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Abstract
We investigate spontaneous critical dynamics of excitatory and inhibitory (EI) sparsely connected populations of spiking 
leaky integrate-and-fire neurons with conductance-based synapses. We use a bottom-up approach to derive a single neuron 
gain function and a linear Poisson neuron approximation which we use to study mean-field dynamics of the EI population 
and its bifurcations. In the low firing rate regime, the quiescent state loses stability due to saddle-node or Hopf bifurcations. 
In particular, at the Bogdanov-Takens (BT) bifurcation point which is the intersection of the Hopf bifurcation and the saddle-
node bifurcation lines of the 2D dynamical system, the network shows avalanche dynamics with power-law avalanche size and 
duration distributions. This matches the characteristics of low firing spontaneous activity in the cortex. By linearizing gain 
functions and excitatory and inhibitory nullclines, we can approximate the location of the BT bifurcation point. This point 
in the control parameter phase space corresponds to the internal balance of excitation and inhibition and a slight excess of 
external excitatory input to the excitatory population. Due to the tight balance of average excitation and inhibition currents, 
the firing of the individual cells is fluctuation-driven. Around the BT point, the spiking of neurons is a Poisson process and 
the population average membrane potential of neurons is approximately at the middle of the operating interval [V

Rest
,V

th
] . 

Moreover, the EI network is close to both oscillatory and active-inactive phase transition regimes.

Keywords Critical brain hypothesis · Scale free avalanches · Linear poisson neuron · Bogdanov-takens bifurcation

1 Introduction

Experiments have shown that in the absence of stimuli, the 
cortical population of neurons shows rich dynamical pat-
terns, called spontaneous activity, which do not look random 
and entirely noise-driven but are structured in spatiotempo-
ral patterns (Takeda et al. (2016); Thompson et al. (2014)). 
Spontaneous activity is assumed to be the substrate or back-
ground state of the neural system with functional signifi-
cance (Raichle (2010)). Experimental findings on different 

temporal and spatial resolutions highlight the scale-free 
characteristic of spontaneous activity.

In microcircuits of the brain during spontaneous activity, 
we observe avalanche dynamics. This mode of activity was 
first closely investigated by Beggs and Plenz (2003) in cul-
tured slices of rat cortex using a multi-electrode array with 
an inter-electrode distance of 200�m to record local field 
potentials (LFP). An avalanche is defined as almost synchro-
nized epochs of activity separated by usually long periods of 
inactivity. At higher temporal resolution this seemingly syn-
chronized pattern appears as a cascade of activity in micro-
electrodes arrays initiated from one (or a few) local sites that 
propagate through the network and finally terminate. The 
main finding of this seminal experimental paper is power-
law scaling of the probability density function for size and 
duration of avalanches. And causing an excitation and inhi-
bition imbalance by injecting specific drugs destroys power-
law scaling. Further studies confirm these results in different 
setups like awake monkeys (Petermann et al. (2009)), in the 
cerebral cortex and hippocampus of anesthetized, asleep, 
and awake rats (Ribeiro et al. (2010)) and the visual cortex 
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of an anesthetized cat (Hahn et al. (2010)). Besides LFP data 
several studies report the scale-free avalanche size distribu-
tion based on spike data (Friedman et al. (2012), Hahn et al. 
(2010), Mazzoni et al. (2007)). Friedman et al. (2012) ana-
lyzed cultured slices of cortical tissue and collected data at 
individual neurons with different spacing. Klaus et al. (2011) 
showed that a power law is the best fit for neural avalanches 
collected from in vivo and in vitro experiments.

Besides power-law scaling of size and duration of ava-
lanches with exponents � ∼ −1.5 and � ∼ −2 , respectively, 
they showed that the temporal profile of avalanches is 
described by a single universal scaling function. Average size 
versus average duration of avalanches is also a power-law 

with ⟨s⟩ = ⟨T⟩
1

��z linked by a scaling relation � − 1

� − 1
=

1

��z
 

between exponents. In addition, the mean temporal profile of 
avalanches follows a scaling form as in non-equilibrium criti-
cal dynamics,

Data sets collapse to the scaling function very well. The 
appearance of power laws, scaling relations among their 
exponents, data collapse, and sensitivity to the imbalance 
of excitation and inhibition led to the hypothesis that some-
how the brain is poised near criticality by a self-organization 
mechanism with the balance of excitatory and inhibitory 
rates as the self-organizing parameter. In this direction, 
many models have been presented in the past decades. Short-
term plasticity in excitatory neuronal models has been inves-
tigated as a self-organizing principle for a non-conservative 
neuronal model Levina et al. (2009, 2007); Peng and Beggs 
(2013); di Santo et al. (2018); Brochini et al. (2016). In 
addition, self-organization by other control parameters like 
degree of connectivity or synaptic strength Bornholdt and 
Roehl (2003); Rybarsch and Bornholdt (2014), STDP Meisel 
and Gross (2009), and balanced input Benayoun et al. (2010) 
has been studied. Cowan et al. (2013) used the method of 
path integral representation in the stochastic model of spik-
ing neurons supplemented by anti-Hebbian synaptic plastic-
ity as the self-organizing mechanism. Their network pos-
sesses bistability close to the saddle-node bifurcation point 
which is the origin of the avalanche behavior in the system.

On the other hand, the spontaneous firing of single neocor-
tical neurons is considered to be a noisy, stochastic process 
resembling a Poisson point process. It has been claimed that 
the balance of excitation and inhibition is a necessary condi-
tion for the noisy irregular firing of individual neurons as 
well as scale free avalanche patterns at the population level. 
Since the network is settled in a balanced state, a small devia-
tion in the balance condition leads to a local change in the 
firing rate. Therefore, the system is highly sensitive to input 
while maintaining a low firing rate and highly variable spike 
trains at the individual neuron level. Inhibitory-excitatory 

(1)
S(t, T) ∼ T1∕��z−1F(t∕T)

balance can lead to asynchronous cortical states in local 
populations (Brunel and Hakim (1999, 2000, 2008)) and the 
emergence of waves and fronts at a larger scale of cortical 
activity (Ermentrout (1998); Bressloff (2011)). At the level of 
individual neurons, this balance leads to highly irregular fir-
ing of neurons with inter-spike interval distribution with CV 
close to one and thus resembling a Poisson process (Softky 
and Koch (1993)). Studies using the voltage clamp method 
tracking conductance of excitatory and inhibitory synapses 
on neurons both in vivo and in vitro, confirmed that there 
exist proportionality and balance of inhibitory and excita-
tory currents during upstate (Haider et al. (2006)), sensory 
input (Shu et al. (2003)) and spontaneous activity (Okun and 
Lampl (2008)). In Karimipanah et al. (2017), authors showed 
irregular spiking with coefficient of variation (CV) of inter-
spike intervals greater than one occurs at the edge of critical-
ity in a binary probabilistic network of expiatory neurons.

Most of the models discussed above studied critical 
avalanches in only expiatory population. In an Inh.-Exc. 
Network, Benayoun et al. proposed a stochastic model of 
spiking neurons which matches the Wilson-Cowan mean 
field in the limit of infinite system size that shows scale-
free avalanches in the balanced state in which the sum 
of excitation and inhibition is much larger than the net 
difference between them (Benayoun et al. (2010)). Under 
symmetry conditions on weights, the Jacobian has nega-
tive eigenvalues close to zero in the balanced state sug-
gesting the system operating in the vicinity of a Bogda-
nov-Takens bifurcation point. In this model, the Poisson 
firing of the neurons is presumed, and symmetric synaptic 
connections and O(N−1) scaling of weights is required for 
applying the linear noise approximation. Furthermore, the 
origin of the scale-free behavior and the bifurcation dia-
gram of the model in a wider regime of parameters has 
not been studied and the power law exponents in their 
model do not match the experimental results. Girardi-
Schappo et al. (2020) reported scale-free avalanches in 
fluctuation driven asynchronous irregular (AI) state of 
firing in discrete-time stochastic integrate-and fire Exc.- 
Inh. Neuronal population. Source of noise in their model 
is as well intrinsic stochastic of neurons and the all-to-all 
connectivity requires O(N−1) scaling of weights for the 
system to show balanced currents. Carvalho et al. (2021), 
investigate how sub sampling from the EI critical model 
of Girardi-Schappo , near active inactive phase transition 
matches deviation form power law exponents observed in 
experimental study (Criticality between Cortical States, 
Fontenele et al. (2019)).

In this work, we start from a bottom-up approach by 
analytically investigating conditions on Poisson firing 
at the single neuron level and introducing conditions on 
the balance of inhibitory and excitatory currents. Poisson 
firing condition has been studied before in integrate and 
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fire neurons with non-conductance based and only excita-
tory current (Kistler and van Hemmen (2000)). Here, we 
investigate conditions on balanced conductance-based 
input currents that lead to Possion firing. Next, we build 
a linear Poisson neuron model with minimal error in 
the low firing rate regime. The linear Poisson regime of 
firing is a segment of the dynamical regime of the neu-
ron response. We can use this linearization to form an 
approximate linearized gain function. This gain function 
can then be used to investigate dynamics of a sparsely or 
all to all connected homogeneous network of inhibitory 
and excitatory neurons and its bifurcation diagram. We 
also introduce another compatible approximation of gain 
functions by sigmoids. We observe avalanche patterns with 
power-law distributed sizes and duration at the intersec-
tion of saddle-node and Hopf bifurcation lines, i.e., at a 
Bogdanov-Takens (BT) bifurcation point of the mean field 
equations. At this state, the volume of the basin of attrac-
tion of the quiescent state is small, and internal noise can 
make the system escape from it. Activity grows and decays 
back to the quiescent state along heteroclinic orbits con-
necting the two saddle points in the low firing rate regime 
which coincides with the slow manifold of the fixed points. 
Along this slow manifold, there is a tight temporal balance 
of excitation and inhibition in the forms of avalanches of 
highly variable sizes. The balance of excitatory and inhibi-
tory inputs leads to stationary values of membrane poten-
tials that allow Poisson firing at the single neuron level and 
avalanche type dynamics at the population level. The firing 
of neurons is due to the accumulation of internal currents, 
and external input by itself does not suffice to trigger fir-
ing. However, external input imbalance to excitatory and 
inhibitory populations is needed for the initiation of the 
avalanche. During each avalanche at the BT point, each 
neuron on average activates one another neuron which 
leads to termination of avalanches with power-law dis-
tributed durations and sizes. This is the case when currents 
to single cells are balanced in a way that excess excita-
tion firing is compensated by inhibitory feedback. A linear 
relation between excitatory and inhibitory rates close to 
the BT point enables us to write down the dynamics of the 
excitatory population as a branching process. Close to the 
BT point the branching parameter is close to one which is 
indicative of the critical state.

