Photocatalytic WO3/TiO2 nanoparticles working under visible light

Seung Yong Chai *·* **Yong Joo Kim** *·* **Wan In Lee**

Received: 28 June 2005 / Revised: 3 March 2006 / Accepted: 9 May 2006 $©$ Springer Science + Business Media, LLC 2006

Abstract WO_3/TiO_2 was prepared by modifying the surface of $TiO₂$ with clusters of crystallized WO₃. Previously, we have reported that the $TiO₂$ covered with the monolayer of WO₃ shows greatly enhanced photocatalytic activity under UV light in decomposing VOCs. Here we report that the $WO₃/TiO₂$ can also be activated by visible light in the photocatalytic decomposition of gaseous 2-propanol. The structure of WO_3/TiO_2 was examined by X-ray diffraction (XRD), TEM, UV-Visible and Raman spectra. The samples with 10 mol% of WO_3 annealed at 700 $°C$ provide the optimum photocatalytic efficiency in visible range. We also suggest the mechanism for the WO_3/TiO_2 working under visible light.

Keywords Nanoparticle . Visible light . Photocatalyst . $WO_3/TiO_2 \cdot TiO_2$

1 Introduction

 $TiO₂$ has been known as the most efficient photocatalyst under UV light irradiation with its unique characteristics in band position and surface structure [1–3]. Extensive research has been conducted on the application of $TiO₂$ to the photocatalytic purification of water and air, as well as self-cleaning and super-hydrophilic smart materials [4–7].

Previously, we reported that by covering the surface of $TiO₂$ with the monolayer of $WO₃$ the photocatalytic activity of $TiO₂$ in decomposing gaseous 2-propanol was greatly enhanced under UV light [8]. When we measured the photocatalytic activity in visible range with the same sample,

S. Y. Chai \cdot Y. J. Kim \cdot W. I. Lee (\boxtimes) Department of Chemistry, Inha University, #253, Yonghyun-dong, Nam-ku, Incheon 402-751, Korea e-mail: wanin@inha.ac.kr; chaidragon@hanmail.net

however, its activity was very low and not appreciably different from that of the pure $TiO₂$. Considering the visible-range band-gap and the high surface area of WO_3 covering the surface of $TiO₂$, it is rather unexpected result, but this would be rationalized by the following reasons. First, the WO_3/TiO_2 samples are only annealed at 200◦C. At this temperature, the $WO₃ covering the TiO₂ surface remains in amorphous, and$ the band gap may not be defined in this state. Second, intrinsically WO_3 itself is not an efficient photocatalyst, even though its absorption band-edge is positioned in the visible region.

Several strategies have been so far tried to obtain efficient photocatalysts with the WO_3/TiO_2 system. A few reports indicated that the WO_3 -doped TiO_2 or TiO_2 -WO₃ bilayers were photocatalytically effective under visible light [8–10]. In this work, we report a systematic study on the composites of WO_3/TiO_2 for the application to the photocatalyst working in visible range. Several compositions of $WO_{3}/T_{1}O_{2}$ annealed at different temperatures were prepared, and the structures and the optical properties as well as their photocatalytic activities were characterized.

2 Experimental

Degussa P25 with an average particle size of 25 nm was chosen as the standard $TiO₂$. WO₃/TiO₂ was prepared by the incipient wetness method as described below. 1.0 g of TiO₂ nanoparticle was suspended in 50 ml of 2.5 M NH₄OH aqueous solution dissolved with a stoichiometric amount of $H₂WO₄$ (99%, Aldrich), and the suspension was dried in a water bath maintained at 60◦C while vigorous stirring [8, 12]. With this procedure, the W precursors cover the surface of TiO2. The dried sample was then heat-treated in air at several temperatures (200–900 $°C$) for 2 hr.

The prepared WO_3/TiO_2 samples were tested as visiblerange photocatalysts for the decomposition of 2-propanol in gas phase. For the photocatalytic measurements the aqueous colloidal suspensions containing 2.0 mg of $WO₃/TiO₂$ were spread as a film on a 2.5×2.5 cm² Pyrex glass, and subsequently dried at 50℃ for 2 hr. The gas reactor system used for this photocatalytic reaction is described elsewhere [12]. The whole area of WO_3/TiO_2 film was irradiated by a 300 W Xe lamp through an UV cut-off filter (<400 nm, Oriel) and a water filter. After the evacuation of reactor, 1.6 μ l of 2-propanol and 3.2 μ l of water were added. In the reactor their partial pressures were 2 and 16 Torr, respectively. The total pressure of the reactor was then controlled to 700 Torr by addition of oxygen gas. After irradiation of 60 min, 0.5 mL of gas sample in the reactor was automatically picked up and sent to a gas chromatograph (Young Lin M600D) by using an autosampling valve system (Valco Instruments Inc. A60).

