolation capability of the test points, and developed
a new test point selection method by the proposed fault-pair
isolation table. Different values in the table have different
meanings, and represent different fault pair isolation probabil-
ity of the corresponding test point. It can be concluded that the
bigger of the fault isolation probability value in the table, the
more possibility to isolate this pair of faults. The results of the
analog circuits’ examples and the statistical experiments in the
paper show that the proposed method is effective, feasible and
can improve the fault diagnosis performance.

For analog circuits, faults can be classified into two cate-
gories: catastrophic faults and parametric faults [12]. Since
about 90 % of all the analog faults found in practice are single
catastrophic faults [7, 23] and the components are always with
parameter tolerance, single catastrophic faults with parameter
tolerance in analog circuits are considered in this paper. Sec-
tion 2 introduces the more accurate ambiguity gap calculation
method based on the normal distribution, and the new pro-
posed fault-pair isolation table that represents the fault isola-
tion capability of the candidate test points is illustrated. The
new proposed test point selection algorithm based on the fault-
pair isolation table is given in this section as well. Section 3
gives two analog circuit examples to demonstrate the excellent
performance of the proposed algorithm by comparing it with
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other reported algorithms. Statistical experiments are utilized
for the evaluation of the final solution quality of the proposed
algorithm in Section 4. Finally, brief conclusions are given in
Section 5.

The nomenclatures of this paper are as follows:

nj The test point j
fi The fault i
NT Number of candidate test points
Nf Number of all the faults (including fault-free case)
Sopt Desired test point set
Sc Candidate test point set
NIi Number of test points that can isolate the ith fault pair
I1(nj) Count the number of 1’s associated with test point nj
Is(nj) Sum of the fault-pair isolation probability values of

test point nj

2 New Algorithm for Test Point Selection

The ambiguity gap is a very important parameter during the
construction of the fault dictionary. Using different ambiguity
gaps can obtain different fault dictionaries. Therefore, choos-
ing the accurate and reasonable ambiguity gaps can improve
the accuracy of the method. Since the circuit output approxi-
mately satisfies the normal distribution [11], the mean and
standard deviation values of each fault case can be calculated
according to the statistical theory. On the basis of normal
distribution theory, the normal curve of every fault can be
drawn by fitting its mean and standard deviation values. Using
the normal distribution character to choose the optimum am-
biguity gaps is really a good choice. As there are three differ-
ent relative positions of two normal curves which indicate
different fault isolation possibilities, we defined a newmethod
to calculate the fault isolation probability of these two faults
and constructed the fault-pair isolation table in this section.
The new proposed test point selection algorithm based on
the fault-pair isolation table is also introduced below.

2.1 Ambiguity Gap Based on Normal Distribution

Ambiguity group is defined as that any two faulty cases fall
into the same ambiguity set if the gap between the voltage
values of their responses is less than a specific value.
Hochwald and Bastian [7] first proposed the concept of am-
biguity sets and defined a diode drop (0.7 V) as the ambiguity
gap. In paper [20, 22], authors pointed out that set the voltage
gap as 0.2 V was more suitable for low-voltage analog circuit.
But the actual testing results prove that the voltage gap of
0.7 V and 0.2 V is not always effective and accurate. The
ambiguity gap may be larger or smaller for various faults
under different faulty conditions. Luo and Wang [11]

discussed the shortage of 0.7 V ambiguity gap and proposed
to construct the ambiguity gap based on normal distribution.

In practice, the component parameters change in a toler-
ance range approximately follows the normal distribution, and
the output responses also follow the normal distribution ac-
cording to the law of great numbers [11]. The statistical meth-
od can help to obtain the mean and standard deviation values
of each fault case, instead of using finite sample data to rep-
resent all the possible status of the CUT. Due to the normal
distribution theory, the normal curve which can be drawn by
fitting the mean and standard deviation values is able to de-
scribe the distribution of probability density of the response
voltages. The area size between the normal curve and the
horizontal axis reflects the probability of the response voltages
falling into this region. The voltage intervals are overlapped
and meanwhile the corresponding normal curves also have
overlapped area for the ambiguity group. The overlapped area
represents the failure probability of diagnosing the ambiguity
faults [11].

If we obtain the response voltage samples {vi1,vi2,⋯,vin}
of fi, the ambiguity gap can be calculated as follows [11]:

Gap f ið Þ ¼ μ f ið Þ � w⋅σ f ið Þ;μ f ið Þ þ w⋅σ f ið Þ½ �

¼ ½μ vi1;⋯; vinð Þ � w⋅σ vi1;⋯; vinð Þ;μ vi1;⋯; vinð Þ

þ w⋅σ vi1;⋯; vinð Þ�

ð1Þ

where μ(fi) is the mean voltage response value in the existence
of fault fi, and σ(fi) is the standard deviation voltage response
value in the existence of fault fi, w is the interval parameter
that used to control the area proportion of the normal distribu-
tion interval. Since the tails of a normal curves outspread
infinitely, a finite horizontal axis interval should be used in
practice. When w is 1.96, the area proportion is 95.45 %, and
if w is 2.58, the area proportion is 99.73 %. Therefore, we can
control the intervals by setting different w values.

Generally, two normal curves have three different relative
positions which show different fault isolation possibilities.
Suppose f1 and f2 are two kinds of faults, the normal distribu-
tion curves of f1 and f2 have three different relative positions,
which are shown in Fig. 1 respectively. The horizontal axis in
Fig. 1 represents the voltage value of the test node. We define
[Vf1min, Vf1max] (Vf1min≤Vf1max) as the ambiguity gap of f1,
and [Vf2min, Vf2max] (Vf2min≤Vf2max) as the ambiguity gap of
f2. If the curves f1 and f2 have no overlapping area as shown in
(a) of Fig. 1, faults f1 and f2 can be isolated completely. If the
curves f1 and f2 have a containment relationship as shown in
(b) of Fig. 1, faults f1 and f2 can not be isolated anyhow. If the
curves f1 and f2 have overlapping area as shown in (c) of
Fig. 1, faults f1 and f2 can be isolated partly.
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2.2 Fault-Pair Isolation Table

As Yang and Tian [22] has demonstrated that the fault-pair
code technique is more accurate than the integer-coded tech-
nique in minimizing the size of test point set. We improved
their method and proposed a new fault-pair isolation table
technique to select the optimum test points.