Tuning the system at the BT point can be attained by the 
balance of inhibitory feedback leading to a condition on 
synaptic weights and adjustment of excess external drive 
to the excitatory population. This is investigated in another 
article (Ehsani and Jost (2022)), where we show how learn-
ing by STDP and homeostatic synaptic plasticity as self-
organizing principles can tune the system close to the BT 
point by regulating the inhibitory feedback strength and 
excitatory population gain.

2  Neuron model and network architecture

We use an integrate and fire neuron model in which the 
change in the membrane voltage of the neuron receiving 
time dependent synaptic current i(t) follows :

for v(t) < vth . When the membrane voltage reaches 
vth = −50mv , the neuron spikes and immediately its mem-
brane voltage resets to vrest which is equal to vLeak = −65mv.

In the following, we want to concentrate on a model with 
just one type of inhibitory and one type of excitatory syn-
apses, which can be seen as the average effect of the two 
types of synapses. We can write the synaptic inhibitory and 
excitatory current as

VRinh and VRexc are the reverse potentials of excitatory and 
inhibitory ion channels, and based on experimental studies 
we choose values of −80mv and 0mv for them respectively. 
ginh(t) and gexc(t) are the conductances of inhibitory and 
excitatory ion channels. These conductances are changing 
by the inhibitory and excitatory input to the cell. Each spike 
of a presynaptic inhibitory or excitatory neuron j to a post-
synaptic neuron k that is received by k at time t0 will change 
the inhibitory or excitatory ion channel conductance of the 
postsynaptic neuron for t > t0 according to

Here we assume that the rise time of synaptic conduct-
ances is very small compared to other time scales in the 
model and therefore, we modeled the synaptic current by 
a decay term with synaptic decay time constant �syn which 
we assume to be the same value of 5ms for both inhibitory 
and excitatory synapses. In the remainder of this work, in 
the simulation, we consider a population of NExc = 2 ∗ 104 
and NInh = 0.25 ∗ NExc inhibitory spiking neurons with 
conductance-based currents introduced in this section. 
Each excitatory neuron in the population is randomly con-
nected to kEE =

NExc

100
= 200 excitatory and kEI =

kEE

4
 inhib-

itory neurons and each inhibitory neuron is connected to 
kIE = kEE and kII =

kEE

4
 excitatory and inhibitory neurons, 

respectively. The weights of excitatory synaptic connec-
tions are in a range that 10 − 20 synchronous excitatory 
spikes suffice to depolarize the target neuron to the level 
of its firing threshold when it is initially at rest at the time 

(2)C
dv(t)

dt
= gLeak(vLeak − v(t)) + i(t),

(3)i(t) = ginh(t) ∗ (VRinh − v(t)) + gexc(t) ∗ (VRexc − v(t))

(4)

gk
Inh
(t) = wkj ∗ ginh

0
∗ exp(−

t − t0

� inh
syn

)

gk
Exc

(t) = wkj ∗ gexc
0

∗ exp(−
t − t0

�exc
syn

)
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of input arrival. Weights are being drawn from a log-nor-
mal probability density with low variance. Therefore, 
approximately O(

√
kEE) spikes are adequate for firing. 

Assuming homogeneity in the population as we have dis-
cussed in the introduction we can build a mean-field equa-
tion for the excitatory and inhibitory population in this 
sparse network, assuming each neuron receives input with 
the same statistics.

3  Results

3.1  Response of a single neuron to the Poisson 
input

In this section, we want to consider the response of the 
neuron to a specific type of current, namely Poisson input. 
The reason to consider this type of input is that in an asyn-
chronous firing state neurons receive Poisson input from 
other neurons. Assume that the number of afferents to each 
neuron is high and the population activity is nearly con-
stant with firing rate r. Assuming homogeneity in the num-
ber of connections and weights, then at any moment the 
probability distribution function that for a neuron, k pre-
synaptic neurons out of a total number of n presynaptic 

neurons are active is a binomial f (n, k, r) =
[
n

k

]
rk(1 − r)n−k 

which in the regime r << 1 and large n is well approxi-
mated by a Poisson distribution with parameter nr.

We first study the response of the neuron to a non-
fluctuating constant periodic synaptic current. Suppose 
the target neuron receives constant numbers �E and �I of 
excitatory and inhibitory spikes per unit time, with all the 
excitatory spikes having the same strength wE and all the 
inhibitory spikes having the strength wI . The conductance 
of the excitatory channels gexc(t) is modified by excitatory 
spikes arriving at times s < t :

The same formula applies for the constant inhibitory 
current. The potential of the target neuron fed by this cur-
rent will reach a stationary value. If this stationary limit is 
greater than Vth then the target neuron will fire periodically. 
This constraint reads as :

The stationary limit of the potential is a weighted aver-
age of reverse potentials,

(5)gexc(t) = ∫
t

−∞

g0
exc
wE�Eexp(−

t − s

�exc
syn

)ds = g0
exc
wE�E�

exc
syn

(6)𝜌I <
gleak ∗ (Vth − Vrest) + g0

exc
∗ wE ∗ 𝜌E ∗ 𝜏 ∗ Vth

g0
inh

∗ wI ∗ 𝜏(Vinh − Vth)

If input rates satisfy Eq. 6, the output firing rate will be

The left-dashed curves in Fig. 1 show the output fir-
ing rate for three different values of excitatory input rate 
versus inhibitory input rate. In the rest of this section we 
take the input to the neuron as stationary homogeneous 
Poissonian inhibitory and excitatory spike trains. In this 
case the number of spikes in a time interval Δt follows a 
Poisson distribution:

The output firing rate of the neuron to the Poisson input 
is depicted in Fig. 1A. Compared to the constant input 
with the same constant rate as the Poisson rate � , the curve 
becomes smoother and the transition from silent state to 
active state does not show a sharp jump. Below the criti-
cal inhibition value, the neuron output follows the mean-
field deterministic trajectory, however close to this point 
the fluctuation effect caused by stochastic arrival of spikes 
manifests itself. Moreover, the stochasticity in the input 
leads to stochastic firing at the output. Figure 1B shows 
how the coefficient of variation of the firing time interval 
of the output spike train change according to the input. This 
quantity is calculated as

where �t is the set of firing time intervals of the response 
of the target neuron subjected to a stationary Poisson input. 
When the excitatory input is much stronger than the inhibi-
tory one the output firing pattern becomes more regular and 
the CV value is small. However, close to the inhibition cut-
off, CV becomes close to unity, which is characteristic of the 
Poisson point process.

By using diffusion approximation and Fokker-Planck for-
malism for the time evolution of membrane potential prob-
ability density function, we have derived analytic results 
for average , variance and CV of inter-spike intervals(ISI) 
of a neuron receiving subthreshhold average input (see SM 
Sect. 1.2). We have also calculated the gain function of sin-
gle neurons in the Gaussian approximation and improve the 
approximation for the potential distribution and the firing 
rate by considering the auto correlation in the conductance 
using the � expansion method to account for first-order cor-
rections to the Fokker-Planck equation. (see SM Sect. 1.1.1)

(7)Vst =
gLVL + g0

exc
wE�E�VRexc + g0

inh
wI�I�VRinh

gL + g0
exc
wE�E� + g0

inh
wI�I�

(8)

�out = (gleak + g0
exc
wE�E� + g0

inh
wI�I�) ∗ (log

Vrest − Vst

Vth − Vst

)−1

(9)p(k[t,t+ΔT]) = (�ΔT)k
e−�ΔT

k!

(10)CV(�t) =
��t

⟨�t⟩
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We end up with the following expression for the CV of the 
time interval between spikes:

in which,

and C is a negative constant (see Eq. S22 of SM) that mono-
tonically goes to zero as xth ∶= Vth − ⟨V⟩ increases. In the 
limit of large xth , the second and the third term both go to 
zero and CV approaches 1. However, in the near threshold 
approximation the maximum of the third term in Eq. 11 
occurs where CV is approaching 1. Expanding in powers 
of xth , we arrive at

As shown in SM Sect. (1.1.2), �√
b

 reaches a constant 

value for high input rates. This can be used to determine 
the value of ⟨V⟩st that leads to maximal CV.

(11)

CV2 =
Var(t)

⟨t⟩2 ≈ 1 +
C

t1(Vth ∣ Vrest)
2
+ 2

√
�ln(2)

Vth − ⟨V⟩
b
√
b�

t1(xth ∣ x0)
2

(12)

�2 =
1

C2
{�2g2

exc
w2
E
�E(vRexc − ⟨V⟩)2 + �2g2

inh
w2
I
�I(vRinh − ⟨V⟩)2}

b =
1

C
(gLeak + g0

exc
wE�E� + g0

inh
wI�I�)

(13)x
opt

th
∶= Vth − ⟨V⟩st = ��

2
√
b

Figure 2 shows the CV of the interspike interval for 
different sets of excitatory and inhibitory pairs of input. 
As can be seen, at the threshold, neuronal firing time 
intervals have lower variance, but the CV approaches 
one far away from the threshold. The stationary mem-
brane potential value corresponding to the maximal 
value of CV from Eq. 11 is shown in the right diagram 
and it matches well with the actual values from the simu-
lation. At VP ∶= ⟨V⟩optst ≈ −0.56mv , the CV for different 
input rates has a maximum independently of the rate 
values.

