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Abstract This paper proposes a method of analog circuit
fault diagnosis by using high-order cumulants and information
fusion. We extract the original voltage and current signals
from output terminal of the circuit under test, and determine
corresponding kurtosis and skewness as fault eigenvectors,
which are then used to improve Error Back Propagation (BP)
neural network for fault diagnosis. With respect to fault ei-
genvectors consider more about the information which are
sometimes ignored by principal component analysis (PCA)
using second order statistics. By employing information fu-
sion to integrate voltage with current as fault eigenvectors,
eigenvectors can be used to express fault information better.
Diagnosis examples are used to illustrate that our fault eigen-
vectors own higher recognition rate and diagnosis accuracy.

Keywords Analog circuit . Fault diagnosis . High-order
cumulants . Information fusion . Neural network

1 Introduction

Fault diagnosis of analog circuit, which was first proposed for
military in 1960’s, is an interesting research topic in circuit
theory [6, 9, 10]. Unfortunately, it’s development was not very
well due to the complexity of analog circuit, the tolerance of
analog fault and some other related factors. Until recently,
with the development of artificial intelligence, some

interesting and useful results in other fields are used to fault
diagnosis of analog circuit, which makes it becoming a new
interdisciplinary. More importantly, fault diagnosis of analog
circuit now has the advantage of higher diagnosis accuracy,
less computation and greatly reduced complexity compared
with the traditional methods in 1960s and 1970s. Therefore,
the employment of artificial intelligence in fault diagnosis of
analog circuit has attracted more and more researchers’ inter-
est. Some interesting results in this aspect mainly include
fuzzy neural network, wavelet transformation, simulated an-
nealing algorithm, support vector machine and so on [1, 3, 7,
8, 11, 12, 15, 18–20, 22]. Simulated annealing has the short-
comings of slow convergent speed, long execution time, and
its algorithm performance is very sensitive to the initial values
and parameters. Support vector machine (SVM) solves the
support vector by using quadratic programming, in which the
calculation of the m-order matrix is involved. When the value
of m is very big, it takes a lot of computing time and a great
amount of machine memory for the computation and storage
of the matrix. Hence, when the SVM is used as the classifier in
the fault diagnosis of analog circuits, the SVM algorithm is
very hard to implement on large-scale training samples. When
fuzzy neural network is used for fault diagnosis of analog
circuits, one can hardly determine the structure of the network
and has the problem of regular point “combination explo-
sion”. In addition, the automatic extraction of fuzzy rules
and automatic generation and optimization of fuzzy variable
membership functions have always been a difficulty plaguing
the further promotion of fuzzy information processing tech-
nology. The general procedures of using the above-mentioned
method to analog circuit fault diagnosis are as follows. Firstly,
stimulus signals are applied to the circuit under test; Secondly,
the original fault signals are extracted; Thirdly, fault eigenvec-
tors are constructed and then faults are identified. Among
them, the third step of constructing the fault eigenvectors is
the key procedure. Unfortunately, most of the current results
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[1, 3, 7, 8, 11, 12, 15, 18–20, 22] can not give a very good
answer to this step. The commonly-used method, in which
original voltage fault signals are first transformed by wavelet
transformation and then analyzed by using PCA, can maintain
the characteristics of the original information to some extent.
However, from the aspect of signal statistics, principal con-
stituents coming from PCA only involve second order statis-
tics. When the input random variables obey Gaussian distri-
bution, each principal component is independent. As for ran-
dom variables with non-Gaussian distribution, the high-order
statistics contain some information which should not be
neglected. In addition, the information of single voltage sig-
nals extracted by this method can not maximally express the
fault features of a circuit, and then the fault diagnosis accuracy
is sometimes not satisfactory. Therefore, to improve the accu-
racy, it is necessary to take wide range of information as fault
eigenvectors for circuit fault diagnosis. Motivated by above
discussions, this paper applies information fusion into analog
circuit fault diagnosis, and we also consider another important
information, i.e. electric current of analog circuit, as an infor-
mation source for fault eigenvectors construction. Thus fault
eigenvectors are determined by voltage and current signals.
Then we propose a fault diagnosis method of analog circuit by
combining high-order cumulants and information fusion. The
brief procedure of our method is as follows: we first collect
original voltage and current signals from output terminal in
order to determine their kurtosis and skewness as fault eigen-
vectors, and then they are used as input to improve Error Back
Propagation (BP) neural network for fault diagnosis. Soft fault
diagnosis of tested circuits shows that fault eigenvectors
gained in this way have high recognition rate, and fault
diagnosis accuracy reaches to 100 %. Moreover, it can diag-
nose non-linear circuit faults and catastrophic faults success-
fully, which provides a new effective method for fault diag-
nosis of analog circuit.