As discussed above, normal curves of f1 and f2 have three
different relative positions which show different fault isolation
possibility. If the normal curves f1 and f2 have overlapping
area, the fault isolation problem may be more difficult. We
defined a new parameter to judge the fault isolation probabil-
ity. Suppose the ambiguity gap of f1 is [Vf1min, Vf1max], and
the ambiguity gap of f2 is [Vf2min, Vf2max] (Vf1min<Vf2min,
Vf1max<Vf2max). As shown in Fig. 2, different cross areas of
f1 and f2 have different meanings. If the response voltages fall
into the interval of [Vf2min, Vf1max], f1 and f2 can not be iso-
lated completely. Area A is the common parts of normal curve
f1 and f2, the larger of this area the more difficult to isolate f1
and f2. Area B and C show different probability of f1 and f2
occur in this interval respectively. It can be concluded that the
bigger of the area under each curve, the more probability of
the fault occurs in this voltage region. If the response voltages
fall into the interval of [Vf1min, Vf2min] or [Vf1max, Vf2max] (the
corresponding area is D and E respectively), the faults f1 and
f2 can be isolated absolutely. Therefore, we propose to

calculate the shadow areas D and E of Fig. 2 to represent the
fault isolation probability of f1 and f2. Since the area under the
whole normal curve is 1 and the maximum sum value of
shadow areas D and E is 2, we calculate the normalized fault
isolation probability of f1 and f2 as follows:

PFI f 1; f 2ð Þ ¼ AreaDþ AreaEð Þ
2

¼
Z V f 2min

Vf 1min

1ffiffiffiffiffiffi
2π

p
σ f 1ð Þ e

� x�μ f 1ð Þð Þ2
2σ2 f 1ð Þ dxþ

Z Vf 2max

Vf 1max

1ffiffiffiffiffiffi
2π

p
σ f 2ð Þ e

� x�μ f 2ð Þð Þ2
2σ2 f 2ð Þ dx

 !.
2

ð2Þ

If the curves f1 and f2 have no overlapping area as shown in
(a) of Fig. 1, the fault isolation probability PFI(f1,f2) is 1, and
this represents fault f1 and f2 can be isolated completely. If the
curves f1 and f2 have a containment relationship as shown in
(b) of Fig. 1, the fault isolation probability PFI(f1,f2) is 0, and
this represents fault f1 and f2 can not be isolated anyhow. If the
curves f1 and f2 have overlapping area as shown in (c) of
Fig. 1, the fault isolation probability PFI(f1,f2) is between 0
and 1, and this represents faults f1 and f2 can be isolated partly.
Therefore, it can be concluded that the bigger of the fault
isolation probability value PFI(f1,f2), the more possibility to
isolate fault f1 and f2.

By calculating the fault isolation probability values of any
two faults, we can obtain the isolation probability of all fault
pairs, and construct the fault-pair isolation table to select the
optimum test points. In the proposed fault-pair isolation table,
rows represent any possible fault pairs, and columns show the
available test points. The values filled in the table are the
defined fault isolation probability values, which can be calcu-
lated by formula (2). Different values in the fault-pair isolation
table have different meanings. If the value is 1, it means that
this pair of faults can be isolated completely by this test node.
If the value is 0, it means that this pair of faults can not be
isolated anyhow. If the value is between 0 and 1, it means this
pair of faults can be partly isolated. From the table, we can

V

f1

f2

Vf1min Vf1maxVf2min Vf2max

V

f1

f2

Vf1min Vf1maxVf2min Vf2maxVf1minVf2min Vf2maxVf1max
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f1

f2 (a)

(b) (c)

Fig. 1 Normal curves of f1 and f2

V

f1

f2

Vf1min Vf1maxVf2min Vf2max
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E

Fig. 2 Different cross areas of f1 and f2
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clearly see the fault isolation capability of each candidate test
point and find the special test points easily.

Lin and Elcherif [10] proposed the integer-coded fault dic-
tionary technique in 1985. The ambiguity group is defined as
any two faulty conditions that fall into the same ambiguity set
if the gap between the voltage values produced by them is less
than the ambiguity gap. For each fault, an integer code is
generated from the numbers of ambiguity sets of each test
point, and the same integer number represents all the faults
that belong to the same ambiguity group in a given candidate
test point. Since each candidate test point represents an inde-
pendent measurement, the ambiguity groups of different test
points can be numbered using the same integer without con-
fusion [23].

Assume that Table 1 shows mean and standard deviation
faulty voltage values (including fault-free case) of an analog
circuit. Set w as 2, and use the formula (1) to calculate the
ambiguity gaps of each test point. Take test point n1 as an
example. The calculated ambiguity gaps of the test point n1
from f1 to f6 are [2.98, 3.02], [3.40, 3.80], [3.50, 3.90], [3.40,
4.20], [4.00, 4.40] and [0.94, 1.66]. Rearrange them from
small to large. The first ambiguity gap [0.94, 1.66] does not
overlap with any other ambiguity gaps, so it is numbered
ambiguity group 0. The second ambiguity gap [2.98, 3.02]
does not overlap with any other ambiguity gaps, so it is num-
bered ambiguity group 1. The other ambiguity gaps overlap
together, and the corresponding faults fall into the same am-
biguity group numbered ambiguity group 2. Finally we obtain
the integer-coded fault dictionary shown in Table 2. From this
table, we can find that only faults f1 and f6 can be isolated, and
faults f2, f3, f4, f5 can not be isolated anyhow. This just reflects
the shortage of the integer-coded table technique. However,
our new proposed fault-pair isolation table technique can
solve the problem. We will continue discussing this problem
in Section 2.3.

Use formula (2) to calculate the fault-pair isolation proba-
bility values of all the test points, and construct the fault-pair
isolation table. Table 3 shows the fault-pair isolation table of
Table 1. In this table, the column NIi represents the number of
test points that can isolate the ith fault pair, and by searching
for NIi=1, we are able to find the special test point that can
uniquely isolate the ith fault pair easily.

