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Abstract
Recurrent neural networks of spiking neurons can exhibit long lasting and even persistent activity. Such networks are often not 
robust and exhibit spike and firing rate statistics that are inconsistent with experimental observations. In order to overcome 
this problem most previous models had to assume that recurrent connections are dominated by slower NMDA type excitatory 
receptors. Usually, the single neurons within these networks are very simple leaky integrate and fire neurons or other low 
dimensional model neurons. However real neurons are much more complex, and exhibit a plethora of active conductances 
which are recruited both at the sub and supra threshold regimes. Here we show that by including a small number of additional 
active conductances we can produce recurrent networks that are both more robust and exhibit firing-rate statistics that are 
more consistent with experimental results. We show that this holds both for bi-stable recurrent networks, which are thought to 
underlie working memory and for slowly decaying networks which might underlie the estimation of interval timing. We also 
show that by including these conductances, such networks can be trained to using a simple learning rule to predict temporal 
intervals that are an order of magnitude larger than those that can be trained in networks of leaky integrate and fire neurons

Keywords Persitant activity · Synaptic plasticity · Active conductances · Interval timing

1 Introduction

Neurons in the Brain exhibit long-lasting activity that 
outlasts the typical intrinsic time constants of single neu-
rons by orders of magnitude (Fuster & Alexander, 1971; 
Goldman-Rakic, 1995). In some experimental settings, 
recorded neurons also exhibit long-lasting activity that ter-
minates at intervals with a behavioral significance such as 
the expected timing of reward (Huertas et al., 2015; Shuler 
& Bear, 2006). Such experimentally observed behaviors 

can be accounted for by networks of interacting neurons, 
and reverberations within these networks can account for 
the long-lasting time constant of neuronal activity. Such 
patterns of behaviorally relevant neural dynamics can be 
learned from examples in experimental settings. Various 
models have been proposed over the years to demonstrate 
how such recurrent networks can account for long lasting 
activity (Compte et al., 2000; Renart et al., 2004), and for 
learning temporal intervals (Gavornik & Shouval, 2011; 
Gavornik et al., 2009). Working memory models have often 
relied on synapses with slow time constants such as NMDA 
receptors (Wang, 1999). Such slow synapses were assumed 
because networks with faster, AMPA like synapses typically 
exhibit very high firing rates in the self-sustaining persistent 
activity state (Gavornik & Shouval, 2011; Wang, 1999), and 
these activity levels are much higher than those observed 
experimentally. If the network activity is not self-sustained, 
but receives external input it can be bi-stable and sustain 
realistic firing rate statistics in the active state even with 
fast time constants (Renart et al., 2006). There is some evi-
dence that there is a high concentration of NMDA recep-
tors in prefrontal cortex, where many experimental results 
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of persistent activity have originated (Wang et al., 2013). 
However, even if there is a high concentration of NMDA 
receptors, it still needs to be shown that these receptors, 
and not the faster AMPA receptors are the ones that are 
modified in order to generate these plastic recurrent net-
works. Similarly, in networks that learn to predict inter-
val timing, slow synaptic conductances have been used as 
well (Gavornik & Shouval, 2011; Gavornik et al., 2009), in 
order to avoid unrealistically high firing rates. Additionally, 
networks with fast, AMPA-type, receptors with realistic 
variability are hard in practice to train in order to generate 
temporal intervals that last for more than a few hundred 
milliseconds. These prior observations and the impact of 
AMPA-type receptors on network dynamics are explained 
in more detail below and in Fig. 1.

Although recurrent networks are the most prominent 
theory for long-lasting neural activity, an alternative theory 
with experimental support is that positive activity feedback 
loops of intrinsic conductances within single cells are able 
to generate persistent activity (Egorov et al., 2002; Fransén 
et al., 2006), and such mechanisms can also be generalized 
to neurons that can learn to predict interval timing. The 
primary experimental support for such active intrinsic con-
ductances, and their contribution to persistent activity arises 
from Entorhinal slices, although similar channels are shown 
to exist in other regions including thalamus (O’Malley 
et al., 2020). Currently, most evidence that intrinsic con-
ductances play a role in persistent activity arises from in 
vitro studies.

