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Abstract Advances in electronics have revolutionized the
way people work, play and communicate with each other.
Historically, these advances were mainly driven by CMOS
transistor scaling following Moore’s law, where new genera-
tions of devices are smaller, faster, and cheaper, leading to
more powerful circuits and systems. However, conventional
scaling is now facing major technical challenges and funda-
mental limits. New materials, devices, and architectures are
being aggressively pursued to meet present and future com-
puting needs, where tight integration of memory and logic,
and parallel processing are highly desired. To this end, one
class of emerging devices, termed memristors or memristive
devices, have attracted broad interest as a promising candidate
for future memory and computing applications. Besides tre-
mendous appeal in data storage applications, memristors offer
the potential to enable efficient hardware realization of
neuromorphic and analog computing architectures that differ
radically from conventional von Neumann computing archi-
tectures. In this review, we analyze representative memristor
devices and their applications including mixed signal analog-
digital neuromorphic computing architectures, and highlight
the potential and challenges of applying such devices and
architectures in different computing applications.
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1 Introduction

As we approach the end of a computing era, the search for
futuristic alternatives is on high gear. Historically, computers
steadily achieve better performance over time through
Moore’s law scaling of the basic logic device – silicon tran-
sistor. However, continued performance gains through simple
device scaling can no longer be sustained after hitting the heat
wall and the memory wall in the early 2000s, while transistor
scaling itself will also soon reach fundamental physical limits
[1–4]. Moreover, current computers are not optimized for
many of today’s applications which typically involve large
amounts of and demand high throughput and/or low power.
To fulfill these new demands, the development of new driving
technologies at the device level and new computing para-
digms at the system level needs to occur concurrently. In re-
cent years, an emerging class of devices, termed memristors
(memristive devices), have gained strong interest as a prom-
ising candidate for future data storage and efficient parallel
computing paradigms [5–9]. At the device level, memristor-
based memories and logic circuits have already shown great
potential to help extend the lifetime of classical computing
architectures [6, 10]. At the system level, a new class of
analog/digital neuromorphic architectures has emerged [9,
11–13], which can exploit the physics of such resistive devices
to directly and naturally implement brain-inspired computing
paradigms [5, 14–16], making them extremely attractive for
efficient computing systems that can attack data-intensive
tasks in both the near term and the long term.

Memristors are two-terminal devices that store their state in
the form of different values of resistance (Fig. 1(a)) [17, 18].
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In a typical device, the resistance state can be changed from a
high-resistance state (HRS) to a low-resistance state (LRS)
when the bias voltage is above a threshold voltage during a
so-called SET process. The device will maintain the new re-
sistance value, until it is subjected to a RESET process where
the resistance can be switched back to the HRS, and vice versa
(Fig. 1(b)). This capability enables such devices to serve as
memory elements and simultaneously as (two-terminal)
switches. The resistive memory effect has been demonstrated
based on different switching mechanisms, as summarized in
Fig. 1(c). Specifically, redox devices rely on an oxidation/
reduction mechanism of ionic species to change the local
chemical composition and physical properties of the switching
layer, typically in the form of creating and annihilation of a
conductive filament, leading to reversible changes of local

resistivity and overall device resistance [19–21]. Devices
based on electronic effects depend on effects such as electron
trapping [22] and insulator-metal transition processes in a
Mott insulator [23–25]. Phase change (PCM) devices rely on
changing the phase, either amorphous (high resistance) or
crystalline (low resistance) of the material [26, 27]. Spin
torque transfer (STT) devices rely on the switching of the
relative magnetic orientation of a spin valve, with parallel
orientation leading to LRS and antiparallel orientation leading
to HRS [28]. Finally, MEMS-based devices depend on me-
chanical movements that bring the electrodes closer (LRS) or
further apart (HRS) [29]. Each of these devices offers a set of
strengths and weakness that may fit specific applications.
However, in this review we will focus on redox devices,
which has generated intense research interest due to their

Fig. 1 (a) Bipolar switching
behavior of a memristive device.
(Inset) Crosspoint structure of the
two-terminal device. (b)
Categories of memristive devices
based on the memory effect
mechanism
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generally promising resistive switching properties, CMOS
compatibility and their proven ability to integrate within
computing systems. PCM devices will also be discussed
briefly, since they mostly share the same application
domains as redox devices and are technically more ma-
ture at the current stage and hence may potentially lead
to early applications.

The organization of the review is as follows. We will first
introduce the different memristive device technologies (focus-
ing on redox and PCM types), followed by discussions on the
role of such new device technologies in classical memory and
digital logic systems. Next, we discuss the potential of
memristive devices to enable emerging computing ap-
proaches, including neural networks, analog computing, and
stochastic computing. Each of the considered computing ap-
plication is assessed based on the required device performance
metrics including endurance, variability, nonlinearity, ON/
OFF ratio, power consumption, and switching behavior.
Finally, we relate the application requirements to what the
current device technology can offer. By performing the
device- and system-level analysis, the goal is to hopefully
provide an insight into the status of the memristor device
research and the required future developments to meet the
applications challenges.