2.3 Test Point Selection Algorithm Based on the Fault-Pair
Isolation Table

In the proposed method, the fault-pair isolation table is de-
rived from mean and standard deviation voltage values of
the defined fault modes, the test points are selected based on
the fault-pair isolation capability of the candidate test points.
The strategy of the introduced method is that the special test
points that can uniquely isolate some particular fault pairs
should be added into Sopt first, and then judge whether these
special test points in Sopt can isolate all the fault pairs or not. If
they can, we have found the final solution; otherwise, more
optimum test points should be selected. I1(nj) represents the
number of 1’s associated with test point nj, which means the
total number of fault pairs that can be isolated by test point nj.
Is(nj) is the sum of fault-pair isolation probability values of test
point nj, which represents the fault-pair isolation capability of
test point nj. Therefore, the larger of these values represent the
stronger fault-pair isolation capability of the test point. These
particular meanings of I1(nj) and Is(nj) are used to select more
optimum test points. The selected test points (columns) and all
the fault pairs (rows) that can be isolated by test points of Sopt
are removed from the fault-pair isolation table in the next step.

Table 1 Fault dictionary

Faults n1 (μ1, σ1) n2 (μ2, σ2) n3 (μ3, σ3)

f1 3.00 0.01 4.80 0.20 1.60 0.32

f2 3.60 0.10 5.00 0.01 1.80 0.11

f3 3.70 0.10 5.60 0.10 1.50 0.45

f4 3.80 0.20 4.40 0.01 1.40 0.20

f5 4.20 0.10 5.50 0.10 2.20 0.02

f6 1.30 0.18 4.80 0.12 1.10 0.33

Table 2 Integer-coded
fault dictionary of
Table 1 (w=2)

Faults n1 n2 n3

f1 1 0 0

f2 2 0 0

f3 2 1 0

f4 2 0 0

f5 2 1 0

f6 0 0 0

Table 3 Fault-pair isolation table of Table 1 (w=2)

Fault pair n1 n2 n3 NIi

1 f1, f2 1 0 0 1

2 f1, f3 1 1 0 2

3 f1, f4 1 0.71 0 1

4 f1, f5 1 1 0.47 2

5 f1, f6 1 0 0.30 1

6 f2, f3 0.14 1 0 1

7 f2, f4 0.24 1 0.64 1

8 f2, f5 1 1 1 3

9 f2, f6 1 0 0.76 1

10 f3, f4 0 1 0 1

11 f3, f5 1 0.14 0 1

12 f3, f6 1 1 0.15 2

13 f4, f5 0.65 1 1 2

14 f4, f6 1 1 0.19 2

15 f5, f6 1 1 1 3
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Then, searching for the point with maximum value of I1(nj)
and Is(nj) are used together to select the more optimum test
points, until all the fault pairs are isolated or the remainder
fault pairs can not be isolated unless more candidate test points
are increased.

The steps of the proposed test point selection algorithm are
illustrated as follows.

Step 1) Initialize the desired test-point set Sopt as a null set,
and let Sc consist of all the candidate test points. The
fault dictionary is initialized based on the mean and
standard deviation voltage values of all the defined
fault mode samples (including fault-free case). The
columns of dictionary represent NT test points, and
the rows of dictionary are any possible fault pairs
constructed by Nf fault modes. The appropriate in-
terval parameter w is determined experimentally to
confirm the ambiguity gaps by formula (1) for Nf

fault modes.
Step 2) Construct the fault-pair isolation table based on the

fault-pair isolation capability calculated by formula
(2).

Step 3) Search for the fault pairs that correspond to NIi=1.
The test point that can uniquely isolate the ith fault
pair is added into Sopt. The fault pairs (rows) that can
be isolated by these test points in Sopt are all deleted
from the fault-pair isolation table, and these test
points (columns) are also removed from it. Go to
Step 5.

Step 4) I1(nj) of every test point in the fault-pair isolation
table is calculated and the test point with the maxi-
mum I1(nj) is added into Sopt. In case of a tie, calcu-
late Is(nj). The test point with larger Is(nj) is add into
Sopt. The fault pairs (rows) isolated by this test point
are deleted from the fault-pair isolation table, the test
point (column) is also deleted from it. Go to Step 5.

Step 5) Check the stop conditions. If the test points of Sopt
can isolate all the fault pairs or the remainder fault
pairs can not be isolated unless more candidate test
points are increased, exit. Otherwise, go to Step 4.

It is important to note that NIi used in Step 3 was obtained
after the fault-pair isolation table was constructed. Usually,
some fault pairs can only be diagnosed by some certain test
points in practice. In this case, Step 3 is able to help us find the
final solution more accurately and efficiently. Under some
special conditions, this step can even find the final solution
directly. Although we need to run Step 4 to find more opti-
mum test points sometimes, the size of the fault-pair isolation
table has been dramatically decreased by Step 3, and this will
surely help to save the computation time greatly. Our new
algorithm provides a new criterion for analog circuit test point
selection.

Such as the fault-pair isolation table shown in Table 3, by
searching the NIi column for NIi=1, we can easily find that
fault pairs (f1, f2), (f1, f4), (f1, f6), (f2, f6) and (f3, f5) can only be
distinguished by test point n1, and fault pairs (f2, f3), (f2, f4)
and (f3, f4) can only be diagnosed by test point n2. Therefore,
test point n1 and n2 should be added into Sopt according to Step
3. After checking for the stop conditions of Step 5, we can find
that these two test points (n1 and n2) can isolate all the fault
pairs and the algorithm finds the final solution directly. In this
example, only one step (Step 3) can find all the optimum test
points.

2.4 Algorithm Time Complexity Analysis

The time complexity of the proposed algorithm is less than
O(Nf

2⋅NT ⋅m), which will be proved in the following.
Since the algorithm needs to calculate every ambiguity gap

for every fault mode in each test point, the time complexity of
Step 1 is O(Nf ⋅NT) to get all the ambiguity gaps for Nf fault
modes in NT test points.

