
JOURNAL OF ELECTRONIC TESTING: Theory and Applications 22: 125–142, 2006
c© 2006 Springer Science + Business Media, LLC. Manufactured in The United States.

DOI: 10.1007/s10836-006-6674-3

Implementing Symmetric Functions with Hierarchical Modules for Stuck-at and
Path-Delay Fault Testability

HAFIZUR RAHAMAN
Information Technology Dept., Bengal Engg. and Sc. University, Howrah – 711 103, India

rahaman h@hotmail.com

DEBESH K. DAS
Computer Sci. & Eng. Dept., Jadavpur University, Kolkata –700 032, India

debeshd@hotmail.com

BHARGAB B. BHATTACHARYA
ACM Unit, Indian Statistical Institute, Kolkata-700 108, India

bhargab@isical.ac.in

Received March 2, 2004; Revised December 6, 2005

Editor: K. Chakrabarty

Abstract. A technique for implementing totally symmetric Boolean functions using hierarchical modules is presented.
First, a simple cellular module is designed for synthesizing unate symmetric functions. The structure is universal, admits a
recursive design, and uses only 2-input AND-OR gates. A universal test set of size (n2/8 + 3n/4) for detecting all single
stuck-at faults can be easily determined for an n-input module, where n = 2k, k > 3. General symmetric functions are then
realized following a unate decomposition method. The synthesis procedure guarantees full robust path-delay fault testability
in the circuit. Experimental results on several symmetric functions reveal that the hardware cost of the proposed design is
low, and the number of paths in the circuit is reduced significantly compared to those of earlier designs. Results on circuit
area and delay for a few benchmark examples are also reported.

Keywords: path-delay fault, stuck-at fault, symmetric Boolean function, synthesis-for-testability, unate function, universal
tests

1. Introduction

Synthesis and testing of symmetric Boolean functions re-
ceived lot of interest in the past [1–4, 7, 9, 11]. They have
also applications to reliable data encryption and Internet
security [5]. This paper presents a new approach to synthe-
sizing totally symmetric functions using hierarchical mod-
ules. We first redesign a well-known cellular module known
as digital summation threshold logic (DSTL) array [6, 12].
Such an array can be used directly for synthesizing all unate
symmetric functions. Further, we show that a test set for
detecting all single stuck-at faults in the array can be easily
derived directly from its structure without running a test pat-
tern generator. Non-unate symmetric functions can then be
synthesized by the method proposed in [3]. A single n-input

array augmented by a two-level circuit allows us to design
multiple symmetric functions of n-variables.

Failures that cause logic circuits to malfunction at the de-
sired clock rate and violate timing specifications are mod-
eled as delay faults. A circuit is said to have a path-delay
fault, if the total delay along some path of the circuit ex-
ceeds the system clock interval [13, 14]. For each physical
path from a primary input to a primary output of the circuit,
two logical paths (rising and falling) are usually considered.
Detection of a path-delay fault requires a two-pattern test,
and this test is said to be robust, if it cannot be invalidated
by the presence of other path-delay faults in the circuit. A
circuit is robustly delay testable if and only if every de-
tectable path-delay fault has a robust test. It is known that
two-level realizations of most of the symmetric functions

126 Rahaman, Das and Bhattacharya

are not robustly path-delay testable [2]. Multi-level synthe-
sis techniques in [2] and [3] were targeted to achieve delay
fault testability by using 3 to 5 logic levels. The modules
based on DSTL array [6] or its modifications [9] are not
robustly path-delay testable. In this work, the internal struc-
ture of the DSTL array is redesigned such that it can be used
to synthesize any general symmetric function with robust
path-delay fault testability. The cost of the circuit reduces
significantly compared to earlier designs [2, 3]. The number
of paths in the circuit also reduces drastically compared to
those in [2, 3, 8, 9].

2. Preliminaries

Let f (x1, x2, · · · , xn) denote a switching function of n
Boolean variables. A vertex (minterm) is a product of vari-
ables in which every variable appears once. The weight w of
a vertex ν is the number of uncomplemented variables that
appear in ν. A Boolean function is called negative (positive)
unate, if each variable appears in complemented (uncomple-
mented) form (but not both) in its minimum sum-of-products
(s-o-p) expression.

A switching function f (x1, x2, · · · , xn) is called totally
symmetric with respect to the variables (x1, x2, . . . , xn), if
it is invariant under any permutation of the variables [4].
Total symmetry can be specified by a set of integers (called
a-numbers) A = (ai , . . . , a j , . . . , ak), where A ⊆ {0, 1,
2,. . . , n}; all the vertices with weight w ∈ A will ap-
pear as true minterms in the function. Henceforth, by a
symmetric function, we would mean a function with total
symmetry. An n-variable symmetric function is denoted as
Sn(ai , . . . , a j , .., ak). A symmetric function is called con-
secutive, if the set A consists of only consecutive integers
(al , al+1,. . . , ar). Such a consecutive symmetric function
is expressed by Sn(al − ar) where l < r . For n variables,

Fig. 1. (a) Basic DSTL array and (b) DSTL cell details.

we can construct 2n+1 − 2 different symmetric functions
(excluding constant functions 0 and 1). A totally symmet-
ric function Sn(A) can be expressed uniquely as a union
of maximal consecutive symmetric functions, such that
Sn(A) = Sn(A1) + Sn(A2) + · · · + Sn(Am), such that m is
minimum and ∀ i , j , l ≤ i, j ≤ m, Ai ∩ A j = ∅, whenever
i �= j.

Example 1. The symmetric function S12 (1, 2, 5, 6, 7, 9,
10) can be expressed as S12(1–2) + S12(5–7) + S12 (9–
10), where S12 (1–2), S12(5–7) and S12(9–10) are maximal
consecutive symmetric functions.

A function is called unate symmetric if it is both unate and
symmetric. A unate symmetric function is always consec-
utive and can be expressed as Sn(al − ar), where either
al = 0 or ar = n. If it is positive unate, then it must be
either Sn(n) or any of the following (n −1) functions: Sn(1-
n), Sn(2 − n), Sn(3 − n), . . . ,Sn((n − 1)−n). We express
Sn(n) as un(n), and Sn(al − an) as ul(n) for 1 ≤ l < (n−1).

Theorem 1 [3]. A consecutive symmetric function Sn(al −
ar), al �= ar , l < r, can be expressed as a composition of two
unate symmetric functions:

Sn(al − ar) = Sn(al − n)Sn(ar+1 − n).

3. Synthesis of Unate Symmetric Functions

Unate symmetric functions can be synthesized by a cellular
DSTL array [6]. It is a multi-input and multi-output logic
array, consisting of an iterative arrangement of identical
cells with a uniform interconnection pattern among them.
There are n inputs lines xi ,1 ≤ i ≤ n and n output lines

Implementing Symmetric Functions with Hierarchical Modules for Stuck-at and Path-Delay Fault Testability 127

Fig. 2. An example of untestable path-delay fault.

Fig. 3. Module(n).

Fig. 4. The structure of Module(n).

u j , 1 ≤ j ≤ n. The network is so designed that the output
line u j , 1 ≤ j ≤ n, assumes value 1 if any of the j inputs
attain value 1. Hence the output line u j realizes a thresh-
old function with a threshold value j for the inputs xi each
having an input weight of 1.

The array is shown in Fig. 1(a), where each cell consists
of two inputs A and B and produces two outputs A.B (AND)
and A+B (OR) as in Fig. 1(b). Each output ui of the array
implements a positive unate symmetric function. The array
is a special case of a balanced inversion parity (BIP) net-
work [19], i.e., all paths from any primary input to an output

Fig. 5. Stage-A of Module(n).

Fig. 6. Stage-A of Module(4).

have the same inversion parity. It can be easily verified that
all multiple stuck-at faults in this array are detectable, and
hence the array is irredundant. However, the single-output
circuit cone corresponding to an individual output may be
redundant. The output functions are as follows (where

∑

denotes Boolean OR operation):

u1(n) = Sn(1, 2, 3,. . . , n) = ∑
xi for i = 1 to n;

u2(n) = Sn(2, 3, 4 . . . , n) = ∑
xi x j , for i, j = 1 to n;

u3(n) = Sn(3, 4,. . . , n) = ∑
xi x j xk, for i, j, k =1 to n;

. .

un(n) = Sn(n) = x1x2. . . xn−1xn

The following example (Fig. 2) demonstrates that a DSTL
array might have an untestable path-delay fault.

Let us consider the path-delay fault (with slow-to-rise or
slow-to-fall transition) along the path x1 − a − b − c − u3

indicated by the bold line. To propagate the transition on
primary input x1, we need x2 to be 0; to propagate this
effect to b, we need x3 to be 1; and to c, we need d to be
1. However, to make d = 1, we must have x2 = 1, which is
not possible. Thus, this path-delay fault cannot be detected.
Similarly, the path x2−a−b−c−u3 is path-delay untestable.

Synthesis of symmetric functions was proposed earlier [9]
by redesigning the DSTL array so as to reduce the hardware
cost and delay. However, the procedure does not guaran-
tee robust testability of all path-delay faults. All the design
procedures reported earlier [6, 8, 9] use a structure called
Module(n) that has n inputs lines x1, x2, x3, . . . , xn , and
n output functions u1(n), u2(n), u3(n), . . . , un(n) (Fig. 3).
Each output ui , implements a unate symmetric function as
described earlier.

128 Rahaman, Das and Bhattacharya

Proposed Technique

We first describe a new and simple design of Module(n) that
has good testability properties.

3.1. Design of Module(n) for n = even

The Module(n) is a network of AND-OR gates. For n =
even, let n = 2m. The Module(n) consists of two stages as
shown in Fig. 4.

