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Abstract Malicious modification of hardware in un-
trusted fabrication facilities, referred to as hardware
Trojan, has emerged as a major security concern. Com-
prehensive detection of these Trojans during post-
manufacturing test has been shown to be extremely
difficult. Hence, it is important to develop design tech-
niques that provide effective countermeasures against
hardware Trojans by either preventing Trojan attacks
or facilitating detection during test. Obfuscation is a
technique that is conventionally employed to prevent
piracy of software and hardware intellectual property
(IP). In this work, we propose a novel application
of key-based circuit structure and functionality ob-
fuscation to achieve protection against hardware Tro-
jans triggered by rare internal circuit conditions. The
proposed obfuscation scheme is based on judicious
modification of the state transition function, which
creates two distinct functional modes: normal and
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obfuscated. A circuit transitions from the obfuscated to
the normal mode only upon application of a specific
input sequence, which defines the key. We show that
it provides security against Trojan attacks in two ways:
(1) it makes some inserted Trojans benign, i.e. they
become effective only in the obfuscated mode; and
(2) it prevents an adversary from exploiting the true
rare events in a circuit to insert hard-to-detect Trojans.
The proposed design methodology can thus achieve
simultaneous protection from hardware Trojans and
hardware IP piracy. Besides protecting ICs against Tro-
jan attacks in foundry, we show that it can also protect
against malicious modifications by untrusted computer-
aided design (CAD) tools in both SoC and FPGA
design flows. Simulation results for a set of benchmark
circuits show that the scheme is capable of achieving
high levels of security against Trojan attacks at modest
area, power and delay overhead.

Keywords Design obfuscation - Hardware Trojan -
IP protection - Logic testing - Trojan detection

1 Introduction

The issue of ensuring “Trust” has become prominent
due to widespread outsourcing of the IC manufacturing
processes to offshore locations in order to reduce cost
[2, 3, 15, 30, 33]. A design can be tampered in an
untrusted fabrication facility by the insertion of mali-
cious circuitry that triggers a malfunction or leaks secret
information. Such malicious circuitry, referred to as
a hardware Trojan, can activate under rare condition
and affect normal circuit operation, potentially with
catastrophic consequences in critical application areas
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and public infrastructure. Such malicious circuitry can
also be inserted by CAD automation tools obtained
from untrusted third party vendors [31]. Due to the
inherently stealthy nature of hardware Trojans, inor-
dinately large number of possible Trojans an adver-
sary can exploit, and greatly diverse functional mode
of inserted Trojans, detection of hardware Trojans by
post-manufacturing test has emerged as an extremely
challenging problem [5, 7, 13, 18, 26, 28, 29].

Another major security threat in modern IP-based
system-on-chip (SoC) and embedded system design is
IP piracy, whereby hardware IP vendors are deprived
of their royalty through theft, reverse-engineering,
cloning and illegal use of hardware IPs. An effective
technique to prevent such piracy is obfuscation of the
design [10]. Obfuscation is a technique that transforms
a software or a hardware design description into one
that is functionally equivalent to the original but is
significantly more difficult to reverse engineer. Ob-
fuscation has been proposed as a possible solution to
prevent piracy of hardware IP cores, both at the register
transfer level (RTL) [9, 34] and gate level [10].

In this paper, we demonstrate a novel application of
design obfuscation to provide security against hardware
Trojans, We derive that obfuscation can provide the
dual benefits of protection against piracy and Trojan
attacks. We target those Trojans whose activation de-
pend on rare logic values at internal nodes in the circuit.
Previous works [3, 13, 37] have shown that an adversary
can design combinational or sequential Trojans repre-
sented by this model, which can be extremely hard to
detect using conventional test process. We distinguish
our proposed obfuscation-based technique from obscu-
rity-based techniques. Conventional security through
obscurity approaches depend on transforming the rep-
resentation of functional behavior of a design, so that
a function is replaced by an alternative one with the
same behavior but significantly more difficult to in-
terpret. These approaches do not provide mathemati-
cally provable robustness and has long been considered
to be in-effective in practice. The weakness of the
these approaches has recently been shown theoreti-
cally [8]. In particular, this paper makes the following
contributions:

— It proposes a novel design for security technique
that (a) hardens a design against Trojan insertion,
and (b) increases the sensitivity of post-silicon val-
idation to detect hardware Trojans.

— It analyzes the effectiveness of a key-based gate-
level design obfuscation scheme in achieving secu-
rity against hardware Trojans. It provides mathe-
matical analysis to derive the impact of different
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design and obfuscation parameters on the degree of
security achieved against Trojans. An advantage of
the proposed technique is that the security features
propagate through the IC design flow to lower
levels of design abstraction (such as GDS-II). The
methodology ensures that no structural signature
is introduced while obfuscating the functionality of
the circuit by modifying the state transition graph
(STG), while the normal mode circuit functionality
is kept unaltered.

— It introduces two important techniques as part
of the obfuscation methodology that are highly
effective in providing security against hardware
Trojans: (1) addition of extra state elements to
“blow up” the state space exponentially and then
use large number of these states in the obfuscated
mode of operation, and (2) use of functionally un-
reachable states of the original state machine in the
obfuscated mode.

— It develops an automated design flow to incorpo-
rate the above modifications while incurring low
design overhead. It also proposes appropriate steps
for evaluating the effectiveness of the proposed
approach for complex gate-level netlists.

— Malicious CAD tools and automation scripts in
automated design flows are potential sources of
Trojan insertion [15, 31]. This threat is relevant at
all stages of the design flow. We show that the
proposed obfuscation based design methodology
can provide protection against such malicious CAD
tools in both the SoC and FPGA design flows. We
also discuss how the proposed methodology can be
extended to protect against different types of Tro-
jans such as information leakage Trojans [23] which
try to leak secret information from inside a chip.