In the middle plot, we see that the inhibitory rate which 
satisfies CV = CVmax varies linearly with the excitatory 
rates. As can be seen, when the stationary membrane 
potential is approximately below VP , the CV of interspike 
intervals approaches 1, independently of the values of 
inhibitory and excitatory rates. This is an indicator that 
output firing in response to Poisson input is itself a Pois-
son point process when ⟨V⟩st lies below VP . For a more 
conclusive result, one has to calculate higher moments or 
investigate the limit of the FPT probability density when 
xth is very large. The fact that the Poisson output condition 
for different sets of Poisson input leads to approximately 
a similar level of the membrane potential enables us to 
introduce the linearization of the output rate at the line 
corresponding to ⟨Vm⟩ = Vp.
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Fig. 1  A Firing rates of a neuron receiving excitatory Poisson input 
with two different excitatory rates (the red curve corresponding to 
the higher one) vs. the Poisson inhibitory input. Dashed lines are the 
response of the neuron to the constant input with a magnitude equal 

to the Poisson rates (Eq.  8). B Coefficient of variation of the spike 
intervals of a neuron receiving Poisson inputs of the same rates as in 
the left graph. Near cutoff, the neuron fires with CV close to one
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3.1.1  Linear Poisson neuron approximation

Here we want to show that linearizing the response curve 
of a neuron receiving Poisson current near VP , introduced 
in the last subsection, leads to a good approximation for the 
firing rate of the neuron in a wide range of input rates. The 
linearization is around the line characterized by Eq. 7 with 

Vst = VP in the �exc − �inh plane. This line corresponds to the 
balance of mean excitation and inhibition at VP . On this bal-
ance line, the output rate will depend linearly on the excita-
tory or inhibitory input rate (see Fig. 3 and E.S21 in SM).

We want to linearize the output rate around VP . For this 
purpose let us write the equation of the plane passing through 
the line of current balance at VP (Eq. 14) and the tangent line 
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Fig. 2  A CV of interspike intervals for four different excitatory input 
rates and their corresponding inhibitory rates, which set the average 
membrane potential at each specified value shown in the x-axis. (Red 
curve corresponds to the highest excitatory rate (4000Hz) and the 

blue one to the lowest rate (1000Hz)) B Inhibitory rate vs. excitatory 
rate at the maximal CV. C Membrane potential value at the value of 
the maximal CV 

Fig. 3  Response of a population of neurons receiving excitatory 
and inhibitory inputs balanced in a way that the drift term has a 
fixed point at VP = −0.56mv . A  Output firing rate for different val-
ues of balanced inhibitory and excitatory input rates. The output rate 
changes semi-linearly on this line and firing in this regime that is 

driven by the fluctuation in the input causes the neuron to fire with 
Poisson point process statistics. B The stationary potential distribu-
tion of the population of neurons. There is a reservoir of neurons 
close to the threshold while the average firing rate is about 20 Hz. 
Parameters used: wE = 0.5, wI = 0.75 , NE = 7000 , NI = 0.25 ∗ NE
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in the (�E, �out) plane at some arbitary point (�0
I
, �0

E
, �0

out
) . The 

balance condition line for an excitatory neuron connected to 
kEE excitatory neurons and kIE inhibitory neurons each firing 
with the rate �E and �I , respectively, and receiving external 
excitatory rate �Ext is of the form:

We rewrite this in simpler form as �e
E
= k�I + C . The 

equations for the balance line and the other tangent line in the 
(�E, �out) plane are

Therefore, the equation of the plane passing through these 
lines is of the form

�OE is the derivative of the nonlinear response at the selected 
point in the direction of �E , and �OI is proportional to the 
change of output rate by changing inhibition and accord-
ingly excitation on the balance line. These derivatives do not 
vary much on the balance line, therefore, the choice of the 

(14)
�e
E
∗ kEE =

(VRinh − VP) ∗ g0
inh

∗ wEI

g0
exc

∗ wEE ∗ (VP − VRexc)
�I ∗ kEI

+
gleak(Vrest − VP)

� ∗ g0
exc

∗ wEE ∗ (VP − VRexc)
−

�e
Ext

wEE

(15)

(�E − �0
E
)

k
= �I − �0

I
=

�out − �0
out

�OI

�O − �0
O

�OE
= �E − �0

E

(16)(�out − �0
out
) =�OE(�E − �0

E
) + (�OI − �OEk)(�I − �0

I
)

linearization point does not matter for us at this stage. This 
suggests that the plane of Eq. 16 is tangent to the �out sur-
face. This linear approximation, however, fails for very high 
excitatory input where the saturation of the neuron causes 
non-linearity. The linearization point is where the output fir-
ing curve has the lowest curvature, and therefore the second 
derivative vanishes, which makes the approximation error 
minimal. Figure 4 shows the output firing rate of the target 
neuron and the linear approximation presented above.

In the next section, we want to investigate the homogene-
ous firing state of a network. For this purpose we will look at 
self consistency solutions �out = �E(in) = �∗

E
 for an arbitrary 

value of inhibitory current. From Eq. 16 :

Putting in k�0
I
− �0

E
= −C and dividing the above equation 

by �OE , we arrive at

�OE depends on the number of excitatory input to the cell, 
KEE , and is related to the proportional change of output fir-
ing at the balance line to the change in the firing rate in each 
excitatory neuron. On the other hand, �OI , proportional to 
change in the firing rate while fixing the balance condition, 
is much smaller than �OE . Therefore, when KEE is large, the 
self-consistency equation matches the balance line of Eq. 14 
with a minimal error.

(17)(1 − �OE)�
∗
E
= (�OI − �OEk)(�I − �0

I
) + �0

O
− �OE�

0
E

(18)(
1

�OE
− 1)�∗

E
= −k�I − C +

�OI

�OE
(�I − �0

I
) +

1

�OE
�0
O

Fig. 4  A Firing rate of a neuron w.r.t. different values of constant inhibitory and excitatory input. B The same for Poisson input. C The linear 
approximation for the output on the critical line of Eq. 14. D The error of the linear Poisson neuron approximation
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3.2  Sparse homogeneous EI population dynamics

As we have seen for sets of Poisson input that produce low 
firing output the statistics of spiking events resembles a 
Poisson process. In a population of neurons there might 
be a stable stationary or oscillatory population rate with 
Poisson firing of individual neurons. In this case, the mag-
nitude of fluctuations in the population average scales as 
O(N). This inhomogeneous synchronous or asynchronous 
firing state exists only in the low firing regime. In the high 
firing state, the large imbalance of excitatory and inhibi-
tory input leads to periodic firing of the individual neurons 
which can be also synchronized with high amplitude and 
high frequency oscillatory population rates. We can use the 
linear Poisson approximation for identifying and analyzing 
the dynamics in the low firing rate regime which is of most 
interest to us. In a homogenous population, solutions of the 
self-consistency equations for both inhibitory and excita-
tory neurons’ average output firing rate receiving synaptic 
currents originated from both neurons in the population and 
external inhibitory and excitatory currents � can be written 
as follows:

for �E, �I ∈ [0, �max] . Functions f and g are called excita-
tory and inhibitory gain functions and kxy is the number of 
internal connections between neurons in the population. 
Solving for these gain functions in the general case is not 
analytically tractable for the EI population. Dynamics to the 
stationary rates given by Eqs. 19-20 can be phenomenologi-
cally approximated by the following mean field equations:

This set of equations may have multiple solutions and 
changing control parameters can lead to Hopf and saddle-
node bifurcations, which in turn produce/destroy oscilla-
tions or produce/destroy pairs of fixed points. Although 
it is possible to numerically investigate the Fokker-Planck 
equations (FPE) for probability density functions of mem-
brane potentials in the EI population and its bifurcation 
diagram, in the next subsections, we follow another 
approach by using linearized nullclines approximation 
and logistic function approximation for functions f and g. 
We show that studying these model systems is appropriate 
for the bifurcation analysis and agrees with simulation 
results.

(19)�st
E
= f (kEE�

st
E
, kEI�

st
I
, �EE, �EI)

(20)�st
I
= g(kEI�

st
E
, kII�

st
I
, �IE, �II)

(21)

d�E

dt
= −

1

�m
(�E(t) − f (kEE�E(t), kEI�I(t), �EE, �EI))

d�I

dt
= −

1

�m
(�I(t) − g(kEI�E(t), kII�I(t), �IE, �II))

3.2.1  Linearized nullclines

Function f in the Eq. 19 for the stationary excitatory rate is 
of the form of an S-shape or sigmoidal curve. Therefore, this 
equation has one or three solutions depending on the value 
of the inhibitory rate. This is shown in Fig. 5A for three 
different total inhibitory currents. Figure 5D shows the solu-
tions to the Eq. 19 for a typical sigmoidal gain function and 
different values of total inhibitory current to the excitatory 
population. This is plotted for two different values of wEE 
with the dashed curve corresponding to higher wEE.