Fig. 7. Stage-A of Module (2).

Fig. 8. (a) The structure of Stage-B for n = even, (b) Sub-stage B-1 of Module (n), (c) Sub-stage B-2 of Module (n) and (d) Sub-stage B-3 of Module (n).

Stage-A: This consists of two blocks – Block A-1 and Block
A-2 (Fig. 5), each of which is identical to Module(n/2). The
inputs to the Block A-1 (A-2) are x1, x2, x3, . . . , xn/2(xn/2+1,
xn/2+2, xn/2+3, . . . , xn). The corresponding output functions
are denoted as a1, a2, a3, . . . , am and b1, b2, b3, . . . , bm ,
where m = n/2.

Clearly, ai=
∑

x j1x j2 . . . x ji for j1, j2, j3, . . . , ji = 1
to n/2
and bi=

∑
x j1x j2. . . x ji for j1, j2, j3, . . . , ji = (n/2+1)

to n.

Implementing Symmetric Functions with Hierarchical Modules for Stuck-at and Path-Delay Fault Testability 129

Example 2. The stage-A for n = 4 is shown in Fig. 6.

Example 3. The stage-A for n = 2 is shown in Fig. 7. It
contains two copies of Module(1), as in Fig. 7(a). But for
only one input, there is no gate. Module(1) is replaced by a
single line, as shown in Fig. 7(b).

Stage-B: The circuit for stage-B, consists of three sub-stages
– B-1, B-2 and B-3, as shown in Fig. 8(a). The sub-stage
B-1 consists of n/2 OR-AND gate pairs (Fig. 8(b)) with n
(=2m) inputs (a1, a2, a3, . . . , am and b1, b2, b3, . . . , bm).
The n (=2m) outputs are given by c1, d1, c2, d2, c3, d3, . . . ,
cm−1, dm−1, cm, dm , where and ci = ai + bi and di = ai bi

for 1 < i < m. The 1st (nth) output c1 (dm) represents u1(n)
(resp. un(n)).

The sub-stage B-2 consists of only 2-input AND gates
of one level. An AND gate having input values ci and d j

produces the product ci d j and all such AND gates with i > j
and 1 < i < m exist in this sub-stage B-2. Its output lines can
be classified into two groups—(i) n(=2m) outputs—all the
inputs from the outputs of sub-stage B-1 (c1, d1, c2, d2, c3, d3

, , cm−1, dm−1, cm, dm) are passed through B-2,
and (ii) m(m−1)/2 outputs realizing (c2d1), (c3d1, c3d2),
(c4d1, c4d2, c4d3),(cm−1d1, cm−1d2,cm−1d3,
. cm−1dm−3, cm−1dm−2), (cmd1, cmd2, cmd3,
.cmdm−2, cmdm−1). Notice that these outputs may
be grouped in (m −1) groups, where the i-th group contains
(m − i) elements (ci+1d1, ci+1d2, ci+1d3, ,
ci+1di−1, ci+1di). The scheme is shown in Fig. 8(c), where
ei j represents the product ci d j .

All the outputs from sub-stage B-2 are fed to B-3, which
is a one-level fan-out free circuit consisting of (n − 3) OR
gates. B-3 produces n outputs f (z1), f (z2), f (z3),. ,
f(zn−2), f (zn−1), f (zn), as shown in Fig. 8(d). Three
outputs f (z1), f (zn−1) and f (zn) are obtained by directly
passing the signals from the earlier stage, such as f (z1) =
c1, f (zn−1) = em,m−1 = cmdm−1,and f (zn) = dn/2. Except
these three, each f (zi) for 1 < i < n − 1, is realized by an
OR-gate, such that the desired functions are produced. The
OR gate realizes the function f (zi) as follows.

f (zi) = ci + ei−1,1 +ei−2,2 + ei−3,3 +

e� (i+1)/2 	,� (i−1)/2 	 + βdi for i < m(= n/2),

Fig. 9. Sub-stage B-1 of Module(n) for (a) n = 2 (b) n = 4 and (c) n = 6.

f (zi) = en/2,i−n/2 + en/2−1,i−n/2+1 +

e� (i+1) /2 	,�(i−1)/2	 +βdi for i > m(= n/2),

where β = 0 (1) for i = odd (even), ei j = c j d j .

For n = 2, there does not exist any ci or di for i >1. Thus,
there is no gate in sub-stage B-2 or B-3. The inputs c1 and
d1 from sub-stage B-1 are just passed through B-2 and B-3.

Example 4. Figs. 9(a)–9(c) show the sub-stage B-1 for n
= 2, 4 and 8 respectively.

The algebraic expressions for output functions of the stage-
B f (z1), f (z2), f (z3), . . . , f (zi), . . . , f (zn), in terms of the
output functions of the stage-A are given by:

f (z1) = a1 + b1

f (z2) = (a2 + b2) + a1b1

f (z3) = (a3 + b3) + (a2 + b2) a1b1

f (z4) = (a4 + b4) + (a3 + b3) a1b1 + a2b2

.
f (zn−2) = (an/2 + bn/2) an/2−2bn/2−2 + an/2−1bn/2−1

f (zn−1) = (an/2 + bn/2) an/2−1bn/2−1

f (zn) = an/2bn/2

More specifically,

f (zi) = ai +bi + (ai−1+bi−1) a1b1 + (ai−2 + bi−2) a2b2

+· · · · · · · +(a� (i+1)/2 	 + b� (i+1)/2) a(� (i−1)/2 	b� (i−1)/2 	
+βai/2bi/2

where i ≤ n/2, and β = 0 (1) if i = odd (even);

f (zi) = (an/2 + bn/2) ai−n/2bi−n/2

+ (an/2−1 + bn/2−1) ai−n/2+1bi−n/2+1+

+ (
a�(i+1)/2	 + b�(i+1)/2	

)
a(�(i−1)/2	b�(i−1)/2	

+ βai/2bi/2,

where i > n/2, and β = 0 (1) if i = odd (even).
The above expression can be rewritten using a single for-

mula as shown below.

f (zi) = αci + βdi/2 +
∑

e j,k for all i(1<i<n)

where,

130 Rahaman, Das and Bhattacharya

Fig. 10. Sub-stage B-2 of Module(n) for (a) n = 4 (b) n = 6.

Fig. 11. Sub-stage B-3 of Module(n) for (a) n = 4 (b) n = 6.

(a) α = 0 (1) for i > n/2 (<n/2)
(b) β = 0 (1) if i = odd (even).
(c) The range of

∑
varies for all j and k satisfying the

conditions (i) j + k = i (ii) k > 1 (iii) j > k
(d) cl = al + bl , for any l (1 < l< n/2)
(e) dl = albl for any l (1 < l < n/2)
(f) e jk = c j dk

Thus, dk (1 < k < n/2) signifies an AND gate realizing
akbk . Similarly, c j (1 < j < n/2) signifies an OR gate
realizing a j + b j .

Example 5. The sub-stage B-2 for n = 4 (n = 6) is shown
in Fig. 10(a) and Fig. 10(b).

Example 6. The sub-stage B-3 for n = 4 (n = 6) is shown
in Fig. 11(a) and Fig. 11(b).

Lemma 1. a j ak = ak if k > j.

Proof: The function a j = u j (n/2) = ∑
xi1xi2 . . . xi j

for i1, i2, i3.., i j = 1 to n/2. Similarly, ak = uk(n/2) =∑
xi1xi2xik for i1, i2, i3, . . . , ik = 1 to n/2. The mini-

mum s-o-p expressions for a j and ak are unique and consist

of [
n/2
j

] and [
n/2
k

] product terms respectively. As k > j , for

every product term P1 in ak , there exists a product term P2 in
a j such that P1 ⊆ P2. Thus, ak ⊆ a j . Hence, a j ak = ak .

Lemma 2. b j bk = bk if k > j

Proof: Similar to Lemma 1.

Lemma 3. (a j + b j) akbk = a j bk + akb j if j > k

Proof: Follows from Lemmas 1 and 2.

Lemma 4. The minimum s-o-p expression for {a j bk} has

[
n/2
j

]*[
n/2
k

] product terms each with (j + k) variables.

Proof: Clear.

Lemma 5. Let i1, j1, i2, j2, be any four variables such
that 1 ≤ i1, j1, i2, j2 ≤ n/2 and i1 + j1 = i2 + j2. Let
P1 and P2 be two product terms in the s-o-p expressions of
ai1b j1 and ai2b j2 respectively. Then P1 �⊂ P2 and P2 �⊂ P1.

Theorem 2. The proposed design of Fig. 5 realizes
Module(n).

Proof: From Lemma 3, the function f (zi) at the output of
the 3rd stage is given by:

f (zi) =
∑

a j bk + ai + bi ∀ j, k, such that j + k = i

and i ≤ n/2

=
∑

a j bk for ∀ j, k, such that j + k = i

and i > n/2.

Using Lemmas 4 and 5, it follows that f (zi) is the s-o-p of

[
n/2
i

] product terms each having i variables. Thus, f (zi) =
∑

x j1x j2 . . . x ji for 1 ≤ j1, j2,, ji , ≤ n = ui (n).
Hence the proof.

3.2. Designing Module (n) for n = odd

Let n = 2m + 1. Module(n) will have two stages, similar to
the case when n = even.

Stage-A: This consists of two parts: Module(m + 1) and
Module(m) (Fig. 12(a)). The n (=2m+1) outputs a1,
a2, a3,, am , am+1, b1, b2, b3,, bm−1, bm of
stage-A feed the stage-B.