The rest of the paper is organized as follows. In
Section 2, we provide background on hardware Trojans
and obfuscation for hardware security. In Section 3,
we provide mathematical analysis and describe how
an obfuscation-based IP protection technique can be
beneficial in countering the security threat posed by
hardware Trojans. In Section 4, we describe an au-
tomated design flow that implements the proposed
methodology. We present simulation results to validate
the concept in Section 5. In Section 6 we discuss a
technique to decrease the design overhead, applicabil-
ity of the proposed design methodology to third-party
IPs and system-on-chips (SoCs), and the effectiveness
of this scheme in proving protection against malicious
CAD tools and information leaking Trojans. We con-
clude in Section 7.



J Electron Test (2011) 27:767-785

769

2 Background
2.1 Hardware Trojans: Models and Examples

A hardware Trojan instance can typically be associated
with two sets of internal nodes: the nodes which trigger
malfunction by activating the Trojan (called the trig-
ger nodes), and the nodes which are affected by the
Trojan (called the payload nodes) [37]. Figure 1a [13]
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Fig. 1 Examples of combinational (a) and sequential (b) hard-
ware Trojans that cause malfunction conditionally; examples of
Trojans leaking information through logic values (¢) and through
side-channel parameter (d) [23]

shows a combinational Trojan where the payload node
S has been modified to the node S*, and malfunction
is triggered whenever the condition a =0,b =1,¢c =
1 is satisfied at the corresponding trigger nodes. The
sequential Trojan shown in Fig. 1b, on the other hand,
is a 3-bit counter which causes a malfunction at the
payload node S on reaching a particular count, which
is incremented each time the conditiona =1,b =0 is
satisfied.

A Trojan can also exhibit its malicious effect by leak-
ing information through covert communication chan-
nels [19]. An example Trojan that leaks logic informa-
tion conditionally is shown in Fig. 1lc. The system is
designed for a cryptographic application with an integer
unit and a cryto-core, which performs Advanced En-
cryption Standard (AES) based cipher operations. The
Trojan consists of a comparator and a conditional data
transmitter. The comparator compares the values at a
few internal nodes of the integer unit with a constant
value, and the transmitter sends out the contents of the
data bus (which can be the key for the AES encryption)
through the RS-232 port if the comparison succeeds.
Another example is shown in Fig. 1d [23], where a
bank of inserted capacitors is charged depending on the
result of XOR-ing the output of a pseudo-random num-
ber generator (PRNG) with the contents of a data bus
connected to an AES module. Provided the adversary
has a clock that is synchronized with the PRNG clock
and knowledge of the PRNG structure, it is possible to
extract the AES key from the side-channel information
consisting of supply current traces of the IC.

An adversary would not be benefited by a pseudo-
random Trojan insertion procedure without a thorough
understanding of the original circuit behavior. This is
because the effect of such a Trojan is similar to ran-
dom circuit defects, and are likely to be detectable by
post-manufacturing testing which would eliminate the
infected IC. In such a scenario, the adversary can at
most affect the yield of the IC manufacturer, but cannot
really cause any substantial harm. Instead, an intelli-
gent adversary is much more likely to first perform
a comprehensive analysis of the circuit behavior, and
then choose rare conditions at internal circuit nodes as
Trojan triggering condition [15, 37] which are unlikely
to arise during test but can occur during long hours
of field operation. Moreover, the inserted Trojan is
likely to be designed such that its malicious effect at
the payload is difficult to observe at the output ports.
An intelligently designed Trojan with rare activation
condition and/or rare observability of payloads would
evade post-manufacturing test with high probability.
The number of possible Trojan instances in a given cir-
cuit has a combinatorial dependence on the number of
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circuit nodes. For example, with an assumption of max-
imum four trigger nodes, a small ISCAS-85 circuit ¢§80
with 451 gates can have ~10° possible trigger conditions
and ~10'! single payload Trojan instances, respectively.
Hence, it is not computationally feasible to enumerate
all possible Trojan instances in a given circuit and
generate deterministic test patterns for them.

Many existing approaches of Trojan detection rely
on the measurement of side-channel parameters such
as delay and power signature [3, 7, 18, 29]. A major
challenge lies in the fact that these techniques can
be extremely susceptible to measurement and process-
variation induced noise. Moreover, they suffer from
reduced detection sensitivity in detecting ultra-small
Trojans consisting of few logic gates [3], and hence
several techniques have been recently proposed that
aim to increase the sensitivity of the measurements
[1, 5, 16, 22, 26, 28]. Design techniques have also been
proposed that help to detect inserted Trojans [12, 20].

As mentioned in Section 1, in our analysis and simu-
lation results, we consider a major class of the Trojans
that can be functionally represented by the examples
shown in Fig. 1a and b. However, we show in Sec-
tion 6 that the proposed design methodology is also
effective in protecting ICs against information leakage
Trojans which are triggered by a specific set of digital
values at selected circuit nodes (similar to the types
shown in Fig. 1c and d), regardless of whether the
information leaked by them is logic information or side-
channel information. For Trojans of other functional
models (e.g. free-running state machines of arbitrarily
complex behavior, not necessarily triggered by rare in-
ternal circuit conditions), side-channel techniques that
offer greater detection sensitivity [1, 5, 16, 26, 28] hold
greater promise.

2.2 Obfuscation for Hardware IP Protection

The approaches for obfuscation based hardware IP pro-
tection can be divided into two main classes—(a) those
that affect the comprehensibility of the description of
IP core (usually in a hardware description language
such as Verilog or VHDL), but keep the functionality
unchanged [9, 34], and (b) those that obfuscate the
functionality of the IP core [10]. In [9, 34] software tools
have been described that can affect the human compre-
hensibility of a RTL by variable renaming, removal of
comments, loop unrolling, etc. However, obfuscation
features do not propagate down to lower levels of
design abstraction (e.g. gate-level or GDS-II), and thus
cannot be used to prevent Trojan insertion in foundry.
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Functional obfuscation based approaches such as
those proposed in [10], on the other hand, obfuscate
the way the circuit operates and normal operation is
enabled only after the application of a correct initial-
ization key sequence. Such approaches work essentially
by changing the state transition function of a design to
define two distinct modes of operation: the obfuscated
mode and the normal mode. The main observation is
that such functional obfuscation prevents the adversary
from fully understanding the circuit operation. Con-
sequently, the adversary cannot decide with certainty
what is an actual rare logic condition in the circuit that
would serve as the triggering condition of the inserted
Trojan. A similar approach based on modifying the
state transition graph of a circuit for IP protection and
security has been described in [4]. Key-based hardware
protection techniques have also been investigated to
prevent illegal manufacturing and circulation of ICs
[6, 32]. However, none of the above mentioned ap-
proaches target or provide protection against hardware
Trojans.