2 Memristive devices based on redox processes

The most widely studied memristive devices are the ones
based on redox processes that involve active cation or anion
species. A redox device is typically fabricated in a metal-
insulator-metal (MIM) structure, where the insulator is a thin
dielectric layer (typically a few nanometers thick) within
which the resistive switching (RS) takes place. At these
nanoscale dimensions the dielectric layer can act as a
solid electrolyte system for the ionic species, rather than
a conventional insulator [30]. Specifically, even a mod-
erate voltage drop can create a large enough electric
field that in turn leads to an exponential speedup effect
on the ionic oxidation, migration and reduction process-
es [30]. With the electrolyte’s ability to dissolve and
conduct ions it facilitates a series of electrochemical
reactions that lead to the oxidation/reduction and migra-
tion of the cations or anions, and subsequently a mod-
ification of the local chemical compositions of the film
and changes of the film’s physical properties including
its resistance. In most redox devices, the memory effect
is driven by the formation and modulation/annihilation
of a localized conductive filament, although it RS based
on interface effects also have been observed. The two
main types of redox-based memristive devices, depending
on the nature of the active ionic species (cation or anion), are
specifically discussed below.

2.1 Metal-ion based devices

The Metal-ion (M-ion) based devices are generally known as
Conductive Bridge RAM (CBRAM) or Electrochemical
Metallization Cell (ECM). The device structure is asymmetric,
with one active metal (typically Ag or Cu) electrode and an
inert metal electrode in the MIM structure. Applying a high
enough positive voltage to the active electrode oxidizes the
metal atoms into ions and subsequently dissolves the metal
ions into the thin film electrolyte. Under the applied electric
field, the metal ions then migrate through the electrolyte film
and finally become reduced into metal atoms that eventually
form metallic clusters, schematically shown in Fig. 2(a).
These sequential processes lead to the nucleation and contin-
ued growth of the (metallic) filament until the two electrodes
become connected, and the device resistance abruptly drops to
the LRS. This process corresponds to the SET process.
Afterward, the filament can be erased by applying a
negative voltage to the active electrode, which will re-
verse the electrochemical processes and lead to the rup-
ture of the filament, corresponding to the RESET pro-
cess. Figure 2(b) and (c) show transmission electron
microscopy (TEM) images verifying the formation of a
complete filament after SET and the rupture of the filament
after RESET [32].

The dynamic growth of the metallic filament can be affect-
ed by the ion mobility (μ) and the redox rate (Γ), as discussed
in Ref. [33]. The expansion and shrinkage of the metal clusters
depend on the supply of the ions that facilitates the filament
formation. The ions supply, in turn, is determined by the redox
rate (oxidation and reduction rates) as well as the speed of the
ion migration in the electrolyte (the ion mobility). Different
growth modes have been observed experimentally and can be
successfully explained by the relative strength of the two dy-
namic factors ionmobility (μ) and the redox rate (Γ), as shown
in Fig. 3. The values of (μ) and (Γ) can be tuned by the careful
selection of the electrode material and the switching materials,
as well as the operating conditions since both of them can be
strongly affected by the applied electric field. Typically, Cu
and Ag are the materials of choice for the active electrode due
to their ability to dissolve in thin film electrolytes at low elec-
tric fields and their high ionic mobility [33]. For the solid
electrolyte layer, a very wide range of materials have been
explored, including oxides [21], chalcogenides [34], and or-
ganic materials. Originally, chalcogenides were chosen due to
the high diffusivity of the active metal species in these films.
However, these devices normally suffer from high program-
ming current and very low RESET voltage (comparable to the
thermal voltage) that increases accidental reset error, along
with material compatibility issues [35]. As a result, recent
studies on CBRAM devices have focused on conventional
insulator-based MIM structures that also offer promising
device performance.

6 J Electroceram (2017) 39:4–20



M-ion based devices have shown several key strengths in-
cluding high scalability, fast switching time, low SET and
RESET voltage, low current, high ON/OFF, and CMOS com-
patibility [19, 36–38]. However, device variability and endurance
may pose challenges in some applications [38, 39]. The source of
the variability is the stochastic nature of the filament creation,
where the filament shape and the contact point may not be

consistent over switching cycles. A tradeoff has been observed
between the switching voltage and the variability based on the
electrolytematerial selection [35]. The endurance issue originates
from the fact that the conductive filament is composed of foreign
ionic inclusions from the active metal, which may cause stress to
the dielectric film and can eventually lead to permanent plastic
deformation if programming conditions are not optimally set

Fig. 2 (a) Stages of filament formation and annihilation in an M-ion device (Ref. [31]). (b–c) TEM images of a lateral device showing the creation (b)
and rupture (c) of nanoscale filaments (Ref. [32])

Fig. 3 Dependence of the
filament growth dynamics on the
ionmobility (μ) and the redox rate
(Γ). Both parameters are also
dependent on the applied electric
field (Ref. [33])
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[40]. As a result, a typical M-ion based device can reach 106

SET/RESETcycles that are sufficient for data storage, but further
improvements of the cycling (e.g. 1015) to that required for a
main memory (e.g. DRAM) will require extensive material and
system optimizations. Table 1 summarizes the set of materials
used to fabricate M-ion devices and their key features.