X-ray powder diffraction patterns for the WO_3/TiO_2 particles were obtained by using a Rigaku Multiflex diffractometer. TEM images of WO_3/TiO_2 particle were observed by Philips CM30 transmission electron microscope operated at 250 kV. The UV-visible diffuse reflectance spectra were obtained with a Perkin-Elmer Lambda 40, and the Raman spectra were recorded by a BRUKER RFS 100/S FT-Raman spectrophotometer.

3 Results and discussion

To prepare a junctioned structure between WO_3 and TiO_2 , the 10 mol % WO_3 -loaded TiO₂ samples were annealed at the temperature of 200–900◦C. As shown in Fig. 1a, the crystal phase of $WO₃$ begins to form for the samples annealed at 600 \degree C. Figure 1b indicates the XRD patterns of WO₃/TiO₂ annealed at $700\degree$ C as a function of WO₃ compositions. The crystallized $WO₃$ was appeared for the samples retaining more than 10 mol% of WO_3 . Thus, the composition of WO_3 and the annealing temperature needs to be at least 10 mol % and 600◦C, respectively, for the preparation of crystallized WO_3 on the surface of TiO₂.

The TEM images of Fig. 2 describe the 10 mol % WO₃-loaded TiO₂ nanoparticles annealed at 700 and 900 $^{\circ}$ C, respectively. For the samples heat-treated at 900◦C, the individual TiO₂ particles were merged to form the $50-100$ nmsized rutile particles, and the $2-3$ nm-sized $WO₃$ clusters were uniformly dispersed over their surfaces without mutual aggregation. This suggests $WO₃$ has a good binding affinity toward TiO₂. For the samples annealed at $700\degree C$, the size of $TiO₂$ was not appreciably changed compared with that of the original Degussa P25. However, $WO₃$ clusters were not identified over the entire region, as shown in Fig. 2c and d. This is not compatible with the result of XRD patterns, but

Fig. 1 XRD patterns of WO_3/TiO_2 samples. (a) 10 mol% WO_3/TiO_2 and pure WO_3 annealed at several temperatures. (b) WO_3/TiO_2 in various WO₃ compositions annealed at 700° C

Fig. 2 TEM images for the several $10 \,\text{mol}\%$ WO₃/TiO₂. (a) Annealed at 900◦C. (b) Magnified image of (a). (c) Annealed at 700◦C. (d) Magnified image of (c)

Fig. 3 Diffuse reflectance spectra of WO_3/TiO_2 in different WO_3 concentrations (a), and annealed at different temperatures (b)

we guess that the crystallite size of $WO₃$ clusters is tiny at this process temperature.

Figure 3 shows the diffuse reflectance spectra of $WO_3/$ $TiO₂$ powders in different $WO₃$ concentrations and annealed at several temperatures. For the comparison, the spectra of pure $TiO₂$ and WO₃ powders were also included in Fig. 3a. The absorption band edge of bulk WO_3 was about 420 nm, which is red-shifted by ~ 80 nm from that of pure TiO₂. For the samples heat-treated at $700\degree C$, the minimum mol% of $WO₃$ inducing the band-edge shift was determined to 10 mol%. Figure 3b indicates the annealing at 600◦C is necessary to induce the shift of band-edge for the 10 mol% $WO₃/TiO₂$. Thus, the band-edge shift is caused by the formation of crystallized WO_3 phase on the surface of TiO₂. The Raman spectra for the 10 mol% WO_3/TiO_2 annealed at several temperatures were shown in Fig. 4. The peaks of 807 cm^{-1} assigned to WO₃ stretching mode begin to appear for the samples annealed at 600◦C or above. This also indicates the formation temperature of crystallized $WO₃$ is 600◦C.

