
Developing Inherently Resilient Software Against Soft-Errors
Based on Algorithm Level Inherent Features

Bahman Arasteh & Seyed Ghassem Miremadi &
Amir Masoud Rahmani

Received: 8 September 2013 /Accepted: 3 February 2014 /Published online: 25 February 2014
Springer Science+Business Media New York 2014

Abstract A potential peculiarity of software systems is that a
large number of soft-errors are inherently derated (masked) at
the software level. The rate of error-deration may depend on
the type of algorithms and data structures used in the software.
This paper investigates the effects of the underlying algo-
rithms of programs on the rate of error-deration. Eight differ-
ent benchmark programs were used in the study; each of them
was implemented by four different algorithms, i.e. divide-and-
conquer, dynamic, backtracking and branch-and-bound.
About 10,000 errors were injected into each program in order
to quantify and analyze the error-derating capabilities of dif-
ferent algorithm-designing-techniques. The results reveal that
about 40.0 % of errors in the dynamic algorithm are derated;
this figure for backtracking, branch-and-bound and divide-
and-conquer algorithms are 39.5 %, 38.1 % and 28.8 %,
respectively. These results can enable software designers and
programmers to select the most efficient algorithms for devel-
oping inherently resilient programs. Furthermore, an analyti-
cal examination of the results using one-way ANOVA ac-
knowledged the statistical significance of difference between
the algorithm-designing-techniques in terms of resiliency at
95 % level of confidence.

Keywords Soft-error . Error-derating . Algorithm-designing
technique . Resilient program . Fault injection

1 Introduction

Software systems and their applications are deemed to be an
omnipresent feature of modern life. One important area of
software applications is safety-critical applications, where
failures may threaten users or bring about disastrous amounts
of monetary and human loss. As a matter of fact, the reliability
is judged to be a pivotal and fundamental issue to be discussed
in the realm of safety-critical systems.

The studies in [37, 40, 50–52] indicate that soft-errors are
regarded as one major source of failures in computer systems.
Alpha particles, energetic neutrons and protons caused by
cosmic rays and thermal neutrons are the main sources of soft
errors [37, 40]. The significant reduction in the size and
voltage of transistors increases the density and clock speed
of processors; as a result, the probability of soft-error occur-
rence rises in computer systems.

Performance overhead is a serious problem in software-
based techniques proposed for detecting and recovering soft-
errors [8, 9, 18, 20, 24–30, 39]. Duplicated instructions and
consistency checking are the main sources of introduced
performance-overhead in the software-based methods. The
introduced performance-overhead may result in timing fail-
ures in safety-critical and real-time applications.

An interesting and potential peculiarity of computer sys-
tems is that a significant number of soft-errors (close to 40 %)
are inherently masked at the software levels due to properties
of software [6, 17, 19, 21, 33, 47, 49]. A soft error is said to be
derated if it is inherently masked in the system before it affects
the results. A program is deemed to be more resilient if an
occurred soft-error is more likely to be derated inherently and
hence, it can generate correct results [6, 17, 33, 47, 48].

Responsible Editor: M. Sonza Reorda

B. Arasteh (*) :A. M. Rahmani
Department of Computer Engineering, Science and Research
Branch, Islamic Azad University, Tehran, Iran
e-mail: b_arasteh2001@yahoo.com

A. M. Rahmani
e-mail: Rahmani@srbiau.ac.ir

S. G. Miremadi
Dependable Systems Laboratory, Department of Computer, Sharif
University of Technology, Tehran, Iran
e-mail: miremadi@sharif.edu

J Electron Test (2014) 30:193–212
DOI 10.1007/s10836-014-5438-8

Different implementations of a program often have different
impacts on its resiliency [6, 17, 33, 47]. Hence, the inherent
resiliency of a program against soft-errors can be considered
as a function of the corresponding algorithms, data structures
and coding features.

The underlying algorithmic features of a program1 may
have a considerable impact on its derating-rate. The investi-
gation of the effects of different algorithm-designing-
techniques on the rate of error-deration is the major purpose
of this study. In this regard, the two following questions
should be answered:

1. Which structural features of algorithm-designing tech-
niques may increase the error-derating rate?

2. Which algorithm-designing-techniques may have higher
error-derating capabilities?

Based on the two above questions, the main contributions
of this study are as follows:

1. Structural features of algorithm-designing-techniques af-
fecting error-deration rate are identified.

2. Error-derating capabilities of different algorithm-
designing-techniques with respect to their structural fea-
tures are investigated.

3. Based on the numbers 1 and 2, an approach is proposed to
identify the error-derating blocks of a programwith regard
to the underlying algorithm.

4. A software-based experimental framework for evaluating
the reliability of software is developed.

The rest of the paper is organized as follows: Section 2
gives a background and explains terminologies related to the
error-deration at algorithm level. Section 3 describes the error
model, error-injection tools, benchmarks and the details of the
experiments. Section 4 includes the following points: 1) the
algorithmic features which may affect error-deration rate are
discussed, 2) the error-derating capabilities of different
algorithm-designing-techniques are investigated, 3) an ap-
proach for the identification of the error-derating blocks of a
program is proposed and 4) the ANOVA (analysis of variance)
is used to analyze the statistical significance of difference
among algorithm-designing-techniques in terms of resiliency.
Finally, Section 5 concludes the paper.

2 Background

Duplicating program instructions and comparing their results
is a traditional approach to detect soft-errors [3, 8, 18, 20,

24–26, 28, 39]. This approach imposes a considerable
performance-overhead to the system [8, 9, 18, 20, 24–26].
To make a trade-off between reliability and performance-
overhead in the software-based techniques, the selective du-
plication instead of full duplication is introduced [3–5, 10, 12,
14, 34, 38, 42, 44]. As a result, it is possible to obtain high
reliability with a low performance-overhead.

An interesting feature of computer systems is that a con-
siderable number of soft-errors may be derated inherently in
different layers of computer systems [6, 17, 21, 33, 46, 47,
49]. A significant number of soft-errors may be derated inher-
ently at the logical and micro-architectural levels [15, 46, 51,
52]. For instance, a soft-error will be derated logically if it
changes an input of AND gate while the other input is zero;
consequently, the soft-error will not propagate to the output
[15]. On the other hand, a soft-error will be derated electrically
when it is attenuated by subsequent logic gates due to the
electrical features [15, 52]. Furthermore, a soft-error will be
derated if it changes the input of a gate during the time the gate
is inactive.

Unmasked and undetected soft-errors at the micro-
architectural level will propagate to the higher levels of the
system and will become visible at the software level. The
results of some studies [6, 15, 17, 19, 21, 33, 47, 49] indicate
that a considerable number of soft-errors (close to 40 %) are
inherently derated at the program level. Furthermore, pro-
grams with different implementations have different derating
rates [6, 33, 47]. It can be argued that programs with the error-
derating potentials are inherently more resilient against soft-
errors. Thus, improving the inherent resiliency of programs
without using external redundancy motivates researchers to
study the potential sources of error-deration at program level.
To the best of authors’ knowledge, there are very few studies
on soft-error deration at the program level.

Based on the results of experiments in [17, 32], only a
small portion of program instructions have a major impact on
the final results and produces the same overall results as all
instructions produce; the remaining instructions are consid-
ered as ineffectual instructions. The ineffectual instructions
such as dynamically useless-codes, quality related codes and
equivalent branches do not precisely relevant to program
results [6, 21, 33, 47]. A large number of soft-errors which
affect the ineffectual instructions do not propagate to the
program results and may be masked inherently [1, 6, 10, 17,
19, 21, 33, 47, 49].

According to the experimental results of some studies [21],
on average 14 % of the instructions executed by programs are
dynamically useless (dead). The amount of Dynamically
Useless-Codes (DUC) in a program may vary based on the
underlying algorithms and data structures. DUC generate
useless values which do not have impact on the program
results at specific time-slices. Hence, non-negligible number
of soft-errors may be derated by DUC in a program.

1 The terms “software” and “program” have been used interchangeably
with the same meaning in this paper.

194 J Electron Test (2014) 30:193–212

The authors in [41] have investigated the sources of inher-
ent error-masking at different layers of the system to study
hardware and program vulnerability. According to the results
of the experiments reported in [41], approximately 57 % of
masked error at the program level are attributed to dead
instructions and 42 % to logical masking. A methodology
was proposed in [35] to estimate the reliability of computer
systems against soft-errors and it was compared with the
traditional methods of fault-injection; in this study [35], the
instruction-sets of two microprocessors (8088 and OR1200)
were examined and the rate of errors masked by these instruc-
tions were quantified. However, these studies did not investi-
gate the impact of different programming and algorithm-
designing techniques on the rate of error-deration; this is
deemed to be a research gap in this area of study.

Figure 1 depicts an iterative algorithm for the quick-sort
[13]. The conditional branch in line 7 is the branch point of
equivalent branches. The deviation of this branch direction
which is caused by soft-errors does not have impact on the
final results; hence, the soft-errors will be derated at the
program level. Indeed, this algorithm is inherently more resil-
ient to soft-errors.

In this study, the effects of algorithm-designing techniques
on the rate of error-deration will be investigated. To this end,
firstly, the dynamic behaviors and the structures of different
algorithms will be analyzed to identify those algorithmic
features which result in the DUC, equivalent branches and
quality-related codes; these algorithmic features are

considered as potential sources of error-deration in an algo-
rithm. Secondly, error derating capabilities of different
algorithm-designing techniques will be investigated with re-
gard to the sources of error-deration. To achieve this purpose,
a series of error-injection experiments were performed. The
following section describes the details of the experimental
framework.