3 Methodology

In this section, we describe the design methodol-
ogy based on obfuscation to protect designs against
hardware Trojans. A conceptually similar protection
scheme has been earlier suggested in [36] for software,
whereby by decreasing the comprehensibility of a pro-
gram, malicious software modification is prevented.

The obfuscation in our scheme is achieved by two
important modifications of the state transition graph
(STG) of the circuit:

— The size of the reachable state-space is “blown up”
by a large (exponential) factor using extra state
elements.

—  Certain states, which were unreachable in the origi-
nal design are used and made reachable only in the
obfuscated mode of operation.

These two modifications make it difficult for an ad-
versary to design a functionally potent and well-hidden
Trojan, as shown through the analysis presented in Sec-
tions 3.1-3.3. As would be evident from the following,
this modification of the STG is different in methodol-
ogy and goals from the ones proposed in [4, 6, 10, 32],
in which no state-space explosion is attempted.

Figure 2a shows the proposed obfuscation scheme
based on the change in the STG of the circuit. On
power-up, the circuit is initialized to a state (S¢) in
the obfuscated mode. On the application of an input
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Fig. 2 The obfuscation scheme for protection against hardware Trojans: modified state transition graph (a) and modified circuit
structure (b)

sequence K;— K,— K3 in order, i.e. the initialization process takes the circuit to states in the isolation state
key sequence, the circuit reaches the state SY, whichis  space, a set of states from which it is not possible to
the reset state in the original state space, allowing normal ~ come back to the initialization state space or enter the
mode of operation. The states SO, S 10 and 520 constitute  original state space. The initialization state space and the
the initialization state space. The application of even  isolation state space together constitute the obfuscation
a single incorrect input vector during the initialization  state space. All state encodings in the obfuscation state
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space are done using unreachable state bit combinations
for selected state elements of the circuit. This ensures
that the circuit cannot perform its normal functionality
until the correct initialization key sequence has been
applied. The initialization latency (typically <10 clock
cycles) can be easily hidden from the end-user by
utilizing the inherent latency of most ASICs during a
“boot-up” or similar procedure on power-ON [10]. We
consider the post-manufacturing testing phase to be
“trusted” such that there is no possibility of the secret
initializaton key to be leaked to the adversary in the
fab. This is a commonly accepted convention which
was first explicitly stated in [15]. To protect against
the possibility of an user releasing the initialization
key sequence of the design in the public domain, user-
specific initialization key sequence or in the extreme
case instance-specific initialization key sequence might
be employed.

To “blow up” the size of the obfuscation state space, a
number of extra state elements are added depending on
the allowable hardware overhead. The size of the ob-
fuscation state space has an exponential dependence on
the number of extra state elements. An inserted parallel
finite state machine (PSM) defines the state transitions
of the extra state elements. However, to hide possible
structural signature formed by the inserted PSM, the ci-
cruit description of the PSM is folded into the modified
state machine in the original circuit (MOSM) (as shown
in Fig. 2b) to generate an integrated state machine.
A logic re-synthesis step is performed, including logic
optimization under design constraints in terms of delay,
area or power. In effect, the circuit structures such
as the input logic cones of the original state elements
change significantly compared to the unobfuscated cir-
cuit, making reverse-engineering of the obfuscated de-
sign practically infeasible for a adversary. This effect
is illustrated in Section 3.4 through an example bench-
mark circuit.

To increase the level of structural difference between
the obfuscated and the original circuits, the designer
can choose to insert modification cells as proposed in
[10] at selected internal nodes. Furthermore, the level
of obfuscation can be increased by using more states
in the obfuscated state space. This can be achieved by:
(1) adding more state elements to the design and/or
(2) using more unreachable states from the original
design. However, this can increase the design overhead
substantially. In Section 6 we describe a technique to
reduce the design overhead in such cases.

Selected states in the isolation state space can also
serve the purpose of authenticating the ownership of
the design, as described in [10]. Authentication for
sequential circuits is usually performed by embedding a
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digital watermark in the STG of the design [27, 35], and
our idea of hiding such information in the unused states
of the circuit is similar to [40]. A digital watermark is
a unique characteristic of the design which is usually
not part of the original specification and is known only
to the designer. Figure 2 shows such a scheme where
the states Sg', S{* and S5 in the isolation state space
and the corresponding output values of the circuit are
used for the purposes of authenticating the design.
The design goes through the state transition sequence
S¢— Sgt— S — S3' on the application of the sequence
A— A,— As. Because these states are unreachable
in the normal mode of operation, they and the cor-
responding circuit output values constitute a property
that was not part of the original design. As shown in
[10], the probability of determining such an embedded
watermark and masking it is extremely small, thus es-
tablishing it as a robust watermarking scheme.