Stage-B: The circuit for stage-B, can be considered as con-
sisting of three sub-stages – B-1, B-2 and B-3, as shown
in Fig. 12(b).

The sub-stage B-1 consists of n(= 2m+1) inputs real-
izing (a1, a2, a3,, am , am+1 and b1, b2, b3,, bm).
There are n(= 3m+1) outputs, where first 2m outputs are
given by c1, d1, c2, d2, c3, d3, ,cm−1, dm−1, cm, dm ,
where ci = ai +bi and di = ai bi for 1 < i < m. The (m+1)-
th output is obtained by directly passing am+1 through sub-
stage B-1. The last m outputs are obtained by directly pass-
ing the inputs (b1, b2, b3, · · · · · ·, bm) through sub-stage B-1.
The scheme is shown in Fig. 12(c).

Implementing Symmetric Functions with Hierarchical Modules for Stuck-at and Path-Delay Fault Testability 131

The sub-stage B-2 consists of only 2-input AND gates
of one level. It has n (=3m+1) inputs from sub-stage
B-1, as stated above. Its output lines can be classified
into two groups—(i) n (=2m+1) outputs—the in-
puts from the outputs of sub-stage B-1 (c1, d1, c2,
d2, c3, d3, , cm−1, dm−1, cm, dm , and am+1) are
passed through B-2, and (ii) m(m + 1)/2 outputs realiz-
ing (c2d1), (c3d1, c3d2), (c4d1, c4d2, c4d3),(cm−1

d1, cm−1 d2,cm−1 d3, cm−1dm−3, cm−1dm−2),
(cmd1, cmd2, cmd3,cmdm−2, cmdm−1), (am+1b1,
am+1b2, am+1b3,am+1bm−1, am+1bm). Notice that
these outputs may be grouped in m groups, where i-th
group contains (m − i) elements (ci+1d1, ci+1d2, ci+1d3,
. , ci+1di−1, ci+1di)for i < m and (m + 1)-th
group contains (am+1b1, am+1b2, am+1b3, ,
am+1bm−1, am+1bm). The scheme is shown in Fig. 12(d),
where ei j represents the product ci d j [am+1b j] for i < m
[= m + 1].

All the outputs from sub-stage B-2 are fed to B-3, which
is a one-level fan-out free circuit consisting of (n − 2) OR

Fig. 12. (a) Stage-A of Module(n) for n = 2m +1, (b) The structure of Stage-B for odd n, (c) Sub-stage B-1 of Module(n) for n = 2m +1,
(d) Sub-stage B-2 of Module(n) for n = 2m+1, (e) Sub-stage B-3 of Module(n) for 2k−1 < n < 2k , with p = 2k−1 and p + m = n.

gates. B-3 produces n outputs f (z1), f (z2), f (z3),. ,
f (zn−2), f (zn−1), f (zn), as shown in Fig. 12(e). Two
outputs f (z1) and f (zn) are obtained by directly passing
through it, such as f (z1) = c1 and f (zn) = am+1bm . Ex-
cept these two, each f (zi) for 1 < i < n, is realized by
an OR-gate, to produce the desired functions. The OR gate
realizes the function f (zi) as follows.

f (zi) = ci + ei−1,1 +ei−2,2 + ei−3,3

+· · · · · · e� (i+1)/2 	,� (i−1)/2 	+βdi for i < m,

f (zi) = ai + ei−1,1 +ei−2,2 + ei−3,3

+· · · · · · e� (i+1)/2 	,� (i−1)/2 	+βdi for i = m + 1,

f (zi) = em+1,i−m−1 + em,i−m + · · · · · ·
.e� (i+1)/2 	,� (i−1)/2 	+βdi for i > m(= n/2),

where β = 0 (1) for i = odd (even).

132 Rahaman, Das and Bhattacharya

Fig. 13. Module(7).

Thus, for n outputs marked as f (zi) for 1 < i < n, pro-
duced by stage-B, each f (zi) can be represented as

f (zi) = α f i + βdi/2 +
∑

e jk

for all jand k satisfying the following conditions

(a) α = 0 (1) for i > n/2 (<n/2)
(b) β = 0 (1) if i = odd (even).
(c) The range of

∑
varies for all jand k satisfying the

conditions (i) j + k = i (ii) k > 1 (iii) j > k
(d) fl = al + bl [al] for any for any l with(1 ≤ l ≤ m)[(l =

m+ 1)]
(e) dl = albl for any l(1 ≤ l ≤ n/2)
(f) e j,k = f j dk [f j bk] for any j with (j ≤ m)[(j = m+ 1)]

Example 7. Module(7) is shown in Fig. 13.

4. Circuit Cost and Delay

The above design of Module(n) reduces the cost of synthe-
sizing a unate symmetric function drastically. The delay as
well as cost is smaller than those of the classical DSTL ar-
ray [6]. The input-to-output path length (delay) can be made
equal for each path, if needed, by providing some buffers
on the signal paths, without increasing the maximum delay.
Such a design can be pipelined using a few latches for fast
evaluation of inputs.

4.1. Hardware Cost

Let C(n) denote the number of gates in Module(n).
In general, it can be written that C(n) = C(�n/2�) +

C(�n/2) + CB(n), where C(�n/2�) + C(�n/2) represents
the number of gates in stage-A and CB(n) represents the
number of gates in the stage-B. For n = even, this leads to
C(n) = 2C(n/2) + CB(n).

Now, CB(n) = CB1(n) + CB2 (n) + CB3 (n), where
CB1(n), CB2(n) and CB3(n) represent the number of gates in
sub-stage B−1, B − 2 and B − 3 respectively. Let us now
calculate these values.

In sub-stage B-1, there are �n/2	 pairs of OR-AND gates.
Thus CB1(n) = 2 ∗ �n/2	 .

In sub-stage B-2, there are �n/2� ∗ �(n − 2)/2 �/2 AND
gates.

The sub-stage B-3 contains only OR gates. For n = even
[odd], this sub-stage contains (n − 3) [(n − 2)] OR gates.
Thus the value of C(n) can be summed up.

Except the sub-stage B-3, the remaining part of Mod-
ule(n) contains only two-input gates, where sub-stage B-3
contains OR gates with more than two inputs for any n >7.
However, for practical reason, the OR gates with large input
lines may not be used. To compare our results with those
in [6] and [8], let us consider the use of two-input gates
only. In this case, only the gate count in sub-stage B-3 will
change.

Let the output line of the sub-stage B-3 realizing func-
tion f (zi) be produced by OR-operation of Ni lines from
sub-stage B-2. Now, if we consider the use of only two-input

Implementing Symmetric Functions with Hierarchical Modules for Stuck-at and Path-Delay Fault Testability 133

OR gates, to realize f (zi), the number of OR gates required
is, Oi = Ni − 1.

Therefore,

Oi = � (i − 1)/2 � for i<� n/2 	
= � (n − i + 1)/2 � for i > � n/2 	 and n = even

= � (n − i)/2 � for i > � n/2 	 and n = odd.

The number of gates in sub-stage B-3 is equal to �Oi for 1
< i < n.

It can be proved that �Oi = � n/2 � ∗ �(n − 2)/2 � /2.
Thus, considering only two-input gates, CB(n) =

CB1(n) + CB2(n) + CB3(n) = 2 ∗ � n/2 	 + � n/2 � ∗
� (n − 2)/2 �. It simplifies to CB (n) = n(n + 2) /4
[(n − 1)(n + 5)/4] for n = even [odd].

For n = 1, Module(n) is a single line. Thus C(1) = 0.
Using this value for C(1), we can recursively find C(n) for
any value of n.

The results on the number of gate counts for 1 < n < 16
are shown in Table 2 in comparison to those of [6] and [8].

For n = 2k , C(n) = 2C(n/2) + n/2 (n/2+ 1). Con-
sidering C(1) = 0, recursively, we can get C(n) =
n/2 (n + log n−1).

4.2. Circuit Delay

We assume unit gate delay through a 2-input gate. Obvi-
ously, the minimum delay Dmin(n) is observed at the output
f (z1) and f (zn), which is given by Dmin (n) = �logn�.

Denoting the maximum delay for n as Dmax(n), in
general we get, Dmax(n), = Dmax (� n/2�)+ DB

max(n),
where DB

max(n), denotes the maximum delay in stage-B.
Now, DB

max(n) = DB1
max(n) + DB2

max(n) + DB3
max(n), where

DB1
max(n), DB2

max(n) and DB3
max(n) represent the maximum de-

lay in sub-stage B-1, B-2 and B-3 respectively. From the
structural description DB1

max(n) =1 andDB2
max(n) =1. Further,

DB3
max(n) =1, if we allow OR gates with more than two inputs

in sub-stageB-3.

To find DB
max(n) using only two-input OR-gates, let an

OR gate with more than two inputs are replaced by a tree of
two-input OR gates. In that case DB3

max(n) >1 for any n >7.
It can be observed that DB

max(n) occurs at the line realizing
f (zi) for i = � n/2 �. Now, the output line of the sub-stage
B-3 realizing function f (zi) is produced by OR-operation
of Ni lines from sub-stage B-2. The delay contributed by
the OR-tree to produce f (zi) is given as � logN i�, which
becomes maximum for i = � n/2 �.

From the section 4.1, we can get that N� n/2� = � (n +
2)/4 �{�(n + 3)/4 �} for n = even {odd}.

Hence the maximum delay DB
max(n) can be calculated as

follows:

Dmax(n) = Dmax(�n/2 �) + �log(N�n/2�)�,

where

N�n/2�
= �(n + 2)/4�{�(n + 3)/4�} + 2 for n = even{odd}.