In this paper, we set up to show that a recurrent net-
work of neurons with active intrinsic channels(Fransén 

et al., 2006; Tegnér et al., 2002), and with fast synapses, 
is able to generate persistent activity with low firing rates, 
and to robustly learn temporal intervals that last more 
than 10 s. In a sense this is a hybrid of the two previous 
approaches, the positive feedback loop observed in sin-
gle cells is embedded within each neuron of a network 
model. Single cells within this network are unable to gen-
erate sufficient persistent activity alone, but the intrinsic 
mechanism contributes to long-lasting activity in combi-
nation with the recurrent connections. In such a network, 
the plasticity that generates these ensembles with long-
lasting activity is synaptic plasticity rather than plasticity 
of the intrinsic channels themselves. In this model, the 
intrinsic activity feedback loop, acts as a conditional slow 
time constant; this mechanism is typically turned off at 
rest, but gets activated by sufficient feedforward input 
or recurrent network activity. With this hybrid model, 
networks with fast synapses are able to generate persis-
tent activity while exhibiting biologically plausible fir-
ing rates. Also, the intrinsic mechanism allows recurrent 
networks to be trained robustly to predict interval timing 
over larger temporal intervals, while exhibiting biologi-
cally observed firing rates. The active intrinsic conduct-
naces generate a conditional slow time constant, which is 
turned on only when the neuronal activity is sufficiently 
high. This conditional slow time constant allows the net-
work to have a fast on rate for these states together with 
persistent or very slowly decaying activity. In contrast, 
in network models with slow synapses, the convergence 
to the persistent state is also slowed down when synaptic 
time constants are long.

Fig. 1  Network behavior for recurrently connected leaky inte-
grate and firing neurons. (a) The mean firing rate of the network 
for increasing synaptic weights. The peak value of the firing rate 
increases for stronger couplings (green lines), and the network decays 
at a slower rate. At some critical value of recurrent weights, the net-
work becomes bi-stable (black line) as the weights increase further 
(red lines) the firing rate of the ‘UP’ state increases. The mean firing 
rate is averaged over all neurons in the network and convolves with 
an exponential smoothing kernel as explained in the methods section. 

(b) Firing rate of the UP state just above the critical weight, for dif-
ferent synaptic time constants from 20 to 100 ms. (c) Decay time (T) 
increases exponentially for gradually increased synaptic weights (W). 
The shape of the curve depends on the synaptic time constant. Curves 
for 100 ms synaptic time constant (dashed line) reduces the steepness 
of the curve slightly compared to 25  ms time constant (solid line). 
The value of W is normalized by Wc; the critical value of the weight 
parameter at which the network becomes bi-stable
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2  Network dynamics

2.1  Dynamics of simple recurrent networks 
with leaky integrate and fire neurons

Here we display the dynamics of simple networks com-
posed of excitatory leaky integrate and fire (LIF) neurons 
with no additional intrinsic channels. We use this model to 
illustrate some of the problems such models encounter in 
accounting for the experimentally observed results when 
the synaptic conductances are fast. Such observations have 
promoted previous models to be based on slow synaptic 
conductances (Wang, 1999).

Network dynamics, in this model, are determined by the 
strength of the recurrent connections within the network. 
Figure 1a, shows the dynamics of a network with fast 
membrane and synaptic dynamics 

(
τm = 20ms, τs = 25ms

)
 . 

Changes in the magnitude of recurrent weights affects the 
peak of the network activity, the plateau firing level and 
the duration of the delayed activity (Fig. 1a). For small 
synaptic weights, the network’s activity decays quickly 
(green lines), almost indistinguishably from the dynamics 
of a single cell. As synaptic weights increase (gray lines), 
the networks dynamics slows down significantly exhibit-
ing a low transient that eventually decays. Such dynamics 
can be used to represent learned interval times (Gavornik 
& Shouval, 2011; Gavornik et al., 2009). Peak network 
activity rates in such a case are very high (Fig. 1a, b), more 
than 150 Hz. Such high firing rates are inconsistent with 
experimental findings. As the recurrent weight increase 
further, firing rate form a plateau (Fig. 1a, Black and red 
lines). At these weights, the network is bi-stable with two 
possible stable states; a zero or low firing-rate state called 
the DOWN state, and a state with rapid firing called the 
UP state. For these parameters, all persistent activity states 
have firing rates that exceed 180 Hz. Increased synaptic 
weights result in higher firing rates (Fig. 1a, red lines). 
The black curve in Fig. 1a depicts network dynamics for a 
weight (Wc) which is just above criticality, this UP state 
has the minimal firing rate possible for these parameters. 
Note that we have simulated networks with such high fir-
ing rates, not because these results are similar to experi-
mental observations, but precisely in order to show that 
under these assumptions networks do not replicate experi-
mental results.