Similarly, Fig. 5C is the plot corresponding to the Eq. 20. 
Here, the nonlinear sigmoid function g is plotted for three 
different values of excitatory current. There exists a single 
intersection between the line passing through the origin and 

A

B E

D

C F

Fig. 5  A Excitatory neuron output rate vs. excitatory input rate at 
three fixed values of inhibitory currents. Increasing Inh. current 
shifts the gain function to the right. The intersection of the curve and 
the line �out

E
= �In

E
 are fixed points of the firing rate equation in the 

homogenous network. B Linearized excitatory gain function. Lineari-
zation is performed at the inflection point of the curve and the out-
put firing rate is bounded to the interval [0, �max] C Inhibitory neuron 
output rate vs. inhibitory input at three different values of excitatory 
current.Increasing Exc. current shifts the gain function to the right. 
The intersection of the curve and the line �out

I
= �In

I
 are fixed points 

of the firing rate equation in the homogenous network. D Excitatory 
nullclines of Eqs. 19-20 for two different values of wEE with the dot-
ted curve corresponding to the higher value. E Linearization of the 
excitatory nullcline F Inhibitory nullcline and its linearization based 
on Eqs. 22-23 (dotted curve)

156 Journal of Computational Neuroscience (2023) 51:149–172



1 3

these curves, which means Eq. 20 has a unique solution 
for the stationary inhibitory rate at each specific excitatory 
input. Figure 5F is the plot of the location of these intersec-
tions for different values of inhibitory input. As can be seen 
in Fig. 5, there exists a semilinear section in the nullcline 
graphs corresponding to solutions in the linear Poisson sec-
tion of gain functions. Based on the linear Poisson approxi-
mation of the Sect. 3.1.1, the equations for these lines in 
both excitatory and inhibitory nullcline graphs are:

where k�� is the number of excitatory/inhibitory synapse to 
an excitatory/inhibitory neuron. In the remainder of this 
work, we assume external inhibiotry currents to be zero, in 
line with our assumption that inhibition is local in our 
model. We assume 

kEI

kEE
=

kII

kIE
 , which simplifies our 

analysis.
In the �I − �E plane the slope and the y-intercept of the 

two lines in Eqs. 22-23 determine the intersection of the two 
nonlinear nullclines and can be used to find approximate 
locations of the bifurcation points of Eq. 21. We choose 
⟨wEE⟩ and �Ext = �EE as control parameters of our model. 
Therefore, we first discuss how their change affects the 
nullclines of Eqs. 19-20. Increasing �Ext moves the sigmoid 
graph in Fig. 5A upwards causing the low and middle fixed 
points to move towards each other. For a sufficiently high 
value of excitatory rate, these fixed points will disappear 
by a saddle-node bifurcation. In the excitatory nullcline 
graph (Fig. 5D) increasing �Ext shifts the graph to the right. 
Increasing WEE will both reduce the y-intercept of the excita-
tory nullcline and the slope of the linear section as shown in 
Fig. 5D. The nullcline for the inhibitory rate equation stays 
intact under change of control parameters.

The intersections of the inhibitory and excitatory nullclines 
are solutions of the set of rate Eqs. 19-20. Based on the num-
ber of fixed points and their stability, the system can show 
bi-stability of quiescent and high firing, oscillatory dynamics, 
avalanches, high synchronized activity, and quiescent state. 
Investigating the linearized sections of the graphs can help us 
identify different regimes of activity. The slope and y-intercept 
of the linear sections of both nullclines can be compared for 
this purpose. Based on the Poisson neuron approximation there 

(22)
�exc
E

∗ kEE =
(VRinh − VP) ∗ g0

inh
∗ wEI

g0
exc

∗ wEE ∗ VP

�I ∗ kEI

+
gleak(Vrest − VP)

� ∗ g0
exc

∗ wEE ∗ VP

−
�EE

wEE

(23)
�inh
E

∗ kIE =
(VRinh − VP) ∗ g0

inh
∗ wII

g0
exc

∗ wIE ∗ VP

�I ∗ kII

+
gleak(Vrest − VP)

� ∗ g0
exc

∗ wIE ∗ VP

−
�IE

wIE

exists a point in control parameter space where the y-intercept 
and slope of two nullclines are equal. This point is the solution 
of the following linear constraints:

where d is a constant equal to 
gleak(Vrest − VP)

� ∗ g0
exc

∗ (VP − VRexc)
.

Figure 6A shows the case in which wEEwII > wEIwIE and 
the y-intercept of the excitatory nullcline is lower than the 
inhibitory one. This occurs in the regime of a low to moder-
ate imbalance of excitatory and inhibitory external input and 
high excitatory synaptic weight. In this case, the quiescent 
and the high firing fixed point are both stable and separated 
by a saddle. Increasing external excitatory input, the excitatory 
nullcline are shifted to the right and the middle saddle and qui-
escent node disappear by a saddle-node bifurcation and only 
the high firing synchronous state remains (Fig. 6B). Increasing 
wEE has the same qualitative effect. However, decreasing exter-
nal input or wEE drives the system to a quiescent state through 
different sets of bifurcations depending on the initial state of 
the system and in general on other parameters of the model. 
This intermediate transition state involves the appearance of a 
fixed point in the linear section.

When sexc > sinh while yexc < yinh , there is a fixed point in 
the linear section as depicted in Fig. 6C. We will discuss the 
stability of the fixed point on the linear segment in the follow-
ing sections. By increasing external input, the quiescent fixed 
point and the low saddle move closer to each other while the 
fixed point on the linear section ascends to higher rate values. 
After the saddle-node bifurcation at the low rate, only the fixed 
point on the linear section survives as shown in Fig. 6D. These 
two arrangements when the fixed points are close to low firing 
regimes are important for us because of the avalanche dynam-
ics that appear near this region. The intersection point of the 
nullclines in the semilinear regime can be approximated by the 
intersection point of the linearized nullclines which is:

where cxy = kxywxygy(V
R
y
− VP) .

As discussed previously, in the intermediate parameter range, 
the high fixed point might become unstable through either an 
Andronov-Hopf or a saddle node bifurcation. Figure 7 shows 
nullcline graphs and population activity when the high fixed 
point loses stability by a Hopf bifurcation. Figure 7A shows 

(24)sexc ∶=
wEIkEI

wEEkEE
=

wIIkII

wIEkIE
∶= sinh

(25)yexc ∶=
d − �Ext

wEEkEE
=

d − �IE

wIEkIE
∶= yinh

(26)

�c
E
=

�g0(V
R
E
− VP)(cII�Ext − cEI�IE) + gL(VL − VP)(cII − cEI)

�(cIEcEI − cEEcII)

�c
I
=

�g0(V
R
E
− VP)(cEE�IE − cIE�Ext) − gL(VL − VP)(cIE − cEE)

�(cIEcEI − cEEcII)
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nullclines population activity of a system that has stable high 
and quiescent fixed points with a saddle node at low rates. By 
decreasing wEE , sexc approaches sinh , while sufficient external 
input guarantees that yexc < yinh during this parameter change. 
In this particular setup, the inhibitory nullcline is semi-linear 
and we may speculate that the high fixed point goes through a 
Hopf bifurcation when the return point of the excitatory nullcline 
touches the inhibitory nullcline which takes place at some value 
w∗
EE

∈ [0.55, 0.75] . Decreasing wEE further, the high saddle 
node descends through a linear segment and gets closer to the 
lower saddle point (Fig. 7B). The limit cycle becomes unstable 
by a saddle separatrix loop bifurcation. After saddle-node anni-
hilation of low and high saddles,the system will end up in the 
quiescent state for low values of wEE (Fig. 7C). Neurons are firing 
synchronously at a high rates in three different sub-populations in 
the first case. The high oscillatory activity appears in the second 
regime where the unstable saddle, which is encircled by a stable 
limit cycle, lies close to the high activity region. The membrane 
potential distribution, in this case, has a higher variance, and neu-
rons fire asynchronously.

In addition to oscillatory activity in the middle range of 
rates, the EI-population can exhibit non-oscillating asyn-
chronous activity which corresponds to a stable fixed point 

in the linear regime. Figure 8 is the simulation result of the 
population rates similar to the setup of the Fig. 7 with higher 
WII , which, as we will see later, makes the fixed point on the 
linear section stable.

3.2.2  Logistic function approximation of gain functions

In this section, we approximate gain functions by logistic 
functions to analyze bifurcation diagrams and approximate 
locations of bifurcaion points. For this purpose, we consider 
the gain functions in the following form:

Here, x stands for either excitatory (E) or inhibitory (I) 
gain functions, which have the same form but different input 
arguments. �x

Ext
 is the external excitatory input to the popula-

tion x.

(27)

gx(�Inh, yx) =
�max

1 + �(�Inh)e
−kyx

− z
0

,

yx = gsyn�wxI�Inh(VRinh − Vth) + gsyn�(wxE�exc + �x
Ext

)(VRexc − Vth)

+ gL(VLeak − Vth),

z
0

=
�max

1 + �(0)e−kgL(VLeak−Vth)

Fig. 6  Nullcline diagrams cor-
responding to regimes of bista-
bility (A), high synchronized 
firing (B), avalanches (C), and 
oscillatory dynamics (D). Red 
curves are excitatory nullclines 
(Eq. 19) and blue curves are 
inhibitory nullclines (Eq. 20). 
Filled and empty circles repre-
sent stable and unstable fixed 
points, respectively. In (A), the 
linearized nullclines obtained 
from linear Poisson approxi-
mation are drawn and the 
dependence of their slope and 
y-intercept on weights is shown. 
(Eqs. 22-23). In (C), the fixed 
point on the semilinear section 
is weakly stable or unstable 
based on the sign of the eigen-
value of the Jacobian with the 
absolute value near zero

A B

C D
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At yx = 0 , balanced input sets the membrane potential at 
the threshold value and the output rate is approximately 
gth =

�max

1 + �(�Inh)
 . Dependence of the output rate on inhibi-

tory input, when the balance condition at threshold holds, is 
represented by the function � . At y = 0 , the output rate is 
proportional to the standard deviation in the input and it can 