2.2 Oxygen-ion based devices

Besides metal ions, the redox and migration processes of anions,
most commonly oxygen-ions (and subsequently oxygen-vacan-
cies, VOs) are also widely used to build memristive devices.
There are three types of oxygen-ion (or oxygen vacancy) based
redox devices, the valency change memory (VCM), thermo-
chemical memory (TCM) and filament-less (interface-type) de-
vices. In VCM and TCM, switching relies on the creation and
annihilation of an VO-rich filament. While VCM is electric-field
driven and exhibits a bipolar electrochemical switching behavior,
TCM relies on a thermochemical fusing and anti-fusing process
and thus exhibits unipolar switching behavior. Filament-less de-
vices rely on interface effects to modulate a Schottky or tunnel
barrier between the switching layer and an electrode. Out of the
three oxygen-ion based redox devices, VCM is generally consid-
ered as the most promising as TCM devices suffer from higher
power consumption needed to create the temperature rise and
lower integration density due to thermal interference among
neighboring cells, while interface-type devices normally suffer
from shorter-retention time. As a result, we will be focusing our
discussions on VCM memory here.

In contrast to M-ion devices, oxygen-ion devices, includ-
ing VCM, normally use inert electrodes and the active species
(i.e. oxygen ions) are native to the switching layer, typically a
transition metal oxide. Active metals are not employed in VCM
memory to avoid metal-ion migration that complicates the pro-
gramming process. An asymmetry is typically built-in the device,
such that one of the oxide/electrode interfaces has high VO con-
centration and serves as a reservoir for oxygen vacancies during
RS, while the oxide film near the other interface is close to be
stoichiometric and thus exhibits high resistance [38]. Under an
applied electrical field, oxygen vacancy diffusion from the reser-
voir layer and associated redox processes can increase the local
VO concentration in the switching layer. These localized oxygen
vacancy-rich regions serve as conducting channels (filaments)
and can be subsequently reset and set again through applied bias
voltages [57]. A forming process may be required to create the
initial high-density oxygen vacancy regions for a device in the
initial state. Figure 4(a) and (b) show the steps of the conductive
filament formation process in a typical VCM, along with TEM
evidence of a localized region with substantial oxygen-ion con-
centration change. After forming, repeated switching can be ob-
tained by modulating the VO concentration in the filament re-
gion. It is also common to fabricate VCM devices using two
oxide layers, with one containing higher VO concentration than T
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the other [61]. The filament is created in the low VO density
layer, while the other layer acts as a source for the oxygen
vacancies.

Recent progresses in VCM research have led to devices with
desirable memory characteristics including excellent scaling, fast
switching, and high endurance (1012). Additionally, these devices
can switch in an analog ormulti-level fashion enablingmultilevel
state representation, as shown in Fig. 4(c). The incremental resis-
tance change is desirable for applications such as neuromorphic
computing, as will be discussed later in Section 5.1. However,
further development is still needed to improve the device vari-
ability and lower the programming current. In particular, consid-
ering VCM devices typically show lower on/off (e.g. 10–100)
compared to M-ion based devices (> 103) controlling the device
variability is particularly important for large-scale applications of
VCM. Reducing the programming current to μA or even lower
will also further improve the power efficiency of thememory and
computing circuits based on VCMdevices. Oftentimes, tradeoffs
can be made by improving one performance parameter at the
expense of others by tuning the programming conditions [62].

3 Phase change devices

PCM devices change their resistance based on the micro-
structural re-arrangement of a chalcogenide layer, being either
amorphous or crystalline [55]. The device exhibits high resis-
tance in the amorphous phase, and low resistance in the crys-
talline one. Several chalcogenide materials have been

explored as phase change candidates, where currently GST
(Germanium-Antimony-Tellurium) is the most widely used
[26, 53]. The state change of the PCM material is normally
driven by a thermal process, through melting and fast
quenching (during RESET) into the amorphous state, and
slow crystalline nucleation and growth (during SET) into the
crystalline phase. The basic PCM device structure consists of
a phase change layer sandwiched between two metal elec-
trodes, where the electrodes act as Ohmic contacts to the chal-
cogenide film. Practical PCM devices include a heater layer
beneath the phase change material, where localized heating is
used to confine the heat transfer that improves the device
performance. Nanoscale heaters can be utilized to localized
the phase change effect and improve the device energy con-
sumption and scalability [63]. To program a PCM, short, high
current pulses RESET the device to the high resistance amor-
phous phase, while long, low current pulses crystallize the
phase change material and reduce its resistance, as shown in
Fig. 5. It should be noted here that the crystal state of the
chalcogenide layer also affects its reflectivity, a reason why
phase change materials are widely utilized by the industry of
optical storage media [53].