3 Experimental Framework

To study algorithm-level error-deration, we conducted a series
of error-injection experiments on different benchmark pro-
grams using different algorithms. The behaviors of erroneous
programs were examined in the presence of the injected errors
to investigate the effects of different algorithms on the rate of
error-deration. The error model in our experiments is explained
in Subsection 3.1. Then, the simulation framework and the
features of the benchmarks are described in Subsection 3.2.

Next, the details of error-injection experiments are illustrat-
ed in Subsection 3.3.

3.1 Error Model

In this paper, the term soft-error refers to a bit-flip which is
visible to the program. Indeed, the effect of soft-error in the
memory is modeled by inverting a bit in randomly selected
memory locations (code, data and stack segments) at a ran-
domly selected clock cycle. A single-bit flip leads to the
production of a code-error or data-error.

In this study, only the errors which are visible to the
program have been taken into account and their effects on
the program output are examined. The injected errors target
the code and data of a program regardless of the locations of
the injections. In the main memory, the corrupted code and
data will ultimately be fetched to the cache and internal
registers of the microprocessor during program execution.

In [7], it was shown that approximately 99 % of errors in
the 180 nm technology are single-bit errors. This figure for the
40 nm technology is about 60%.Whereas the rate of multiple-
bit errors increases in novel technologies, the rate of single bit
errors is still a main concern in all technologies. As such,
single-bit errors were investigated in this study. It should be
maintained that studying the effect of multiple-bit errors is
recommended as a direction for future study (see the list of
future works).

3.2 Benchmarks

The SimpleScalar tool set was used in our experimental
framework [2]. It includes sim-safe and sim-outorder. The
SimpleScalar, as a functional simulator, is used for simulating
the architecture of a processor. The SimpleScalar is distributed

Fig. 1 An Iterative version of quick-sort algorithm [13] and its equiva-
lent branches in the dark text-boxes

J Electron Test (2014) 30:193–212 195

with self-tests to validate its results and includes standard
libraries and modules. The sim-safe simulator is used to run
the benchmarks and to evaluate the rate of error-deration. The
configuration parameters of the simulator are given in Table 1.

Our experiments require such a set of benchmark programs
which illustrate the behaviors of different algorithm-
designing-techniques; this is why large benchmark suites such
as SPEC2006 [11] were not used in the study. Hence, eight
different benchmarks were selected and each benchmark was
implemented by four different algorithms as a version of the
benchmark. Each version of benchmarks is related to an
algorithm-designing-technique. The selected set of bench-
marks consists of numeric, nonnumeric, combinatorial and
graph-related programs. Thirty two benchmarks which were
implemented in the study were classified into four categories
based on their underlying algorithms:

& Divide-and-conquer based benchmarks
& Dynamic based benchmarks
& Backtracking based benchmarks
& Branch-and-bound based benchmarks

Each of the above-mentioned algorithm-designing tech-
niques will be described in detail in Subsection 4.2. The
benchmarks shown in Table 2 were written in the C program-
ming language and were compiled on Linux (Ubuntu 9.10)
using GCC 4.0.2 with standard optimization level (−O2).

In Table 2, all the v1 columns represent the first versions of
the benchmarks which use divide-and-conquer algorithm. All
the v2 columns stand for the second versions which use
dynamic algorithm. All the v3 columns indicate the third
versions which are based on backtracking algorithm and fi-
nally all v4 columns are related to the forth versions which use

branch-and-bound algorithm. Each category of the bench-
marks represents the behavior of an algorithm-designing tech-
nique. They have been used to investigate the resiliency of
underlying algorithms. The errors in the header files and
dynamically linked functions are not considered in the exper-
iments. The results of error-injection experiments are classi-
fied and shown in Table 3.

3.3 Error Injection

In order to investigate the effects of different algorithms on the
rate of error-deration, we carried out error-injection experi-
ment in the memory hierarchy of each benchmark. After the
injection of each error, the behaviors of erroneous programs
were monitored and were compared with a golden run to
determine the effects of the errors.

Any error-injection experiment should target all possible
locations (code and data) of each benchmark at different
clock-cycles. Furthermore, the number of injected errors in
each benchmark has a significant impact on the accuracy of
the experimental results. Hence, the number of injections
should be determined based on the following characteristics
of the benchmarks: size of code and data and rates of integer
and branch instructions. In this study, the number of injections
was set at 10,000 for each benchmark with respect to the
characteristics of the most complex benchmarks, namely
TSP and Knap. In each experiment, only one bit was flipped
in a randomly selected memory location at a randomly select-
ed clock-cycle.

In order to illustrate the adequacy of 10,000 injections for
our benchmarks, the researchers prepared two steady-state
diagrams. In this study, the steady state refers to the state in
which the resiliency of a program does not change remarkably
though we change the number of injections. That is, in a
steady state, increasing the number of injections has no con-
siderable effect on the resiliency of a program. Thus, it should
be noted that the number of injections achieving the steady
state is regarded as adequate. In order to specify the adequate
number of injections, the authors conducted a series of error
injection experiments on TSP and Knap. In our experiments, a
range of errors (1–10,000) were injected in both benchmarks
to determine the steady state.

As shown in Figs. 2 and 3, when the number of injections
reaches 10,000 both benchmarks achieve the steady state.
Hence, when the number of injections was set at 10,000, all
codes and data in each benchmark were targeted by the errors
at different clock-cycles. Table 4 presents standard deviation
as an index of dispersion for different numbers of injections.
The obtained standard deviations when 1–4,000 errors were
injected in TSP and Knap benchmarks were 9.23 and 10.34
respectively. However, it was observed that when 4,000–
8,000 errors were injected, the standard deviations were re-
duced to 2.74 and 2.71 respectively. Furthermore, when

Table 1 Configuration of SimpleScalar simulator

Processor parameters Value

Instruction fetch queue size (if qsize) 4

Branch predictor type bimod

Register update unit (RUU) size 16

load/store queue (LSQ) size 8

Total number of integer ALU’s available 4

Total number of integer Multiplier/divider 1

inst/data TLB miss latency (in cycles) 30

Register File 32 INT and 32 FP

Memory hierarchy parameters Value

Memory access bus width (in bytes) 8

Instruction L1 16 KB

Data L1 16 KB

Base address of code segment 0x00400000H

Base address of initialized data segment 0x10000000H

Base address of stack segment 0x7fffc000H

196 J Electron Test (2014) 30:193–212

T
ab

le
2

C
ha
ra
ct
er
is
tic
s
of

th
e
us
ed

be
nc
hm

ar
ks

in
th
e
ex
pe
ri
m
en
ts

B
en
ch
m
ar
k

D
es
cr
ip
tio

n
C
om

pl
ex
ity

cl
as
s

Pr
ob
le
m

ty
pe

In
pu
tv

ar
ia
bl
e

N
um

.o
f
in
st
ru
ct
io
ns

co
m
m
itt
ed

fo
r
to
ta
lr
un
s
(i
n
bi
lli
on
s)

R
at
e
of

in
te
ge
r

co
m
pu
ta
tio

ns
(%

)

D
es
cr
ip
tio

n
R
an
ge

V
1

V
2

V
3

V
4

V
1

V
2

V
3

V
4

Fi
b

C
om

pu
tin

g
th
e
nt
h
el
em

en
t

of
th
e
F
ib
on
ac
ci
se
qu
en
ce

P
N
um

er
ic
al
pr
ob
le
m

Fi
bo
na
cc
i(
n)

18
<
n
<
30

0.
12

0.
00
02

0.
00
05

0.
00
05

44
.1

54
.9

59
.1

58
.4

B
in

C
om

pu
tin

g
bi
no
m
ia
lc
oe
ff
ic
ie
nt

fo
r
va
lu
es

n,
k.