The firing rates of the UP state depend on the synaptic 
time constant τs . In Fig. 1b we show how the firing rate 
of the UP state depends on τs in the range of 20–100 ms 
(Fig. 1b). For all synaptic time constant values, the net-
work exhibited the same type of qualitative behavior 
as the network with fast (τs = 25ms ) synaptic dynam-
ics in Fig.  1A. However, as  �s increased, the critical 

bi-stable firing rate monotonically decreased from 188 Hz 
at �s = 20ms to 100 Hz at �s = 100ms (Fig. 1b). Even the 
firing rates for a slow synaptic time constant of 100 ms 
are high compared to the activity levels typically observed 
in brain circuits (Goldman-Rakic, 1995). We have previ-
ously obtained similar results analytically with a mean-
field theory (Gavornik & Shouval, 2011).

We have been able to tune the weights of the model 
in order to generate transient activity that lasts for a few 
seconds (Fig. 1a, c). However, with a finite resolution 
of synaptic efficacies and with neuronal noise, attaining 
such large durations is not practical. We have explored 
this slow transient regime, by gradually increasing the 
synaptic efficacies, and for each efficacy level noting the 
time it takes the network to decay. We have defined the 
decay time (T) as the time it takes the network to return 
to a firing rate of 5 Hz. In Fig. 1d we show how the net-
work’s decay time depends on the synaptic efficacy, for 
two synaptic time constants �s = 25ms (solid line), and 
�s = 100ms (dashed line). The X axis is the weight divided 
by the critical weight for obtaining bi-stability. For both 
time constants these curves start very flat, and as they 
approach the critical weight value, they become very steep, 
however the curve for the 100 ms time constant is less 
steep. These steep curves imply that very small changes 
in synaptic weights result in large changes in the network 
decay times, and small fluctuations can even cause the 
network to become bi-stable. Using these deterministic 
spiking networks, with no added noise, we were not able 
to produce delayed activity that last longer than 3000 ms 
for �s = 25ms , and to 5000 ms for �s = 100ms , and this is 
despite having nearly infinite resolution in setting syn-
aptic efficacies. With minimal limits on the resolution of 
synaptic efficacies and with minimal noise it is extremely 
hard to code for durations longer than 900 ms and 1600 ms 
decay times, for these different time constants respectively. 
These results are consistent with our earlier studies that 
maximum temporal representations were limited to 1–2 s 
(Gavornik & Shouval, 2011).

In previous models a mix of AMPA receptors with fast 
time constants and NMDA receptors with slow time con-
stants have been used (Compte et al., 2000; Tegnér et al., 
2002; Wang, 1999). Our observation that slow synaptic 
time constants are necessary to obtain experimentally 
realistic firing rates is equivalent to the previous obser-
vations that a high NMDA to AMPA ratio is necessary 
for obtaining realistic firing rates in the UP state. Simply 
adding recurrently connected inhibitory neurons does not 
generate a self-sustaining bi-stable network with realistic 
firing rates, and external currents must be added to pro-
duce bi-stable networks where the UP state has low firing 
rates (Renart et al., 2006).
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2.2  Single cell model with positive‑feedback active 
currents

Besides the models that account for persistent activity 
by reverberation in networks with recurrent connections, 
there is also experimental evidence and theoretical stud-
ies (Egorov et al., 2002; Fransén et al., 2006), (O’Malley 
et al., 2020; Shouval & Gavornik, 2011) that show persis-
tent activity and slowly decaying activity can be accounted 
for by a feedback loop of different intrinsic conductances. 
Specifically, the experimental data suggests models in 
which calcium activated non-selective cation channels 
together with voltage dependent calcium channels create 
an intracellular positive feedback loop that keeps the cell 
firing for an extended time period.

The basic conductance based LIF model describes the 
membrane potential within a single compartment with a 
leakage and an input current. In this section we add to 
the single cell model active intrinsic conductances that 
control the subthreshold depolarization, but spikes in this 
model are still initiated by threshold crossing and not 
by voltage dependent conductances as in the Hodgkin-
Huxley formulation. Each neuron consists of excitatory 
input channel, high voltage activated (HVA) calcium 
channel, non-selective cation conductance  (ICAN), and 
leakage conductance (Fig. 2a). We call this type of neu-
ron an active integrate and fire neuron (AIF) (See Meth-
ods, Sect. 3 for details). The neuron receives synaptic 
input from the external population and generates action 
potentials, as the membrane voltage exceeds the thresh-
old value. With each spike, the HVA open up briefly and 
allows calcium flow into the cell. These currents increase 

intracellular calcium levels to activate calcium dependent 
non-selective cation channels  (ICAN) (Fig. 2a).