State-of-the-art PCM devices can switch within 100 ns with
a bias of few volts [26]. This is considered an advantage over
classical Flash memories. However, PCM consumes more en-
ergy per bit compared to Flash and redox based devices [26].
Table 1 compares the performance of PCM with ECM and
VCM based redox memories. Considerable efforts and re-
sources have been put in PCM research to improve the device

Fig. 4 (a) TEM images showing the creation of a localized region
(Ti4O7) with lower Ti valency in a TiO2 film (Ref. [58]). (b)
Schematics showing the creation and annihilation of an oxygen

vacancy-rich filament (Ref. [59]) (c) Multi-level switching for a SrTiO3

device. (Ref. [60])
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reliability and yield. Due to its maturity PCM may be the first
Bemerging^ memory technology to see its applications in new
memory or computing architectures in the short term. However,
in the long-term redox devices (ECM or VCM) can lead to
better memory products and potentially offer a more natural
fit with emerging computing systems such as neuromorphic
computing due to their bipolar, field-driven programming na-
ture, lower power consumption, and higher integration density.

4 Memristive device applications: classical
computing systems

The first application of memristive devices may arrive in the
form replacing memory and logic elements in classical com-
puting systems, which are facing multiple challenges at both
the architecture and device levels. At the system level, the
memory bottleneck associated with the conventional von
Neumann architecture degrades the overall system perfor-
mance [64].While at the device level CMOS transistor scaling
is expected to reach fundamental physical limits in around a
decade [3, 4]. As a memory element, memristive devices offer
many attractive properties that help address the memory and
storage challenges of classical computers, as discussed below.

4.1 Memory and storage

Memory and data storage systems are major bottlenecks today
limiting the classical computing system performance [64], a
problem particularly exemplified in the current big data era.
The speed and energy cost associated with data communica-
tion adds an extra dimension to the problem and led to the so-
called memory wall [1, 2]. In the last decade, redox
memristive devices in the form of resistive memories
(RRAMs) have emerged as a promising candidate for ultra-
high density data storage (e.g. solid-state drives, SSDs) and
random access memory (RAM) applications [38, 46, 65, 66].
As discussed in Section 2, RRAM offers excellent scalability,
fast access, low power, and wide memorymargin [38, 67]. For
example, RRAMs are overall much faster than traditional hard
disk drives and Flash storage, and allow random write, read,
and erase [38, 51]. These attractive properties make it possible
to create a simpler and flatter memory system compared with
the complex pyramid memory hierarchy used today [65]. In
addition, RRAM fabrication requires a low thermal budget,
enabling RRAM arrays to be directly integrated on conven-
tional CMOS circuitry or other types of 3D integration of the
memory with processor [68], as shown in Fig. 6. This high-
density 3D integration of processor and memory can provide a

Fig. 5 SET and RESET processes of a PCM device, where the amorphous phase represents the OFF state and the crystalline phase represents the ON
state. (Ref. [53])
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significant boost to the computing system performance by
addressing the communication bottleneck between memory
and processors. Additionally, RRAM can be directly used in
in-memory vector and hyperdimensional computing ap-
proaches [9, 70]. Altogether, this new device technology can
extend the life of the von-Neumann computer architecture and
enhance the system’s ability to store and process large
amounts data more efficiently.

However, a number of challenges still remain. The density
advantage of RRAM originates from the simple crossbar
structure, where a memristive device is formed at each
crosspoint and can be used to store a binary bit of data
(Fig. 2(a)). From a device perspective, fast access and
wide ON/OFF margins are desirable, while a low write
(erase) current is also needed to reduce power consumption
during programming of large arrays. However, the low power
memristive devices may be prone to high fabrication or run-
time device variabilities. Additionally, while memory and data
storage systems share many requirements, the tradeoffs be-
tween device retention and cycling endurance are consider-
ably different in the two systems. A storage system requires
years of retention but can survive with a low number of en-
durance cycles, as the case of Flash memories. On the other
hand, memory systems can tolerate shorter retention with the
aid of refresh cycles, but demands much longer write/erase
cycles. Recent advances seem to suggest memristive devices
may be better suited for storage type applications with lower

fabrication cost, higher density, long data retention time but
comparatively shorter endurance cycle compared to other
memory technologies, namely, spin-transfer torque magnetic
random-access memory (STT-MRAM), although continued
material and device optimizations may lead to continued im-
provements in write/erase endurance to make RRAM better
suited for DRAM or SRAM-like memory applications.
Additionally, system-optimizations that utilize the retention
properties of the devices may help alleviate the endurance
requirement by reducing the number of refresh cycles, while
other techniques similar to wear leveling typically used in
Flash memories can also be utilized to improve the effective
system endurance [71].

Another major challenge facing memristive devices as
high-density memory elements is the sneak path problem
[66, 72–75]. Unlike other potential applications, accessing
memory/storage array is typically performed in a row-by-
row fashion. In a passive crossbar structure, the read and write
currents can pass through (possibly large amounts of) unse-
lected devices in the crossbar, which can diminish the read/
write margins as shown in Fig. 7. Sneak current also signifi-
cantly increases the total current driving requirement of the
circuitry and in turn, creates a practical limit on the size of the
crossbar array. Different biasing techniques can be used to
reduce the severity of the problem during read (at the expense
of power consumption), but these techniques may not be effi-
cient for practical array sizes [66]. Recent studies have shown

Fig. 6 Schematic showing potential 3D monolithic integration of RRAM and digital logic on the same chip (Ref. [69])
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that circuit level approaches can be adopted to mitigate the
sneak-paths effect [66, 67, 73, 75]. Another approach is to add
nonlinearity in the crossbar, either throughmemristive devices
with intrinsic nonlinear I-V characteristics or more practically,
through a serially connected Bselector^ element that offers a
high I-V nonlinearity [76, 77] to eliminate the parasitic current
effects [74]. The latter approach offers a modular design strat-
egy, where the selector device is optimized for high nonline-
arity and the memory element is tuned to meet the memory
requirements. Typically, the two devices are stacked over each
other to minimize device size [78]. Conventional transistors
can also be used to reduce sneak currents in the 1-transistor 1-
resistor (1T1R) memory cell structure [52, 79], although two-
terminal selectors are more desirable for very high-density
memory and storage applications.