2 High-Order Cumulants, Kurtosis, and Skewness

High-order cumulants (HOC) technique is a new rapidly
developed technology in recent years, and is an important tool
to deal with non-Gaussian signals, nonlinear signals and blind
signals, and it has attracted increasing attention. It’s of great
advantages, and one of the most important one is that it can
detect nonlinear characteristics and extract the coupling char-
acteristics among the signals. Moreover, it is insensitive to
Gaussian noise and can abandon the effects of interference of
noise. What’s more, it can completely eliminate the noise
theoretically, and improve the analysis and identification ac-
curacy. The nonlinearity of fault signal of analog circuit itself,
combined with the effects of temperature and environment
make the fault signal inevitably noisy. Therefore, it’s

necessary and applicable for us to use high-order cumulants
to deal with the fault signal of analog circuit.

2.1 High-Order Cumulants

With respect to single random variable, introducing the char-
acteristic function gives the definition of high-order cumulants
Ck as follows:

Ck ¼ 1

jk
dkψ ωð Þ
dωk

�
�
�
�
ω¼0

k ¼ 1; 2;⋯; n ð1Þ

in which

ψ ωð Þ ¼ lnϕ ωð Þ

ϕ ωð Þ ¼
Z ∞

−∞
f xð Þexp jωxð Þdx ¼ E exp jωxð Þ½ �

where E{·} is an operator of demand expectations, standing
for statistical average; the functions ψ(ω) and ϕ(ω) respective-
ly denote the first and the second characteristic function of
random variable x.

With respect to random vector x=(x1,x2,⋯,xk)
T, the defi-

nition of high-order cumulants is given as follows:

Cγ1;γ2;⋯;γk ¼ − jð Þγ∂
γψ ω1;⋯;ωkð Þ
∂γ1ω1⋯∂γkωk

�
�
�
�
ω1¼⋯ωk¼0

¼ − jð Þγ∂
γlnϕ ω1;⋯;ωkð Þ
∂γ1ω1⋯∂γkωk

�
�
�
�
ω1¼⋯ωk¼0

ð2Þ

where ϕ(ω1,⋯,ωk)=E[exp(j(ω1x1+⋯+ωkxk))], γ=γ1+
γ2+⋯γk. Especially, when γ1=γ2=γ3=1 and γ=3, the third-
order cumulant is marked as:

C3x ¼ C1;1;1 ¼ cum x1; x2; x3ð Þ ð3Þ

Generally, k-order cumulant is defined as follow:

Ckx τ1;⋯τ k−1ð Þ ¼ cum x tð Þ; x t þ τ1ð Þ;⋯; x t þ τ k−1ð Þ½ � ð4Þ

2.2 Kurtosis and Skewness

If {x(n)} is the stationary random process of zero mean, then
first-order, second-order, third-order, and fourth-order
cumulants can be illustrated as:

C1x ¼ m1x ¼ E x tð Þf g ð5Þ
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C2x τð Þ ¼ E x tð Þx t þ τð Þf g ¼ Rx tð Þ ð6Þ

C3x τ1; τ2ð Þ ¼ E x tð Þx t þ τ1ð Þx t þ τ2ð Þf g ð7Þ

C4x τ1; τ2; τ3ð Þ ¼ E x tð Þx t þ τ1ð Þx t þ τ2ð Þx t þ τ3ð Þf g
−Rx τ1ð ÞRx τ3−τ2ð Þ−Rx τ2ð ÞRx τ3−τ1ð Þ
−Rx τ3ð ÞRx τ2−τ1ð Þ ð8Þ

where Rx stands for autocorrelation. In equation (7), taking
τ1=τ2=0, we can obtain 1-D slice of third-order cumulants,
which was defined as skewness of real signal {x(n)} and
marked as Sx=E{x

3(t)}. Similarly, in equation (8), taking
τ1=τ2=τ3=0 gives another important concept named as kur-
tosis: Kx=E{x