The validity of this formula for n > 4 can be justified as
follows: for n = 1, Dmax(n) = 0 (Fig. 7(b)); for n = 2, there
is neither sub-stage B-2 nor B-3, and hence, Dmax(2) = 1.
For n = 3, the only AND gate in sub-stage B-2 is produced
directly from the inputs of stage-A, thus DB

max(3) = 2, im-
plying Dmax(3)= 3. For n = 4, the only OR gate in sub-stage
B-3 is produced directly from the inputs of sub-stage-B-2
(Fig. 11(a)), thus DB

max(3) = 2, implying Dmax(4)= 3. For
n > 5, all the sub-stages in stage-B will appear. The results
on the delay values for 1 ≤ n ≤ 16 are shown in Table 2 in
comparison to those in [6] and [8].

For n = 2k , Dmax(n) = Dmax(n/2) + �log(�(n +
2)/4 �) � + 2 = Dmax(n/2)+ �log(n/4 + 1)� + 2 =
Dmax(n/2) + log n + 1. Considering Dmax(4) = 3, recur-
sively, we obtain Dmax(n) = log n(log n + 3)/2 − 2 for
n = 2k .

5. Effects on Testability

The proposed design is a balanced inversion parity (BIP)
network [19] and implements unate symmetric functions. It
admits nice testability properties with respect to both stuck-
at and path faults. BIP networks, and in particular, circuits
realizing unate functions are known to support universal (i.e.
realization independent) test set for stuck-at and delay faults
[15–19]. Here, we show that a test set for detecting all single
stuck-at faults in the module can be directly derived from its
structure without running a test pattern generator. Next, we
will show that the module is robustly path-delay testable.

5.1. Testing of Stage-B

Assuming that Module(n/2) is testable, let us analyze the
testability of the stage-B of Module(n). The problem in
observing the test outcome separately in stage-B arises
from the fact that we have no direct control to the inputs
a1, a2,.an/2, b1, b2,,.bn/2 to stage-B. Thus, certain
combination of logic values may not be available at the in-
puts of stage-B. If the stage-A is assumed to be fault-free,
we can prove the following Lemmas.

Lemma 6. If for any input pattern (x1, x2,· · · · · · xn/2,

xn/2+1, xn/2+2,.,xn), ai [bi] =0, then a j [b j] = 0 for any
i < j≤n/2.

Lemma 7. If for any input pattern (x1, x2,· · · · · · xn/2,

xn/2+1, xn/2+2,.,xn), ai [bi] =1, then a j [b j] =1 for any
j < i.

134 Rahaman, Das and Bhattacharya

The above two Lemmas are important in the sense that for
a test vector of stage-B, its inputs (a1, a2,.an/2,

b1, b2,· · · · · · bn/2) cannot violate Lemma 6 and
Lemma 7.

5.1.1. Testing of Sub-Stage B-1. Let us consider the testa-
bility of the sub-stage B-1, which contains n/2 OR gates and
n/2 AND gates, where the i-th OR (AND) gate has two in-
puts (ai , bi) for 1 ≤ i ≤ n/2.

Lemma 8. All single stuck-at faults at the input and output
lines of the OR gates in the sub-stage B-1 are tested by
following three combinations:

T1(n) =

∣∣∣∣∣∣∣∣∣

a1 a2 · · · · · · an/2−1 an/2 b1 b2 · · · · · · · · · bn/2−1 bn/2

0 0 · · · · · · 0 0 0 0 · · · · · · · · · 0 0

0 0 · · · · · · 0 0 1 1 · · · · · · · · · 1 1

1 1 · · · · · · 1 1 0 0 · · · · · · · · · 0 0

∣∣∣∣∣∣∣∣∣

Proof: On application of T1(n), any OR gate (say the i-th
OR gate) in the sub-stage B-1 receives all the 3 combinations
(00, 01, 10) at its inputs (ai , bi) required for testing. Thus, the
effect of the fault (error) involving the input or output lines
of this OR gate can be propagated to the output line realizing
ci of this sub-stage B-1. The line representing ci is passed
through sub-stage B-2, and is directly connected to one input
of an OR gate in sub-stage B-3 producing f (zi) [for i = 1,
there is no OR gate, c1 to be termed as f (Z1)]. The other
inputs to this OR-gate of sub-stage B-3 are fed from the AND
gates of sub-stage B-2. Now, the output of each AND gate in
the sub-stage B-1 is 0 for every input of T1. For any AND gate
in sub-stage B-2, one of its inputs is an output of an AND-
gate in sub-stage B-1. Thus, the output of each AND gate in
sub-stage B-2 is 0, and except the line ci , all other lines to the
inputs of the OR-gate in sub-stage B-3 realizing f (zi) are at
0. So, the error on ci can be propagated to f (zi). Hence the
proof.

Lemma 9. Any single stuck-at fault at the input and output
lines of thep-th AND gate in sub-stage B-1 is tested by the
following three combinations:

t p−AND
2 =

∣∣∣∣∣∣∣∣∣

a1 a2 · · · · · · ap−1 ap ap+1 · · · · · · an/2−1 an/2 b1 b2 · · · · · · bp−1 bp bp+1 · · · · · · · · · bn/2−1 bn/2

0 0 · · · · · · 0 0 0 · · · · · · 0 0 1 1 · · · · · · 1 1 1 · · · · · · · · · 1 1

1 1 · · · · · · 1 1 1 · · · · · · 1 1 0 0 · · · · · · 0 0 0 · · · · · · · · · 0 0

1 1 · · · · · · 1 1 0 · · · · · · 0 0 1 1 · · · · · · 1 1 0 · · · · · · · · · 0 0

∣∣∣∣∣∣∣∣∣

Proof: On application of t p−AND
2 , the p-th AND gate in

the sub-stage B-1 receives all the 3 combinations (01, 10,
11) at its inputs (ap, bp) required for its testing. Thus, an
error on an input or an output line of this AND gate can be
propagated to the output line realizing dp of the sub-stage

B-1. The question is whether this error can be propagated
to the output. For p = n/2, the line dp is directly connected
to the output, thus the error is propagated. Let us consider
the case for p < n/2.

For (01 and 10) tests: The line representing dp fans out
in sub-stage B-2 and one of its branch lines is AND-ed with
the line realizing cn/2 = an/2 + bn/2. The output line en/2,p

of this AND-gate realizing cn/2dp is fed to an OR-gate in
sub-stage B-3 realizing the function f (zn/2+p). The other
inputs of this OR gate realize either c j dk = (a j + b j)akbk

with j + k = n/2 + p, or dk [for 2k = n/2 + p]. The line dk

realizes the function akdk . Clearly, dk = 0 for the fist two
inputs of t p−AND

2 . Thus, except the line en/2+p, all other
lines to the inputs of the OR-gate in sub-stage B-3 real-
izing f (zn/2+p) are at logic 0. So, the error on en/2+p can be
propagated to f (zn+2+p).

For (11) test: The line representing dp fans out in sub-
stage B-2 and one of its branch lines is directly connected
to the OR-gate of sub-stage B-3 realizing f (z2p). As stated
earlier, the i-th output of Module(n) f (zi) for i = 2p can
be expressed as follows: f (zi) =[c2p+]

∑
c j dk + dp, for

[i≤n/2] i > n/2, where j and k satisfy the following condi-
tions – (i) k > 0 (ii) dk = akbk (iii) j + k = 2p (iv) j > k (v)
c j = a j +b j . Now, condition (iii) and (iv) imply that j > p.
For the third input in t p−AND

2 , a j = 0, b j = 0 for j > p. It im-
plies that except the line realizing dp, all other lines to the
inputs of the OR-gate in sub-stage B-3 realizing f (z2p) are
at logic 0. So the error on dp can be propagated to f (z2p).

5.1.2. Testing of Sub-Stage B-2. The stage B-2 contains
n/4(n/2 − 1) two-input AND gates. Consider, an AND gate
with two inputs c j and dk , producing c j dk .

Notice that j > k and c j and dk are respectively the output
function of an OR and an AND gate in sub-stage B-1, pro-
ducing a j + b j and akbk . Moreover, as j > k, j must be at
least 2.

Implementing Symmetric Functions with Hierarchical Modules for Stuck-at and Path-Delay Fault Testability 135

Lemma 10. The input and output lines of the AND gate
producing c j dk in sub-stage B-2 are tested by following three
combinations (for j > 1 and also j > k).

(a1a2. ak−1akak+1. a j−1a j a j+1. an/2−1an/2)
(b1b2. bk−1bkbk+1. a j−1a j a j+1. bn/2−1bn/2)

(i) 01 test: (1 1 1 1 0.0 0 0. 0 0)
(1 1. 1 1 0. 0 0 0. 0 0)

(ii) 10 test: this can be done by any of the following two
tests:
(a1a2. ak−1akak+1. a j−1a j a j+1. an/2−1an/2)
(b1b2. bk−1bkbk+1. a j−1a j a j+1. bn/2−1bn/2)

(1 1 1 1 1.1 1 0. 0 0) (0 0. 0
0 0. 0 0 0. 0 0)

or, (0 0 0 0 0.0 0 0. 0 0) (1 1. 1 1
1. 1 1 0. 0 0)

11 test: this can be done by any of the following two tests.
(a1a2. ak−1akak+1. a j−1a j a j+1. an/2−1an/2)
(b1b2. bk−1bkbk+1. a j−1a j a j+1. bn/2−1bn/2)

(1 1 1 1 1.1 1 0. 0 0) (1 1. 1 1
0. 0 0 0. 0 0)

or, (1 1 1 1 0.0 0 0. 0 0) (1 1. 1
1 1. 1 1 0. 0 0)

Proof: It can be easily observed that the AND gate with
input lines realizing c j and dk receives the required test
inputs (01, 10, 11) as mentioned above. Thus, the error due
to any stuck-at fault at the input or output lines of the AND
gate is propagated to the output line e jk realizing the function
c j dk . This output line is fed to an input of an OR gate, which
realizes the function f (zi) where i = j + k.