4.2 Digital logic circuitry

Another area of study within the conventional computing ar-
chitecture is to utilize memristive devices as MOS transistor
replacements in a digital logic circuitry [10, 80–83].
Memristive logic circuits are reconfigurable and have a
built-in memory functionality. Hoverer, to have any chance
of being competitive memristive logic need to be as reliable
and as fast as their CMOS counterparts, and offer better scal-
ability and energy consumption. These requirements can be
fulfilled only by low-power and fast memristive devices. Like
their memory counterparts, digital logic circuitry cannot toler-
ate high device variability. The specific retention and endur-
ance requirements depend on the adopted circuit scheme. For
instance, implication, programmable logic-in-memory, and
ratioed logic circuits [10, 82, 84, 85] use writing operation
to implement the output function, thus will require very high
device endurance. On the other hand, reconfigurable table
[86] circuitry require writing only in the configuration stage
and thus can use devices with limited endurance cycles.
Similarly, one promising application for RRAM devices is
using them as switching elements for programmable circuitry
and FPGAs (Field-Programmable Gate Arrays) [87–89].
Here, the devices are used to connect the computing circuitry

rather than performing the real computing. Since RRAMs can
act both as switches and as memory, it can result in a much-
improved circuitry from the area and power consumption per-
spective. Moreover, RRAM devices have much smaller
footprints compared to its SRAM and FLASH counter-
parts commonly used in such types of circuits. On the
other hand, programmable applications expect extremely
high ON/OFF ratios from its switches and very long
retention for practical applications.

5 Applications in emerging computing architectures

Perhaps the most intriguing aspect of memristive devices is
their potential in emerging computing architectures. These
architectures aim to address the computing challenges present-
ed by today’s applications, especially cognitive, data-centric,
and smart sensor networks. Classical computers were origi-
nally designed to handle vast amounts of arithmetic operations
with high speed and high precision. For example, the first
known microprocessor chip Intel 4004 was developed for a
calculator [90]. Conversely, many of today’s applications in-
volve the processing of visual, auditory, or other types of
sensory data that can be affected by noise, and can in turn
tolerate some amount of imprecision during computation.
While some of the neural network and computational concepts
being used for such tasks are not necessarily new, recent ad-
vances in hardware, including memristor-based devices and
circuits, dramatically changed the landscape of the co-design
and implementation of these emerging computing.

5.1 Neuromorphic computing

Neuromorphic computing is one such example. Neural net-
works have already demonstrated an extraordinary ability to
carry out pattern recognition and inference in real-world ap-
plications, with much better efficiency and throughput than
classical computing techniques [91–93]. However, these
implementations are mostly based on conventional computing
hardware that still suffers from the von Neumann bottleneck,
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Fig. 7 (a, b) Undesired sneak-paths in a passive crossbar array, (c) Readout distribution showing the loss of read margin with sneak current (Ref. [66])
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while the real potential of neuromorphic systems will only be
realized after drastically re-designed hardware systems can be
built that allow efficient mapping and operations of the neural
networks [6, 15, 94, 95]. Neuromorphic hardware architec-
tures typically comprise hybrid analog/digital circuits that im-
plement physical models of neural computing systems, using
computational principles analogous to the ones used by real
nervous systems [11]. Below we provide a brief introduction
of neuromorphic hardware systems, first based on mixed-
signal CMOS implementation, followed by discussions on
memristive-device implementations.

When implemented in analog VLSI technology,
neuromorphic circuits use, to a large extent, the same physics
used in real neural systems (e.g. they transport majority car-
riers across the channel of transistors by diffusion processes,
very much like neurons transport ions inside or outside cell
bodies through their proteic channels). Given the analogies at
the single channel level, larger scale neuromorphic circuits
share the same physical constraints of their biological coun-
terparts (given by noise, temperature dependence, inhomoge-
neities, etc.) at the macroscopic level. Therefore, while these
architectures often have to use a range of different strategies
for optimizing robustness to noise, which in many cases are
analogous to the ones used in biology, they also exhibit desir-
able features similar to those of real neural computing sys-
tems, such as very low power consumption, low size, low
latency, and a high degree of fault tolerance. It is these very
features that make neuromorphic circuits and systems opti-
mally suited for integration with memristive devices [16].