Fig. 7  A1-B1-C1  Nullclines for excitatory and inhibitory neu-
ron populations and their corresponding linear approximations of 
Eqs. 22-23 obtained from network simulation. Values of parameters 
are wEE = [0.75 (A), 0.55 (B), 0.4 (C)],wEI = 2,wII = 1.5,wIE = 0.6 . 
A2-B2-C2  Number of active excitatory neurons (dark blue) and 

active inhibitory neurons (light blue) in each time slot of (0.1ms) for 
three different values of wEE . A3-B3-C2 The corresponding station-
ary membrane potential distribution. In the asynchronous state, the 
distribution has higher variance

Fig. 8  Simulation results of the network with same parameters as in 
Fig.  7 except for wII = 2.4 . The EI population shows asynchronous 
firing in the medium range of wEE . This suggest that there is a stable 

fixed point at the intersection of the linear segments of the excitatory 
and inhibitory nullclines
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be written as function of the inhibitory input rate as (see 
Fig. 9):

which fixes the function �(�Inh).
At equilibrium, the population rates satisfy:

where cxy = ckxywxy(VRy
− Vth) . As before, we take wEE and 

�E
Ext

 as control parameters. Therefore, the solution of the first 
equation in Eq. 29 is independent of control parameters and 
gives a curve in the �I − �E plane. Taking into account that the 
inverse of g(�Inh, y) is g−1(�Inh, z) =

1

k
(log(

z

�max − z
) + log(�)) , 

the equation for the inhibitory nullcline can be written as :

The term in brackets accounts for non-linearity in low 
and high values of �I . The derivative of this term w.r.t. �I 
is 

�max

�I(�max − �I)
 , which is very small in the middle range of 

�I at values close to 0.5�max . This is consistent with the fact 
that nullclines are approximately linear in the middle range 
of the rates.

To analyze linear stability of the fixed points, we com-
pute derivatives of the gain function:

Here gx stands for gI or gE . One can substitute �I + z0 
and �E + z0 from Eq.  29 for gI  and gE , respectively. 

(28)gth = b0 + b1
√
�Inh

(29)
�I = gI(�I , cIE�E + cII�I + d�I

Ext
) − z0

�E = gE(�I , cEE�E + cEI�I + d�E
Ext
) − z0

(30)

�E =
1

cIE
(
1

k
[log(

(�I + z0)

�max − (�I + z0)
) + log(�)] − cII�I − d�E

Ext
− gL)

(31)

�gx

��E
= kcxEg

x(1 −
gx

�max
)

�gx

��I
= kcxIg

x(1 −
gx

�max
) −

1

�
gx(1 −

gx

�max
)
��

��I

Therefore, the Jacobian matrix components at the fixed 
point are:

Hopf bifurcation occurs at fixed point solutions at 
which the trace of the Jacobian vanishes and its determi-
nant is positive. On the other hand, at saddle-node bifur-
cation occurs at points where the determinant vanishes. 
We proceed to approximate local bifurcation lines in the 
parameter space.

The condition on zero trace Tr(J) = J11 + J22 = 0 param-
eterized by the inhibitory nullcline curve (Eq. 30) deter-
mines the value for wEE at which a Hopf bifurcation can 
occur. Next, we should check the positivity of the deter-
minant to sketch the Hopf bifurcation line in the wEE − �E

Ext
 

plane. A point where both determinant and trace of J are 
zero, is called a Bogdanov-Takens (BT) bifurcation point. 
In Sect .  (2.1)  of  SM, we showed that  when 
∣ cIIc�I(1 −

�I

�max
) ∣ is at a moderate value, i.e. sufficiently 

greater than one, at the BT point we have:

If we take number of connections to satisfy 
kEI

kEE
=

kII

kIE
 , 

then wBT
EE

=
wIEwEI

wII

 . To sketch the saddle-node bifurcation 

line we should look at solutions to det(J) = 0 . Inserting 

(32)

J11 = −1 + cEE�
E(1 −

�E

�max
)

J12 = cEI�
E(1 −

�E

�max
) −

1

�
�E(1 −

�E

�max
)
��

��I

J21 = cIE�
I(1 −

�I

�max
)

J22 = −1 + cII�
I(1 −

�I

�max
) −

1

�
�I(1 −

�I

�max
)
��

��I

(33)cBT
EE

≈
cIEcEI

cII

Fig. 9  Output rate as a function 
of input inhibitory rate (blue 
curve), when the excitatory 
rate is selected in a way that 
average membrane potential 
of the neuron is Vth . Neuron is 
operating near a saddle-node 
bifurcation point at which 
F(Isyn) = k

√
Isyn − I∗ (red 

curve)
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�E(�I) from Eq. 30 into det(J) , for each point on the inhibi-
tory nullcline, there exists some wEE for which det(J) = 0 . 
The only condition to check is wEE > 0 . Again the condi-
tion that the excitatory nullcline intersects the inhibitory 
one at the fixed point determines �Ext . Along the semi-
linear section of the nullcline, the condition det(J) = 0 
translates into the alignment of the slopes of the linearized 
nullclines. Therefore, along this section wEE varies very 
little.

Figure 10A shows Hopf and saddle-Node bifurcation 
lines with parameters written in the caption. As can be 
seen, there exist two Bogdanov -Takens bifurcation points 
at low and high values of external input corresponding to 
the intersection of nullclines in low and high firing rate 
regimes.

Figure 10B is the bifurcation diagram at low rates. Dif-
ferent regimes of phase space corresponding to different 
numbers and/or types of fixed points have been labeled. The 
system has between one and five fixed points. Region (1) 
with low values of WEE and external input strength is the qui-
escent state with only one stable fixed point. In region (2), 
there is only an unstable fixed point surrounded by a stable 
limit cycle corresponding to the intersection of nullclines in 
the semi-linear sections. In regions (3) and (4) near the BT 

point, two other fixed points exist at low firing rates. The 
type of solution in these regions will be discussed later in 
this section. Region (5) corresponds to the case where there 
exist 5 intersection points on the nullcline map and the bi-
stability of the quiescent and the high state which survives 
after the annihilation of unstable nodes on the middle section 
of the nullcline to the region (6). Finally, in the region (7), 
at high external input and synaptic weight, the only existing 
fixed point is the high firing one.

Dashed lines are the constraints of Eqs. 24-25 correspond-
ing to equal slope and y-intercept of the linearized nullclines. 
The vertical line is the value of w∗

EE
 that matches the slopes, 

for wEE < w∗
EE

 the inhibitory feedback is getting stronger. The 
oblique line shows values of �Ext for each wEE that equalize 
y-intercepts of linearized nullclines. In the region below this 
line yinh < yexc and vice versa.

3.2.3  Dynamics near the BT bifurcation point

The exact locations of the BT points (cBT
EE
, �BT

Ext
, �BT

E
, �BT

I
) are 

solutions of det(J) = Tr(J) = 0 and gE(iE) = gI(iI) = 0 . Fig-
ure 11A shows nullcline arrangements near the low BT point 
and the global saddle separatrix loop bifurcation line which 

Fig. 10  A Local bifurcation diagram in the control parameter plane 
(WEE, �Ext) . The red curve is the Hopf bifurcation line and the blue 
curves are saddle-node bifurcation lines. The free parameters of the 
model are �Inh

Ext
= 300Hz,WII = 1,WEI = 1.8 and WIE = 0.6 . B Zoom 

in on the local bifurcation diagram at low firing rates and the cor-
responding regimes of phase space with different numbers of fixed 
points. The dashed line is the condition on the equal slope of lin-
earized nullclines and the semi-dashed the line is the condition on 
equal y-intercepts. The BT point (black dot) is close to the intersec-
tion of these lines. In the labeling of regions (Q) denotes the quies-

cent state fixed point, (L) is the fixed point at low firing rate, (M) is 
the fixed point in the linear section, and (H) is the high firing fixed 
point. Region (1) corresponds to the system with the stable quiescent 
fixed point. In region (2), the only fixed point is unstable and the fir-
ing pattern is oscillatory. In region (3), the fixed point in the linear 
section is stable while in the region (4) it is unstable. Increasing WEE , 
by saddle-node bifurcation in the high firing rate branch, another pair 
of stable and unstable fixed points emerges (Region 5). Region (6) 
corresponds to the system with bistability of high firing and quiescent 
states. In region (7), only a high firing fixed point exists
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annihilates the limit cycle solution of the region (3), shown 
in the same figure.

In the previous section, we showed that the low BT point is 
located close to the matching condition for the y-intercept and 
the slopes of the linearized nullclines, which we rewrite here:

where d is a constant defined in Eq. 25 .
At the BT point the linearized matrix is of the form:

where 
�

�
=

cEI

cEE
=

cII

cIE
 . At the BT point, the Jacobian has a 

double zero eigenvalue and with proper coordinate transfor-
mation, it can be written in the form:

As shown in Fig. 11, near the BT point apart from local 
bifurcations, i.e., Hopf and saddle-node, there is saddle-node 
separatrix loop bifurcation which annihilates the stable or 
unstable limit cycle that is produced by a super- or sub-
critical Hopf bifurcation, respectively. By writing the nor-
mal form for the BT bifurcation, we can analyze the type 

(34)

c∗
EE

=
cIEcEI

cII

�E
∗

Ext
=

c∗
EE

cIE
(�I

Ext
− d) + d

(35)JBT =

⎛
⎜⎜⎝

� − �

�2

�
− �

⎞
⎟⎟⎠

J =

(
0 1

0 0

)

of dynamic flow in the vicinity of low BT point (see SM 
Sect. 2).