As discussed above, the fault-pair isolation table consists of
Nf⋅(Nf−1)/2 rows and NT+1 columns (including the column
NIi), the time complexity of Step 2 during the construction of
the fault-pair isolation table is O((NT+1) ⋅Nf ⋅ (Nf−1)/2)=
O(Nf

2NT).
In Step 3, since Nf⋅(Nf−1)/2 rows in the table need to be

searched, deleting the fault pairs (rows) isolated by the select-
ed test points has the time complexity of O(Nf ⋅(Nf−1)/2)=
O(Nf

2).
In Step 4, since Nf ⋅(Nf−1)/2 rows and NT columns in the

fault-pair isolation table need to be searched, the time com-
plexity of calculating I1(nj) and Is(nj) are O(NT ⋅Nf ⋅(Nf−1)/2+
NT⋅Nf ⋅(Nf−1)/2)=O(NT⋅Nf

2), and deleting the corresponding
rows has the time complexity of O(Nf ⋅(Nf−1)/2)=O(Nf

2).
Therefore, the total time complexity of Step 4 is O(NT ⋅Nf

2)+
O(Nf

2)=O(Nf
2⋅NT)

Suppose that Step 4 is executed m iterations, the total time
complexity of the proposed algorithm is:

O N f ⋅NT þ N 2
f NT þ N 2

f þ N 2
f ⋅NT ⋅m

� �
¼ O N 2

f ⋅NT ⋅m
� �

:

Because the isolated fault pairs (rows) are deleted in each
iteration and the size of the fault-pair isolation table decreases
gradually, the total time complexity is less than O(Nf

2⋅NT ⋅m).
The time complexity of the proposed algorithm is the same

as Yang’s [22] and Luo’s [11] method, but more complex than
the methods proposed in references of [17, 23] and [13]. Be-
cause the time complexity of the construction of the fault-pair
isolation table and the calculation of I1(nj) and Is(nj) areO(Nf

2⋅
NT). For the on-line and off-line testing and fault diagnosing,
the test point selection is the necessary preparation work.
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Once the optimum test points are selected and determined, it
can be used for both SBT and SAT approaches. As the con-
struction of the fault-pair isolation table is the key of our new
algorithm and the calculation of I1(nj) and Is(nj) could help to
select the optimum test points, the testability of the CUT and
the accuracy of our method will be improved dramatically.

2.5 Improvements of the New Algorithm

As discussed above, the major improvements of our new al-
gorithm can be summarized as follows:

(a) A new formula for the calculation of the normalized
fault-pair isolation probability is constructed and used
properly.

(b) A new fault-pair isolation table, the element of which has
special meanings, is proposed.

(c) A new criterion based on fault-pair isolation table for
analog circuit test point selection is introduced.

(d) The ambiguity gap constructionmethod based on normal
distribution is combined with the fault-pair code tech-
nique perfectly in the new algorithm to overcome the
limitations of the integer-coded technique and obtain bet-
ter results.

3 Experiment on the Circuits

3.1 Bandpass Filter Circuit Example

The filter circuit with the nominal parameter values is shown
in Fig. 3. This is the same analog circuit example as in refer-
ences [11, 13, 17, 22]. The normal mode and the other defined
fault modes are listed in Table 4. The excitation signal is a 1-
kHz, 4-V sinusoidal wave. Totally, there are 23 potential faults
f1 to f23 (including fault-free case) and 11 test points n1 to n11.
The responses of voltage values at all test points for different
faulty conditions are obtained by PSPICE simulation. During
the simulations, to consider the effects of the tolerances, the
resistor model “Rbreak” and the capacitor model “Cbreak” are
used. The tolerance of resistor and capacitance are set as 5 and

10 % by editing their Spice model respectively. The Monte
Carlo analysis is used to simulate the effects of the compo-
nents’ tolerance. The tolerance distribution of the components
is set as Gaussian distribution, and each the resistor and ca-
pacitance is varied within their tolerance. To obtain the simu-
lation data, we use a 1Ω resistor to represent the short circuit
fault, and a 100MΩ resistor to represent the open circuit fault.
40 times of Monte Carlo analyses and 2 times of Worse-Case
analyses are executed, and each fault mode gains 42 sample
data.

Since the interval parameter w is closely related to the
ambiguity gap as discussed in Section 2, different values of
w may lead to different results. Parameter w is set as 1.96
(with the area proportion of 95.45 %) in the first simulation
and other different values are set in the next experiments.

3.1.1 Experiment on the Interval Parameter of 1.96

The initialized work is done in the first step of our algorithm.
Since there are 23 potential faults and 11 test points, the can-
didate test-point set Sc is initialized as {n1, n2, n3, n4, n5, n6, n7,
n8, n9, n10, n11}, NT=11 and Nf=23. The optimum test point
set Sopt is initialized to a null set, and the parameter w is set as
1.96. After simulation and calculation, the constructed fault
dictionary for the CUT is shown in Table 5. The formula (1) is
used to calculate the ambiguity gaps for each fault mode of
every test point. It can be found that the ambiguity gaps of the
faults are bigger or smaller than 0.7 V in fact.

In step 2, the fault-pair isolation table is constructed by the
procedures introduced in Section 2. Table 6 shows a part of the
obtained fault-pair isolation table. The formula (2) is used to
calculate the normalized fault isolation probability of every

Fig. 3 Bandpass filter circuit

Table 4 Fault modes of the bandpass filter circuit

Label Fault Label Fault Label Fault Label Fault

f1 Normal f7 R4 open f13 R8 open f19 C2 open

f2 R1 short f8 R5 short f14 R9 open f20 C2 short

f3 R1 open f9 R5 open f15 R10 open f21 C3 short

f4 R2 short f10 R6 short f16 R11 open f22 C4 open

f5 R2 open f11 R6 open f17 R12 open f23 C4 short

f6 R3 open f12 R7 open f18 C1 open
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fault pair. As discussed in Section 2, different values in the
fault-pair isolation table have different meanings. The value is
1 means this pair of faults can be isolated completely, the
value is 0 means this pair of faults cannot be isolated anyhow,
and the value is between 0 and 1 means this pair of faults can
be isolated partly.

In step 3, by checking the NIi column, the special test
points n1, n5, n8 and n11 are selected first and add into Sopt.
Because the fault pairs (f3, f5), (f3, f20), (f5, f20) and (f11, f19)
can only be isolated by test point n1, (f8, f10) can only be
isolated by test point n5, (f4, f12), (f9, f12), (f11, f12) and (f12,
f23) can only be isolated by test point n8, (f1, f11), (f1, f15), (f1,
f21), (f2, f15), (f4, f14), (f4, f15), (f4, f19), (f9, f14), (f9, f15), (f11,
f14), (f11, f15), (f12, f15), (f14, f15), (f14, f21), (f15, f21) and (f15,
f23) can only be isolated by test point n11. After removing the
fault pairs (rows) that can be isolated by the test points of Sopt
and deleting the corresponding selected test points (columns)
of the fault-pair isolation table, the size of the table reduced
greatly. The reduced fault-pair isolation table is shown in
Table 7.