Topologically, the memristive crossbar can be readily
mapped into an interconnected network, thus allowing
straightforward mapping of neural networks with each
memristive device acting as a synapse connecting a pair of
neurons (Fig. 8) [49, 96]. Figure 8(a) and (b) shows an exam-
ple of a single memristor device acting as a synapse and re-
producing the Spike-Timing Dependent Plasticity (STDP) be-
havior of biological synapses. Like a biological synapse, a
memristor device stores and processes information at the same
physical location concurrently. This is possible because the
device’s memory is represented by the two-terminal resis-
tance, which in turn regulates information (current) flow
between the pair of neurons connected to it. The excellent
scalability of memristive devices further allows the implemen-
tation of high-density networks [38] and provide enough syn-
aptic connections for practical applications.

Memristive networks have already been shown capable of
performing different forms of neuromorphic tasks including
pattern classification, feature extraction, analog sparse coding,
and recognition, an example is shown in Fig. 8(c) [15,
97–101]. Neural networks are also natural applications for
memristors due to the networks’ ability to tolerate even very
large device variations [102]. Device runtime stochasticity,
often encountered in aggressively scaled memristive devices,

can be even used as a useful property [14, 103, 104]. Neural
networks may also help alleviate the tradeoff between device
endurance and retention, as hours long retention can be suffi-
cient for a neural network to operate. Write/erase cycles are
encountered during the network training phase, which is typ-
ically infrequent during the lifetime of the network as most
operations can be mapped into a read operation. On the other
hand, most neural network learning algorithms rely on the use
of Banalog^ devices whose conductance can be updated in an
incremental, instead of binary fashion [49]. The linearity and
symmetry of the incremental conductance (synaptic weight)
update have also been shown to have a strong impact on
network performance and need to be optimized [ 98].
Devices that can operate at low current is also desired to allow
the realization of large networks. Such set of requirements
imposes different challenges for the device design and fabri-
cation, compared to memory and logic devices.

From a system point of view, several custom multi-chip
and multi-core neuromorphic computing systems that support
the implementation of large-scale neural networks have al-
ready been proposed using mixed-signal CMOS technologies
[94, 105–108]. These systems, however, have all been de-
signed and optimized to use standard memory technologies,
such as on-chip SRAM or off-chip DRAM, and are still af-
fected, to a large extent, by the von Neumann memory bottle-
neck problem [64]. Memristive devices offer a new solution to
this problem, when integrated in neuromorphic computing
architectures. An example of a recent neuromorphic VLSI
device that is based on a multi-core distributed architecture
that can exploit the desirable features of memristive devices
is shown in Fig. 9. This device comprises massively parallel
arrays of analog neuron and synapse circuits, and employs
multiple routing strategies combining heterogeneous memory
structures distributed across and within cores to configure the
neuron networks of arbitrary topology, and to transmit the
spikes among the neurons and synapses (S. Moradi et al.
2017, under review). Although the VLSI device of Fig. 9(a)
makes use of capacitors, conventional CAM cells, and stan-
dard SRAM latches to implement the distributed memory el-
ements, the architecture that this device embodies was de-
signed to implement in-memory computing, with the goal of
supporting the use of memristive devices as both digital and
synapse-like memory elements (S. Moradi et al. 2017, under
review). Indeed, the CMOS circuits implemented in this de-
vice are compatible with oxygen-ion based memristive device
specifications (e.g. as those described in Section 2.2), which
could be used as compact single-bit memory elements in place
of the large CAM and SRAM circuits, and as dynamic synap-
se elements in place of the corresponding capacitors and
subthreshold analog circuits.

The analog neuron and synapse circuits used in the device
have been described and fully characterized in [13]., where
adaptive integrate-and-fire spiking neuron models, and first-
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order dynamic synapse models were used. The digital circuits
implement asynchronous event-based transmission modules
that distribute the spikes produced by the neurons in real-time,
without the need of any clock circuitry. Specifically, each
neuron in a core transmits its output spikes to a local asyn-
chronous router instantaneously, at the time in which they are
produced. The router directly connected to the neurons, de-
noted as R1 in Fig. 9(b), can broadcast events back to the
source core neurons and multicast events to other four possi-
ble cores. Connectivity among neurons, and specific network
configurations (such as multi-layer, recurrent, convolutional,
etc.) can be programmed by setting the appropriate bits in the
CAM and SRAM circuits distributed within the cores and in
the routers. The inter-core multi-cast event-based communi-
cation is managed by a different set of routers, denoted as R2

in Fig. 9(b). The R2 routers are distributed among the cores in
a hierarchical way to implement a tree-based routing strategy.
At the lowest level of this hierarchy, R2 routers distribute
events to the four cores immediately connected to it. Events
that need to be sent to more distant cores follow the hierarchy
using higher level R2 routers. The block diagram of Fig. 9(b)
shows an example of a multi-core chip with 64 cores, inter-
connected via three levels of an R2 router hierarchy. The ar-
chitecture supports communication of spikes also across chip
boundaries. To transmit events to neurons on different chips, a
third router block, denoted as R3, is used. In this case, the
routing strategy adopted is that of mesh-routing. The combi-
nation of different routing schemes (e.g., broadcast, multicast,
tree-based, or mesh-based routing) allowed us to design an
architecture that minimizes both the system-level bandwidth