The value f (zi)is given by

f (zi) = ci+
∑

c
m

dn[+di/2] for i<n/2 and i

= odd [even]

=
∑

c
m

dn[+di/2] for i > n/2 and i

= odd [even],

and for all possible combinations of m and n, such that n >

0, m > n and m + n = i = j + k.
Without loss of generality, let us consider the case

with f (zi) = ci + ∑
cmdn + di/2. It can be ex-

pressed as f (zi) = ci + ci−1d1 + ci−2d2 +. +
c j+1dk−1+c j dk + c j−1dk+1+. + ci/2+1di/2−1 + di/2.

In the sub-stage B-3, one input to the OR gate realiz-
ing f (zi) represents the function c j dk, while the other
inputs realize ci , ci−1d1, ci−2d2, c j+2dk−2,
c j+1dk−1,c j−1dk+1,. ,ci/2+1di/2−1, di/2, where
for any p, cp = ap + bp and dp = apbp. It
can be observed that for all the combinations of
(a1a2. ak−1akak+1. a j−1a j a j+1. an/2−1an/2)
(b1b2. bk−1bkbk+1. a j−1a j a j+1. bn/2−1bn/2),
each of ci , ci−1d1, ci−2d2 ,. c j+2dk−2, c j+1 dk−1,

c j−1dk+1,. ,ci/2+1di/2−1, di/2, is at logic 0. Thus the

error on the line e jk realizing c j dk can be propagated to the
output of the OR gate realizing f (zi).

Lemma 11. To apply (11) test to the AND gate in sub-stage
B-2 with inputs cn/2 and dn/2−1, the following combinations
can be used:

(a1a2. ak−1akak+1. a j−1a j a j+1. an/2−1an/2)
(b1b2. bk−1bkbk+1. a j−1a j a j+1. bn/2−1bn/2)

(1 1 1 1 1.1 1 1. 1 1) (1 1. 1
1 1. 1 1 1. 1 1)

Proof: The concerned AND gate receives the input (11)
in the above pattern. Now, the output of this AND gate is not
passed through any OR gate in sub-stage B-3 as it is directly
connected to the output line f (zn−1). Thus, the above pattern
is able to detect the faults corresponding to (11) test.

5.1.3. Testing of Sub-Stage B-3

Lemma 12. If a test set T is sufficient to detect the faults
in sub-stages B-1 and B-2, then T is also sufficient to detect
any fault in sub-stage B-3.

Proof: The sub-stage B-3 is a one-level circuit with OR
gates only. Now, as T detects the faults at the output lines
of sub-stage B-1 and B-2, it implies that faults on all input
lines to the OR gates of sub-stage B-3 are detected by the
test set T . As there is no fan-out in the sub-stage B-3, T
contains the set of vectors that detect the faults in sub-stage
B-3.

5.1.4. Complete Test Set of Stage-B.
From Lemmas 8–11, it follows that a pattern
(a1a2 ak−1akak+1. a j−1a j a j+1. an/2−1an/2)
(b1b2. bk−1bkbk+1. a j−1a j a j+1. bn/2−1bn/2),
which is required for detecting a fault, is a valid combi-
nation in accordance to Lemma-6 and Lemma-7. Thus,
these values of a′

i s and b′
i s can be obtained by controlling

the input lines (x1x2x3. xn/2−2xn/2−1xn/2), and
(xn/2+1xn/2+2xn/2+3. xn−2xn−1xn) respectively. For
example, if we like to obtain ai = 1 for all i < p and
ai = 0 for all i > p, then among the n/2 input lines
(x1x2x3. xn/2−2xn/2−1xn/2), we have to choose any
p lines to be set to logic 1, and the other (n/2− p) lines to be
set to 0. A similar case happens for b′

i s, where we have to set
the input lines (xn/2+1xn/2+2xn/2+3. xn−2xn−1xn).

Definition 1. An input vector I = [x1, x2, x3,. . . , xn/2−2,

xn/2−1, xn/2, xn/2+1, xn/2+2, xn/2+3,. xn−2,xn−1,xn]
for n = 2k , is said to have a weight-pair denoted by
(w1(n), w2(n)) where w1(n)[w2(n)] is an integer value rep-
resenting the number of 1s among (x1, x2, x3,. xn/2−2,
xn/2−1) [(xn/2+1, xn/2+2, xn/2+3,. xn−2, xn−1, xn)]. The
weight-sum of the vector I denoted by wsum(n) is defined
as the summation (w1(n) + w2(n)). The smaller of (w1(n),
w2(n)) is denoted as wmin(n).

136 Rahaman, Das and Bhattacharya

The following corollaries are apparent from Lemmas-8,
9, 10 and 11 respectively.

Corollary 1. All stuck-at faults at the input and output
lines of the OR gates in the sub-stage B-1 are tested by
the three input vectors having weight-pairs (w1(n), w2(n)) :
(i) (0, 0), (ii) (0, n/2) and (iii) (n/2, 0) with weight-sums
wsum(n) : (i) 0 (ii) n/2 and (iii) n/2 respectively.

Corollary 2. Any single stuck-at fault at the input and
output lines of the i-th AND gate in sub-stage B-1 is tested by
the three input vectors having weight-pairs (w1(n), w2(n)) :
(i) (0, n/2), (ii) (n/2, 0) and (iii) (i, i) with weight-sums
wsum(n) : (i) n/2 (ii) n/2 and (iii) 2irespectively.

Corollary 3. The input and output lines of the AND gate
producing c j dk (for j > 1 and also j > k) in sub-stage
B-2 are tested by the three input vectors having weight-
pairs (w1(n), w2(n)) : (i) (k, k), (ii) (j, 0) or (0, j) and (iii)
(j, k)or (k, j) with weight-sums wsum(n) : (i) 2k (ii) 2 jand
(iii) (j + k) respectively.

Corollary 4. To apply the (11) test to the AND gate in sub-
stage B-2 with inputs cn/2 and dn/2−1, the test vector I having
weight-pairs (w1(n), w2(n)) and weight-sum wsum(n) = n
can be used.

Thus, Lemma 11 and Corollary 4 imply that the input
vector with (w1(n), w2(n)): (n/2−1, n/2) or (n/2,n/2−1) as
described by Corollary 3 is not required for testing the AND
gate with inputs cn/2 and dn/2−1.

Instead of expressing a test pattern t as an n−bit
vector tBool(n), let us express it as a 4-tuple tw(n):
{wmin(n), w1(n), w2(n), wsum(n)}.Clearly, for a given
tw(n), there may exist several vectors tBool(n). Corollaries
1 to 4 state that the test vectors with weight functions w1(n)
and w2(n) will be sufficient to detect a fault in stage-B.
A test vector tw(n) with weight values (w1(n), w2(n)),
implies that we can choose tBool(n) as any combina-
tion of values in(x1, x2, x3,. , xn−2, xn−1, xn)such
that among the first n/2 input lines (x1, x2, x3,. ,
xn/2−2, xn/2−1, xn/2), any w1(n) lines can be set to 1
and others to 0, and among the last n/2 input lines
(xn/2+1, xn/2+2, xn/2+3,.,xn−2, xn−1, xn), any w2

(n) lines can be set to 1 and others to 0. This provides us
more flexibility in choosing the test vectors.

Lemma 13. The complete test set to detect the faults
at stage-B is given by the set T w

B of input vectors with
their wmin(n) weight pairs (w1(n), w2(n)), and weight-sums
wsum(n) as shown:

T w
B (n) =

∣∣

wmin(n) w1(n) w2(n) wsum(n)

0 0 0 0

0 0 2 2

0 3 0 3

0 0 4 4
...

...
...

...

0 n/2 − 1 0 n/2 − 1

0 0 n/2 n/2

0 n/2 0 n/2

1 1 1 2

1 2 1 3

1 1 3 4

1 4 1 5
...

...
...

...

1 1 n/2 − 1 n/2

1 n/2 1 n/2 + 1

2 2 2 4

2 3 2 5

2 2 4 6

2 5 2 7
...

...
...

...

2 n/2 − 1 2 n/2 + 1

2 2 n/2 n/2 + 2
...

...
...

...

n/2 − 3 n/2 − 3 n/2 − 3 n − 6

n/2 − 3 n/2 − 2 n/2 − 3 n − 5

n/2 − 3 n/2 − 3 n/2 − 1 n − 4

n/2 − 3 n/2 n/2 − 3 n − 3

n/2 − 2 n/2 − 2 n/2 − 2 n − 4

n/2 − 2 n/2 − 2 n/2 − 1 n − 3

n/2 − 2 n/2 n/2 − 2 n − 2

n/2 − 1 n/2 − 1 n/2 − 1 n − 2

n/2 n/2 n/2 n

∣∣

Proof: It is easy to observe that the above set contains all
the input combinations necessary for testing of stage-B, as
described in Corollaries 1, 2, 3 and 4.

Example 8. T w
B (2) and T w

B (4) are given as follows.