3.1 Effect of Obfuscation on Trojan Insertion

As mentioned before, to design a functionally
catastrophic but hard-to-detect Trojan, the adversary
would try to select a “rare” event at selected internal
“trigger nodes” to activate the Trojan. To select a
sufficiently rare trigger condition for the Trojan to be
inserted, the adversary would try to estimate the signal
probability [25] at the circuit nodes by simulations. To
do so with a certain degree of confidence, a minimum
number of simulations with random starting states
and random input vectors must be performed [3§].
However, the adversary has no way to know whether
the starting state of the simulations is in the normal
state space or the obfuscation state space. If the initial
state of the simulations lie in the obfuscation state
space, there is a high probability that the simulations
would remain confined in the obfuscation state space.
This is because the random test generation algorithm
of the adversary most likely would be unable to apply
the correct input vector at the correct state to cause the
state transition to the normal state space. Essentially,
the STG of the obfuscated circuit has two near-closed
(NC) set of states [14], which would make accurate
estimation of the signal probabilities through a series
of random simulations extremely challenging. An
algorithm was proposed in [14] to detect the NC sets of
a sequential circuit; however, the algorithm requires:
(a) knowledge of the state transition matrix of the
entire sequential circuit, which is not available to the
adversary, and (b) a list of all the reachable states of the
circuit, which is extremely computationally challenging
to enumerate for a reasonably large sequential circuit.
Hence, we can assume that the adversary would be
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compelled to resort to a random simulation based
method to estimate the signal probabilities at internal
circuit nodes.

3.2 Effect of Obfuscation on Trojan Potency

To decrease the potency of the inserted Trojan, the
designer of the obfuscated circuit must ensure that if
the adversary starts simulating the circuit in the obfus-
cation state space, the probability of the circuit being
driven to the normal state space is minimal. Consider
a sequential circuit originally with N state elements
and M used states, to which n state-elements are added
to modify the STG to the form shown in Fig. 2a. Let
the number of states in the obfuscation state space be
Si= fi-2" (2N — M) = f;-2"-B, where B = (2" — M),
and f; < 1 represents a utilization factor reflecting the
overhead constraint.

Let I denote the set of states in the obfuscation
state space, U denote the set of states in the normal
state space, and T denote the set of states actually
attained during the simulations by the adversary. Let,
p be the number of primary inputs (other than the
clock and reset) where the initialization key sequence
is applied, and let the length of the initialization key
sequence be k. Then, it takes k correct input vectors
in sequence to reach the normal state space from state
S¢, k — 1 correct input vectors from state S, and so
on. Then, the probability that the simulation started in
the initialization state space and was able to reach the
normal state space by the application of random input
vectors:

P(Tg{IUUD:SiIJ:M'(ziﬁz%JF”'z%)
1)

)

N k.2—p
(2" B+ M)(1—277)

assuming 277 « 1. Similarly, the probability that the
simulations started in the initialization state space or the
isolation state space and remained confined there:

P(T c {IU U}) = [1

B k-2~P ]
(fi2n"B+M)(1—27)

fi-2"-B
fi2mB+M )

where U’ denotes the complement set of U. Again, the
probability that the simulations started in the normal
state space, and remained confined there is:

M

PTCU) = “

To maximize the probability of keeping the simulations
confined in the obfuscation state space, the designer
should ensure:

P(Tg {IU U}) > P(T C U)+P(Tg {IUU})

®)
Approximating M > %, and simplifying, this leads
to:
fi2""B>» M (6)

This equation essentially implies the size of the ob-
fuscation state space should be much larger compared
to the size of the normal state space, a result that is
intuitively expected. From the analysis above, the two
main observations are:

— The size of the obfuscation state space has an ex-
ponential dependence of the number of extra state
elements added.

— In a circuit where the size of the used state space
is small compared to the size of the unused state
space, higher levels of obfuscation can be achieved
at lower hardware overhead.

As an example, consider the ISCAS-89 benchmark
circuit 51423 with 74 state elements (i.e. N = 74), and
> 272 unused states (i.e., 2V — M > 27?) [39]. Then,
M < 1.42x10%, and considering ten extra state ele-
ments added (i.e. n = 10), f; > 0.0029 for Eq. 6 to hold.
Thus, expanding the state space in the modified circuit
by about 3% of the available unused state space is
sufficient in this case.

3.3 Effect of Obfuscation on Trojan Detectability

Consider a Trojan designed and inserted by the ad-
versary with ¢ trigger nodes, with estimated rare signal
probabilities pi, p», ...p,, obtained by simulating the
obfuscated circuit. Then, assuming random input vec-
tors, the adversary expects the Trojan to be activated
once (on average) by the application of

q ™)

test vectors. However, let the actual rare logic value
probabilities of these internal nodes be p; + Ap;, for the
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i-th trigger node. Then, the Trojan would be actually
activated once (on average) by:

N = 1 __ N ®

q .
[Tei+2ap) ] (1 + %)

i=1 i=1 pi

test vectors. The difference between the estimated and
the actual number of test vectors before the Trojan is
activated is AN = N — N, which leads to a percentage
normalized difference:

x 100% 9)

q
e
i=1 pi
To appreciate the effect that Ap and g has on this
change on the average number of vectors that can ac-
tivate the Trojan, assume % =f Vi=1,2...q; then
Eq. 9 can be simplified to: I

AN . (. 1 o
T(/o)—(l —(1+f)q)X1OOA)

Figure 3 shows this fractional change plotted vs. the
number of trigger nodes (g) for different values of the
fractional mis-estimation of the signal probability ( f).
From this plot and Eqgs. 9 and 10, it is evident that:

(10)

— The probability of the Trojan getting detected by
logic testing increases as the number of Trojan trig-
ger nodes (q) increases. However, it is unlikely that
the adversary will have more than ten trigger nodes,

ANIN (%) vs. q

100 T

Percentage decrease in Test Length

% 5 10 15 20 25 30
# of Trigger Nodes (q)

Fig. 3 Fractional change in average number of test vectors re-
quired to trigger a Trojan, for different values of average frac-
tional mis-estimation of signal probability ( f) and Trojan trigger
nodes (q)
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because otherwise as shown by our simulations, it
becomes extremely difficult to trigger the Trojans
at all.

— Forvalues 2 < g < 10, the number of random input
patterns required to activate the trojan decreases
sharply with ¢g. The improvement is more pro-
nounced at higher values of f. This observation
validates the rationale behind an obfuscation-based
design approach that resists the adversary from
correctly estimating the signal probabilities at the
internal circuit nodes.