P
N
um

er
ic
al
pr
ob
le
m

B
in

(n
,k
)

2
<
k
<
30

20
<
n
<
70

89
.9
1

41
.1
0

50
.7
0

48
.3
0

33
.6

9.
1

18
.2

19
.2

Po
w

C
om

pu
tin

g
xn

P
N
um

er
ic
al
pr
ob
le
m

Po
w
(x
,n
)

1
<
x
<
10

2
<
n
<
30

27
.4
9

27
.4
8

27
.5
0

27
.4
9

31
.9

32
.1

31
.7

31
.7

T
SP

So
lv
in
g
th
e
cl
as
si
c
T
S
P
pr
ob
le
m

[1
3,
22
,4
5]

N
P-
C
om

pl
et
e

C
om

bi
na
to
ri
al
pr
ob
le
m

(g
ra
ph

pr
ob
le
m
)

n:
nu
m
.o
f
gr
ap
h
no
de

W
i,
j:
w
ei
gh
to

f
ed
ge
s i
,j
(R
nd
)a

5
<
n
<
25

0
<
W

i,
j<
30

58
.2
7

85
.0
6

29
.4
7

31
.3
0

11
.0

11
.3

2.
1

6.
8

R
od
-c

So
lv
in
g
th
e
cl
as
si
c
ro
d-
cu
tti
ng

pr
ob
le
m

[2
2,
45
]

P
C
om

bi
na
to
ri
al
pr
ob
le
m

n
:l
en
gt
h
of

ro
d

P
i
:p

ri
ce

of
pi
ec
e i
(R
nd
)

10
<
n
<
30

1
<
P
i<
40

57
.8
6

1.
85

5.
21

4.
82

35
.2

61
.7

48
.7

49
.3

K
na
p

So
lv
in
g
th
e
cl
as
si
c
0–
1
kn
ap
sa
ck

pr
ob
le
m

[1
3,
45
]

N
P-
C
om

pl
et
e

C
om

bi
na
to
ri
al
pr
ob
le
m

n
:c
ap
ac
ity

P
i:
pr
of
it
of

ite
m

i
(R
nd
)

W
i:
w
ei
gh
to

f
ite
m

i
(R
nd
)

5
<
n
<
55

1
<
P
i
<
20

1
<
W

i
<
20

81
9.
14

81
6.
88

81
.0
9

92
.9
1

8.
8

61
.1

9.
8

5.
8

Q
ue
en

So
lv
in
g
th
e
cl
as
si
c
n-
qu
ee
n

pr
ob
le
m

[1
3,
22
,4
5]

N
P-
C
om

pl
et
e

C
om

bi
na
to
ri
al
pr
ob
le
m

n:
nu
m
.o
f
qu
ee
ns

4
<
n
<
16

2.
02

2.
01

1.
70

1.
81

55
.7

56
.1

58
.8

58
.3

S_
Su

b
So

lv
in
g
th
e
cl
as
si
c
su
bs
et
su
m

pr
ob
le
m

[1
3,
22
,4
5]

N
P-
C
om

pl
et
e

C
om

bi
na
to
ri
al
pr
ob
le
m

(s
et
pr
ob
le
m
)

n:
nu
m
.o
f
ite
m
s

W
i
:w

ei
gh
to

f
ite
m

i
(R
nd
)

S
um

:r
eq
ui
re
d
su
m

5
<
n
<
40

1
<
W

i<
25

5
<
S
um

<
30

2.
91

2.
31

1.
62

1.
90

12
.1

53
.2

24
.1

15
.0

a
R
nd

re
fe
rs
to

th
e
ra
nd
om

ly
ge
ne
ra
te
d
nu
m
be
rs
un
de
r
un
if
or
m

di
st
ri
bu
tio

n

J Electron Test (2014) 30:193–212 197

8,000–10,000 errors were injected, the value of standard de-
viation was minimized.

Hence, it should be argued that when the number of injec-
tions reaches 10,000, the dispersion and variability of the
results as measured by standard deviation is significantly
reduced. That is, 10,000 injections are adequate for studying
the resiliency of the mentioned benchmarks.

In each experiment the results of erroneous program and
golden runs have been compared and saved in a file as the
report of the experiment. Each report includes the number of
correct, SDC and exception for each experiment. In total,
about 320,000 experiments were conducted on a computer
equipped with an Intel 2.8 GHz quad-core processor and 4GB
of RAM. All the benchmarks do not include the I/O instruc-
tions and their input data have been predefined and stored.
The basic presumptions of the experiments are as follows:

& Probability distribution for the input data is assumed to be
uniform.

& Flipping a bit in the code segment changes an op-code or
an operand (immediate or address operand) but flipping a
bit in the data segment changes the value of a data in the
program. An injected error is visible at the program level.

& The time at which an error is injected during the program
execution is determined randomly.

& An error (a single bit flip) is dynamically injected into the
randomly selected memory points in a uniform
distribution.

4 Experimental Results

This section describes the results of the experiments as fol-
lows: 1) the potential sources of error-deration at the algorithm
level are discussed, 2) the identified sources of error-deration
are utilized to investigate the error-derating capabilities of
different algorithm-designing techniques, 3) based on results
1 and 2, an approach is proposed to identify the vulnerable
blocks of a program with regards to its underlying algorithm,
and 4) one-way ANOVA [31] is used to statistically analyze
the significance of difference among algorithm-designing
techniques in terms of error-derating rates at 95 % degree of
confidence.

4.1 Sources of Error-Deration

In this subsection, the sources of error-deration in the
algorithm-designing techniques are examined. To this end,
dynamic behaviors of different algorithms are analyzed in
the presence of the injected errors; then, structures of different
algorithms are examined to find out the potential sources of

Table 3 Classification of the results for error-injection experiments

Result classes Description Detection mechanism

Correct Production of correct output by the program Checking result with golden run

Fail-Silent Data Corruption (SDC) Production of incorrect output by the program Checking result with golden run

Exception Hang: program timeout Checking the benchmark execution
time with time of golden run

Crash: Abnormal program termination
(invalid instruction, invalid memory address,
overflow, segmentation error)

Detection by the hardware and
software exceptions

Fig. 2 Steady-state diagram illustrates the adequacy of 10,000 injections
in TSP benchmark

Fig. 3 Steady-state diagram illustrates the adequacy of 10,000 injections
in Knap benchmark

198 J Electron Test (2014) 30:193–212

error-deration. Indeed, the error-injection experiments are car-
ried out and the effects of errors on the behaviors of different
benchmarks are studied. Figure 4 demonstrates the results of
our error-injection experiments. The average resiliency of all
benchmarks in the experiments indicates that approximately
37% of the injected errors are derated by the software without
altering the results.

One of the interesting points is that different versions of
each benchmark have different resiliency. For example, the
amounts of resiliency in the different versions of n-Queen
program are respectively 30%, 37%, 44% and 41 %. Indeed,
different implementations of a program have different
derating-rate. According to the results of the experiments,
the second version of each benchmark has the highest resil-
iency among all versions where in the first version the resil-
iency is low. For example, the resiliency in the first version of
knap program is 22 % whereas the resiliency in the second
version is 31 %.

As mentioned in Section 3, all versions of each benchmark
were written in the same programming language and were
compiled by the same compiler at the same optimization level.
However, since the only difference among benchmarks is their
algorithms, hence, the algorithmic features are analyzed to

discover the sources of error-deration. The memoization tech-
nique [13, 22, 45] is used in the second versions of all the
benchmarks. Memoization is considered as a classic technique
which can be used in different algorithms for performance
enhancement. Also, the recursive divide-and-conquer [13, 22,
45] as a classic and efficient technique, is used in the first
versions of all benchmarks. Pruning and bounding techniques
[13, 22, 45] are used respectively in the third and fourth
versions of the benchmarks.

With respect to the requirements of software, these well-
known techniques (memoization, pruning and bounding) can
be used only for enhancing the performance of the software.
Until now, negligible concern has been given to the potential
effects of these techniques on the reliability. As demonstrated
in Fig. 4, the results of error-injection experiments and the
analysis of different algorithms indicate that these techniques
have unexpected and potential impacts on the resiliency of an
algorithm; that is to say, the following techniques at the
algorithm-level can be considered as the potential sources of
error-deration:

& Memoization
& Pruning
& Bounding

These techniques are discussed one by one in the following
part.

Memoization: Memoization is a well-known optimiza-
tion technique for speeding up algorithms [13, 22, 45].
Storing computed results to avoid recomputation is the
main purpose of memoization. Figure 5 illustrates an

Table 4 Standard deviation for different numbers of injections

Number of error-injections

1–4,000 4,000–8,000 8,000–10,000

STD. Deviation in TSP 9.23 2.74 1.98

STD. Deviation in Knap 10.34 2.71 1.64

Fig. 4 Average results of error injections in different benchmarks

J Electron Test (2014) 30:193–212 199

algorithm for calculating the Fibonacci series which uses
the memoization technique; this algorithm has been
discussed in algorithm related books [13, 22, 36, 45].
This algorithm is equipped with memoization technique
to save the computed value and to avoid recomputation.
Avoiding any recomputation in an algorithm leads to a
drastic reduction in the number of recursive calls.

After analyzing the static and dynamic behaviors of
the benchmarks using memoization, we found that
memoization results in the inherent and implicit produc-
tion of the following features:

& equivalent branches
& dynamic useless-code (DUC)

In the memoization technique, a branch instruction is
used to avoid recomputations and improve the perfor-
mance (line 3 in Fig. 5). Such an instruction might have
no significant impact on the final results. That is to say, the
performance-related instructions may derate soft-errors.

The sim-profile was used for profiling the benchmarks
[2]; the results of program profiling show that approxi-
mately 40 % of corresponding machine codes of the
Fibonacci program are DUC at the run time. In the
Fibonacci program, DUC is only executed at about
60 % of the total run-time and in the remaining run-time,
it is useless. Hence, the injected errors into DUC at 40 %
of run-time will be derated.

To sum it up, it can be maintained that the memoization
technique in an algorithm inherently produces equivalent
branches and DUC; consequently, it can implicitly en-
hance the resiliency of the corresponding algorithm. For
example, as the results of the experiments indicate, the
average resiliency of Fibonacci program using
memoization is 49 % whereas its resiliency without using
memoization is 33 %. Thus, in addition to the main
purpose of this technique which is performance enhance-
ment, memoization should also be considered as one of

the inherent and potential sources of error-deration at the
algorithm level. Figure 6 illustrates the effect of
memoization technique on the resiliency of different pro-
grams in the presence of the injected errors.