We evaluated the photocatalytic activities of WO_3/TiO_2 under a visible light as a function of the concentration of $WO₃$ and the annealing temperature, as shown in Fig. 5. The photocatalytic activity was estimated by the decomposition%

Fig. 4 Raman spectra for the 10 mol% WO_3/TiO_2 annealed at several temperatures

Fig. 5 Decomposition percentages of 2-propanol by the visible-light photocatalytic reaction with WO_3/TiO_2 derived at different temperature and at different mol% of WO_3 . For each sample, the visible light over 400 nm was irradiated for 60 min, and the gas compositions in the reactor were 2.0 Torr of 2-propanol, 16 Torr of $H₂O$, and 682 Torr of $O₂$

of 2-propanol in gas phase, after a 60 min of visible light irradiation. It was found that the 10 mol% WO_3/TiO_2 samples annealed at 700◦C showed the highest photocatalytic efficiency in decomposing 2-propanol. Compared with pure TiO2, it showed about 20 times of photocatalytic efficiency under a visible light.

WO₃ on TiO₂ surface begins to crystallize at $600\degree C$, as observed from the XRD patterns and Raman spectra. With this heat-treatment, the crystallized $WO₃$ clusters are junctioned to TiO₂, and the resultant WO_3/TiO_2 can absorb the visible light in the wavelength over 400 nm, as described by diffuse reflectance spectra. Figure 6 describes a schematic diagram for the photocatalytic mechanism of WO_3/TiO_2 system. If the $WO₃$ is excited by visible light, the holes will be formed in the valence band of WO_3 . Then, the electrons in the valence band of $TiO₂$ can move to that of $WO₃$. Finally, the

Fig. 6 Schematic diagram describing the photocatalytic mechanism in the visible light for the $WO₃/TiO₂$ system

holes generated in the $TiO₂$ can induce the photocatalytic oxidation reactions.

For the samples annealed at 900◦C, the photocatalytic activity was very low, even though the WO_3 was highly crystallized. This may be caused by the formation of the large $TiO₂$ particles in rutile phase, and also clearly indicates $WO₃$ itself is not an efficient photocatalyst.

4 Conclusions

The WO₃/TiO₂ with 10 mol% of WO₃ annealed at 700 \degree C presents 20 times of enhanced photocatalytic activity under a visible light in decomposing 2-propanol, compared with Degussa P25. With the irradiation of visible light the crystallized WO_3 clusters on the surface of TiO_2 will be excited, and subsequently the electrons in the valence band of $TiO₂$

can be trapped to that of WO_3 . Then, the generated holes in the $TiO₂$ would be used for the photocatalytic oxidation reaction.

Acknowledgment This work has been supported by the Ministry of Environment, Republic of Korea (Project No. 022-061-026).

References

- 1. A.J. Nozik, *Annu. Rev. Phys. Chem.*, **29**, 189 (1978).
- 2. M.R. Hoffmann, *Chem. Rev.*, **95**, 69 (1995).
- 3. C.S. Turchi, and D.F. Ollis, *J. Catal.*, **122**, 178 (1990).
- 4. M. Miyauch, A. Nakajima, T. Watanabe, and K. Hahimoto, *Chem. Mater.*, **14**, 2812 (2002).
- 5. R. Wang, K. Hahimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe, *Nature*, **388**, 431 (1997).
- 6. R. Wang, K. Hahimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe, *Adv. Mater.*, **10**, 135 (1998).
- 7. K. Vinodgopal, U. Stafford, K.A. Gray, and P.V. Kamat, *J. Phys. Chem.*, **98**, 6797 (1994).
- 8. K.Y. Song, M.K. Park, Y.T. Kwon, H.W. Lee, W.J. Chung, and W.I. Lee, *Chem. Mater.*, **13**, 2349 (2001).
- 9. X.Z. Li, F.B. Li, C.L. Yang, and W.K. Ge, *J. Photoch. Photobio. A.*, **141**, 209, (2001).
- 10. T. Takahashi, H. Nakabayashi, N. Ymada, and J. Tanabe, *J. Vac. Sci. Technol. A.*, **21**, 1409 (2003).
- 11. M. Anpo and M. Takeuchi, *J. Catal.*, **216**, 505 (2003).
- 12. Y.T. Kwon, K.Y. Song, W.I. Lee, G.J. Choi, and Y.R. Do, *J. Catal.*, **191**, 192 (2000).
- 13. A. Fuerte, M.D. Hernandez-Alonso, A.J. Maira, A. Martinez-Arias, M. Fernandez-Garcia, J.C. Conesa, J. Soria, and G. Munuera, *J. Catal.*, **212**, 1 (2002).