However, linearization near the BT point can help us 
to identify regimes surrounding it without having to cal-
culate the normal form parameters. Nullcline maps related 
to regions (2) and (3) in Fig. 11A shed light on the type of 
BT bifurcation. In the plot corresponding region (3), wEE is 
higher which means that the Jacobian at the fixed point has 
lower determinant and higher trace. Of the two fixed points 
in regions (2) and (3) at the semi-linear section the one in the 
higher WEE regime is the unstable point. Therefore, in our 
case near the low BT point the phase space resembles the 
one in Fig. 11B2 . Increasing wEE from region (2) will result 
in loss of stability of the fixed point in the linear branch by 
Hopf bifurcation, as the trace of the Jacobian at the fixed 
point becomes zero. However, as we increase the wEE , slope 
of the linearized approximation of the nullclines which are 
tangent to the stable and unstable manifolds of the saddle 
point that separate the quiescent fixed point and the limit 
cycle solution, get closer to each other. At some point, these 
manifolds cross over and therefore destroy the limit cycle 
solution through a saddle-node separatrix loop bifurcation 
and we end up with a fixed point of source type at the inter-
section of nullclines in the linear firing regime of region (4) 
in Fig. 11A.

3.2.4  Avalanches in the region close to the BT point

We assume that the external input to both excitatory and 
inhibitory neurons is dominated by the excitatory type and 

Fig. 11  A Exc. (red) and Inh.
(blue) nullclines near the BT 
point corresponding to the 
system in each state shown 
in the bifurcation diagram in 
which the black dashed line is 
the saddle-node separatrix-loop 
bifurcation and the blue dotted-
dashed is the saddle-node on 
limit cycle (SNLC) bifurcation 
line. Filled and empty circles 
represent stable and unstable 
fixed points, respectively. (B

1

 ) 
Dynamic flow near the high 
BT point and (B

2

 ) the low BT 
point. Blue lines are saddle-
node bifurcations, red lines are 
Hopf bifurcations, and dashed 
lines are saddle-node separatrix 
loop bifurcations

A

B

B

2

1
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that connections among excitatory populations have a longer 
range. Therefore, the external excitatory input to the excita-
tory population is higher than to the inhibitory one. On the 
other hand, inhibitory connections are local and therefore, 
follow the dynamics of the adjacent excitatory population. 
Strong local feedback provided by inhibition prevents the 
excitatory network to be overloaded. However, it is very 
closely balanced to set the network near the threshold of 
activation so that the system can respond efficiently to exter-
nal input. In the background regime of spontaneous activity, 
the EI population shows avalanche pattern dynamics and 
oscillatory behavior. Synchronization of oscillations and the 
scale-free avalanche dynamics are characteristic behaviors 
experimentally validated Beggs and Plenz (2003); Gong 
et al. (2003); Meisel et al. (2013) . In the sequel, we will 
see that close to the BT at a low firing rate regime, we can 
observe both phenomena.

In the parameter space enclosed by Hopf and saddle-node 
bifurcation lines, i.e., region (4-QLM(u)) in Fig. 10B, there 
exist regions with both oscillatory and medium-range Poisson 
firing states. Decreasing WEE while changing �E

Ext
 accordingly, 

so that the low and medium fixed points move closer to the ori-
gin, the system moves towards the Bogdanov-Takens bifurca-
tion point, where the saddle-node bifurcation and Hopf bifurca-
tion lines intersect. In this regime, we see avalanche dynamics 
in our population. Close to the BT point, the basin of attraction 
of the quiescent fixed point shrinks and the noise level is high 
enough for escaping from it. This is in the adjacency of both 
the saddle-node bifurcation, which creates an unstable low and 
a weekly stable medium firing fixed point, and the Hopf bifur-
cation of the quiescent fixed point. This region corresponds to 
strong inhibitory feedback and sufficient imbalance in external 
excitatory input. In the nullcline graph, this translates into the 
state where the y-intercept of the excitatory graph is slightly 
lower than the y-intercept of the inhibitory graph and the slope 
of the excitatory is larger than the slope of the inhibitory one. 
Increasing WEE causes the middle fixed point to move to higher 
rates and to have a larger basin of attraction. On the other hand, 
the saddle and the quiescent fixed point move towards each 
other in the phase diagram and annihilate each other at the 
saddle-node bifurcation.

Figure 12 shows nullcline arrangements in the region 
where we observe avalanche patterns. Figure 12A is the gen-
eral position of nullclines indicating the fixed point in the 
linear regime. The other three diagrams correspond to two 
regimes near the BT point and transition between these two. 
The diagram in Fig. 12B belongs to the section to the right of 
BT where there exists a quiescent fixed point with a weakly 
unstable saddle in the linear section. Here noise causes the 
system to escape from the basin of attraction of the fixed 
point which then relaxes in the direction of the nullclines. As 
nullclines lie on top of each other, the decay time is large and 
the system shows high synchronous activity while returning 

to a quiescent state. An increase of external drive or decrease 
of WEE leads to saddle-node annihilation which leaves the 
system with a fixed point at the middle section. Figure 12C 
belongs to the state on the left side of BT1 in the vicinity of 
Hopf bifurcation of the origin. In this case, there is a limit 
cycle around the saddle point in the linear branch. Like the 
previous case, adjacency of the fixed point at the origin to the 
saddle shrinks the basin of attraction of the quiescent state, 
and therefore noise can bring the system to the limit cycle 
which itself is sensitive to internal and external noise. Finally, 
Fig. 12D shows how saddle-nodes of the last two diagrams 
are annihilated by saddle-node on limit cycle and saddle-node 
bifurcations, respectively. Here a limit cycle solution emerges. 
However, close to the origin this limit cycle stays for a longer 
time in the lower section of very low firing because of slow 
flow in this region. The outcome is again a quasi-periodic 
burst of avalanches followed by a quiescent state.

Figure 13A shows avalanche characteristics of activity in 
parameter regime on the left of the BT point with the limit 
cycle solution very close to the origin (region 3 in Fig. 11). 
Finite size fluctuation leads to switch between these two 
states. In Fig. 13A3 , WEE is higher and �E

Ext
 is slightly lower 

A B

C D

Fig. 12  Nullcline configuration around the avalanche dynamic region. 
Red curves are excitatory nullclines and blue curves are inhibitory 
nullclines. Filled and empty circles represent stable and unstable 
fixed points, respectively. A Slopes of linearized nullclines match 
close to the BT point. B Near the BT point, the basin of attraction of 
the quiescent fixed point has a low volume, and saddle-node bifurca-
tion produces pair of fixed points in the low firing rate regime, here 
both are unstable. C In a specific parameter regime, a limit cycle 
solution exists in the vicinity of the unstable fixed point. D In higher 
external input quiescent state vanishes and the low rate limit cycle 
remains leading to quasi-periodic rates
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than the previous case and the system is located in the region 
with a fixed point in the low firing regime which is stable 
because of the high value of WII which corresponds to region 
(5) in Fig. 10. Figure 13B shows avalanche dynamics on the 
right side of the BT point with an unstable fixed point in the 
linear section (region (4) in Fig. 11). In both sets of figures 
increasing WEE moves the system out of the avalanche region 
with the difference that the fixed point at the linear section 
is stable in the first case and unstable in the second. There-
fore, the nearby regime of activity in the first case (13A3 ) is 
a non-oscillatory inhomogeneous Poisson firing state while 
the corresponding regime near the second case is oscillatory 
(Fig. 13B3).

3.2.5  Stability analysis of fixed points in the linear regime

As we have seen in the last section, close to the BT point 
there exist regions in which there is a low fixed point at the 
intersection of the semi-linear sections of nullclines. The sta-
bility of the fixed point at the intersection of two nullclines is 
determined by the Jacobian matrix of the linearized system,

(36)A =

⎛⎜⎜⎝
−1 +

�f

�E
− ��f

�I
�

�g

�E
− 1 − ��g

�I
�
⎞⎟⎟⎠

Linear segments intersect if yinh < yexc and sexc > sinh or 
yinh > yexc and sexc < sinh . When the slope and y-intercepts 
are equal, the Jacobian at the point of intersection is

with � = a
�E
Ext

− �I
Ext

d − �I
Ext

 .

a =
�g

�E
= ��WIEKIE = �WEEkEE − 1 + �

d =
gleak(Vrest − Vth)

� ∗ g0
exc

∗ (Vth − VRexc)

b = 1 + |�g
�I

| = 1 + ��WIIKII = (1 −
�

a
)−1[�WEIkEI]

� = g0
exc
�exc

(Vth − VRexc)√
2��Ex

V

�� = g0
exc
�exc

(Vth − VRexc)√
2��Inh

V

� = g0
inh
�inh

(Vth − VRinh)√
2��Exc

V

�� = g0
inh
�inh

(Vth − VRinh)√
2��Inh

V

� ∗ �� = � ∗ ��

Because external excitatory input to the excitatory pop-
ulation is greater than to the inhibitory population and 

(37)A =

(
a − � − (b −

b

a
�)

a − b

)

Fig. 13  A1 Avalanches close to the BT point in a system with 
WII = WEI = 2,WIE = 0.75 , �inh

Ext
= 150Hz WEE = 0.615 and 

�exc
Ext

= 218Hz . B1 Avalanches close to the BT point in a sys-
tem with WEI = 1.5,WII = 2,WIE = 0.75 , �inh

Ext
 = 150Hz , �exc

Ext
 = 

230Hz, WEE = 0.52 (A
2

 ) Average membrane potential of inhibitory 
population shows high fluctuation in the avalanches period and two 

distinct level of polarization. B
2

  Average membrane potential of 
excitatory population shows high fluctuation in the avalanches period. 
In the quiescent state due to excess external current to the excita-
tory pool the average membrane potential of the excitatory popula-
tion is slightly higher than the inhibitory one. A

3

 same as A
1

 but with 
WEE = 0.61 and �exc

Ext
= 223Hz . B

3

 same as B
1

 but with WEE = 0.5
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inhibitory connections are assumed to be local, � is 
slightly positive. Define E = �E − �

p

E
 and I = �I − �

p

I
 , 

where �p
I
 and �p

E
 is the fixed point location at the linear 

poisson regime with �p
I
≈

b

a
�
p

E
.