Using memoization in an algorithm will inherently im-
prove the resiliency against the soft-errors. Thememoization
needs a memory block for storing pre-calculated values.
This block does not include controlling data but includes
only the pre-calculated values which might be used in the
future computations. The analysis of benchmark behaviors,
namely Fib and Pow, illustrates that only two memory
words are required for storing the computed values. That
is to say, in case a large number of pre-calculated values are
frequently reused, those values have to be protected for
preserving the memoization resiliency. The frequently used
values in the memory can be protected with ECC.

Pruning: Programmers and software designers some-
times deal with optimization problems and the algorithm
proposed for such a problem must, at the worst case,
traverse the solution tree (possible solutions) from the
root [13, 22, 45]. The pruning as a well-known and
performance enhancing technique is aimed to reduce the
search space (solution tree) and consequently reduce the
time required for the computations in an algorithm. In-
deed, the solution tree is pruned so as to avoid nodes that
are not promising. During traversing the solution tree a
node is assumed none promising if it cannot possibly lead
to a solution [13, 22, 45]. Figure 7 illustrates an algorithm
for the n-Queen problem as a classic NP-complete prob-
lem [13, 22, 36, 45]. This algorithm locates n Queens on
an n × n chessboard so that no two Queens threaten each
other. The array column in this algorithm determines the
locations of n Queens. In this algorithm the branch in-
struction in line 2 is used to prune out the inconsistent
locations.

Having analyzed the behaviors of the benchmarks
using the pruning, we noted that applying this technique

Fig. 5 An algorithm for calculating Fibonacci series [36]. The codes in
the dark text-box are DUC caused by memoization

Fig. 6 The results of error injection experiments in the different pro-
grams with and without memoization

200 J Electron Test (2014) 30:193–212

to an algorithm leads to the inherent and potential pro-
duction of the following features:

& equivalent branches
& Dynamically Useless-Code (DUC)

In general, a conditional branch instruction in the prun-
ing technique is intended to determine the promising
nodes in the solution tree (second line of Fig. 7); indeed,
this branch instruction is a performance-related branch
and, any deviation from its correct direction by errors
may have no impact on the results. Hence, this branch is
less vulnerable to soft-errors.

The other notable point is that pruning technique leads
to the inherent and implicit production of DUC (codes in
the dark text-box in Fig. 7). According to the profile of the
n-Queen program, the codes in the dark text-box of Fig. 7
are useless in about 60 % of calls. Hence, the presence of
DUC enhances the resiliency of the respective algorithm.

In brief, it can be argued that the pruning technique in
an algorithm inherently produces equivalent branches and
DUC; as a result, it potentially enhances the resiliency of
the corresponding algorithm. As the results of the exper-
iments reveal, the average resiliency of the n-Queen pro-
gram using pruning is 44 % whereas its resiliency without
pruning is 30 %. Thus, pruning technique should be
considered as one of the inherent and potential sources
of error-deration although its main function is perfor-
mance enhancement. Figure 8 illustrates the effect
of pruning on the resiliency of different benchmarks.

Bounding: Bounding can be used in different algorithms
to enhance the performance [13, 22, 45]. The bounding
technique is in charge of calculating upper and lower
bounds to determine which nodes of the solution tree
are ineffective and must be discarded from the range
[13, 22, 45].

Analyzing the behavior of different benchmarks using
the bounding technique reveal that the inclusion of this

technique in a program potentially leads to the production
of the following features:

& equivalent branches
& Dynamically Useless-Code (DUC)

The bounding technique in an algorithm inherently
produces equivalent branches and DUC; hence, it can
potentially enhance the resiliency of the corresponding
algorithm besides enhancing the performance. As the
results of the experiments show, the resiliency of 0–1
knapsack program using bounding is about 30 % whereas
its resiliency without using bounding is about 22 %.

Based on the results of the experiments, the authors
found that memoization, pruning and bounding can be
regarded as the potential sources of error-deration in dif-
ferent algorithms. These sources are utilized for investi-
gating the error-derating capabilities of different
algorithm-designing techniques.

4.2 Error-Derating Capabilities of Algorithm-Designing
Techniques

Over the years, software developers have used different well-
known techniques such as divide-and-conquer andDynamic to
design effective algorithms for solving a wide range of prob-
lems. It should be maintained that the fitness of each technique
depends upon features of the given problem. For example, the
matrix-multiplication problem can be solved efficiently by the
divide-and-conquer technique. As another example, the effi-
cient algorithm for the 0–1 Knapsack problem was devised
based on the divide-and-conquer and dynamic techniques [13,
22]. In this subsection, the error-derating capabilities of differ-
ent algorithm-designing techniques are investigated. The fol-
lowings are taken into account in the investigation:

& Memoization, branching and bounding are the potential
sources of error-deration which improve the resiliency of
an algorithm.

Fig. 8 The results of error injection experiments in different programs
with and without pruningFig. 7 An algorithm for locating n Queens on an n × n chessboard [13,

22, 36, 45]

J Electron Test (2014) 30:193–212 201

& Rates of branch instructions, load/store instructions and
system calls (more vulnerable instructions) have impact
on the resiliency of an algorithm [5, 10, 44].

In other words, while investigating the resiliency of an
algorithm, the sources of error-deration and the rate of vulner-
able instructions are taken into account. This study has
zoomed in on the widely used following algorithm-
designing techniques:

& divide-and-conquer
& dynamic
& backtracking
& branch-and-bound

The derating capability of each technique is explained
below.

i. Divide-and-Conquer Algorithms
The divide-and-conquer is a well-known and powerful

technique for designing efficient algorithms to solve a
wide range of problems. As a case in point, this technique
has an outstanding role in the efficiency of algorithms such
as quick-sort, merge-sort, strassen algorithm for matrix
multiplication and fast-Fourier transform algorithm [13,
16, 22, 36, 45]. A divide-and-conquer algorithm divides
an instance of a problem with the size n into several
smaller sub problems [13, 22, 36, 45]. The solutions to
the sub-problems are combined into an overall solution to
the entire problem. The divide-and-conquer paradigm in-
cludes divide, conquer and combine as three steps at each
level of the recursion. Figure 9 shows a divide-and-
conquer algorithm for finding the maximum element of a
list [13, 22, 36, 45].

Structural Feature: s In general, the recursively-
implemented divide-and-conquer algorithms include
dividing and combining operations. Figure 10

illustrates a general control-flow graph (CFG) of
the divide-and-conquer algorithms. Analyzing the
structures of divide-and-conquer algorithms reveals
that these algorithms lack potential sources of error-
deration (memoization, pruning and bounding). One
more inherent feature of divide-and-conquer algo-
rithms is that they do not generate DUC.
Rate of Vulnerable Instructions: As mentioned ear-
lier, an increase in the rate of branch instructions,
system calls and load/store instructions will raise the
vulnerability of the program against soft-errors [5,
10, 44]; consequently, the rate of these vulnerable
instructions should be taken into account when in-
vestigating the derating capability. As a profiling
tool, the sim-profile [2, 43] is used to gather data on
the dynamic behavior and vulnerable instructions of
each algorithm-designing technique. The gathered
data in our profiling experiments include the instruc-
tion profile, rate of branches, rate of system-calls,
rate of load/store instructions, address profile and
page-table access profiles.

Figure 11 illustrates the rate of branch instructions
in different benchmarks using different algorithms.
On average, the rate of branch instruction in divide-
and-conquer, dynamic, backtracking and branch-
and-bound are respectively 32.77 %, 21.71 %,
33.65 % and 32.81 %. The bars in Fig. 12 illustrate
the average number of instructions per branch (IPB)
in each benchmark. IPB is computed by dividing the
total number of executed instructions by the number
of BBs. Unlike the other factors, an increase in the
rate of IPB increases the resiliency of the correspond-
ing program.

As another case, the rate of load/store instructions
in the divide-and-conquer algorithms is 36.42 %

Fig. 9 A divide-and-conquer algorithm for finding maximum element of
a list [13, 22, 36, 45]

4

3

5

6

2

1

Branch-point based on
termination condition

Instructions for
dividing problem into

subproblems

call instructions

instructions for
combining the results

Fig. 10 A general form of CFG for divide-and-conquer algorithms

202 J Electron Test (2014) 30:193–212

whereas the average rates for the same instructions in
the other algorithms is 33.17 %. Furthermore, the
rate of function-calls in divide-and-conquer is 8.48%
whereas the average rate of function-calls in the other
algorithms is 1.58 %. Figure 13 shows the rate of
function-calls in different benchmarks using different
algorithms. Figure 14 illustrates the number of
system-calls for 10,000 runs of each benchmark.
The average numbers of system-calls in divide-and-
conquer, dynamic, backtracking and branch-and-
bound algorithms are respectively 266.26 k, 7.40 k,
81.92 k and 63.96 k.

Having analyzed the structures and dynamic be-
haviors of divide-and-conquer algorithms, we found
that there are no potential sources of error-deration in
these algorithms. The absence of error-derating
sources and the high rate of vulnerable instructions
in divide-and-conquer algorithms result in lower re-
siliency than the other algorithms. The results of the
experiments, as shown in Fig. 4, indicate that divide-
and-conquer algorithms have about 10.33 % lower
resiliency than the average resiliency of other algo-
rithms. For example, the resiliency of divide-and-
conquer algorithm for Pow benchmark is about
8.66 % lower than the average resiliency of other

algorithms. However, divide-and-conquer algo-
rithms efficiently solve a wide range of problems.
The quantified results of our experiments, shown in
Fig. 4, acknowledge low resiliency of divide-and-
conquer algorithms.

ii Dynamic Algorithms
Dynamic technique is another widely applicable

algorithm-designing technique which has been used
successfully for a wide range of problems [22, 45].
Two types of this technique include bottom-up and
top-down. The top-down dynamic technique is equipped
with memoization technique which results in a drastic
reduction in the number of call instructions. Conse-
quently, the memoization technique reduces the
running-time of the related algorithms. Figure 15 depicts
a top-down dynamic algorithm for solving 0-1knapsack
problem [22, 45].