Fig. 8 (a) Mimicking the biological synapse using a single memristor device. (Ref. [49]) (b) Measured STDP behavior from a memristor. (Ref. [49]) (c)
Mapping neural networks into a crossbar structure, where a memristor is formed at each crosspoint and both stores and processes information (Ref. [15])
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requirements for communicating spikes among neurons and
the total (distributed) memory requirements for supporting a
wide range of neural network topologies that can exhibit com-
plex synaptic dynamics (S. Moradi et al. 2017, under review).
This architecture has already been shown to support the im-
plementation of Convolutional Neural Networks in real-time
low-latency spatiotemporal pattern discrimination tasks [109],
using CMOS circuits as programmable synaptic elements,
with synaptic weights that are fixed (e.g. determined by an
off-line training procedure and set at run-time configuration).
Future integration with memristive devices will allow de-
signers to implement synaptic weight learning mechanisms
directly on-chip, both for implementing conventional machine
learning algorithms such as Convolutional Neural Networks
as well as more bio-inspired, spiking-based networks. Indeed,
memristive devices have been shown to be able to faithfully
reproduce spike-based learning mechanisms, for example,
based on Spike-Timing Dependent Plasticity (STDP) learning
rules.

5.2 Analog computing

Another promising application for memristive devices is ana-
log computing. While the concept of analog computing itself
is, in fact, older than the binary one, implementation of analog
circuits at large scale is always challenging. The advances of
memristor devices, however, may help speed up the develop-
ment of efficient analog computing systems. For instance, the
crossbar structure can natively execute the analog dot product
operation - a core operation that can be found in many com-
puting algorithms [110, 111]. Specifically, an analog vector-

matrix multiplication requires a single execution step on a
crossbar system, without moving data between a separate
memory and processor, compared to sequential execution on
classical computing architectures that demand frequent data
movements. To some degree, the analog dot product operation
can be considered as a generalized form of the synaptic func-
tion in a memristive synaptic network (Fig. 10). However, for
arithmetic applications, the operation requires precise repre-
sentation of the resistance levels and do not tolerate high var-
iability. Also, analog computing devices should have higher
endurance compared to their neuromorphic counterparts due
to the need to repeatedly update the stored values and thus
requires further device and material optimizations. In this
sense, from a device perspective analog computing can be
considered as the next step of neuromorphic computing. It is
also worth mentioning here that memristors have also been
explored for other interesting forms of analog computing ap-
proaches, such as in bio-inspired coupled oscillators [112,
113] and in finding the shortest path in a maze [114–116],
where each of these applications can pose its own set of device
requirements.

5.3 Stochastic computing and security applications

Stochastic computing utilizes basic logic gates to perform a
complex arithmetic operation with the aid of randomly gener-
ated bit sequences [117]. Typically, this is realized with the
help of PRNGs (Pseudo Random Number Generators) which
unfortunately is expensive to implement in hardware.
Recently, restive devices have been explored to replace the
PRNGs circuits in stochastic computing [8, 118] by utilizing

Fig. 9 (a) Micrograph of a scalable multi-core neuromorphic processor
with hierarchical on-chip digital routing circuits and subthreshold analog
synapse and neuron circuits that reproduce biophysically realistic neural
dynamics. (b) block diagram of an equivalent architecture with 64 cores,

and five levels of routers (one for R1 routers, three for R2 routers, and one
for R3 routers – see text for details). These chips were implemented using
mixed-signal CMOS but the simple principle can be applied to hardware
systems employing memristive networks
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the native device runtime variability as a source of
stochasticity. For instance, at a given switching voltage, the
device will switch after a random time period following a
Poisson distribution. Hence, a fixed wait time can be utilized
to transform the memristive device into a compact RNG. In
this case, devices with higher temporal variability (i.e. sto-
chastic switching) are favorable. However, stringent spatial
variability control is still needed to ensure different device
follow the same distribution and programmable PRGN char-
acteristics. Additionally, since the random sequence is gener-
ated by successive switching events, very high write/erase
endurance is also required for such applications.

Some stochastic behaviors of RRAM are undesirable for
memory applications, but could be utilized as entropy sources
for hardware security features that embrace truly random var-
iations. These behaviors include variability of RRAM device
parameters (e.g., resistance, switching voltage), noise in read
signal (e.g., random telegraph noise, RTN), and probabilistic
switching (i.e., switching yield controlled by operation condi-
tions). These random behaviors can be utilized to generate
hardware security primitives, including True Random
Number Generator (TRNG) and Physical Unclonable
Function (PUF). For example, controlled switching of
RRAM with a probability of 50% leads to an equal chance
of a device falling in B0^ or B1^ states afterward. This behav-
ior can be utilized to create a TRNG, which has been demon-
strated experimentally with the proof of randomness [119].
Alternatively, the strong RRAM RTN signal has been used
to generate random numbers in a simple circuit [120]. PUF
utilizes the physical randomness to generate unclonable
instance-specific security features and can be used as
Bfingerprint^ for identification or authentication [121]. The
variability of RRAM provides a unique source of randomness
for PUF implementation. Unlike manufacturing variation

exploited in most PUF implementations that is fixed post-fab-
rication, RRAM variability is intrinsic in physical mecha-
nisms, less process dependent, and potentially reconfigurable
[122]. RRAM-based PUF has been demonstrated experimen-
tally using cell-to-cell resistance variation in a 1T1R RRAM
array [123]. The reliability of RRAM-based PUF is strongly
affected by the non-ideal behaviors of RRAM, including read-
ing instability, thermal dependence of RRAM resistance, and
retention loss [124]. Therefore, RRAM-based PUF needs to
be optimized through material and device engineering to ad-
dress these reliability issues. With significantly smaller foot-
print than other Si-based PUFs and lower power, RRAM PUF
is more suitable for light-weight security applications, e.g., in
Internet of Things (IoT).