T w
B (2) =

∣∣∣∣∣∣∣∣∣∣∣∣

wmin(2) w1(2) w2(2) wsum(2)

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 2

∣∣∣∣∣∣∣∣∣∣∣∣

Implementing Symmetric Functions with Hierarchical Modules for Stuck-at and Path-Delay Fault Testability 137

T w
B (4) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

wmin(4) w1(4) w2(4) wsum(4)

0 0 0 0

0 0 2 2

0 2 0 2

1 1 1 2

2 2 2 4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Example 9. TBool
B (4) can be derived from T w

B (4). Notice
that for (w1(4), w2(4)) = (1, 1), there are four possible
Boolean vectors (x1x2x3x4) = (0 1 0 1) or (0 1 1 0) or
(1 0 0 1) or (1 0 1 0). Thus, T Bool

B (4) contains 5 vectors,
given by (0000, 0011, 1100, 0101 or 0110 or 1001 or 1010,
1111).

Example 10. T Bool
B (2) can be derived from T w

B (2) as
(00, 01, 10,11).

Notice that for each vector in T w
B (n), the pair

(w1(n), w2(n))is distinct and thus there is no chance of rep-
etition of any vector. However, some other test set for de-
tecting the faults at stage-B with the same or larger size (but
not of smaller size) can be derived from Corollaries 1, 2, 3
and 4. However, the particular set T w

B (n) chosen above has
some interesting properties as described below.

Characteristics-1: If wmin(n) = i, there will be a vector
with (w1(n), w2(n)) = (i + 1, i), for all i , except in two
cases: for i = 0 and i = n/2. The first exception occurs
as the Corollary 3 is valid for j > 1. The second exception
occurs because the test obtained by applying Corollary-4
obviates the necessity of the vector with (w1(n), w2(n)) =
(n/2,n/2-1) as stated in Corollary 3.

Characteristics-2: For a given value of wmin(n), the
values of wsum(n)’s may be different, except in the case
for wmin(n) = 0 and wsum(n) = n/2, as it appears twice
with(w1(n), w2(n)) = (0,n/2) and (n/2,0). It appears as both
the vectors with(w1(n), w2(n)) = (0,n/2) and(w1(n), w2(n))
= (n/2,0) are required for detection of faults in OR gates of
sub-stage B-1 (Corollary 1).

Characteristics-3: For a vector, if wsum(n) = even, then
w1(n) = wmin(n), otherwise w2(n) = wmin(n), except in
only one case, where (w1(n), w2 (n)) = (n/2,0).

Characteristics-4: In T w
B (n), wsum(n) = i with

0 < i< n/2 occurs �(i + 1)/2 � [�(n − i+1)/2�] times
for i < n/2 [> n/2], only with two exceptions, when
wsum(n) = n − 1 and wsum(n) = 1.

Characteristics-5: Except in two cases, for any value of
i with 0 ≤ i ≤ n/2, w1(n) can become equal to i(n/4+1)
times in T w

B (n); a similar property is also true for w2(n).
The exceptional cases include: the occurrence of w1(n) =1
and that of w2(n) = n − 1, each n/4 times.

The above discussions lead to following Lemma.

Lemma 13. For n = 2k, k > 2, the size of T w
B (n) is

(n2/8+ 3n/4).

Remark: For k =1, n = 2, andT w
B (2) = 4, as already shown

in Example-8.

5.2. Testing of Stage-A

The stage-A of Module(n) contains two copies of Mod-
ule(n/2), where the outputs of the circuit on the left [right]
feed the inputs (a1 a2. a j−1a j a j+1. an/2−1an/2)
[(b1b2. a j−1a j a j+1. bn/2−1bn/2)] of stage-B of
Module(n). The input values (x1x2x3. xn/2−2

xn/2−1xn/2) [(xn/2+1xn/2+2xn/2+3. xn−2xn−1xn)]
determining w1(n) [w2(n)] produce these inputs
(a1a2. a j−1 a j a j+1. an/2−1an/2) [(b1

b2. bk−1bkbk+1. a j−1 a j a j+1. bn/2−1

bn/2)] to stage-B. Assume that a test vector t (x1,x2,

x3. , xn−2,xn−1xn) with weight-pair (w1(n),
w2(n)) detects a fault in stage-B of Module(n). The
question is, whether we can find a pattern in t such that
in (x1x2x3. xn/2−2xn/2−1xn/2) [(xn/2+1 xn/2+2

xn/2+3. xn−2xn−1xn)] there are 1s at exactly
w1(n) [w2(n))] positions. The following Lemma answers
this question.

Lemma 14. For n = 2k, using proper distribution of 0s and
1s, T w

B (n) can be made to include T w
B (n/2), when k ≥ 3.

Thus, the test set detecting the faults in stage-B of Module(n)
can be so chosen that it will detect all the single stuck-at
faults in stage-B of Module(n/2).

Proof: If an n-bit input vector t with weight-pair
(w1(n), w2(n)) is applied to Module(n), it means that a vec-
tor with n/2 inputs is applied to the both the Module(n/2) in
stage-A with the left [right] Module having the weight-sum
wsum(n/2) = w1(n) [w2(n)].

Now, we can easily obtain the set T w
B (n/2) from Lemma

12. Following the characteristics of T w
B (n), we can say that

in T w
B (n/2), wsum(n/2) appears as 0 or n for one time,

wsum(n/2) appears as 2 or n − 2 for 2 times, wsum(n/2) as 3
or n − 3 for 3 times, and so on. In this manner, wsum(n/2)
appears as n/4, (n/8 + 1) times (maximum).

For any value of i with 0 ≤ i≤ n/2 the incidence of
w1(n) = i or w2(n) = i occurs at least n/4 times.
As n/4 > n/8+1 for n > 8, for every required value of
wsum(n/2) in T w

B (n/2) can be obtained from w1(n) or w2(n).
Hence the proof.

5.3. The Complete Test Set T(n) for Module(n)

We consider the two representations of T (n): T w(n) and
T Bool(n), expressing the set with weights and Boolean val-
ues respectively. Let TA(n) be the test set for detecting
the faults in stage-A, which has two representations T w

A (n)

138 Rahaman, Das and Bhattacharya

and T Bool
A (n). Obviously, T w(n)[T Bool(n)] must include both

T w
B (n) [T Bool

A (n)] and T w
A (n) [T Bool

A (n)]. Now, stage-A con-
tains two circuits realizing Module(n/2). Each such cir-
cuit realizing Module(n/2) requires a test set that includes
T w

B (n/2) and T w
A (n/2). It has been stated in Lemma 13 that

for n = 2k , k>3, T w
B (n) can be chosen to include T w

B (n/2)
for the two modules Module(n/2) in Stage-A of Module(n).
Similarly, the set T w

B (n/2) in each Module(n/2) can be cho-
sen to include T w

B (n/4) of the stage-A of all the modules
realizing Module(n/2). Iterating this process, we can con-
clude that for any k > 3, T w

B (2k) of Module(2k) can be so
chosen that for any sub-circuit in Module (2k) realizing Mod-
ule(2i), T w

B (2i) can be constructed from T w
B (2k) for any i

with 2 ≤ i < k.

Lemma 15. T Bool(2) = T Bool
B (2).

Proof: The stage-A of Module(2), does not contain any
gate, but only two signal lines (Fig. 7(b)). The test for any
single line requires two test vectors 0 and 1 on that line. The
set T Bool

B (2) delivers such bits to the two input lines. Thus
no additional test is required for stage-A of Module(2), so
T Bool(2) = T Bool

B (2).

Lemma 16. For Module(8), TBool
B (8) can always be chosen

such that T Bool(8) = T Bool
B (8).

Proof: Following Lemma 12, T w
B (8) contains 14 vec-

tors with weight functions (w1(8), w2(8)):(0,0), (0,2), (3,0),
(0,4), (4,0), (1,1), (2,1), (1,3), (4,1), (2,2), (3,2), (2,4), (3,3)
and (4,4). We now have to set 0s and 1s to the input vari-
ables. In the stage-A of Module(8), there are two copies
of Module(4). For any test vector tw(8) with weight pair
(w1(8), w2(8)), w1(8)[w2(8)] becomes equal to wsum(4) of
the left [right] Module(4) of stage-A. Now among the 14
vectors of T w

B (8), let us consider the distribution of a sub-
set T ′of 9 vectors with (w1(8), w2(8)): (0,0), (0,2), (1,1),
(2,1), (1,3), (4,1), (2,2), (3,2), (2,4). Among the 9 values
of w1(8) in T ′ (0, 0, 1, 2, 1, 4, 2, 3, 2) let us consider the
seven values (0, 1, 1, 2, 2, 2, 4) excluding one 0 and one
3, and among the 9 values of w2(8) in T ′ (0, 2, 1, 1, 3, 1,
2, 2, 4) let us consider the seven values (0, 1, 1, 2, 2, 2, 4)
excluding one 1 and one 3. T w

B (4) requires at least 5 vec-
tors with wsum(4) = 0, 2, 2, 2 and 4, (i.e., 0 and 4 for one
time each, 2 for 3 times) and thus this requirement is sat-
isfied in both cases by the above-mentioned seven values.
Thus, T ′ is sufficient to include T w

B (4) of the two pieces
of Module(4) in the stage-A of Module(8). Each of these
seven values (0, 1, 1, 2, 2, 2, 4) can be divided as (0 + 0,
0 + 1, 1 + 0, 1 + 1, 0 + 2, 2 + 0, 2 + 2) providing w1(4)
as (0,0,1,1,0,2,2) and w2(4) as (0,1,0,1,2,0,2). Each set of
seven such values of w1(4) and w2(4) contains the values
(0,1,1,2), which are sufficient for wsum(2). These four val-
ues (0, 1, 1, 2) can be divided as (0 + 0, 0 + 1, 1 + 0, 1 + 1)
which are sufficient for T w

B (2) [Example-8]. From T w
B (2),

we can easily obtain T Bool
B (2) and T Bool(2) = T Bool

B (2)

[Lemma-15]. Thus, T Bool
B (8) can be made to be equal to

T Bool(8).