Structural Features: Figure 16 depicts a general
CFG of dynamic algorithms. Analyzing the structure
of dynamic algorithms demonstrates that these algo-
rithms include the memoization technique; this tech-
nique is intended to be used only for enhancing the
performance. Moreover, as mentioned in Subsection

Fig. 12 The average number of instructions per branch (IPB) in each
benchmark

Fig. 13 The rate of function-calls in different benchmarks

Fig. 14 The average number of system-calls for 10,000 runs of each
benchmark

Fig. 11 The rate of branch instructions in different benchmarks

J Electron Test (2014) 30:193–212 203

4.1, the memoization technique can also be consid-
ered as a potential source of error-deration. The
presence of memoization technique in dynamic-
algorithms indirectly results in the production of
DUC (block 3 and 4), equivalent branches and
multiple-outputs (block 2). As a case in point, re-
garding the structure of dynamic algorithms the
branch instruction in third line of Fig. 15 is a
performance-oriented instruction. Furthermore, the
instructions in the dark text-box are DUC. Hence, a
considerable number of soft-errors which affect
DUC and equivalent branches may be derated.
Rate of Vulnerable Instructions: In the benchmarks
using dynamic-algorithms, the rate of branch instruc-
tions is about 11 % lower than the average rate of the
same instruction in other benchmarks. Furthermore,
the average number of IPB in dynamic algorithms is
equal to 8.22 whereas this factor for divide-and-
conquer and branch-and-bound algorithms is respec-
tively 6.64 and 7.53 (shown in Fig. 12). A high rate

of IPB in the benchmarks using dynamic algorithm
increases the resiliency.

To sum it up, it can be maintained that the pres-
ence of memoization technique and the low rate of
vulnerable instructions in the dynamic algorithms
will result in higher resiliency than those of the other
algorithms. The results of the error-injection experi-
ments, shown in Fig. 4, indicate that the average
resiliency of dynamic algorithms is about 12 %
higher than the average resiliency of divide-and-
conquer algorithms.

It should be noted that using the dynamic algo-
rithms for enhancing the resiliency does not have
negative effect on the performance. Indeed, these
algorithms can efficiently solve a wide range of
problems as well as enhancing the resiliency. For
example, the average resiliency of dynamic algo-
rithm for the Fib benchmarks is about 49 % whereas
the resiliency of the corresponding divide-and-
conquer algorithm is 33 %. Moreover, the divide-
and-conquer algorithm runs in O(2n) time whereas
the dynamic algorithm runs in O(n) time. The results
of our experiments in Fig. 4 confirm the high resil-
iency of these algorithms.

The dynamic algorithms require a memory block
to store pre-computed results; this block does not
include the controlling data. Analysis of the bench-
marks’ behavior illustrates that commonly a small
part of pre-computed results, stored results, will be
used in the next computations during program exe-
cution. For example, the dynamic algorithm for com-
puting the Fibonacci series only needs two words of
memory locations for storing the pre-computed re-
sults. Hence, in the case of programs with a large
amount of memoized data, protecting just frequently
used data should be taken into account.

iii Backtracking Algorithms
Backtracking is a well-known algorithm-designing

technique for solving wide range of problems [13, 22,
45]. Backtracking consists of a depth-first search for a
solution and checks whether each node is promising or
not. If a node is not promising, it will backtrack the
node's parent and continue the search for another child
which is called pruning the solution tree. Figure 17
depicts a general structure for the backtracking
algorithms.

Structural Features: After analyzing the structure
of backtracking algorithms, we found that these al-
gorithms include the pruning technique as potential
and inherent source of error-deration. The pruning
technique is only used to avoid traversing non-

Fig. 15 A dynamic algorithm for resolving the 0–1 knapsack problem
[22, 45]

3

4

5

2

1

Branch-point (checking
memoization)

Computing a new value
(include call instructions)

Saving the computed
value

Dynamically useless-code

Fig. 16 The general CFG for dynamic-algorithms. The memoization
technique leads to production of equivalent-branches and DUC

204 J Electron Test (2014) 30:193–212

promising sub-trees and to enhance the performance
of the algorithm. Asmentioned in Subsection 4.1, the
pruning technique is a potential source of error-
deration and indirectly produces DUC and equiva-
lent branches. The branch instruction in the second
line of Fig. 17 is a performance-related instruction.
The instructions in the dark text-box of Fig. 17 are
not executed for the non-promising nodes and hence,
these instructions are DUC.
Rate of Vulnerable Instructions: With respect to
the results of experiments in Fig. 13, the rate of
vulnerable instructions such as function-calls in
backtracking algorithms is 1.75 % which is lower
than that of divide-and-conquer algorithms
(8.48 %). As one more example, the average num-
ber of IPB in the benchmarks using backtracking
algorithms is 9.5 whereas the number of IPB for the
other benchmarks using divide-and-conquer, dy-
namic and branch-and-bound are respectively
6.64, 8.22 and 7.53 (shown in Fig. 12). Therefore,
the presence of the pruning and the low rate of
vulnerable instructions can improve the error-
derating capability of backtracking algorithms.
The results of the error-injection experiments
shown in Fig. 4 illustrate that backtracking algo-
rithms have 10.63 % more resiliency than the resil-
iency of divide-and-conquer algorithms.

iv. Branch-and-Bound Algorithms
Branch-and-bound algorithms are considered as an

improved version of backtracking algorithms [13, 22,
45]. The bounding technique is used in branch-and-
bound algorithms to avoid generating sub-trees which
cannot produce an answer. Figure 18 illustrates a general
structure of branch-and-bound algorithms. The bound
function is used in an algorithm to decide if a node is
promising or not.

Structural Features: The bounding technique is
used to speed up branch-and-bound algorithms. As
mentioned in Subsection 4.1, this technique is con-
sidered as a potential source of error-deration.

The bounding inherently and potentially results in
the production of DUC and equivalent branches. The
branch instruction mentioned in line 9 of Fig. 18
determines whether a node is considered as promis-
ing in the solution tree or not. The instructions fol-
lowing line 9 may be pruned and consequently be-
come DUC.
Rate of Vulnerable Instructions: As shown in
Fig. 13, the rate of function-calls in branch-and-
bound algorithms is 1.58 % whereas the rates of the
funct ion-cal ls in divide-and-conquer and
backtracking algorithms are respectively 8.48 %
and 1.75 %. Moreover, as shown in Fig. 14, the
average number of system-calls in the branch-and-
bound algorithms is 63.96 K whereas the average
numbers of system-calls in divide-and-conquer and
backtracking algorithms are respectively 266.26 K
and 81.92 K. Furthermore, the average number of
IPB in the branch-and-bound algorithms is 7.53,
which is higher than that of divide-and-conquer al-
gorithms (6.64).

It should be noted that the presence of bounding
technique and the low rate of vulnerable instructions
in the branch-and-bound algorithms will result in an
increase in the inherent resiliency. Regarding the
results of the experiments, the implemented pro-
grams which rely on branch-and-bound algorithms
have about 9.32 % higher resiliency than the resil-
iency of divide-and-conquer algorithms (shown in
Fig. 4).

Figure 19 illustrates the average results of the
error-injection experiments in the different bench-
marks which used different algorithms- designing-
techniques. Each data series in Fig. 19 illustrates the
resiliency of different versions of each benchmark.
On average, all the benchmarks using divide-and-
conquer algorithms have approximately 28.87 %

Fig. 17 General structure of backtracking algorithms [17, 22, 45]

Fig. 18 General structure of branch-and-bound algorithms [13, 22, 45]

J Electron Test (2014) 30:193–212 205

resiliency. The resiliencies of other benchmarks
using dynamic, backtracking and branch-and-bound
algorithms are respectively 40.00 %, 39.50 % and
38.12 %. The results of experiments indicate that the
benchmarks using dynamic algorithms have about
12 % higher resiliency than those benchmarks using
divide-and-conquer. Figure 20 demonstrates the ef-
fect of different algorithm-designing techniques on
the rate of error-deration.

Regarding the results of experiments, shown
in Figs. 19 and 20, it is possible to enhance the
resiliency of an algorithm by means of potential
sources without using an external redundancy.
For example, the resiliency and execution time
of the dynamic algorithm for the TSP benchmark
are respectively 32 % and O(n2 2n-1) whereas the
same parameters for the divide-and-conquer al-
gorithm are respectively 24 % and O((n-1)!). In
other words, dynamic algorithm for the TSP
benchmark enhances the performance and also
resiliency. It should be maintained that software
designers and programmers can develop a highly
resilient program if they select a most fitting

algorithm-designing technique without external
redundancy.

As mentioned earlier in Subsection 4.1, the
error-derating rate of an algorithm depends upon
the following potential features:

1. The rates of dynamically-useless and quality-
related codes and equivalent branches.

2. The rates of branch instructions, load/store instruc-
tions, function calls and system calls (as vulnerable
instructions).