At � = 0 the eigenvalues of A are 0 and a − b with cor-
responding eigenvectors u1 = (

b

a
, 1) and u2 = (1, 1) . By 

coordinate transformation to u1 and u2 coordinates, we can 
write down the dynamics in the decoupled system as

where,

with the transformed initial condition

which has the following solution in u coordinates

Back into (E, I) coordinates:

So for this linear system, when a − b < 0 , the initial 
imbalance of excitatory and inhibitory input leads to a 
stationary relation of the form E =

b

a
I . Now, consider the 

case in which the linearized nullcline slopes are slightly 
different with the Jacobian

Here TR = �1 + �2 = (a − b) − � and det = �
1

�
2

=

a� + �bb . Based on the sign of determinant and trace of the Jaco-
bian at the fixed point, stability is determined (Fig. 14). Under 
the condition that b + 𝜇 > a and 𝜖 > −

b

a
𝜇 , both eigenvalues are 

negative : �1 =
b� − a�

b − a
 and �2 = (a − b) +

2a(� − �)

a − b
 . We also 

have |𝜆1| << |𝜆2| for small differences in the slopes. Eigenvec-
tors corresponding to these eigenvalues are

(38)u̇ =

(
0 0

0 a − b

)
u

(39)u =

(
b

a
1

1 1

)−1 [
E

I

]
=

a

a − b

[
I − E

E −
b

a
I

]

u0 =
a

a − b

[
I0 − E0

E0 −
b

a
I0

]

(40)u(t) =
a

a − b

[
I0 − E0

(E0 −
b

a
I0)e

(a−b)t

]

(41)

[
E(t)

I(t)

]
=

a

a − b
(I0 − E0)

[
b

a
1

]
+

a

a − b
(E0 −

b

a
I0)e

(a−b)t

[
1

1

]

(42)A =

(
a − � − (b + �)

a − b

)

Therefore, the dynamics in the linear regime can be pro-
jected to the slow stable manifold u1 . One can approximately 
write down the evolution of the rates as in Eq. 41.

𝜖 > −
b

a
𝜇 corresponds to the case that the slope of the 

excitatory nullcline is higher than of the inhibitory nullcline 
(stronger inhibitory feedback WEIWIE > WIIWEE ) and the 
y-intercept of the excitatory nullcline is slightly lower, i.e. 
stronger external excitatory input to the excitatory popula-
tion than to the inhibitory one. Moreover, this is the case 
when WII is high enough to guarantee the b > a condition. 
When all these requirements are met, the fixed point in the 
linear segment is stable and we observe an asynchronous low 
to medium firing state as in Fig. 8 and Fig. ??. Around this 
regime, an increase in WEE will increase � and a change in 
�E
Ext

 moves the fixed point along the linear section. The inter-
section in the linear regime transcends to higher rates by 
increasing WEE . This lets the determinant decrease while the 
trace increases, which eventually destabilizes the fixed point. 
In the vicinity of the low BT point, based on the value of WII , 
in the linear section either a weakly stable or a weakly unsta-
ble fixed point surrounded by a limit cycle appears. In both 
cases, the eigenvalue close to zero with eigenvector u1 gov-
erns the slow dynamics around these points.

Consider the case of imaginary eigenvalues of the Jaco-
bian, �± = � ± i� with eigenvectors v± = vr ± vi , which 
satisfy

By defining the tranformation matrix T = [vrvi] , the lin-

earized matrix is Q = T−1AT =

(
� �

−� �

)
 and the solution 

of the linear system is of the form

u1 = (
b

a
+ �1, 1)

u2 = (1 + �2, 1)

A[vrvi] = [vrvi]

(
� �

−� �

)

eAtx0 = Te�t
(

cos(�t) sin(�t)

−sin(�t) cos(�t)

)
T−1x0

Fig. 14  Stability of fixed points in the linear regime based on values 
of trace and determinant of the Jacobian
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By using the coordinate transformation u = T−1x , we can 
write the evolution u̇ = Qu with u0 = T−1x0 . The linearized 
dynamic predicts damped oscillations of frequency 

� =

√
det −

Tr2

4
 when 𝜎 < 0 and at the Hopf bifurcation 

point when � = 0 the frequency of oscillations will be 
� =

√
detH  . At the nullcline intersections of linear segments 

close to the Hopf bifurcation, the oscillation frequency is 

close to the imaginary part of the eigenvalues: 
√

det −
Tr2

4
.

Along the slow manifold, the inhibitory and excitatory 
rates vary linearly as I = a

b
E ≈

keeWee

keiWei

E . This relation bal-

ances the average current for each population. Therefore, 
near the BT bifurcation point, the dynamic of slow field, 
E − I , can be written as

where � is close to zero, the first nonlinear term of the Taylor 
expansion has been taken into account and �(t) is a white 
noise added to the microscopic equation based on the Pois-
son firing assumption.

(43)

d(E − I)

dt
= �(E − I) + c(1 −

a

b
)−1(E − I)2

1√
N
(1 −

a

b
)

1

2 (E + I)

1

2 �(t)

3.2.6  Characteristics of avalanches

For the values of WEE near the BT point at the low firing rate, 
there exists a range of external input strength for which the 
firing pattern is quasi-periodic with excitatory avalanches 
followed by inhibitory ones. The mean escape time from 
the basin of attraction of the quiescent fixed point reduces 
when the external input increases, and thus, the frequency 
of avalanches increases. Further increase of external input 
leads to stability loss of the quiescent state and appearance 
of higher frequency oscillations in the medium range of rates 
(see Fig. 15).

In the avalanche regime, the membrane potential shows 
sub-threshold oscillations as can be seen in Fig. 13. In the 
down phase of the cycle, neurons stay near the resting poten-
tial while at the up-state they reside closer to the threshold, 
but at a distance that permits high variability of firing. The 
membrane potential of a single neuron is depicted in Fig. 16, 
which shows aperiodic firing and up-down states of mem-
brane potential.

While avalanches occur quasiperiodically, in most of 
them only a fraction of neurons fire. As shown in (Fig. 17A3 
and B3 ) neurons fire with CV close to one in the lower WEE 
regime, close to the BT point. Variability in the size of ava-
lanches is another interesting item to investigate.

Fig. 15  Frequency of avalanches and oscillatory activity increase by 
input strength. In lower values of excitatory external input, the limit 
cycle solution is very close to the origin and the system shows ava-
lanches. By increasing the external drive, the limit cycle moves away 

from the origin (quiescent state) and becomes stable. Oscillations 
have a higher frequency at higher external input rates with semi-lin-
ear relations in both regions
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We define avalanches as bursts of activity higher than a 
threshold which is around 0.2Hz corresponding to random 
background activity driven by external noise at the quiescent 
state. Choosing a small threshold value in a way to exclude sin-
gle neurons firing while observing scaling in large avalanche 

sizes does not affect asymptotic exponents as it has no effect 
on identifying the avalanches of large sizes and their relative 
frequencies. Using the algorithm introduced in Clauset et al. 
(2009), we fit the power-law distribution to avalanches size and 
duration with the maximum likelihood estimator(MLE) algo-
rithm adjusting for smin which leads to the best power-law fit 
with the lowest Kolmogorov-Smirnov (KS) measure. We check 
the goodness of the fit and also compute directly the MLE from 
the following formula:

The size distribution of avalanches has a longer tail 
approaching the BT point. It follows a power-law probability 
density function (PDF) for avalanche size P(S) ∝ S−� with 
slope � = 1.5 close to the BT point, see Fig. 17A1 and B 1 . 
Further away from the critical point, avalanches have charac-
teristic average size and their size probability density moves 
away from the power-law distribution. Furthermore, the prob-
ability distribution for the duration of avalanches follows a 
power law with an exponent close to −� = −2 near the BT 
point (see Fig. 17A2 and B 2 ). To further analyze the criticality 
hypothesis, we have computed the avalanche shape collapse 
and scaling relation (see Fig. 18). Average size versus average 

duration of avalanches obeys a power-law with ⟨s⟩ = ⟨T⟩
1

��z 

(44)�∗ = 1 + N(
∑
i

log(
si

smin
))−1

4000 6000 8000 10000

t(0.1ms)

-0.06

-0.055

-0.05
v
(V

)

Fig. 16  Membrane potential track of a single neuron during ava-
lanche dynamic of Fig.  13. Avalanches at population level can be 
seen as periods of rising potential in the individual neurons which 
are sustained longer than avalanche range due to slow synaptic decay. 
Individual neurons do not fire in every single avalanche

Fig. 17  A  Same as Fig.  13A with WEI = 2,WII = 2,WIE = 0.75 , 
�inh
Ext

  = 150Hz, �exc
Ext

 = 230Hz with different values of 
WEE ∈ (0.6, 0.65) . Cumulative distribution function of avalanche 
sizes (A

1

 ) and duration (A
2

 ) in log-log plot with linear fit. Red 
curve ( WEE=0.64), black ( WEE = 0.63), blue ( WEE = 0.615) and 
green ( WEE = 0.6). (A

3

 ) Branching ratio and (A
4

 ) CV of firing time 
intervals of individual neurons (red for the excitatory neurons and 
blue for the inhibitory ones). B Characteristics of avalanches for the 

model with WEI = 1.5,WII = 2,WIE = 0.75 , �inh
Ext

 = 150Hz , �exc
Ext

 = 
230Hz and WEE ∈ (0.516, 0.54) as in Fig.  13B . Cumulative distri-
bution function of avalanche sizes (B

1

 ) and duration (B
2

 ) in log-log 
plot with linear fit. Green curve ( WEE = 0.54), black ( WEE = 0.53), 
blue ( WEE = 0.52) and red ( WEE = 0.51). (B

3

 ) Branching ratio and 
(B

4

 ) CV of interspike time intervals of individual neurons (red for the 
excitatory neurons and blue for the inhibitory ones)
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linked by a scaling relation � − 1

� − 1
=

1

��z
≈ 2 between expo-

nents. In addition, the mean temporal profile of avalanches 
follows a scaling form ,

Furthermore, size and duration of avalanches in the 
inhibitory population obey power law scaling as well (see 
Fig. 18D-E). The critical exponents and the scaling relations 
among them suggest that the critical phase transition in our 
system belongs to the directed percolation universality class.