3.4 Effect of Obfuscation on Circuit Structure

The re-synthesis of the circuit after its integration with
the RTL description corresponding to the obfuscation
state space flattens the circuit into a single netlist, re-
sulting in drastic changes to the input logic cones of
the primary outputs and the state elements. This makes
it infeasible to manually or automatically analyze and
identify the modifications made to a practical circuit
with reasonably large number of gates, even if the
adversary is in possession of an unmodified version
of the original circuit netlist. To appreciate this effect,
consider the input logic cones (up to four levels) of
a selected flip-flop in the gate level netlist of the
515850 ISCAS-89 benchmark, and its obfuscated ver-
sion, shown in Fig. 4. Similarly significant structural
difference was observed for all the benchmark circuits
considered by us. If the adversary is not in possession
of an unmodified reference gate-level design, this task
is even more difficult, as the adversary would have
no idea about the netlist structure of the original de-
sign. The theoretical complexity of reverse-engineering
similar key-based obfuscation schemes for circuits has
been analysed in [21, 24], where such systems were
shown to be “provably secure” because of the high
computational complexity.

3.5 Determination of Unreachable States

The construction of the obfuscation state space requires
the determination of unreachable states in a given cir-
cuit. Figure 5 shows the steps of determining the set of
unreachable states for a selected set of S state elements
in a given circuit. First, all the possible 2% state bit
combinations are generated for the § state elements.
Then, each state of these 25 states are subjected to full
sequential justification at the inputs of the selected S
state elements, using Synopsys Tetramax. The justified
states are discarded, while the states which fail jus-
tification are collected to form the set U of structurally
unreachable states.
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Fig. 4 Comparison of input logic cones of a selected flip-flop in s15850: original design (a) and obfuscated design (b)

Input: Circuit netlist, set of 5 selected
state elements, CLK and RESET ports

i
Generate all 2° binary state
combinations

|
[}

For each state S; ]
I

Set state values for S, at the input nets
of the S state elements

I

I Perform sequential justification for S; K:]

Add S; to U, the set of unreachable
states
T
I
Output: Set of unreachable states
U={U, ....Un}

Fig. 5 Steps to find unreachable states for a given set of § state
elements in a circuit

3.6 Test Generation for Trojan Detection

Since deterministic test pattern generation for the Tro-
jan population is practically infeasible due to the inor-
dinately large number of possible Trojans, we apply a
statistical approach to sample and simulate a represen-
tative set of Trojan instances (10K-20K) from the total
population of Trojans. First, the signal probabilities at
the internal nodes of the circuit are estimated by the
application of a large set of random vectors to the
circuit. From the signal probability (S,) of the internal
nodes, which indicate the rareness of a logic-0 or logic-1
event in those nodes, we select a set of candidate trigger
nodes with §, less than a specified trigger threshold
(6). Next, starting from a large set of weighted random
vectors, a smaller testset is generated to excite each of
these candidate trigger nodes to its rare value at least
N times, where N is a given parameter. This is done
because excitation of each rare node individually to its
corresponding rare value multiple times is likely to in-
crease the probability of the Trojans triggered by them
to get activated, as shown by the analysis in [13].We
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have observed through extensive simulations on both
combinational (ISCAS-85) and sequential (ISCAS-89)
benchmark circuits, that such a statistical test genera-
tion methodology can achieve higher Trojan detection
coverage than weighted random vector set, with 85%
reduction in test length on average [13]. Note that for
sequential circuits, we assume a full-scan implementa-
tion. Sequential justification is applied to eliminate false
Trojans, i.e. Trojans which cannot be triggered during
the operation of the circuit.

3.7 Determination of Effectiveness

To determine the decrease in potency of the Trojans by
the proposed scheme, we reduce a given vector set to
eliminate those vectors with state values in the obfus-
cation state space. We then re-simulate the circuit with
the reduced test set to determine the Trojan coverage.
The decrease in the Trojan coverage obtained from
the reduced test set indicates the Trojans which are
activated or effective only in the obfuscation state space
and, hence, become benign.

To determine the increase in detectability of the Tro-
jans, we compare the §, values at the Trojan trigger
nodes between two cases: (1) a large set of random vec-
tors, and (2) a modified set of random vectors which en-
sure operation of the obfuscated design in only normal
mode. The increase in Trojan detectability is estimated
by the percentage of circuit nodes for which the §,
values differ by a pre-defined threshold. The difference
in estimated S, prevents an adversary from exploiting
the true rare events at the internal circuit nodes in
order to design a hard-to-detect Trojan. On the other
hand, true non-rare nodes may appear as rare in the
obfuscated design, which potentially serve as decoy to
the adversary. The above two effects are summed up
by the increase in Trojan detection coverage due to
the obfuscation. The coverage increase is estimated by
comparing the respective coverage values obtained for
the obfuscated and the original design for the same
number of test patterns.

4 Integrated Framework for Obfuscation

Algorithm 1 shows the steps of the procedure
OBFUSCATE, which performs the obfuscation of a
given gate-level circuit. The input arguments are the
gate-level synthesized Verilog netlist of the given cir-
cuit, the maximum allowable area overhead, the total
number of states in the obfuscation state space, and
the length of the input key sequence (k). Initially, the
number (n) of extra state elements to be added and the
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Algorithm 1 Procedure OBFUSCATE

Generate the obfuscated netlist from a given circuit
netlist

Inputs: Circuit netlist, maximum area overhead
(max_area_overhead), total number of states in the
obfuscation state space, length of initialization key
sequence (k)

Outputs: Obfuscated circuit netlist, initialization key
sequence

1: Set no. of extra state elements to be added: n < 8
2: Setno. of original state elements to be used for state
encoding: § < 5