4(t)}−3E2{x2(t)}
Based on the above definition, we know that first-order and

second-order cumulants of random variable x of Gaussian
distribution are respectively the mean and variance of x, and
high-order cumulants of Gaussian random variable x is always
equal to zero. As for Gaussian random process {x(n)}, its

high-order cumulants are always equal to zero as well when
its order exceeds 2. Therefore, one can conclude that high-
order cumulants are not sensitive to Gaussian process. When
the external noise is the Gaussian colored one, high-order
cumulants can completely eliminate the effect of noise and
improve the accuracy of identification and diagnosis in theory.

3 Improvement of Error Back Propagation (BP)Neural
Network

In this paper, Error Back PropagationNeural network (BPNN)
is used to fault identification based on error back-propagation.
Although BP algorithm has been applied successfully in many
aspects, it also has some limits. The BPNN changes weights
by using Momentum Descent Algorithm, in which one of the
main problems is that in error functions, the global optimum
can not be found and it is easy to get caught into local minima
during the training progress. In addition, the results of BPNN
depends on some parameters determined by the designers,
such as weights initialization, offset value, learning rate, acti-
vation function, network topology and the gain of activation

Fig. 1 Diagnostic schematic
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function. Except the improved BP algorithm based on the
momentum, there are very few reports on the improvement
of BP algorithm by the other methods. Bishop proposed an
effective algorithm to improve the training efficiency. The
main idea is that the gradient along the search direction can
be partially modified by the gain value of the corresponding
node activation function, which improves the convergence of
their own optimization algorithm [2, 13]. Ransing et al. used
the modification of activation function gain to contribute the
value of a global learning rate and a local learning rate to each
node of the neural network [14]. Based on Ransing’s theory,
Nawi draws the conclusion that this gain modification is
actually the change of the initial search direction d(n). Weights
change of BP network based on this idea can be illustrated as:

Δw nð Þ
ij ¼ −η nð Þ ∂E

∂w nð Þ
ij

c nð Þ ¼ −η nð Þg nð Þc nð Þ ð9Þ

in which g(n)c(n) is the error gradient vector of gain vector
c(n). And the updated expression of the gradient vector is:

c nþ 1ð Þ ¼ c nð Þ þ η
∂E

∂c nð Þ ð10Þ

4 Information Fusion Technology and Diagnosis Principle

The concept of information fusion was originated in early
1970s, and in the recent 20 years, its corresponding technol-
ogy has attracted more and more attention [16, 17, 21]. Gen-
erally speaking, the process of information fusion is a overall
systematic process of dealing with multi-source information,
which can be used to increase the amount of information and
make random information ordered by using the dynamic of

Table 1 Feature values for dif-
ferent fault classes of the four-
opamp biquad filter without
tolerance

Fault calss Fault code nominal Faulty value Output voltage Output current

Kurtosis Skewness Kurtosis Skewness

R1↑ F1 5 k 7.5 k 12.764 3.1430 1.5503 −0.4165
R1↓ F2 5 k 2.5 k 10.326 2.5693 0.5826 −1.4857
R4↑ F3 5 k 7.5 k 11.362 2.8921 2.0579 1.3586

R4↓ F4 5 k 2.5 k 16.248 3.8952 3.3825 2.7625

R6↑ F5 3 k 4.5 k 14.742 3.3895 2.9825 0.9956

R6↓ F6 3 k 1.5 k 13.267 3.0567 3.1624 2.5243

R7↑ F7 4 k 6 k 14.876 3.2265 6.5622 3.5213

R7↓ F8 4 k 2 k 9.4862 2.1837 5.0527 3.0845

C1↑ F9 20n 30n 9.9887 2.4372 2.0547 1.3845

C1↓ F10 20n 10n 8.9736 2.1536 1.2846 0.9645

C2↑ F11 5n 7.5n 15.283 3.2769 3.6257 1.9864

C2↓ F12 5n 2.5n 15.365 3.4435 5.0945 3.7536

Normal F0 10.988 2.6321 3.1520 1.6251
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information calculation. It is a feature fusion method to diag-
nose faults by using neural network information fusion [4]. In
this paper, we use this method to diagnose and identify the
running condition of analog circuits, and the basic idea behind
is as follows—there is a causality between circuit running and
various failure symptoms, but the complex relationship is
difficult to be expressed explicitly; fortunately, neural net-
work, thanks to its own identity, is very effective to identify
the uncertainty of circuit running modes.