6 Discussions

As discussed in sections 4 and 5 earlier, each potential com-
puting applications pose a set of requirements to be fulfilled,
whereas different memristive devices may offer different
strengths and weaknesses. Some of the device shortfalls can
be compensated at the architecture level, while others still
require additional research efforts to improve the device per-
formance. For example, the lack of device nonlinearity could
be compensated by adding a selector element to the cell, while
system level optimizations can alleviate data retention require-
ments by introducing refresh cycles (at the expense of device
endurance and system total energy consumption). The same
principle applies to runtime variability, where write-verify
schemes can be adopted to reduce the programming error rate,
at the cost of speed, endurance, and power consumption.
Though some device properties can be traded off for others
at the system level to fit a specific application requirement,

Fig. 10 Example of a memristor-based analog dot-product engine (Ref. [110])
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this rule does not apply to all device aspects. For instance,
endurance, ON/OFF ratio, speed, and analog/binary behavior
are permanent properties of the device.

We summarize the computing application requirements
and the properties of the memristive devices as Radar charts
shown in Fig. 11. It also highlights that some of the device
shortfalls can be improved at the circuit and system levels (e.g.
improved to the dashed lines). It is evident that there likely is
no Buniversal^ device that can meet the requirements of all
applications. Instead, a particular device technology may be
more suitable for a given set of applications. For example, data
storage applications require high nonlinearity and large ON/
OFF ratio to facilitate reliable data retrieval. Additionally, low
power consumption is needed to support a competitively large
array size under constraints imposed by the current delivering
circuitry. Excellent retention is needed, while extremely long
endurance is not necessary. From the device perspective,
ECM is an excellent fit for storage applications, with its low
programming current, excellent retention and high ON/OFF
ratio. On the other hand, memory applications require much
longer write/erase endurance cycles are needed and VCM de-
vices with further material and device optimizations may be
suited for this need.

The set of properties required for digital computation is
also shown Fig. 11. Analog switching, device nonlinearity,
or long retention is not essential in most of the cases.
However, memristive digital computing needs to consume
very low power, and offer excellent uniformity, endurance,
and ON/OFF ratio to compete with its CMOS counterparts.
These requirements are very challenging for the current state
of memristive devices and demand extensive development at
the material and device level. FPGA and programmable

circuits share many requirements as digital computing sys-
tems, except for the tradeoff of high endurance with long
retention. On the other hand, neuromorphic computing sys-
tems are very forgiving on many device properties include
uniformity, retention, endurance, nonlinearity and ON/OFF
margins. Yet it requires excellent analog switching properties
to represent analog synaptic weight updates (during learning),
and low power consumption to facilitate large networks. It
thus appears that VCM devices are better suited for systems
that require online learning thus analog weight updates, while
ECM devices may be applied in systems that utilize off-line
trained weights. Continued device optimizations are still need-
ed to improve device variability, linearity of the weight up-
dates, and power consumption. Similarly, analog computing
systems, which could be considered as a generalized form of
the neural networks, rely on dot product operations but may
pose more stringent device uniformity requirements. Finally,
some of the non-ideal effects in memristive devices, such as
temporal variations, may be used as features in applications
such as stochastic computing, whereas new requirements,
such as very high endurance, need to be satisfied in these
cases.

7 Conclusion

In conclusion, great strides have been made in the last a few
years in the development of memristive devices and new com-
puting architectures that can efficiently exploit the properties
of such devices. In this review, we focused on the state-of-the-
art memristive device performance and tried to map different
devices to different potential computing applications. We

(a) Ideal Device (b) Memory (c) Storage (d) Digital Logic (e) FPGA 

(f) Neural Networks (g) Analog Comp. (h) Stochas�c Comp. (i) M-Ion (j) O-Ion (k) PCM 

Fig. 11 Qualitative Radar charts showing (a) ideal device characteristics. (b-h) Device properties required by each of the potential computing
applications. (i-k) The current state-of-the-art redox and PCM device properties, and how they can be improved at the system level (dashed line)
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briefly discussed the basic switching mechanisms of redox
and PCM devices, as well as their strengths and weakness.
From the application perspective, we believe redox-based
memristive devices can help deliver computing hardware that
is naturally suited for efficient, non-conventional computing
architectures, although continued device and material optimi-
zations are still needed. Finally, we note that the device prop-
erties can be more efficiently utilized and weaknesses mitigat-
ed, through synergistic research and co-design at both the
device level and the architecture level. These types of multi-
disciplinary research, branching materials, devices, architec-
ture and algorithm, is in urgent need to ensure that the contin-
ued performance improvements in electronics we have
enjoyed over the last decades can be extended in to the fore-
seeable future.
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