3: repeat

4:  repeat

5: Select S state elements randomly from circuit
netlist

6: Determine unreachable states for S state ele-

ments using sequential justification
7. until sufficient unreachable states found
8 Generate state encodings for the extra state ele-
ments
9:  Generate random state transitions for the extra
state elements
10:  Generate random initialization key sequence of
length k
11:  Generate RTL for obfuscation state space
12:  Integrate generated RTL with existing netlist
13:  Re-synthesize modified circuit
14:  Calculate area_overhead
15 nen-—-1,5<85-1
16: until area_overhead < max_area_overhead

number (S) of existing state elements to be used for
state-encoding in the initialization state space are both
set to five. These S state-elements are randomly chosen
for state-encoding in the initialization state space, and
their unreachable states are determined by the method
described in Section 3.5. If the number of unreachable
states found is not sufficient for the required number
of states in the obfuscation state space, another random
selection of S state elements is made and the process is
continued until sufficient unreachable states are found.
Once this is done, state encoding for the extra state el-
ements and random state transitions for the 2" states of
the n extra state elements is generated. Next, an initial-
ization key sequence of length k is selected randomly.
The RTL of state transitions of the two separate set of
flip-flops for the initialization state space is generated.
As mentioned in Section 3, the RTL is constructed
in a way that ensures that the chosen original state
elements and the extra state elements act together as
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Fig. 6 Framework to estimate the effectiveness of the obfusca-
tion scheme

parts of the same FSM during the initialization phase.
The RTL is then integrated with the original gate-level
netlist, with appropriate control signals to enable the
operation in the two different modes. The modified
circuit is then re-synthesized under input design con-

straints using Synopsys Design Compiler to generate
the obfuscated version of the circuit. If the area of the
re-synthesized circuit is larger than the user-specified
area overhead constraint, § and » are each decreased by
one and the process is repeated until the area constraint
is satisfied for the obfuscated design.

We assumed the Trojan model shown in Fig. 1a. We
wrote three C programs to estimate the effectiveness of
the proposed obfuscation scheme for protection against
Trojans. The computation of signal probabilities at the
internal nodes is done by the program RO-Finder (Rare
Occurrence Finder). The testset for Trojan detection
achieving multiple excitation of rare trigger conditions
is performed by the program ReTro (Reduced pattern
generator for Trojans). The generation of the reduced
pattern set by the elimination of the patterns with states
in the obfuscation state space is performed by a TCL
program. The decrease in the Trojan potency and the
increase in the Trojan detectability are then estimated
by a cycle-accurate simulation of the circuit by the
simulator TrojanSim (Trojan Simulator). TetraMax is
used for sequential justification of the Trojan triggering
conditions. Figure 6 shows the steps to estimate the
effectiveness of the obfuscation scheme [13]. The entire
flow was integrated with the Synopsys design environ-
ment using TCL scripts. A LEDA 250 nm standard cell
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library was used for logic synthesis. All simulations, test
generation and logic synthesis were carried out on a
Hewlett-Packard Linux workstation with a 2GHz dual-
core processor and 2GB RAM.

5 Results

To verify the trends predicted in Section 3.2, we investi-
gated the effects of adding extra state elements (n) and
unreachable states determined from variable number of
existing state elements (S) on the level of protection
against Trojans. Figure 7 shows the variation in the
percentage of Trojans rendered benign, percentage of
internal nodes with false signal probability, and the
percentage increase in detectability of Trojans for the
51196 benchmark circuit. These plots clearly show the
increasing level of protection against Trojans with the
increasing size of the obfuscation state space, which
matches the theoretical predictions in Section 3.2.
Tables 1 and 2 show the effects of obfuscation on in-
creasing the security against hardware Trojans for a set
of ISCAS-89 benchmark circuits with 20,000 random
instances of suspected Trojans, trigger threshold (6) of
0.2, trigger nodes (q) 2 and 4, respectively. Optimized
vector set was generated using N=1000. The same value
of n+ § applies to both sets of results. The length of
the initialization key sequence was 4 (k = 4) for all the
benchmarks. The effect of obfuscation was estimated
by three metrics: (a) the fraction of the total population
of structurally justifiable Trojans becoming benign; (b)
the difference between the signal probabilities at inter-
nal nodes of the obfuscated and original circuit, and (c)
the improvement in the functional Trojan coverage, i.e.
the increase in the percentage of valid Trojans detected
by logic testing. Note that the number of structurally
justifiable Trojans (as determined by TetraMax) de-
creases with the increase in the number of trigger nodes
of the Trojan, and increasing size of the benchmark
circuits. From the tables it is evident that the construc-
tion of the obfuscation state space with even a relatively

Table 2 Effect of obfuscation on security against Trojans
(100,000 random patterns, 20,000 Trojan instances, g = 4. k = 4,
0=0.2)

Benchmark  Trojan Obfuscation effects

circuit instances  Benign  False prob.  Func. Tro;j.
Trojans  nodes cov. incr.
(%) (%) (%)

s1488 98 60.53 71.02 12.12

s5378 331 70.28 85.05 15.00

$9234 20 62.50 65.62 25.00

s13207 36 80.77 83.59 20.00

s15850 124 77.78 79.58 18.75

$38584 11 71.43 77.21 50.00

small number of state elements (i.e. a relatively small
value of n+ S) still makes a significant fraction of
the Trojans benign. Moreover, it obfuscates the true
signal probabilities of a large number of nodes. The
obfuscation scheme is more effective for 4-trigger node
Trojans. This is expected since a Trojan with larger g is
more likely to select at least one trigger condition from
the obfuscation state space.

Figure 8 shows the two different effects by which
Trojans are rendered benign (as discussed in Section
3.2)—i.e. some of them are triggered only in the ob-
fuscation state space, while the effect of some are prop-
agated to the primary output only in the obfuscation
state space. In these plots, the greater effectiveness of
the obfuscation approach for four-trigger node Trojans
is again evident.

Figure 9 shows the improvement in Trojan detection
coverage in the obfuscated design compared to the
original design for the same number of random vectors.
This plot illustrates the net effect of the proposed ob-
fuscation scheme in increasing the level of protection
against Trojans, with an average increase of 14.83% for
q =2 and 20.24% for g = 4. The greater effectiveness
for g =4 agrees with the theoretical observation in
Section 3.3.