Analog circuit fault diagnosis, based on neural network
information fusion, mainly includes the following steps.

(1) Signal acquisition
Signal acquisition is the premise for information fu-

sion of analog circuit. In this paper, output voltage and
current signals are used to perform fault diagnosis.

(2) Feature extraction
Voltage and current signals collected from circuit may

contain a large amount of redundant information, which
bring enormous amount of computation for subsequent
processing and would have great influence on the diag-
nosis speed and the efficiency. In order to reduce the

amount of computation, we need to preprocess the col-
lected signals in order to extract its important features.

(3) Normalization
The physical meanings of various parameters are

quite different as features and their numerical values
are also inconsistent. In order to use neural network to
identify the classification of various states, it is necessary
to normalize them with premnmx function of Matlab
within [−1,1] to eliminate the interference of physical
units of the characteristic parameters and to make nu-
merical analysis possible..

(4) Characteristics association
The eigenvectors must be processed jointly before we

use neural network information fusion classifiers to cope
with the characteristics information of multi-sensors.
Current eigenvectors should be synthesized with eigen-
vectors of output voltage to make them crisscross merge
and form united ones, and then these vectors can be used
as input of the neural network.

(5) Information fusion classifiers of neural network
Multilayer perceptron of error back-propagation algo-

rithm (BP network) is used to fuse multilined message.
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(6) Diagnosis results
Relevant vectors of fault features of tested circuits are

used as input of the trained BP network to obtain the
diagnostic output results, and then the circuit fault mode
can be identified.

Diagnosis principle is represented in Fig. 1. We choose an
easily produced sinusoidal stimulatory signals as the stimulus.
Firstly, a stimulus is exerted on the circuit under test. Second-
ly, the terminal voltage and current signals of circuit are
obtained from the output. Thirdly, by using the analysis tool-
box of high-order cumulants, we can determine kurtosis and
skewness of terminal signals as the fault eigenvectors. Finally,
they are used as the input of neural network for fault diagnosis.

5 Diagnosis Example

6.1 Our diagnosis circuit is a quad op-amp high-pass filter (see
Fig. 2), in which R1=R4=5kΩ, R2=R3=R5=R8=R9=R10=
10kΩ, R6=3 kΩ,R7=4kΩ,C1=20 nF, C2=5 nF, and the am-
plitude of input AC voltageVin is 6 V.

When circuit simulation software PSpice is used to do
sensitivity analysis on four op-amp biquad high pass filter,
we observe that the circuit output sensitivity value of R1, R4,
R6, R7, C1, and C2 is higher than that of the other compo-
nents. In other words, the changes of these six component
values have bigger influence on the circuit output than the
other components. Hence, based on the fault analysis of the
six component values, the six component values are consid-
ered to be normal within a tolerance range of 5%. Considering
the fault phenomenon of 50% positive bias and 50% negative
bias of each of the six component values, together with the
fault-free(NF) status of circuits, a total of 13 fault statuses
were analyzed.

Three-layer BP neural network with single hidden layer is
used as fault classifier. The number of its input layers is equal
to the number of fault eigenvector elements. Here, the fault
eigenvectors are composed of the output voltage, the current
skewness and kutorsis. Then, the numbers of neurons in the
input and output layers are respectively 4 and 13, where 13 is
the number of fault states. Output vectors are defined as
follows: Suppose that there are M kinds of states in the tested
circuit, and network output is (a1,a2,….ai….aj….aM); If the
circuit locates in state i, and if ai=1 and the rest is equal to 0
(i.e. desired output vectors of network are (0,0,….1,….0)),
then the number of neurons in hidden layers can be deter-
mined by the following empirical formula [5]:

ffiffiffiffiffiffiffiffiffiffiffiffi
mþ n

p þ 1≤h≤
ffiffiffiffiffiffiffiffiffiffiffiffi
mþ n

p þ 10 ð11Þ

Table 2 Detailed performance of
our system in diagnosing the 13
fault classes associated with the
four op-amp biquad high-pass
filter.each row in this table corre-
sponds to one fault class with a
test data of size 40. Different col-
umns indicate the number of
times the test data are diagnosed
as belonging to various fault
classes