After checking the stop conditions, more optimum test
points should be selected and the algorithm goes to Step 4.
I1(nj) of every candidate test point in the fault-pair isolation
table is calculated respectively. The test points n9 and n10 have

the samemaximum I1(nj)=17. In order to choose the test point
that has better fault isolation capability, Is(nj) of test points n9
and n10 are calculated. Since n10 has larger Is(nj)=17.53 and
may have better performance in practice, test point n10 should
be added into Sopt. After removing the isolated fault pairs
(rows) and the selected optimum test point (column) of the
fault-pair isolation table, the algorithm goes to Step 5 to check
the stop conditions. As the remainder fault pairs cannot be
completely isolated by the candidate test points anymore and
the stop condition fulfills, the final solution is Sopt={n1, n5, n8,
n10, n11}. The obtained final fault-pair isolation table is shown
in Table 8. From this table, we can clearly see that there are 22
fault pairs related to 9 different faults cannot be isolated
completely. Therefore, it can be concluded that the proposed
algorithm selected 5 optimum test points as the final solution,
and can completely isolate 14 different kinds of faults (obtain-
ed by subtracting 9 from the total 23 faults).

3.1.2 Experiment with Different Interval Parameters

Since different interval parameter values will lead to different
ambiguity gaps and even different overlapped areas of the
normal curves, the free interval parameter w should be deter-
mined experimentally. The test results with different w are

Table 5 Fault dictionary of the bandpass filter circuit

Faults n1 (μ1, σ1) n2 (μ2, σ2) n3 (μ3, σ3) n4 (μ4, σ4) n5 (μ5, σ5) n6 (μ6, σ6) n7 (μ7, σ7) n8 (μ8, σ8) n9 (μ9, σ9) n10 (μ10, σ10) n11 (μ11, σ11)

f1 4.33 0.32 3.16 0.33 3.16 0.33 5.24 0.60 3.46 0.43 3.06 0.39 3.06 0.39 4.81 0.66 3.64 0.04 3.64 0.04 3.31 0.64

f2 3.99 0.00 2.91 0.11 2.91 0.11 4.83 0.22 3.18 0.20 2.84 0.19 2.84 0.19 4.41 0.35 3.62 0.04 3.62 0.04 3.55 0.31

f3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.62 0.04 3.62 0.04 7.32 0.20

f4 3.80 0.11 3.80 0.11 3.80 0.11 6.31 0.28 4.15 0.25 3.70 0.26 3.70 0.26 5.78 0.38 3.62 0.03 3.62 0.04 5.27 0.45

f5 2.91 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.62 0.03 3.62 0.04 7.28 0.17

f6 2.91 0.10 2.10 0.14 2.10 0.14 2.10 0.13 1.38 0.11 1.23 0.12 1.23 0.12 1.92 0.20 3.64 0.03 3.64 0.03 5.49 0.26

f7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.69 0.29 2.48 0.27 2.48 0.27 3.85 0.42 3.62 0.04 3.62 0.04 10.76 0.28

f8 4.36 0.28 3.18 0.29 3.18 0.29 5.27 0.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.62 0.04 3.62 0.04 7.28 0.18

f9 4.36 0.30 3.18 0.33 3.18 0.33 5.28 0.57 4.15 0.47 3.70 0.45 3.70 0.45 5.80 0.71 3.62 0.04 3.62 0.04 4.71 0.47

f10 4.38 0.32 3.19 0.32 3.19 0.32 5.31 0.58 2.58 0.33 0.00 0.00 0.00 0.00 0.00 0.00 3.64 0.04 3.64 0.04 7.29 0.19

f11 4.39 0.39 3.21 0.36 3.21 0.36 5.33 0.68 4.77 0.62 4.77 0.62 4.77 0.62 7.43 1.00 3.64 0.05 3.64 0.04 7.22 0.99

f12 4.33 0.28 3.17 0.30 3.17 0.30 5.24 0.53 3.50 0.40 3.10 0.35 3.10 0.35 3.11 0.35 3.61 0.03 3.61 0.03 4.50 0.43

f13 4.38 0.37 3.19 0.37 3.19 0.37 5.32 0.66 3.50 0.48 3.31 0.45 0.15 0.31 15.0 0.00 5.73 0.38 3.63 0.04 15.0 0.00

f14 4.36 0.32 3.19 0.33 3.19 0.33 5.28 0.58 3.49 0.42 3.11 0.36 3.11 0.36 4.88 0.61 3.62 0.04 3.62 0.04 3.61 0.03

f15 4.38 0.39 3.18 0.38 3.18 0.38 5.29 0.69 3.51 0.51 3.12 0.47 3.12 0.47 4.92 0.77 4.92 0.77 3.61 0.03 15.0 0.00

f16 4.33 0.28 3.17 0.30 3.17 0.30 5.24 0.53 3.50 0.40 3.10 0.35 3.10 0.35 4.85 0.59 4.00 0.00 4.00 0.00 3.93 0.59

f17 4.38 0.37 3.19 0.37 3.19 0.37 5.32 0.66 3.51 0.48 3.14 0.45 3.14 0.45 4.92 0.74 0.01 0.00 0.01 0.00 4.96 0.89

f18 2.58 0.07 1.88 0.10 1.880.10 3.12 0.19 2.07 0.17 1.84 0.15 1.84 0.15 2.88 0.26 3.62 0.04 3.62 0.04 4.40 0.29

f19 3.41 0.09 3.41 0.09 3.41 0.09 5.63 0.11 3.70 0.16 3.32 0.17 3.32 0.17 5.19 0.26 3.62 0.04 3.62 0.04 9.38 0.48

f20 1.81 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.62 0.04 3.62 0.04 7.29 0.18

f21 4.38 0.35 3.21 0.31 3.21 0.31 5.31 0.60 5.31 0.60 4.72 0.55 4.72 0.55 7.40 0.86 3.62 0.04 3.62 0.04 7.24 0.93

f22 4.37 0.29 3.19 0.30 3.19 0.30 5.29 0.56 4.72 0.51 0.00 0.00 0.00 0.00 0.00 0.00 3.62 0.04 3.62 0.04 7.28 0.19

f23 4.37 0.29 3.19 0.30 3.19 0.30 5.29 0.56 3.71 0.44 3.71 0.44 3.71 0.44 5.81 0.69 3.62 0.04 3.62 0.04 4.68 0.53
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Table 6 A part of fault-pair isolation table of the bandpass filter circuit