Table 3 shows the design overheads (at iso-delay)
and the run-time for the proposed obfuscation scheme.
The proposed scheme incurs modest area and power

Table 1 Effect of obfuscation

. . > Benchmark Trojan Obfus. Obfuscation effects
on security against Trojans . . . - -
(100,000 random patterns, circuit instances flops Benign False prob. Func. Troj.
20,000 Trojan instances, n+S9) Trojans nodes cov. incr.
g=2k=46=02) (%) (%) (%)
s1488 192 8 38.46 63.69 0.00
s5378 2,641 9 40.13 85.05 1.02
$9234 747 9 29.41 65.62 1.09
513207 1,190 10 36.45 83.59 0.56
s15850 1,452 10 40.35 68.95 2.65
$38584 342 12 33.88 81.83 0.45
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Fig. 8 Effect of obfuscation on Trojans: a 2-trigger node Trojans (¢ = 2), and b 4-trigger node Trojans (g = 4)

overheads, and the design overhead decreases with
increasing size of the circuit. The results and trends
are comparable with the STG modification based wa-
termarking schemes proposed in [27, 40]. As men-
tioned earlier, the level of protection against Trojan
can be increased by choosing a larger n + S value at
the cost of greater design overhead. The run-time pre-
sented in the table is dominated by TetraMax, which
takes more than 90% of the total time for sequential
justifications.

6 Discussion
6.1 Protection Against Malicious CAD Tools

Pre-designed third-party hardware IP blocks, which
have been supplied either as synthesizable “Register
Transfer Level” (RTL) descriptions (also known as
“soft macros”), or as synthesized gate-level netlists
(also known as “firm macros”), can be modified to
implement the proposed methodology. For RTL de-

B8 Troj. Cov. For Obfuscated Design (%)
8 Troj. Cov. For Original Design (%)
100.00

90.00
80.00
70.00
60.00
50.00
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Trojan Coverage (%)

30.00 -
s1488 s5378 s9234 s13207 s15850 s38584

Benchmark Circuit

(a)

scriptions, obfuscation of an IP module can be achieved
in two ways. In the first, “direct method”, the used and
unused states of the circuits can be identified by direct
analysis of the control and data flow graph (CDFG)
of the derived from the RTL, and then additional
RTL code can be automatically generated to realize
the change in the STG of the circuit. An automated
design flow for performing similar key-based control-
flow obfuscation for the purpose of IP protection of
RTL designs has been previously proposed in [11]. In
the second, “indirect method”, the RTL description
can be synthesized to a gate-level netlist to apply the
proposed technique.

The proposed technique can also be extended
to multi-IP system-on-chips (SoCs), even in those
cases where the communication fabric of the SoC is
custom-designed. This is possible since the proposed
methodology does not depend on the structure and
communication protocols used by the communication
fabric of the SoC. A SoC design methodology that em-
ploys key-based obfuscation of hardware IP modules
has been previously proposed in [10].

@ Troj. Cov. For Obfuscated Design (%)
0 Troj. Cov. For Original Design (%)
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Fig. 9 Improvement of Trojan coverage in obfuscated design compared to the original design for a Trojans with two trigger nodes

(¢ = 2) and b Trojans with four trigger nodes (¢ = 4)
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Table 3 Design overhead (at iso-delay) and run-time? for the
proposed design flow

Benchmark Overhead (%) Run-time
circuit Area Power (mins.)
s1488 20.09 12.58 31
$5378 13.13 17.66 186
$9234 11.84 15.11 1,814
s13207 8.10 10.87 1,041
s15850 7.04 9.22 1,214
$38584 6.93 2.63 2,769

4The run time includes the sequential justification time by Syn-
opsys Tetramax, which in most cases was over 90% of the total
runtime

6.2 Application to Third-Party IP Modules and SoCs

Besides protecting a design in foundry, the proposed
obfuscation methodology can provide effective defense
against malicious modifications (manual or automated)
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Design Flow

System Level
(C++, Matlab, SystemC)

|High Level Synthesisl

Hardware

IP Cores

i .-..-..-...-..1-..-..--.....-.........
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A S

during the IC design steps. As pointed out in Section
1, compromised CAD tools and automation scripts can
also insert Trojans in a design [15, 31]. Obfuscation can
prevent insertion of hard-to-detect Trojans by CAD
tools due to similar reasons as applicable in a foundry.
It prevents an automatic analysis tool from finding
the true rare events, which can be potentially used
as Trojan triggers or payloads. Moreover, since large
number of states belong to the obfuscation state space,
an automation tool is very likely to insert a Trojan
randomly that is only effective in the obfuscation mode.
Note that since we obfuscate the gate-level netlist,
protection against CAD tools can be achieved during
the design steps following logic synthesis (e.g. during
physical synthesis and layout).

To increase the scope of protection by encom-
passing the logic synthesis step, we propose a small
modification in the obfuscation-based design flow.
Figure 10 compares a conventional IP-based SoC
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Fig. 10 Comparison of conventional and proposed SoC design flows. In the proposed design flow, protection against malicious
modification by untrusted CAD tools can be achieved through obfuscation early in the design cycle
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design flow with the proposed modified design flow.
In the conventional design flow, the RTL is directly
synthesized to a technology mapped gate-level netlist,
and obfuscation is applied on this netlist. However, in
the modified design flow, the RTL is first compiled
to a technology independent (perhaps unoptimized)
gate-level description, and obfuscation is applied on
this netlist. Such a practice is quite common in the
industry, and many commercial tools support such a
compilation as a preliminary step to logic synthesis [17].
The obfuscated netlist is then optimized and technology
mapped by a logic synthesis tool. Note that the logic
synthesis step now operates on the obfuscated design,
which protects the design from potential malicious op-
erations during logic synthesis. Also, the RTL compi-
lation (without logic optimization) is a comparatively
simpler computational step for which the SoC design
house can employ a trusted in-house tool. This option
provides an extra level of protection.