R1↑ R1↓ R4↑ R4↓ R6↑ R6↓ R7↑ R7↓ C1↑ C1↓ C2↑ C2↓ NF

R1↑ 40

R1↓ 40

R4↑ 40

R4↓ 40

R6↑ 40

R6↓ 40

R7↑ 40

R7↓ 40

C1↑ 40

C1↓ 40

C2↑ 40

C2↓ 40

NF 40

Table 3 Diagnosis results using support vector machine

c=10,γ=2 c=20,γ=0.5 c=50,γ=1

F0 58 55 56

F1 58 56 57

F2 20 18 20

E3 60 59 60

F4 22 21 21

F5 15 15 15

F6 55 55 54

F7 20 17 18

F8 59 57 58

F9 52 50 51

F10 55 55 54

F11 50 50 51

F12 53 52 50

the average diagnostic accuracy 73.97 % 71.79 % 72.44 %
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where “m” denotes the number of input neurons, and “n”
denotes the number of output neurons. We use the improved
algorithm based on equations (9) and (10) in Section 3 as the
neural network training algorithm.

In order to obtain the sample set, a 5 % tolerance was set for
each faulty component when PSpice is used in simulation, and
then the Monto Carlo analysis was used. In Monto Carlo
analysis, corresponding setting can be performed in order to
obtain a desired sample quantity. Under this circumstance, a
total of 100 samples were set for each fault status, in which 60
were training samples and 40 were test samples. When PSpice
simulation is finished for each fault status, the obtained data
can be imported into MATLAB by using data import function
in MATLAB File menu.

Table 1 shows the kurtosis and skewness determined by
high-order cumulants in various states of the circuit. Fig-
ure 3 demonstrates the regular curve of output voltage
skewness with respect to the values of R1, R4, R6 and
R7, and Fig. 4 shows the curve of skewness with respect
to the capacitors C1 and C2. Figure 5 deplicits the classified
results of failure diagnosis obtained by the kurtosis and skew-
ness data.

From Fig. 3, one can observe that the skewness of the
output voltage shows the ascending trend as R1 changes: it
increases when resistance values lie between 0 and 10 k, and it
reaches the peak of 3.2632when R1 is 10 k, while it remains at
about 3.2632 from 10 k to the infinity. The skewness value of
the output voltage firstly ascends and then descends when R4

changes. That is, the skewness value increases, when resis-
tance values are between 0 ohm and 5 ohms, and it reaches the
peak of 5.8257 when R4 is 5ohms, but from then on, it
descends when R4 is between 5 ohms and 10 k ohms. When
R4 is 10 k ohms, the corresponding skewness value declines to
3.2632 or so; and between 10 k ohms and 10 M ohms, it
remains at this point; while from 10M ohms to 100M ohms, it
declines to −0.2295; and from that on, however R4 changes, it
always stops at this point. For R6, the skewness value of output
voltage has the ascending trend. Between 0 M and 1 M, the
value increases, and it reaches the maximum of 4.8527 when
R6 Value is 1 M. After that, although the resistance value
increases, there is no obvious change. For R7, the skewness
shows the descending trend. Between 0 k and 10 k, the value
of it decreases from 4.2536 to 3.2137, and from 10 k to the
infinity, the value is kept at this point.
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Fig. 6 Nonlinear circuit

Table 4 Feature values for dif-
ferent fault classes of the nonlin-
ear circuit

Fault calss Fault code nominal Faulty value Output voltage Output current

Kurtosis Skewness Kurtosis Skewness

R1↑ F1 300 450 3.1259 1.9645 2.0578 0.9341

R1↓ F2 300 150 2.8208 1.7157 1.3852 0.3257

R3↑ F3 10 k 15 k 5.5643 1.8656 4.2859 1.2673

R3↓ F4 10 k 5 k 4.5833 1.6454 2.5568 1.0876

C1short F5 8.8528 2.9253 6.3352 2.2128

C1open F6 5.2397 1.7964 3.4987 1.0658

C2short F7 6.1358 2.0125 4.9985 2.3162

C2open F8 7.2583 −2.2890 5.6872 3.3126

Normal F0 5.2369 1.7955 3.9432 1.5625
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From Fig. 4, it can be found that the skewness value of the
output voltage, with respect to the changes of C1 and C2, has
the trend from rise to fall to constancy. When C1 and C2 are
respectively 2,000 nF and 10 nF, the corresponding skewness
values are 0.4258 and 3.2363, the lowest points. Since then,
the values of the two are nearly the same. Changing rule of
kurtosis to each component is consistent to that of skewness.