Fault pair n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 NIi

1 f1, f2 0 0 0 0 0 0 0 0 0.05 0.05 0 0

2 f1, f3 1 1 1 1 1 1 1 1 0.05 0.05 1 9

… … … … … … … … … … … … … …

10 f1, f11 0 0 0 0 0.66 0.89 0.89 0.85 0 0 1 1

… … … … … … … … … … … … … …

14 f1, f15 0 0 0 0 0 0 0 0 0 0.12 1 1

… … … … … … … … … … … … … …

20 f1, f21 0 0.01 0.01 0 0.92 0.92 0.92 0.90 0.05 0.05 1 1

… … … … … … … … … … … … … …

35 f2, f15 0 0 0 0 0 0 0 0 0 0 1 1

… … … … … … … … … … … … … …

45 f3, f5 1 0 0 0 0 0 0 0 0 0 0 1

… … … … … … … … … … … … … …

60 f3, f20 1 0 0 0 0 0 0 0 0 0 0 1

… … … … … … … … … … … … … …

71 f4, f12 0.63 0.76 0.76 0.67 0.45 0.46 0.46 1 0.03 0 0.39 1

72 f4, f13 0.44 0.48 0.48 0.42 0.35 0.19 1 1 1 0.02 1 4

73 f4, f14 0.54 0.60 0.60 0.55 0.43 0.43 0.43 0.38 0 0 1 1

74 f4, f15 0.41 0.47 0.47 0.41 0.32 0.30 0.30 0.28 0 0 1 1

… … … … … … … … … … … … … …

78 f4, f19 0.95 0.95 0.95 0.89 0.53 0.37 0.37 0.40 0 0 1 1

… … … … … … … … … … … … … …

97 f5, f20 1 0 0 0 0 0 0 0 0 0 0 1

… … … … … … … … … … … … … …

135 f8, f10 0 0 0 0 1 0 0 0 0.04 0.04 0 1

… … … … … … … … … … … … … …

151 f9, f12 0 0 0 0 0.29 0.29 0.29 1 0 0 0.04 1

152 f9, f13 0 0 0 0 0.25 0.11 1 1 1 0.02 1 4

153 f9, f14 0 0 0 0 0.29 0.28 0.28 0.26 0 0 1 1

154 f9, f15 0 0 0 0 0.23 0.22 0.22 0.20 0 0 1 1

… … … … … … … … … … … … … …

176 f11, f12 0 0 0 0 0.64 0.90 0.90 1 0 0.11 0.94 1

177 f11, f13 0 0 0 0 0.60 0.74 1 1 1 0.02 1 4

178 f11, f14 0 0 0 0 0.64 0.89 0.89 0.85 0 0.04 1 1

179 f11, f15 0 0 0 0 0.57 0.83 0.83 0.78 0 0.11 1 1

… … … … … … … … … … … … … …

183 f11, f19 1 0 0 0 0.51 0.92 0.92 0.88 0 0.04 0.76 1

… … … … … … … … … … … … … …

190 f12, f15 0 0 0 0 0 0 0 0.84 0 0 1 1

… … … … … … … … … … … … … …

198 f12, f23 0 0 0 0 0.05 0.31 0.31 1 0 0 0 1

… … … … … … … … … … … … … …

209 f14, f15 0 0 0 0 0 0 0 0 0 0 1 1

… … … … … … … … … … … … … …

215 f14, f21 0 0 0 0 0.92 0.92 0.92 0.090 0 0 1 1

… … … … … … … … … … … … … …

223 f15, f21 0 0 0 0 0.87 0.85 0.85 0.83 0 0 1 1

224 f15, f22 0 0 0 0 0.64 1 1 1 0 0 1 4

225 f15, f23 0 0 0 0 0.04 0.23 0.23 0.20 0 0 1 1

… … … … … … … … … … … … … …

J Electron Test (2015) 31:53–66 61



shown in Table 9. The Sopt column of the table shows different
final solutions with different interval parameter values, and
the third column shows the amount of fault pairs that cannot
be isolated. The last column shows the fault isolation degree
which means the total number of faults that can be completely
isolated by the chosen optimum test point set.

From Table 9, we can find that the larger parameter
values have smaller fault isolation degrees. This is because
the ambiguity gaps increase with the adding of the interval
parameter w, and the fault-pair isolation probabilities, mean-
while, decrease. We can also find from Table 9 that the
Sopt={n1, n5, n8, n10, n11} repeats many times with different
interval parameters. So the repeated test point set Sopt={n1,
n5, n8, n10, n11} can be considered as a candidate of the
optimal test point set, which can be used to diagnose the
CUT in practice.