This proposed obfuscation methodology also pro-
vides protection against malicious CAD tools in Field

Programable Gate Array (FPGA) based design flows.
As noted in [15], the main threat of Trojan insertion
in such a flow comes from the CAD tools which con-
vert the RTL description of a design to the FPGA
device specific configuration bitstream. Typically, the
fabric itself can be assumed to be Trojan-free [15].
Similar to the SoC design flow, we propose a small
modification to the FPGA design flow that maximizes
the scope of protection against FPGA CAD tools.
Figure 11 shows the proposed design flow. The RTL
corresponding to the circuit can be “compiled” to a un-
optimized, technology-independent gate-level netlist.
This netlist can then be obfuscated, and the obfus-
cated design can then be optimized and mapped by
either third-party CAD tools or vendor-specific tools
to a netlist in an intermediate format. This netlist is
then converted to a vendor-specific bitstream format
by the FPGA mapping tool to map the circuit to the
FPGA. Note that as before, the security against ma-
licious CAD tools propagate to lower levels of design
abstraction.
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6.3 Improving Level of Protection and Design
Overhead

Equation 6 suggests that for large designs with a sig-
nificantly large original state space, to attain satisfactory
levels of design obfuscation, it is necessary to have the
obfuscation state space much larger than the original
state space. This can be achieved by either: (a) addition
of a large number of extra state elements, or (b) using
a large number of unreachable states in the obfuscation
state space. However, finding large number of unreach-
able states through sequential justification in a com-
plex design is extremely computationally expensive. To
keep the problem computationally tractable and reduce
the design overhead, we propose a systematic approach
to modify the state transition function as shown in
Fig. 12. The n extra state elements are grouped into p
different groups to form parallel FSMs PSM, through
PSM,, and RTL code for each of them is generated
separately. Similarly, the S existing state elements (cor-
responding to the unreachable states) used for state
encoding in the obfuscation state space are grouped in
q different groups PSM, through PSM,. RTL code for

each of the parallel FSMs PSM, through PSM;I is gen-
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erated separately based on the unreachable states. Such
a scheme of having multiple parallel FSMs to design
the obfuscation state space achieves similar design ob-
fuscation effects, without incurring high computational
complexity and design overhead.

6.4 Protection Against Information Leakage Trojans

Although in our simulations we considered the Trojans
according to the model shown in Fig. 1a, as pointed out
in Section 2, the proposed methodology can also help to
protect against Trojan attacks that aim at leaking secret
information about internal state of the circuit, either in
the form of a data-stream (similar to Fig. 1c) or as side-
channel signature (similar to Fig. 1d). Such a Trojan is
shown in Fig. 13, where it transmits out a secret cryp-
tographic key through a covert communication channel
by “sniffing” the values on the communication bus. Bus
scrambling or bus re-ordering is a simple technique to
resist against this kind of an attack, so that the data
transmitted out by the Trojan is also scrambled. To
overcome this defense mechanism, the adversary has
to figure out the actual order of bits in the scrambled
bus to correctly interpret the collected data. Figuring

Obfuscated Design

FFpen

LI I I

Fig. 12 Obfuscation for large designs can be efficiently realized using multiple parallel state machines which are constructed with new
states due to additional state elements as well as unreachable states of original state machine
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Fig. 13 Functional block
diagram of a crypto-SoC
showing possible Trojan
attack to leak secret key
stored inside the chip.
Obfuscation coupled with bus
scrambling can effectively
prevent such attack
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out the actual order of the bits in a n-bit bus by simu-
lations will require a search among n! possibilities, e.g.
~2 x 10* possibilities for a 32-bit data bus. However,
since the attacker has access to the design, he/she is
likely to perform structural analysis of the design to
determine the order of bits in the bus. If the functional
blocks are not obfuscated, one can employ equivalence
checking between a functional block in the design and
a corresponding reference design to identify the order
of bits in both input/output bus for a module. For
example, an attacker can perform formal verification
between the integer unit in Fig. 13 and a functionally
equivalent reference design to find the port association.

However, if all the modules in the given SoC are
obfuscated using the proposed approach, it would be
practically infeasible for a formal verification tool to
establish structural equivalence [10]. The other choice
left to the attacker is to simulate the circuit by applying
input vectors. For simplicity, assume all modules in
the SoC are initialized simultaneously and by the same
initialization key sequence. Then, to reach the normal
mode of operation, the adversary needs to first apply
the correct unknown initialization vectors in correct
order to enable normal operating mode of the IC. Only
then the adversary would be able to establish the actual
bus order through simulations, the complexity of which
has already been shown to be extremely high. The
probability of succeeding in reaching the normal mode
by the application of random vectors to the primary

input of a SoC with M primary inputs and an initial-

1
MN-

the SoC shown in Fig. 13 has 32 inputs, and assuming
the length of the initialization key sequence to be 4, the
probability of the adversary taking the obfuscated SoC
to the normal mode is ~ 107%°. The width of the data
bus for the key is typically 128 or 256, which would
increase the complexity exponentially. A similar argu-
ment can be presented for Trojans of the type shown in
Fig. 1d.

ization key sequence length of N is Assuming

7 Conclusion

In this paper, we have presented a novel application
of design obfuscation to achieve effective protection
against hardware Trojans. We have shown that obfusca-
tion can provide comprehensive protection against con-
ditionally triggered Trojan attacks including defense
against untrusted CAD tools, for both SoC and FPGA.
We have also shown that obfuscation can provide pro-
tection against Trojans that tries to leak secret infor-
mation from an IC. The level of obfuscation and hence
the protection can be increased by state-space blow-
up and use of unreachable states. The required design
modifications can be easily automated and integrated
with conventional design flow. Simulation results for a
set of benchmark circuits show that a well-formulated
obfuscation scheme can provide simultaneous protec-
tion against hardware Trojan and IP piracy at low
design overhead. Future work will involve application
of the proposed approach to higher level of design
abstraction such as RTL IPs.
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