An inherent increase in the rate of the first fea-
ture and a decrease in the rate of the second feature
will enhance the rate of error deration. A decrease in
the rates of branch instructions, load/store and call
instructions leads to a reduction of resource usage.
The rates of vulnerable instructions in each bench-
mark when implemented by divide-and-conquer
and dynamic algorithms were compared in Table 5.
Furthermore, Table 6 gives the execution time of
the benchmarks included in Table 5. In Table 5, v1
columns indicate the first versions of the bench-
marks in which divide-and-conquer algorithm has
been used. All the v2 columns stand for the second
versions where dynamic algorithm has been used.
As case in point, the rates of load/store and call
instructions in the benchmarks implemented by
dynamic algorithm are 2.90 % and 7.01 % respec-
tively lower than the corresponding divide-and-
conquer benchmarks.

The high rates of load/store instructions, system
calls, function calls and branch instructions in
divide-and-conquer benchmarks indicate higher re-
source usage for these benchmarks than dynamic
benchmarks. Also, all the benchmarks implemented
by dynamic algorithm, except for n-Queen, have
lower execution time than the respective divide-
and-conquer benchmarks. However, benchmarks
implemented by dynamic algorithms have poten-
tially higher resiliency than those implemented by
divide-and-conquer algorithms. Low rates of
branch, load/store and call instructions indicate that
benchmarks based on dynamic algorithm have low
resource usage though their resiliency is inherently
high. To sum it up, it should be pointed out that
using potential features in an algorithm to improve
inherent resiliency has no significant effect on re-
source usage.

Effect of the Location of Error-Occurrence on the
Deration Rate: In this study, we have investigated
the error-derating capability of different algorithm-
designing techniques. The rate of deration at algo-
rithm level depends upon the rates of dynamically-

Fig. 20 The average effects of different algorithm-designing techniques
on the rate of error-deration

Fig. 19 The average results of error-injection experiments on different
benchmarks

206 J Electron Test (2014) 30:193–212

useless codes, quality-related codes and equivalent
branches. An error which corrupts a dynamically-
dead code or quality-related code in either memory
or microprocessor (ALU, FPU, PC, and LSU) will
more probably be derated at the execution time.

In order to examine the effect of the location of
error-occurrence on the rate of deration, a new series
of error-injection experiments targetingmicroproces-
sor were conducted. Indeed, the microprocessor was
considered as the location of error-injection. The
corresponding error-injection framework was devel-
oped in the Simple-Scalar 4.0 toolset. Table 7 illus-
trates the locations of injections in the experiment.
The injection locations include PC, ALU and LSU. A
single-bit was flipped in the value of PC, output of
ALU and the loaded data of LSU at a randomly
selected clock-cycle during program execution.

In this experiment, a subset of sixteen benchmarks
was selected from the benchmark set as described in
Table 2. The selected subset includes the programs
implemented by divide-and-conquer and dynamic
algorithms. The main reason for the selection of
divide-and-conquer and dynamic algorithms is that
these algorithms have the lowest and highest derating
capabilities respectively. Approximately 1,000 errors
were injected at each location for each benchmark as

illustrated in Table 7. Only one error at a time was
injected in each program run. A single-bit was
flipped in the randomly selected bit in each location.
In total, 48,000 errors (1,000 errors × 3 injection
location × 16 benchmarks) were injected in this
experiment.

With regard to the results of the experiment,
as shown in Fig. 21, when the errors are injected
in PC, the benchmarks using dynamic algo-
rithms have about 5.00 % higher resiliency than
those benchmarks using divide-and-conquer al-
gorithms; this figure is 8.25 % when the errors
are injected in ALU. Table 8 illustrates the aver-
age deration rate in different programs when the
errors were injected into the microprocessor. On
average, the benchmarks using dynamic algo-
rithm have 7.54 % higher resiliency than those
benchmarks using divide-and-conquer when the
errors were injected in the microprocessor struc-
tures (PC, ALU and LSU). The results of
injecting errors both in memory and micropro-
cessor are similar; this reveals that dynamic al-
gorithms have higher resiliency than divide-and-
conquer algorithms. To sum it up, dynamic
based benchmarks have about 9.33 % higher
resiliency than the divide-and-conquer based

Table 6 Execution times of all benchmarks implemented by divide-and-conquer and dynamic algorithms

Fib Bin Pow TSP Rod-c Knap Queen S_Sub

Divide-and-conquer O(2n) O(2n) O(n) O((n-1)!) O(2n) O(n2n) O(n!) O(2n)

Dynamic O(n) O(n2) O(lon) O(n22n-1) O(n2) O(n*p) O(8n) O(n)

P: Capacity of knapsack

Table 5 The resiliency and rate of vulnerable instructions in the benchmarks implemented by divide-and-conquer and dynamic algorithms. The first and
second versions of each benchmark were implemented by divide-and-conquer and dynamic algorithms

Benchmark Branch instruction rate (%) Call instruction rate (%) Load/store instruction rate (%) Resiliency (%)

V1 V2 V1 V2 V1 V2 V1 V2

Fib 23.4 13.2 7.3 2.01 32.2 21.4 33 49

Bin 12.6 35.7 13.7 1.2 53.5 51.7 35 42

Pow 32.1 31.4 2.1 1.3 36.9 36.7 31 42

TSP 44.4 43.3 16.2 4.8 43.7 44.8 24 32

Rod-c 32.2 11.3 22 0.4 31.1 26.1 29 52

Knap 53.8 11.6 2.1 0.8 37.8 27.3 22 31

Queen 13.9 9.6 1.9 0.09 20.3 33.8 30 37

S_sub 49.8 17.6 2.6 0.74 35.8 26.3 27 35

AVG. 32.775 21.7125 8.4875 1.4175 36.4125 33.5125 28.875 40

J Electron Test (2014) 30:193–212 207

benchmarks regardless of location of error oc-
currence (memory and microprocessor).

The researchers are fully aware of the fact
that hardening memory blocks using ECC im-
proves the rate of error-detection at memory
level; as a result, this will improve the overall
reliability of the system.

On the other hand, hardening the whole
memory-blocks of a program using ECC im-
poses a considerable performance-overhead to
the system. Furthermore, the microprocessor
structures such as register and control logic are
more susceptible to soft-errors than the memory
blocks. Hence, using hardened memory blocks
even for the entire program (code and data)
could not protect it against errors affecting the
registers and control logic.

In this research, we have investigated the
inherent error-derating capability of different
algorithms. Using an algorithm with high
deration-rate will improve the program resilien-
cy against errors which target either memory or
microprocessor. Even if we assume that memo-
ry is hardened by ECC and errors affect the
microprocessor, dynamic algorithms still have
higher derating rate than the divide-and-
conquer algorithms. As shown in Fig. 21, dy-
namic algorithms have higher error derating rate
than the divide-and-conquer algorithms regard-
less of the location of error occurrence and the
reliability of memory blocks. Indeed, the
deration rate at algorithm level does not sub-
stantially depend on the reliability of the

memory blocks; rather, it depends on the struc-
tural and algorithmic features.

Furthermore, the proposed method in this study
can be used with different hardening techniques such
as ECC. It is evident that using this method with ECC
leads to further improvement in the system reliability.

4.3 Identification of Vulnerable Blocks

Invulnerable blocks, derating blocks, are the ones which in-
herently derate and mask soft-errors with high probability. In
contrast, vulnerable blocks of a program probably propagate
the impact of soft-errors to the program output. As a matter of
fact, applying the redundancy technique only on the more
vulnerable blocks imposes a lower performance overhead on
the program. Hence, identifying the more vulnerable blocks of
a program to soft-error is an important topic in the
dependable-software development.

Soft-error deration is a semantic phenomenon which is re-
lated to the dynamic behavior of a program throughout its
execution-time. Analyzing semantic dependencies among the
instructions and blocks of a program can be regarded as an
effectivemethod for identifyingmore vulnerable blocks. Unlike
the previous studies [3, 4, 12, 38, 44], the authors in the present
study take the semantic and dynamic behavior of a program into
account to identify error-derating and vulnerable blocks.

Asmentioned in Subsection 4.1, memoization, pruning and
bounding techniques potentially produce DUC, performance-
related codes and equivalent branches in a program. Indeed,
those blocks of a program that include DUC, performance
related codes and equivalent branches are less vulnerable to
errors and hence are considered as error-derating blocks. The
dynamically useless blocks of a program can be located based
on its underlying algorithm. Figure 22 shows the general
structure of CFG for the programs using memoization, prun-
ing or bounding techniques. The results of our experiments
indicate that the probability of error deration in blocks 2 and 3
in Fig. 22 which include DUC and equivalent branches is
more than 80 %. On the basis of this finding of the present
study, it is argued that there should be a tradeoff between
reliability and performance-overhead.

Fig. 21 The results of error-
injection experiments on divide-
and-conquer and dynamic based
benchmarks

Table 7 The locations of error-injection in the microprocessor structure

Injection location Description

Integer ALU Output of ALU

LSU-d-out Loaded data by LSU

PC Program-counter register

208 J Electron Test (2014) 30:193–212

In this subsection of the study, three series of error-injection
experiments were conducted as follows:

& Errors were injected into those blocks which are identified
as error-derating blocks by the underlying algorithm.