Table 7 Reduced fault-pair isolation table of the bandpass filter circuit

Fault pair n2 n3 n4 n6 n7 n9 n10

1 f1, f2 0 0 0 0 0 0.05 0.05

3 f1, f4 0.66 0.66 0.55 0.45 0.45 0.07 0.05

8 f1, f9 0 0 0 0.30 0.30 0.05 0.05

11 f1, f12 0 0 0 0 0 0.12 0.12

13 f1, f14 0.01 0.01 0 0 0 0.05 0.05

15 f1, f16 0 0 0 0 0 1 1

16 f1, f17 0 0 0 0 0 1 1

22 f1, f23 0 0 0 0.32 0.32 0.05 0.05

29 f2, f9 0 0 0 0.63 0.63 0 0

32 f2, f12 0 0 0 0 0 0 0

34 f2, f14 0 0 0 0 0 0 0

36 f2, f16 0 0 0 0 0 1 1

37 f2, f17 0 0 0 0 0 1 1

43 f2, f23 0 0 0 0.67 0.67 0 0

68 f4, f9 0.62 0.62 0.56 0 0 0 0

70 f4, f11 0.47 0.47 0.40 0.53 0.53 0 0.04

75 f4, f16 0.76 0.76 0.67 0.46 0.46 1 1

76 f4, f17 0.48 0.48 0.42 0.30 0.30 1 1

80 f4, f21 0.64 0.64 0.49 0.59 0.59 0 0

82 f4, f23 0.72 0.72 0.57 0 0 0 0

150 f9, f11 0 0 0 0.47 0.47 0 0.04

155 f9, f16 0 0 0 0.29 0.29 1 1

156 f9, f17 0 0 0 0.21 0.21 1 1

160 f9, f21 0 0 0 0.50 0.50 0 0

162 f9, f23 0 0 0 0 0 0 0

181 f11, f17 0 0 0 0.83 0.83 1 1

185 f11, f21 0 0 0 0 0 0 0.04

187 f11, f23 0 0 0 0.47 0.47 0 0.04

189 f12, f14 0 0 0 0 0 0 0

191 f12, f16 0 0 0 0 0 1 1

192 f12, f17 0 0 0 0 0 1 1

210 f14, f16 0 0 0 0 0 1 1

211 f14, f17 0 0 0 0 0 1 1

217 f14, f23 0 0 0 0.29 0.29 0 0

226 f16, f17 0 0 0 0 0 1 1

232 f16, f23 0 0 0 0.31 0.31 1 1

236 f17, f21 0 0 0 0.86 0.86 1 1

238 f17, f23 0 0 0 0.22 0.22 1 1

252 f21, f23 0 0 0 0.50 0.50 0 0

I1(nj) – 0 0 0 0 0 17 17

Is(nj) – – – – – – 17.39 17.53

Table 8 The final fault-pair isolation table of the bandpass filter circuit

Fault pair n2 n3 n4 n6 n7 n9

1 f1, f2 0 0 0 0 0 0.05

3 f1, f4 0.66 0.66 0.55 0.45 0.45 0.07

8 f1, f9 0 0 0 0.30 0.30 0.05

11 f1, f12 0 0 0 0 0 0.12

13 f1, f14 0.01 0.01 0 0 0 0.05

22 f1, f23 0 0 0 0.32 0.32 0.05

29 f2, f9 0 0 0 0.63 0.63 0

32 f2, f12 0 0 0 0 0 0

34 f2, f14 0 0 0 0 0 0

43 f2, f23 0 0 0 0.67 0.67 0

68 f4, f9 0.62 0.62 0.56 0 0 0

70 f4, f11 0.47 0.47 0.40 0.53 0.53 0

80 f4, f21 0.64 0.64 0.49 0.59 0.59 0

82 f4, f23 0.72 0.72 0.57 0 0 0

150 f9, f11 0 0 0 0.47 0.47 0

160 f9, f21 0 0 0 0.50 0.50 0

162 f9, f23 0 0 0 0 0 0

185 f11, f21 0 0 0 0 0 0

187 f11, f23 0 0 0 0.47 0.47 0

189 f12, f14 0 0 0 0 0 0

217 f14, f23 0 0 0 0.29 0.29 0

252 f21, f23 0 0 0 0.50 0.50 0

Table 9 Test results with different w for the bandpass filter circuit

Interval
parameter
(w)

Sopt Number of fault
pairs that cannot
be isolated

Fault
isolation
degree

1.00 n1, n5, n8, n10, n11 3 17

1.20 n1, n5, n8, n10, n11 6 16

1.50 n1, n5, n8, n10, n11 13 15

1.96 n1, n5, n8, n10, n11 22 14

2.20 n1, n5, n8, n10, n11 24 13

2.58 n1, n4, n5, n8, n10, n11 26 13
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3.1.3 Comparison with Other Methods

In this experiment, the proposed method is compared with
other four reported methods. Since some reported methods
are based on the integer-coded technique (Starzyk’s method
[17], Pinjala’s method [13] and Luo’s method [11]), the
integer-coded fault dictionary needs to be constructed first.
The ambiguity gaps are calculated by formula (1), and the
interval parameter is set as 2.2. The final results are listed in
Table 10.

As shown in Table 10, all the methods obtain the same fault
isolation degree besides Yang’s [22] and our newmethod have
the smallest size of the final optimum test point set. Our new
method finds a different optimum test point set from the
Yang’s [22] method, but both of the final solutions have the
same high accuracy. This is to say that a CUT may have more
than one different optimum test point sets.

From the above analysis, it can be concluded that the new
proposed method is feasible and effective in finding the opti-
mum test point set.

3.2 Leapfrog Filter Circuit Example

Figure 4 shows a leapfrog filter circuit. The tolerance of
resistor and capacitance are set as 5 and 10 % respectively.
The normal mode and the other defined fault modes are
listed in Table 11. The excitation signal is a 1-kHz, 6-V
sinusoidal wave. Totally, there are 20 potential faults f1 to
f20 (including fault-free case) and 12 test points n1 to n12.
The responses of voltage values at all test points for differ-
ent faulty conditions are obtained by PSPICE simulation.
40 times of Monte Carlo analyses and 2 times of Worse-
Case analyses are executed, and each fault mode gains 42
sample data.

The test results with different interval parameter values
are shown in Table 12. From the table, we can find that the
fault isolation degree reduces and more test points are
added into Sopt with the increase of the interval parameter
values. This conclusion is the same as the bandpass filter
example.

The results with different methods are shown in Ta-
ble 13 (the interval parameter w is set as 1). As shown
in Table 13, Yang’s [22] method and our new method

Table 10 Test results with different methods for the bandpass filter
circuit (w=2.2)

Method Sopt Fault isolation
degree

Number of fault
pairs that cannot
be isolated

Starzyk’s [17] n1, n5, n6, n7, n10, n11 13 –

Pinjala’s [13] n1, n4, n5, n8, n10, n11 13 –

Luo’s [11] n1, n4, n5, n8, n10, n11 13 –

Yang’s [22] n1,, n5, n8, n9, n11 13 22

New method n1, n5, n8, n10, n11 13 22

Fig. 4 Leapfrog filter circuit

Table 11 Fault modes of the leapfrog filter circuit

Label Fault Label Fault Label Fault Label Fault

f1 Normal f6 R6 open f11 R11 open f16 C4 open

f2 R1 open f7 R7 open f12 R12 open f17 C1 short

f3 R2 open f8 R8 open f13 C1 open f18 C2 short

f4 R3 open f9 R9 open f14 C2 open f19 C3 short

f5 R4 open f10 R10 open f15 C3 open f20 C4 short
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obtain the largest fault isolation degree, but the size of the
Sopt obtained by our method is smaller than that of Yang’s
[22]. Therefore, our new method finds the best final solu-
tion of all.