Lemma 17. For n = 2k with k > 2, T Bool
B (n) can always

be chosen such that T Bool(n) = T Bool
B (n).

Proof: For k = 4, we can get T w
B (16) using Lemma 12. By

properly dividing each of w1(16)and w2(16) into two parts,
T w

B (16) can be made to include T w
B (8)for both Module(8)

in stage-A [Lemma 14]. Now, for each Module(8), TBool
B (8)

can always be chosen such that T Bool(8) = T Bool
B (8) [Lemma

16]. It implies that it is always possible to choose T Bool
B (16)

such that T Bool(16) = T Bool
B (16).

By a similar argument, for k = 5, as T w
B (32) can be

made to include both Module(16) in stage-A of Module(32)
and T Bool(16) = T Bool

B (16), one can prove T Bool(32) =
T Bool

B (32).
Using recursion, we can now prove the Lemma.

Lemma 18. Module(4) requires at least 6 tests.

Proof: Lemma 14 fails for n = 4. That is, T w
B (4) can-

not be made to include T w
B (2). It is also evident from

Example-8 that wsum(2) =1 appears 2 times in T w
B (2),

but w1(4) or w2(4) = 1 occurs only one time. Thus, in
each of w1(4) and w2(4), one additional 1 is needed to in-
clude T w

B (2) of two Module(2) of stage-A of Module(4).
Let us append one additional vector having w1(4) =1, and
w2(4)= 1 with T w

B (4) to get T w(4). Thus, T w(4)is given as
follows:

T w(4) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

wmin(4) w1(4) w2(4) wsum(4)

0 0 0 0

0 0 2 2

0 2 0 2

1 1 1 2

1 1 1 2

2 2 2 4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

As T w
x (4) includes T w

B (2) for both the Module(2) in stage-
A, and T Bool(2) = T Bool

B (2) [Lemma 15], the weight func-
tions in T w

x (4) can be properly distributed to be sufficient to
test the stage-A.

Example 11. From T w
x (4), by proper distribution of weight

functions, we can derive T Bool(4) as follows:

Implementing Symmetric Functions with Hierarchical Modules for Stuck-at and Path-Delay Fault Testability 139

T w
x (4) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w1(4) w2(4)

0 0

0 2

2 0

1 1

1 1

2 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⇒ T w
x (4) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w1(4) w2(4)

0 + 0 0 + 0

0 + 0 1 + 1

1 + 1 0 + 0

0 + 1 0 + 1

1 + 0 1 + 0

1 + 1 1 + 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⇒ T Bool(4) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 x2 x3 x4

0 0 0 0

0 0 1 1

1 1 0 0

0 1 0 1

1 0 1 0

1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Theorem 4. For n = 2k , Module(n) admits a univer-
sal test set. For k = 1 and 2, the size of this test
set is 4 and 6 respectively, and for k > 2, it is (n2/
8 + 3n/4).

Theorem 5. Each path in Module(n) is robustly path-
delay testable.

Proof: We will prove the claim recursively. The Module(n)
is a BIP circuit (i.e., no line exists that reconverges with un-
equal inversion parities) realizing positive unate functions
(Fig. 5). It can be shown that Module(n) is irredundant un-
der all multiple stuck-at faults. Let us assume that Mod-
ule(� n/2 �) and Module(� n/2) are robustly path-delay
testable. In other words, any path from an input to an out-
put of the stage-A of Module(n) is robustly testable. In the
stage-B of Module(n), the sub-stage-B1 comprises AND or
OR gates, inputs to each of which are independent (arriv-
ing from two different blocks A and B with no common
input). Thus, every path can be sensitized up to the output
of the second stage. The sub-stage B-2 consists of AND
gates, and the outputs of this sub-stage are OR-ed in the
form of a tree in the sub-stage B-3. No two product terms
generated at this stage are mutually disjoint. Further, for
any particular output, no product term is covered by the
any other product term appearing in the Boolean expression
of the corresponding function. Thus, for any path starting
from a line in the stage-B to any output, non-controlling
logic values can be set to all the side inputs of the AND/OR
gates along the path. Therefore, Module(n) is robustly
testable for all path-delay faults if Module(� n/2 �) and Mod-
ule(� n/2) are robustly testable. Continuing the argument,
it can be inferred that Module (� n/2 �) {Module (� n/2)}
will be robustly delay testable, if Module (� (� n/2 �)�)
and Module (� (� n/2 �)) {Module (� (� n/2) �) and Mod-
ule(�(� n/2))} are robustly testable. We can proceed re-
cursively in this fashion to end up at Module(2) or Mod-
ule(1) where Module(2) consists of simply an OR and an
AND gate, and Module(1) consists of a single line. Obvi-
ously, all the paths in Module(2) and Module(1) are robust
testable. Thus, all paths in Module(n) are robustly path-delay
testable.

6. Synthesis of General Symmetric Functions

6.1. Consecutive Symmetric Functions

To synthesize a consecutive symmetric function that is not
unate, we use the result stated in Theorem 1 [3] that Sn(al −
ar) = Sn(al − n)Sn(ar+1 − n) = ul(n). ur+1(n). The unate
functions ul(n) and ur+1(n) are produced by Module(n). The
complete circuit is shown in Fig. 14(a).

Example 12. S6(3, 4) is realized as S6(3, 4) = S6(3 −
6).S

6
(5 − 6) = u3(3) · u5(5). It is shown in Fig. 14(b).

Theorem 6. The above implementation of any consecutive
symmetric function Sn(al − ar), (al �= ar), is robustly path-
delay testable.

Proof: Follows from Theorem 4 and the results in [3].

Fig. 14. Realization of (a) Sn(al − ar) (b) Sn(3, 4).

Fig. 15. Testable circuit realiz-
ing S12(1, 2, 5, 6, 7, 9, 10).

140 Rahaman, Das and Bhattacharya

Table 1. Comparative features of Module (n)

As in [6] As in [8] Proposed design

=(n2 + n log n − n)/2 for n = 2k

= C(p) + C(n − p) + (n − p)(3p − n + 1)
Cost(# 2-input gates) n(n − 1) n(n − 1) for 2k−1 < n ≤ 2k where p = 2k−1

Delay
Min. n n � log n �
Max. 2n · (n − 1) 2n · (n − 1) = � logn� (� logn� +3) /2−2 for n > 3p/2

= � logn� (� logn� +3) /2−3 for n =3p/2
= � logn� (� logn� +1) /2+ � log(n − p + 1)� −2
for n < 3p/2. where 2k−1 < n < 2k and p = 2k−1

Path-delay Not Robustly Robustly testable
testability testable testable

Table 2. Cost and delay of Module(n)

2-input gates Delay

as as in [6] Proposed
in [6] Proposed and [8] method

n & [8] method Min Max Min Max

1 0 0 0 0 0 0
2 2 2 2 3 1 1
3 6 6 3 5 2 3
4 12 10 4 7 2 3
5 20 18 5 9 3 6
6 30 24 6 11 3 6
7 42 34 7 13 3 7
8 56 40 8 15 3 7
9 72 56 9 17 4 10

10 90 66 10 19 4 10
11 110 82 11 21 4 10
12 132 90 12 23 4 10
13 156 112 13 25 4 11
14 182 124 14 27 4 11
15 210 144 15 29 4 12
16 240 152 16 31 4 12

Table 3. Comparison of area and delay for benchmark circuits

Area Delay

Original After Proposed Original After Proposed
Circuit # Inputs # outputs circuit optimization tech. circuit optimization tech.

sym9 9 1 383 290 84 13 14 8
sym10 10 1 286 167 98 15 16 9
rd53 5 3 85 48 45 11 12 7
rd73 7 3 220 110 84 11 13 8
rd84 8 4 308 132 101 15 11 9

6.2. Nonconsecutive Symmetric Functions

To synthesize a nonconsecutive symmetric function for ro-
bust path-delay testability, it is first expressed as a union of
several maximal consecutive symmetric functions, and then
each of the constituent consecutive symmetric functions
is realized by combining the appropriate outputs of Mod-
ule(n), via unate decomposition. Finally, they are OR-

ed together. It is shown in [3] that the overall circuit
based on such decomposition is robustly path-delay fault
testable. Determination of a complete test set for detect-
ing all path-delay faults needs further analysis of the cir-
cuit. Implementation of a nonconsecutive symmetric func-
tion (Example 1: S12(1, 2, 5, 6, 7, 9, 10)) is shown in
Fig. 15.