& Errors were injected into the randomly selected locations
of the whole program.

& Errors were injected into those blocks which are not
identified as error-derating blocks.

The first experiment acknowledges the derating capabili-
ties of those blocks which contain DUC. The results of the
second experiment demonstrated the overall derating capabil-
ities of the programs. The results of the third experiment
demonstrate the error-derating capabilities of vulnerable
blocks in the programs.

& V2 refers to the benchmarks which used dynamic
algorithms.

& V3 refers to the benchmarks which used backtracking
algorithms.

& V4 refers to the benchmarks which used branch-and-
bound algorithms.

Table 9 demonstrates the results of error-injection experi-
ments in the different blocks of different benchmarks. Table 7
illustrates the effect of injected errors on the more vulnerable
blocks, error-derating blocks and on the entire blocks of the
program. For example, the source codes of all programs using
dynamic algorithms can be classified into two parts. The first
part includes DUC and has close to 87 % inherent resiliency.
The remainder of the source code has about 18 % inherent
resiliency. This finding enables software designer to apply the
redundancy techniques only on the more vulnerable blocks
and hence develop highly reliable software with a minimal
performance-overhead and complexities.

4.4 Statistical Analysis of the Results

We quantified the magnitude of error-derating capabilities of
different algorithm-designing techniques in the previous sub-
sections. We would like to examine whether there are statisti-
cally significant differences in the derating capabilities of
different algorithm-designing techniques. ANOVA (analysis
of variance) is used to check the significant differences among
three or more independent groups [23, 31]; in this study, each
group refers to an algorithm-designing technique. The level of
confidence was set at 0.05 so as to minimize the role of chance
for the likelihood of difference between the resiliencies of
techniques. Table 10 illustrates the results of ANOVA for the
groups of experimental data.

As Table 10 indicates, the P value (sig) for between tech-
nique comparisons is 0.009. That is, the obtained F ration of
4.68 illustrates a significant difference between at least two
techniques. Therefore, the null hypothesis of no difference
among groups is rejected indicating that at least two of the

Soft-error
1

2

3

4

Soft-error

Branch-point which leads to
production of equivalent

branches

The inherently produced
dynamic useless-codes
by memoization, pruning

and bounding

Fig. 22 The production of dynamically useless code and equivalent
branches by memoization, pruning and bounding in a program

Table 9 The average results of the error-injection experiments in differ-
ent blocks of the different benchmarks

Versions of
benchmarks

Vulnerable
blocks

Error-
derating
blocks

Whole
program

Rate of failure
(SDC+Exception)

V2 82 % 13 % 60 %

V3 75 % 21 % 60 %

V4 73 % 26 % 61 %

Table 10 One way ANOVA across different algorithm-designing
techniques

Resiliency Sum of squares df Mean square F Sig.

Between groups 655.750 3 218.583 4.680 0.009

Within groups 1307.750 28 46.705

Total 1963.500 31

Table 8 The average results of error injection in the microprocessor
structure

Program version Rate of deration in microprocessor
structures

PC ALU-Out LSU AVG

Divide & conquer based
programs

9.00 % 25.25 % 24.12 % 19.46 %

Dynamic based programs 13.87 % 33.50 % 33.62 % 27.00 %

J Electron Test (2014) 30:193–212 209

techniques are significantly different from each other in terms
of resiliency.

In order to determine the precise location of mean differ-
ences, the researcher applied a post hoc test. The LSD [31]
was applied to make pair-wise comparisons among the differ-
ent algorithm-designing techniques. The results of LSD post-
doc testing are shown in Table 11. The greatest difference
reached the magnitude of 11.125 between divide-and-conquer
algorithm-designing technique and dynamic algorithm-
designing technique. Post hoc comparisons confirmed that
the divide-and-conquer and dynamic algorithms respectively
have the lowest and the highest error-derating capabilities
among all algorithms.

That is to say, the effectiveness of dynamic algorithms in
terms of error-derating capability is significantly higher than
the effectiveness of other algorithm-designing techniques. The
SPSS [23] as a software package is used to statistical analysis
of the results in the study.

5 Conclusion

This paper presented an experimental study for analyzing the
error-derating capabilities of different algorithm-designing
techniques. The findings of the study can be concluded as
follows:

& We found that memoization, pruning and bounding are the
potential sources of error-deration at algorithm level.

& The rates of branch, load/store and call instructions in four
different algorithm-designing techniques were quantified
and comparedwith each other.We found that dynamic and
divide-and-conquer algorithms have the lowest and
highest rates of vulnerable instructions respectively.

& The magnitude of the resiliency of four different
algorithm-designing techniques were quantified and com-
pared with each other. The resiliencies of divide-and-
conquer, dynamic, backtracking and branch-and-bound
techniques are respectively 28.8 %, 40.0 %, 39.5 % and
38.1 %. Knowledge of the resiliency of different
algorithm-designing techniques can be helpful in
dependable-system development. This finding can enable
programmers and software designers to develop highly
resilient programs without using external redundancy.

& We found that with regard to the underlying algorith-
mic features of a program, it is possible to identify
the more vulnerable blocks. Indeed, we can classify
the source code of a program into more vulnerable
and less invulnerable parts. By applying the redun-
dancy techniques only on the identified vulnerable
blocks of a program, software designers and pro-
grammers will be able to obtain high reliability with
a minimal performance-overhead.

As a follow up to the present study, interested researchers
can analyze the following issues in future works:

& The effect of multiple-bit errors on the rate of error
deration at algorithm level

& The effect of microprocessor characteristics on the rate of
error deration at algorithm level

& the effect of different data-structures on the program
resiliency

& the effect of different programming methods (like object-
oriented, aspect-oriented and etc.) on the program
resiliency

& the effect of different programming languages on the
program resiliency

Table 11 LSD post-hoc compar-
ison of results between algorithm-
designing techniques as groups

The numbers 1, 2, 3 and 4 re-
spectively refer to the divide-and-
conquer, dynamic, backtracking
and branch-and-bound techniques
a Themean difference is significant
at the 0.05 level of confidence

Techniques (I) Techniques (J) Mean difference (I-J) Sig. 95 % Confidence interval

Lower bound Upper bound

1 2 −11.12500a 0.003 −18.1245 −4.1255
3 −10.62500a 0.004 −17.6245 −3.6255
4 −9.25000a 0.011 −16.2495 −2.2505

2 1 11.12500a 0.003 4.1255 18.1245

3 0.50000 0.885 −6.4995 7.4995

4 1.87500 0.588 −5.1245 8.8745

3 1 10.62500a 0.004 3.6255 17.6245

2 −0.50000 0.885 −7.4995 6.4995

4 1.37500 0.690 −5.6245 8.3745

4 1 9.25000a 0.011 2.2505 16.2495

2 −1.87500 0.588 −8.8745 5.1245

3 −1.37500 0.690 −8.3745 5.6245

210 J Electron Test (2014) 30:193–212

References

1. Ammann P, Mason G (2008) Introduction to software testing.
Cambridge University Press, New York

2. Austin T, Larson E, Ernst D (2002) SimpleScalar: an infrastructure
for computer system modeling. IEEE Comput 35(2):59–67

3. Benso A, Chiusano S, Prinetto P. Tagliaferri L (2000) C/C++ source-
to-source compiler for dependable applications. In: IEEE
International Conference on Dependable systems and Networks
(DSN), June 2000

4. Benso A, Di Carlo S, Di Natale G, Prinetto P, Tagliaferri L (2003)
Data criticality estimation in software application. In: International
test conference, pp. 802–810, October 2003

5. Borodin D, Juurlink BHH (2010) Protective redundancy overhead
reduction using instruction vulnerability factor. In: ACM internation-
al conference on computing frontiers, Italy, pp. 319–326, May 2010

6. Cook JJ, Zilles C (2008) A characterization of instruction-level error
derating and its implications for error detection. In: IEEE international
conference on dependable systems and networks (DSN), June 2008

7. Dixit A, Wood A (2011) The impact of new technology on soft error
rates. In: Proceedings of the IEEE workshop on silicon errors in
logic—system effects, Illinois University, March 2011

8. Engel H (1996) Data flow transformations to detect results which are
corrupted by hardware faults. In: IEEE high-assurance system engi-
neering workshop, pp. 279–285, October 1996

9. Fazeli M, Farivar R, Miremadi SG (2005) A software-based concur-
rent error detection technique for PowerPC processor-based embed-
ded systems. In: 20th IEEE international symposium on defect and
fault tolerance in VLSI Systems, pp. 266–274, October 2005

10. Hari SKS (2012) Low-cost program level detectors for reducing
silent data corruptions. In IEEE international conference on
Dependable Systems and Networks (DSN), June 2012

11. Henning JL (2006) SPEC CPU2006 benchmark descriptions.
SIGARCH Comput Archit News 34(4):1–17

12. Hiller M, Jhumka A, Suri N (2001) An approach for analyzing the
propagation of data errors in software. In: IEEE international confer-
ence on dependable systems and networks (DSN), July 2001

13. Horowitz E, Sahni S, Rajasekaran S (2008) Algorithms: design and
analysis. Computer Science Press, ISBN: 0-929-30641-4

14. Karlsson J (1990) Reliability evaluation of a fault-tolerant computer
for a multi-phased mission and a use of heavy-ion radiation for fault
injection experiments, PhD Thesis, School of Electrical and
Computer Engineering, Chalmers University of Technology