The branching ratio can be defined as the average number of 
postsynaptic neurons of a specific neuron that fire by receiving 
the synaptic current from that neuron. The branching ratio can 
be an indicator of scale-free avalanche dynamics. When inhibi-
tion and excitation are balanced and the system resides near a 
quiescent state, the branching parameter stays close to, but below 
one which is an indicator of stronger inhibitory feedback. As can 
be seen in Fig. 17, this value is lower in the paramter regime 
close to the BT point and becomes > 1 further away from it.

Here, we assume that by synchronous activation of nE 
neurons the postsynaptic neurons which are connected to 
these neurons will receive both excitatory and inhibitory 
currents caused by the synchronous input. Each neuron 
receives a fraction kEE of excitatory and kEI of inhibitory 
currents produced by active neurons. The average potential 
change among neurons will be

(45)S(t, T) ∼ T1∕��z−1F(t∕T)

Close to the bifurcation point, there exists a tight dynamic 
balance between excitatory and inhibitory rates, following 
Eq. 41, which sets ⟨ΔV⟩ = 0 . Based on the assumption that 
neurons fire with Poisson statistics, we can write the vari-
ance of the potential change in the postsynaptic neuron pool 
as

On the other hand, the number of postsynaptic neurons 
that fire by receiving an increase in voltage of value ΔV  is

From Eq. S.10 in SM , for the stationary probability den-
sity we have

Inserting Eq. 49 in Eq. 48 and averaging � over differ-
ent realizations of the synchronous firing using Eq. 47 and 
dividing by ⟨nE⟩ leads to

(46)
⟨ΔV⟩ =⟨kEEnE⟩ 1

C
g0wEE�(VRexc − VE) + ⟨kEInI⟩ 1

C
g0wE�(VRexc − VE)

(47)
⟨ΔV2⟩ = �2g2

0
(⟨kEEnE⟩w2

EE
(vRexc − Vth)

2 + ⟨kEInI⟩(wEI)
2(vRinh − Vth)

2)

(48)

� = NExc ∫
Vth

Vth−ΔV

P(V , t = ∞) ≈ −
NexcΔV

2

2

�p(vE, t = ∞)

�v
∣vE=Vth

(49)

�p(vE, t = ∞)

�v
∣vE=Vth

= −
2C2�exc

De(vRexc − Vth)
2 + Di(vRinh − Vth)

2

Fig. 18  A  Excitatory (red) and Inhibitory (blue) population rates in 
the avalanches regime. Inhibitory instantaneous rate is proportional to 
the excitatory rate which leads to tight temporal balance. B Average 
size vs. average duration of avalanches. C Temporal profile of three 

sets of avalanches with different duration. D  The cumulative distri-
bution function of inhibitory avalanches size. (KS = 0.056) E Cumu-
lative distribution function of inhibitory avalanche duration. (KS = 
0.068)
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The average number of active inhibitory and excitatory 
neurons ⟨nI⟩ and ⟨nE⟩ , relates to stationary rates as ⟨nI⟩
⟨nE⟩ =

�I

�E
 . Inserting this relation into Eq. 50, we find out 

that the branching ratio is close to one near the BT point. 
Because of slightly stronger inhibitory feedback, it is 
slightly below one.

Excitatory neurons stay in a low firing regime with 
average membrane potential close to the middle point 
between the firing threshold and the resting-state poten-
tial, i.e., at V ∼ −57mv . At this point, a sufficient fraction 
of neurons is close to the threshold, whose activation can 
cause a series of firing. On the other hand, inhibitory neu-
rons, which have a lower stationary membrane potential 
because of lower external input, provide negative feed-
back with a delay that depends on the resting initial state 
and the strength of the connection between inhibitory and 
excitatory sub-networks. The dynamic balance of excita-
tion and inhibition in the linear UP state leads to critical 
behavior. As average currents to the cells are balanced far 
from the firing threshold, fluctuations in these currents 
have a larger effect and therefore, the size of events and 
their durations are more variable.

(50)

�E ≈

�2g2
0
[w2

EE
�st
exc
(vRexc − Vth)

2 + �st
exc

⟨nI⟩
⟨nE⟩w

2
EI
(vRinh − Vth)

2]

De(vRexc − Vth)
2 + Di(vRinh − Vth)

2

Moreover, let us consider the onset of avalanche dynam-
ics in the EI population receiving external input with fixed 
rates by selecting WEE as the only dynamic parameter (see 
Fig. 19). By increasing WEE , a second-order phase transi-
tion happens at the Hopf bifurcation. Around this value, 
the normalized variance of the population rate is maxi-
mized and oscillations appear in the system. In Fig. 20, 
this happens at the value WEE ≈ 0.57 . Further increase of 
WEE results in the saddle-node bifurcation which produces 
a stable high firing rate state at values around WEE ≈ 0.67.

Although the activity is noise-driven, the state of the 
system depends on synaptic weights, which determine the 
response to the external input. There must be a self-organ-
izing mechanism, which in a wider range of input strengths 
and initial configurations of synaptic weights tunes the sys-
tem close to the BT point.

4  Discussion

We have seen that in a large sparse network of spiking neu-
rons the input to the cells in the state of asynchronous firing 
is Poisson and investigated conditions on Poisson firing at 
the single neuron level. We chose the conductance-based 
leaky integrate and fire model to take the strong depend-
ence of the inhibitory postsynaptic current on the voltage 
level into consideration. Next, we introduced linearization 
of the neuron gain function in the Poisson firing regime and 
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Fig. 19  Stationary population rates (A) (Blue for Inh. and Red for Exc.), variance (B) and normalized variance (C) for EI population vs. WEE at 
the fixed value of �Ext = 250Hz . Other parameters were set to WIE = 0.75 , �Inh = 150Hz , WII = WEI = 2
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presented a linear Poisson neuron model which we used 
to analyze interconnected networks of excitatory and the 
inhibitory neurons.

The network of spiking neurons with the assumptions of 
homogeneity, large size, and sparse connectivity can be mod-
eled by the dynamics of the mean field. The excitatory and 
inhibitory mean-field equations are a set of nonlinear equations 
with free parameters including the average synaptic strength 
between different types of neurons. Taking a set of these free 
parameters as control parameters of the model one can analyze 
the bifurcation patterns in the system. Here, we chose the excit-
atory external drive and the synaptic weight from excitatory to 
excitatory neurons as control parameters. The latter regulates 
the strength of the inhibitory feedback in the local population 
and the former controls the level of forced activity from other 
populations. The qualitative picture of the bifurcation patterns 
does not change by the choice of different synaptic weights as 
control parameter. In analyzing the bifurcation diagram, we are 
mainly interested in the loss of stability of the quiescent state. 
This can happen through a saddle-node or a Hopf bifurcation 
by either increasing the external drive or WEE . At a certain 
point called the Bogdanov-Takens point, the saddle-node and 
Hopf bifurcation lines meet. Near this point there is a tight 
balance of the inhibitory and the excitatory average currents to 
the cells. This balance cancels out much of the high amplitude 
excitatory and inhibitory currents to each cell and causes the 
average membrane potential of the neurons in the population 
to stay away from the threshold. In this regime, the activity 

of the spiking neurons is fluctuation driven which makes the 
firing time intervals highly variable. In this case, the statistics 
of the firing is close to a Poisson point process matching the 
experimental findings. On the other hand, the balance of exci-
tation and inhibition leads to avalanche style dynamics near 
the BT point. Slow oscillations emerge at the Hopf bifurcation 
line and through a saddle-node bifurcation, a pair of low firing 
stable and unstable fixed points comes into existence.

The next step after identifying the operating dynamical 
regime that produces the desired output is to investigate mecha-
nisms that can tune the parameters of the system at the desired 
region of the phase space. We shall investigate the self-organ-
ization by spike-timing dependent plasticity and short term 
synaptic depression in another article (Ehsani and Jost (2022)). 
The former tunes the overall strength of excitatory and inhibi-
tory pathways to be close to a balanced regime of these currents 
and the latter, which is based on the finite amount of resources 
in brain areas, acts as an adaptive mechanism that tunes micro 
populations of neurons subjected to fluctuating external inputs 
to attain the balance in a wider range of external input strengths.

Our analysis in this article is restricted to the case of homo-
geneous neuronal network. In biological neuronal network 
there is high level of modularity in large scale connectivity 
maps and inhomogeneity in number and strength of connec-
tions among different neurons. Therefore, effect of modular 
hierarchical inhomogeneous structure on the critical behav-
iour of the system requires further investigation. Wardak and 
Gong (2022) studied criticality in excitatory networks with 
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170 Journal of Computational Neuroscience (2023) 51:149–172



1 3

heavy-tailed probabilty distribution for synaptic connections 
and reported extended critcal regimes between quiescent and 
active states. Kuśmierz et al. (2020) showed a continuous 
transition to chaos in an excitatory network with power-law 
distributed synaptic weights. It is of interest to analytically 
investigate how heavy-tailed synaptic weights affect the critical 
region surrounding the BT point in EI networks. In addition, 
we have only studied the single EI population dynamic in this 
work. Analyzing weakly interconnected neuronal population 
and coarse grained field equations near BT point and investi-
gating the types of solutions that emerge in the continuum limit 
is another extension of the current work. In Ehsani and Jost 
(2022), we introduced a phonological stochastic field equation 
model for EI population near the BT point. However, exten-
sive analysis of types of solutions of these sets of equations 
is required to shed light on large scale behaviour of a system 
which is locally tuned at the BT point
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