All the above experiment results demonstrate that the
new proposed method has better accuracy and quality in
finding the optimum test point set. It is an effective and
feasible method in minimizing the size of the test point set
of the analog circuit with the influence of component
tolerance.

4 Statistical Experiments

Although the above experiments have shown the great advan-
tage and ability of the proposed algorithm in finding the opti-
mum test point set, there still no theoretical proof can be of-
fered to demonstrate a specific non-exhaustive algorithm’s
optimality [13, 17, 23]. The new proposed algorithm must
statistically be tested on larger number of fault dictionaries
to demonstrate its efficiency and qualities of generating opti-
mum test point sets.

Such statistical experiments are carried out on the random-
ly computer-generated fault dictionaries and the final solu-
tions are found by using Starzyk’s method [17], Pinjala’s
method [13], Yang’s method [22], Luo’s method [11], the
exhaustive method and the proposed new method respective-
ly. All the algorithms are programmed by MATLAB and test-
ed on an Intel 3.2 GHz processor computer. A total of 200
times’ statistical experiments are carried out. At every time of
the experiment, 100 mean values, 100 standard deviation
values and 20 test points’ data are needed. And all the mean
and standard deviation values are randomly generated by
MATLAB codes and vary in intervals [0.00, 10.00] and
[0.00, 0.40] respectively. Since some of the methods are based
on the integer-coded technique (Starzyk’s method [17],
Pinjala’s method [13], Luo’s method [11] and the exhaustive
method), the integer-coded fault dictionaries need to be con-
structed, too. The ambiguity gaps are calculated by formula
(1), and the interval parameter w is set as 1. Table 14 shows
the final results. From the table, we can find that the proposed
method obtains the best solution of all. If the proposedmethod
is adopted, two or three test points can isolate all the 100 faults
in all the 200 times’ experiments. Yang’s [22] method also
obtain good results, since three test points can isolate all the
faults in all the experiments. But other methods (including the
exhaustive method) need at least five test points to isolate all
the faults, and this indicates that these solutions contain at
least two redundant test points. Besides, in two simulated
cases, except Yang’s [22] and our new proposed method, the
other methods can not isolate all the faults fully, which is the
shortage of the integer-coded technique.

Figure 5 illustrates the performance of the proposed algo-
rithm and the integer-coded technique based exhaustive algo-
rithm. This figure shows the relationship between the number
of faults and the size of the final solutions. In Fig. 5a, the total
number of candidate test points is 10. The two algorithms

Table 12 Test results with different w for the leapfrog filter circuit

Interval
parameter
(w)

Sopt Number of fault
pairs that cannot
be isolated

Fault isolation
degree

1.00 n2, n6, n10, n11 2 16

1.20 n3, n5, n6, n10, n11 3 15

1.50 n4, n5, n6, n10, n12 5 14

1.96 n4, n5, n6, n8, n9, n10 6 14

2.20 n4, n5, n6, n8, n9, n10 6 14

2.58 n4, n5, n6, n8, n9, n10 7 14

Table 13 Test results with different methods for the leapfrog filter
circuit (w=1)

Method Sopt Fault isolation
degree

Number of fault
pairs that cannot
be isolated

Starzyk’s [17] n1, n3, n7, n10, n12 15 –

Pinjala’s [13] n2, n3, n7, n12 13 –

Luo’s [11] n2, n4, n8, n12 13 –

Yang’s [22] n1,, n3, n7, n10, n11 16 2

New method n2, n6, n10, n11 16 2

Table 14 Statistical results of the solution accuracy

Size of
min. set

Starzyk’s
[17]

Pinjala’s
[13]

Luo’s
[11]

Exhaustive
method

Yang’s
[22]

New
method

2 – – – – – 27

3 – – – – 200 173

4 – – – – – –

5 15 – 3 31 – –

6 124 4 7 141 – –

7 51 28 29 25 – –

8 8 60 59 1 – –

9 – 61 58 – – –

10 – 34 30 – – –

11 – 9 12 – – –

12 – 2 – – – –

∞ 2 2 2 2 – –
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obtain the same accuracy solution at the beginning, but the
size of the final solution found by the exhaustive algorithm
increases dramatically when the fault number is larger than 40.
The size of the final solution found by our proposed algorithm
always keeps less than 4. Besides, when the fault number is
larger than 120, the exhaustive algorithm makes all the faults
undistinguishable, which is not right in fact. Therefore, our
proposed algorithm has higher accuracy with the increase of
the fault dictionary. The same conclusion can be drawn from
Fig. 5b.

Therefore, whether the data in the fault-pair isolation table
are randomly computer generated or derived by a realistic
circuit, our proposed algorithm can be used to choose the
optimum set of test points if the fault-pair isolation table can
be constructed properly.

5 Conclusion

Nowadays, the scale and complexity of the circuits are in-
creasing with the fast development of the modern electronic
industry, which has brought great difficulties and challenges
to the fault diagnosis. Therefore, how to find a minimum set of
test points efficiently to isolate all the faults to a desired degree
becomes the key point. Since the circuit output responses fol-
low the normal distribution, an accurate way for determining
the fault ambiguity gap is used in this paper. Meanwhile, a
new test point selection algorithm is proposed based on this
ambiguity gap calculation method. In the algorithm, a new
defined fault-pair isolation table is derived from the mean
and standard deviation values of node voltage under different
fault modes, and the optimum test points are selected based on
the fault-pair isolation capability of the candidate test points.
The time complexity of the proposed algorithm is proved to be
less than O(Nf

2 ⋅NT ⋅m). Carried out on the same trademark
analog circuits, the proposed algorithm shows greater advan-
tage in finding the final solutions than the other reported
methods. Since no theoretical proof can be given to the

optimality of the proposed algorithm, statistical experiments
are utilized for its evaluation. The results demonstrate that our
proposed method has better accuracy and quality in finding
the optimum test point set. It is an effective and feasible meth-
od in minimizing the size of the test point set of the analog
circuit with the influence of component tolerance. Therefore,
it is particularly applicable to actual circuits and engineering
practice.
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