15. Karnik T, Hazucha P, Patel J (2004) Characterization of soft errors
caused by single event upsets in CMOS process. IEEE Trans
Dependable Secure Comput 1(2):128–143

16. Kleinberg J, Tardos E (2004) Algorithm design. Addison-Wesley,
ISBN: 0-321-29535-8

17. Li X (2009) Exploiting inherent program redundancy for fault toler-
ance, PHD Thesis in University of Maryland

18. Lu JS, Li F, Degalahal V, Kandemir M, Vijaykrishnan N, Irwin MJ
(2005) Compiler-directed instruction duplication for soft error detec-
tion. In: Design, automation and test in Europe conference, pp. 1056–
1057, March 2005

19. Messer A (2004) Susceptibility of commodity systems and software
to memory soft errors. IEEE Trans Comput 53(12):1557–1568

20. Miremadi G, Karlsson J, Gunneflo U, Torin J (1992) Two
software techniques for online error detection. In: 22nd
International symposium on fault-tolerant computing, pp. 328–335,
July 1992

21. Mukherjee SS, Weaver C, Emer J, Reinhardt SK, Austin T (2003) A
systematic methodology to compute the architectural vulnerability
factors for a high-performance microprocessor. In: 36th annual
IEEE/ACM International symposium on micro architecture, pp. 29–
40, December 2003

22. Neapolitan R, Naimipour K (2004) Foundations of algorithms using
C++ pseudo code. Jones and Bartlett Publishers, ISBN: 0-763-72387-8

23. Norusis M (2008) SPSS 16.0 guide to data analysis. Prentice Hall,
ISBN: 0-136-06136-2

24. Oh N, Mccluskey EJ (2002) Error detection by selective procedure
call duplication for low energy consumption. IEEE Trans Reliab
51(4):392–402

25. Oh N, Shirvani PP, McCluskey EJ (2002) Error detection by dupli-
cated instructions in super-scalar processors. IEEE Trans Reliab
51(1):63–75

26. Oh N, Shirvani PP, McCluskey EJ (2002) Control-flow checking by
software signatures. IEEE Trans Reliab 51(2):111–122

27. Pradhan DK (1996) Fault-tolerant computer system design. Prentice-
Hall, ISBN:0-13-057887-8

28. Rebaudengo M, Sonza Reorda M, Torchiano M, Iolante M (2001) A
source-to-source compiler for generating dependable software. In:
IEEE international workshop on source code analysis and manipula-
tion, pp. 33–42, November 2001

29. Rebaudengo M, Sonza Reorda M, Torchiano M, Violante M (1999)
Soft-error Detection through Software Fault-Tolerance Techniques.
In: IEEE international symposium on defect and fault tolerance in
VLSI systems, pp. 210–218

30. Reinhardt KS, Mukherjee S (2000) Transient fault detection
via simultaneous multithreading. In: 27th annual international
symposium on computer architecture, pp. 25–36, June 2000

31. Roberts MJ, Russo R (1999) A student’s guide to analysis of vari-
ance. Routledge Publication, ISBN:0-415-16564-2

32. Rotenberg E (1999) Exploiting large ineffectual instruction se-
quences, Technical report, North Carolina State University,
November 1999

33. Saggese GP, Wang NJ, Kalbarczyk ZT, Patel SJ, Iyer RK (2005) An
experimental study of soft errors in microprocessors. IEEE Micro
25(6):30–39

34. Sahoo SK (2008) Using likely program invariants to detect hardware
errors. In: IEEE International Conference on dependable systems and
networks (DSN), June 2008

35. Savino A, Carlo SD, Politano G, Benso A, Dnatale G (2012)
Statistical reliability estimation of microprocessor-based systems.
IEEE Trans Comput 61(11):1521–1534

36. Sedgewick R (1998) Algorithms in C, Third edn. Addison-Wesley,
ISBN 0-201-31452-5

37. Shivakumar P, Kistler M, Keckler S, Burger D, Alvisi L (2002)
Modeling the effect of technology trends on soft error rate of combi-
national logic. In: International conference on Dependable Systems
and Networks (DSN), June 2002

38. Shuguang F, Shantanu G, Ansari A, Mahlke S (2010)
Shoestring: probabilistic soft-error resilience on the cheap.
In: 15th international conference on architectural support for
programming languages and operating systems, March 2010.

39. Slegel TJ, Averill RM, Check MA, Giamei BC, Krumm BW,
Krygowski CA, Li WH, Liptay JS, MacDougall JD,
McPherson TJ, Navarro JA, Schwarz EM, Shum K, Webb CF
(1999) IBM’s S/390 G5 microprocessor design. IEEE Micro
19(2):12–23

40. Sosnowski J (1994) Transient fault tolerance in digital systems. IEEE
Micro 14(1):24–35

41. Sridharan V, Kaeli DR (2010) Using PVF traces to accelerate AVF
modeling. In: Proceedings of the IEEE workshop on silicon errors in
logic - system effects, Stanford, California, March 2010

42. Steininger A, Scherrer C (1997) On finding an optimal combination
of error detection mechanisms based on results of fault injection
experiments. In: 27th international symposium on fault-tolerant com-
puting, USA, pp. 238–247, June 1997

43. Stephens C, Cogswell B, Gregory JH (1991) Instruction level
profiling and evaluation of the IBM RS/6000. In: 18th inter-
national symposium on computer architecture, May 1991

J Electron Test (2014) 30:193–212 211

44. Thaker D, Franklin D, Oliver J, Biswas S, Lockhart D, Metodi T,
Chong FT (2006) Characterization of error-tolerant applications
when protecting control data. In: IEEE international symposium on
workload characterization, October 2006

45. Thomas H (2001) Introduction to algorithms. the MIT Press, ISBN:
0-262-03293-7

46. Wang F, Agrawal VD (2009) Soft error rates with inertial and logical
masking. In 22nd international conference onVLSI design, January 2009

47. Wang N, Fertig M, Patel S (2003) Y-branches: when you come to a
fork in the road, take it. In: International conference on parallel
architectures and compilation techniques

48. Xiong L, Tan Q, Xu J (2011) Soft error mask analysis on program
level. In: 10th international conference on network

49. Xu X, Li M (2012) Understanding soft error propagation using
efficient vulnerability-driven fault injection. In IEEE international
conference on dependable systems and networks (DSN), June

50. Yeh Y (1998) Design considerations in Boeing 777 fly-by-wire
computers. In: 3rd IEEE International high-assurance systems engi-
neering symposium, pp. 64–72, November 1998.

51. ZhangM, Shanbhag N (2004) A soft error rate analysis methodology.
In IEEE/ACM International Conference on Computer-aided design,
November 2004

52. Zhang B, Wang WS, Orshansky M (2006) FASER: fast analysis of
soft error susceptibility for cell-based designs. In: 7th international
symposium on quality electronic design, March 2006

Bahman Arasteh received his master’s degree from Islamic Azad Uni-
versity of Arak, Iran, in 2006. He is currently working towards the Ph.D.
degree in Islamic Azad University of Iran, Science and Research branch.
His research interests include Software-Level Fault Tolerance, Software-

Implemented Fault Injection, Reliability of Programming Languages,
Compilers and Distributed Applications.

Seyed Ghassem Miremadi got his M.Sc. in Applied Physics and Elec-
trical Engineering from Linköping Institute of Technology and his PhD in
Computer Engineering from Chalmers University of Technology, Swe-
den, in 1984 and 1995, respectively. He is a professor of Computer
Engineering at Sharif University of Technology. As fault-tolerant com-
puting is his specialty, he initiated the “Dependable Systems Laboratory”
at Sharif University in 1996 and has chaired the Laboratory since then.
The research laboratory has participated in several research projects
which have led to several scientific articles, conference papers and
technical reports. Dr. Miremadi and his group have done research in
Physical, Simulation-Based and Software-Implemented Fault Injection,
Dependability Evaluation Using HDLModels, Fault-Tolerant Embedded
Systems and Fault Tree Analysis. Dr. Miremadi was the Education
Director (1997–1998) and the Head (1998–2002) of Computer Engineer-
ing Department at Sharif University and since 2002 is the Research
Director of the department. He is a member of the IEEE Computer
Society, IEEE Reliability Society and the Computer Society of Iran.

Amir Masoud Rahmani received his BS in Computer Engineering
from Amir Kabir University, Tehran, in 1996, the MS in Com-
puter Engineering from Sharif University of Technology, Tehran,
in 1998 and the PhD degree in Computer Engineering from IAU
University, Tehran, in 2005. Currently, he is an Associate Profes-
sor in the Department of Computer Engineering at the IAU
University. He is the author/co-author of more than 120 publica-
tions in technical journals and conferences. His research interests
are in the areas of distributed systems, ad hoc and wireless sensor
networks and evolutionary computing.

212 J Electron Test (2014) 30:193–212

	Developing Inherently Resilient Software Against Soft-Errors Based on Algorithm Level Inherent Features
	Abstract
	Introduction
	Background
	Experimental Framework
	Error Model
	Benchmarks
	Error Injection

	Experimental Results
	Sources of Error-Deration
	Error-Derating Capabilities of Algorithm-Designing Techniques
	Identification of Vulnerable Blocks
	Statistical Analysis of the Results

	Conclusion
	References