Implementing Symmetric Functions with Hierarchical Modules for Stuck-at and Path-Delay Fault Testability 141

Table 4. Cost of general symmetric functions

Number of gate inputs Number of paths

Functions TCAD95 TCAD00 VLSI02 Proposed TCAD95 TCAD00 VLSI02 Proposed
Sn(al − ar) [2] [3] [9] method [2] [3] [9] method

S10(5,6) 2354 1296 130 97 2100 1034 420 392

S11(6,7) 4556 2433 174 111 4092 1957 1278 466

S11(3–7) 2147 1108 174 107 1815 916 1066 346

S11(3,4) 3137 1675 174 105 2805 1365 266 360

S11(5,6) 5082 2740 174 110 4620 2220 676 448

S11(4,5) 4556 2433 174 109 4092 1957 434 512

S12(7,8) 8318 4330 190 124 7524 3548 1492 504

S12(4–8) 4455 2340 190 123 3960 1960 1124 432

S12(6,7) 10430 5463 190 123 9504 4469 1308 552

S12(5,6) 10430 5463 190 126 9504 4469 692 528

S13(7,8) 20165 10261 218 147 18447 8451 2362 770

S13(4–8) 10584 5336 218 144 9295 4494 1814 614

S13(6,7) 22308 11518 218 148 20592 9530 2094 848

S13(5,6) 20165 10261 218 145 18447 8451 944 786

S14(8,9) 37039 18596 234 165 34034 15540 3560 1176

S14(5–9) 22022 11262 234 166 20020 9578 1468 1112

S14(5,6) 37039 18596 234 165 34034 15540 894 1020

S14(6,7) 45476 22877 234 166 42042 19081 2220 1056

S15(5–9) 50052 24671 286 183 45045 21085 2559 1292

S15(5,6) 65067 32312 286 179 60060 27354 1170 1188

S15(7,8) 96525 47950 286 182 90090 40362 3189 1382

7. Experimental Results

We compare the hardware cost and delay of Module(n) with
the earlier designs reported in [6, 8] in Table 1 and Table
2. Both the parameters are favorably reduced in the new
design. For general consecutive symmetric functions, we
compare the hardware cost and the number of paths with
those in [2, 3, 9] (Table 4). The results show a significant
reduction in circuit cost compared to those in [2, 3]. While
the earlier methods use a fixed number of logic levels, for
instance, at most 4 [2], or at most 5 [3], the proposed method
reduces the logic significantly at the cost of increasing the
number of levels. However, the number of paths in the pro-
posed design reduces drastically compared to that in [2, 3,
9]. Table 3 depicts results on some benchmark circuits real-
izing symmetric functions taken from MCNC benchmarks
[20]. For each benchmark circuit, we compute the area and
delay of both the original and optimized circuits. These cir-
cuits are not path-delay testable. Moreover, except 9sym, no
other circuit has two-level path-delay testable realization.
The proposed implementation technique using hierarchical
modules ensures path-delay fault testability for all these cir-
cuits and yields lesser area and (max) delay compared to
those of the original implementations. To calculate the area,
some gates are replaced by equivalent gates. Say, for exam-
ple an AND-OR realization is replaced by NAND-NAND.

We have used the SIS tool [10] and mcnc.genlib library to
estimate area for comparison.

8. Conclusion

The proposed procedure for implementing a symmetric
Boolean function using hierarchical modules is simple and
it guarantees robust testability of all path-delay faults. Mul-
tiple symmetric functions of n variables can be implemented
by using only one block of Module(n) and some additional
logic. A test set of size O(n2) for detecting all single stuck-
at faults in the module can be easily derived. The number
of paths in the circuit is reduced significantly compared to
the earlier designs, and hence the time needed for delay test
generation and test application is likely to reduce propor-
tionately. Although the design is shown to be robustly path-
delay testable, determination of an optimum test sequence
for detecting all path-delay faults in the circuit remains an
open problem.

References

1. D.L. Dietmeyer, “Generating minimal covers of symmetric function,”
IEEE TCAD, Vol. 12, No. 5, pp. 710–713, 1993.

142 Rahaman, Das and Bhattacharya

2. W. Ke and P.R. Menon, “Delay-testable implementations of symmetric
functions,” IEEE TCAD, Vol. 14, pp. 772–775, 1995.

3. S. Chakraborty, S. Das, D.K. Das, and B.B. Bhattacharya, “Synthesis
of symmetric functions for path-delay fault testability,” IEEE TCAD,
Vol. 19, pp. 1076–1081, September 2000.

4. Z. Kohavi, Switching and Finite Automata Theory, McGraw-Hill, New
York, 1977.

5. Y.X. Yang and B. Guo, “Further enumerating boolean functions of
cryptographic significance,” J. Cryptology, Vol. 8, No. 3, pp. 115–122,
1995.

6. S.L. Hurst, “Digital summation threshold logic gates: A new circuit
element,” IEE Proc., Vol. 120, No. 11, pp. 1301–1307, 1973.

7. J. Ja′Ja′ and S.M. Wu, “A new approach to realize partially symmetric
functions,” Tech. Rep. SRC TR 86–54, Dept. EE, University of Mary-
land, 1986.

8. H. Rahaman, D.K. Das, and B.B. Bhattacharya, “A simple delay-
testable design of digital summation threshold logic (DSTL) array,”
in Proc. 5th International Workshop on Boolean Problems, Freiberg,
Germany, September 2002.

9. H. Rahaman, D.K. Das, and B.B. Bhattacharya, “A new synthesis
of symmetric functions,” in Proc. Int. Conf. ASP-DAC/VLSI Design,
2002, pp. 160–165.

10. E.M. Sentovich, et al., “SIS: A sequential system for sequen-
tial circuit synthesis,” Technical Report UCB/ERL m92/41. Elec-
tronic Research Laboratory, University of California, Berkeley, May
1992.

11. M. Perkowski, P. Kerntopf, A.Buller, M.C.-Jeske, A. Mishchenko, X.
Song, A. Al-Rabadi, L.Jozwiak, A. Coppola, and B. Massey, “Reg-
ularity and symmetry as a base for efficient realization of reversible
logic circuits,” Manuscript, 2001.

12. P. Picton, “Modified fredkin gates in logic design,” Microelectronics
Journal, Vol. 25, pp. 437–441, 1994.

13. G.L. Smith, “Model for delay faults based upon paths,” in Proc. Int.
Test Conf., 1985, pp. 342– 349.

14. C.J. Lin and S.M. Reddy, “On delay fault testing in logic circuits,”
IEEE Trans. CAD, Vol. CAD-6, pp. 694–703, Sept. 1987.

15. R. Betancourt, “Derivation of minimum test sets for unate
logic circuits,” IEEE Trans. Comput., Vol. C-20, pp. 1264–1269,
1971.

16. S. B. Akers, “Universal test sets for logic networks,” IEEE Trans.
Comput., Vol. C-22, pp. 835–839, 1973.

17. S.M. Reddy, “Complete test set for logic functions,” IEEE Trans.
Comput., Vol. C-22, pp. 1016–1020, Nov. 1973.

18. U. Sparmann, et al., “Minimal delay test for unate gate networks,” in
Proc. Asian Test Symp., pp. 10–16, 1997.

19. H. Kim and J.P. Hayes, “Realization-independent ATPG for designs
with unimplemented blocks,” IEEE Trans. CAD, Vol. 20, pp. 290–306,
Feb. 2001.

20. S. Yang, “Logic synthesis and optimization benchmarks guide,” Tech-
nical Report 1991-IWLS-UG-Saeyang, Microelectronics Center of
North Carolina.

Hafizur Rahaman received the Bachelor of Electrical Engineering degree
from the Bengal Engineering College, Calcutta University, India in 1986,
the Master degree in Electrical Engineering, and the Ph.D. degree in com-
puter science and engineering from the Jadavpur University, Calcutta, In-
dia in 1988 and 2003 respectively. He is currently chairing the Department
of Information Technology, Bengal Engineering and Science University,
Shibpur, India. His research interest includes logic synthesis and testing of
VLSI circuits, fault-tolerant computing, and quantum computing. He has
published several papers in well-known international journals and in re-
puted conference proceedings. He served in the Organizing Committee of
the International Conference on VLSI Design in 2000 and 2005, and as the
Registration Chair of the 2005 Asian Test Symposium (ATS), in Kolkata.

Debesh K. Das received the Bachelor and Master degrees in electronics and
telecommunication engineering, and the Ph.D. degree in computer science
and engineering all from the Jadavpur University, Calcutta, India in 1982,
1984, and 1997 respectively. He is currently full professor at the Department
of Computer Science and Engineering, Jadavpur University. He visited
the University of Potsdam, Germany, the Asian Institute of Technology,
Bangkok, the Abdus Salam International Center for Theoretical Physics,
Trieste, Italy, and the Nara Institute of Science and Technology, Japan. His
research work primarily focuses on logic synthesis and testing of VLSI
circuits and fault-tolerant computing. He has published numerous papers
in archival journals and refereed international conference proceedings. He
served in the Organizing Committee of the International Conference on
VLSI Design in 2000 and 2005. He also served as the Organizing Chair of
the 2005 Asian Test Symposium (ATS).

Bhargab B. Bhattacharya received the B.Sc. degree in physics from the
Presidency College, Calcutta, the B.Tech. and M.Tech. degrees in radio-
physics and electronics, and the Ph.D. degree in computer science all from
the University of Calcutta, India. Since 1982, he has been on the faculty of
the Indian Statistical Institute, Calcutta, where currently he is full profes-
sor. He held visiting professorship at the University of Nebraska-Lincoln,
USA, and at the University of Potsdam, Germany. In 2005, he visited
the Department of Computer Science and Engineering, Indian Institute of
Technology Kharagpur as VSNL Chair Professor. His research and teach-
ing interest includes logic synthesis, testing and physical design of VLSI
circuits, nanotechnology, graph and geometric algorithms, and image pro-
cessing architecture. He is author of more than 180 papers published in
archival journals and refereed conference proceedings, and inventor of 8
United States patents. Currently, he is collaborating with Intel Corporation,
USA, and IRISA, France, for development of image processing hardware,
chip layout analysis and design, and reconfigurable parallel computing
tools.

Dr. Bhattacharya is a Fellow of the Indian National Academy of Engi-
neering, a Fellow of the National Academy of Sciences, India, and a re-
cipient of the VASVIK Award for Electronic Sciences and Technology. He
is on the editorial board of the Journal of Circuits, Systems, and Comput-
ers (World Scientific, Singapore), and the Journal of Electronic Testing—
Theory and Applications (Springer).