After the neural network is well trained, 40 test samples
were used to conduct test diagnosis on the network. The
diagnostic results are shown in Table 2. Table 3 shows the
diagnosis results obtained by using support vector machine as
classifier, in which c is the penalty coefficient, γ is the kernel
width parameter and the Gaussian kernel is used as the kernel
function.

From Table 3, we can see that, when the penalty coefficient
and kernel width parameter are changed, the resulting average
diagnostic accuracies of the support vector machine are re-
spectively 73.97 %, 71.79 %, and 72.44 %., which are much

lower than that of our method proposed in this paper. In
addition,in Literature 4, wavelet transform is used to decom-
pose the obtained fault signal, and then principal component
analysis is acted on the decomposition coefficients to obtain
the data, which are used as fault eigenvectors. As we have
mentioned that the principal component analysis is based on
the second-order statistics, from which the resulting fault
eigenvectors, by comparing with high-order cumulants used
in this paper, fails to fully represent the fault characteristics
and/or information very effectively. Moreover, in the process
of acquisition of fault signal considers, Literature 4 only
considers the output voltage, while our proposed method
includes both the voltage signal and current signal. Therefore,
comparing with the method of Literature 4, the fault eigen-
vectors constructed by our proposed method can distinguish
the faults more effectively. By the comparison of the diagnosis
results between two methods, we find that on the fault diag-
nosis of four op amp biquad filter circuits, Literature 4’s
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method fails to diagnose C2↓, R1↑and R4↓, while our pro-
posed method can accurately diagnose 13 categories of fault
of four op amp biquad high-pass filter circuits. Similarly,
Literature 5 also uses wavelet transform to decompose the
fault signal, and then the mean and standard deviation of the
obtained wavelet coefficients are normalized. Such data pro-
cessing, from the view point of statistic, is also based on
second-order statistics, and hence the obtained fault eigenvec-
tors contains less information comparing with that extracted
by our proposed method. From the aspect of diagnostic re-
sults, the final fault diagnosis accuracy of Literature5 is 90 %,
which is also less than our fault diagnostic accuracy.

6.2 Finally, fault diagnosis of a nonlinear circuit is used
to illustrate the efficiency of our proposed method pro-
posed in this paper. The nonlinear circuit is shown in
Fig. 6. The AC input voltage value is 10, in which 9 states
are taken into consideration. That is, the four states of 50 %
positive bias and 50 % negative bias of R1 and R3 and the
short and open states of C1 and C 2 plus the fault-free state.

Within 5 % tolerance range of the component values,
Monte-Carlo analysis has been done for each state of
the circuit for 200 times, among which 100 times for
training samples and 100 times for identifying samples.
Table 4 illustrates the kurtosis and skewness of voltage
and current under various fault modes, in which the
changing rule curves of output voltage skewness with
respect to R1, R2, R3 and C1 and C2 are respectively
shown in Figs. 7 and 8. The fault category results
obtained by the kurtosis and skewness data are shown
in Fig. 9. From Fig. 9, we observe that most of the
faults can be well distinguished except that the fuzzy
sets of faults F0 and F6 (respectively the normal state
and the open circuit of capacitor C1) are mixed. From
Table 4, the same conclusion can be obtained, that is,
the values of kurtosis and skewness under the two
modes are quite similar. Therefore, neural networks
can not be distinguished.

6 Conclusion

In this paper, we study the problem of fault signals in analog
circuit by using high-order cumulants and information fusion.
Kurtosis and skewness of fault signals are used as fault eigen-
vectors, which are then used as the inputs in the improved BP
neural network for fault diagnosis. The improvement of BP
neural network is also discussed. Diagnosis examples show
that our obtained fault eigenvectors are significantly different
with high recognition rate and qiuck BP network conver-
gence. Hence its diagnosis accuracy rate is higher than that
of other general methods, and it provides a new and effective
way for the construction of fault eigenvectors and also the
fault diagnosis of analog circuit.
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