The dynamics of a single neuron following a transient 
input of 100 ms are shown in Fig. 2b. The initial external 
activation of the cells causes action potentials which gener-
ate activation of calcium currents through HVA channels 
(Fig. 2b, center), increased calcium opens the  ICAN channels 
(Fig. 2b bottom) which causes sufficient cellular depolariza-
tion to generate additional action potentials. This positive 
feedback loop generates sustained firing. This intracellu-
lar feedback loop maintains the firing of the neuron, but at 
these parameters, the compensation of this loop is slightly 
less than the leak current, so that cells activity slowly dies 
down. The effect of  ICAN channels on the cellular dynam-
ics depends on its maximum conductance, denoted as gmax 
(Fig. 2c). As gmax is increased, the duration of sustained 
activity is increased. For larger values of gmax the single 
cell becomes bi-stable (Fig. 2c, red). Here we propose to 
study the impact of including these active conductances in 
single cells within a network. We will add them with maxi-
mal conductances that are subthreshold for single neuron 
bi-stability. We hypothesize that including these will add a 
conditional very-slow time constant to the neurons which 
may both produce network bi-stability at much lower firing 
rates as well as increase the range of transient activities to 
encode temporal intervals.

2.3  Network dynamics with AIF model

In this section we demonstrate the effects of using AIF neu-
rons within a recurrent network. The network conserves the 

Fig. 2  Dynamics of single AIF neuron. (a) Each neuron is  com-
posed of an excitatory input channel, a high voltage activated (HVA)  
calcium channel, a non-selective cation conductance, and a leakage 
conductance. The input elevates the membrane voltage and initiates 
firing of the neuron. With each spike calcium current flows into the 
cell. Increased levels of intracellular calcium activate the  ICAN con-
ductance. The inward cation current maintains the high levels of 

membrane voltage. This feedback loop maintains the persistent neu-
ral firing. (b) The dynamics of single neuron with  ICAN currents fol-
lowing 100 ms of external stimuli. The subplots show the membrane 
voltage, intracellular calcium concentration and  ICAN conductance. 
(c) The network is simulated for different gmax values, the traces are 
coded with matched colors for corresponding [Ca] and firing rate
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same input parameters and network structures of the network 
of LIF neurons. See the methods section for details.

Simulations of recurrent networks of AIF neurons with 
different recurrent weights are seen in Fig. 3a. The plateaus 
are maintained for extended time periods, much longer than 
those of the LIF networks, even though the synaptic time 
constant is set to 20 ms. Note that with this network we 
are able to obtain much larger decay times than we can for 
the LIF model, and that the firing rates are much lower and 
comparable to those recorded experimentally. In the LIF 
network, even in the absence of additional noise, we were 
unable to obtain decay times larger than ~ 2400 ms (Fig. 1a), 
with the AIF network we can obtain a decay time of over 
20,000 ms. For sufficiently large recurrent efficacies, the net-
work becomes bi-stable, that is the plateaus are maintained 
indefinitely, but still with moderate firing rates.

For every set of single-neuron parameters, the critical 
value of recurrent weights at which bi-stability is obtained 
is different. The firing rates of the bi-stable network just 
above criticality depend on gmax , the maximal conductance 
of the  ICAN channels. When gmax is set to zero, the impact 
of the  ICAN currents are eliminated and the network behaves 

like the LIF model. As gmax is increased, the minimal UP 
state firing rate of the bi-stable network decreases monotoni-
cally (Fig. 3c), reaching values that are lower than 40 Hz, for 
larger values of gmax . These values are consistent with stable 
firing rates observed experimentally (Fuster & Alexander, 
1971; Goldman-Rakic, 1995; Shuler & Bear, 2006) and are 
lower than rates obtained with LIF neurons even when long 
synaptic time constants are used (Fig. 1a). Note, that for all 
values of gmax used here, the single cell is not bi-stable.

To understand the AIF-network’s ability to represent 
larger decay times, we analyzed the relationship between the 
recurrent normalized weights and the network decay time, 
for AIF networks with different values of gmax(Fig. 3d). The 
weights are normalized to the critical value of weights at 
which the network becomes bi-stable. When gmax = 0 , which 
is identical to the LIF model (Fig. 1d), a steep T vs. W curve 
is obtained (Fig. 3d, black line). The steep curve implies that 
relatively small changes in W lead to very large changes 
in T. As gmax is increased the curves become progressively 
less steep, and small changes in W result in more moderate 
changes, and therefore the network is able to represent larger 
decay intervals.

Fig. 3  Network behavior with AIF neurons. (a) Dynamics of recur-
rent networks with AIF neurons with different recurrent weights (W). 
For small weights (green) network activity decays rapidly, as weights 
increase (gray) the network dynamics exhibits a longer plateau, and 
at sufficiently large W the network becomes bistable. Firing rates at 
the plateu are moderate (30-40 Hz). (b) Raster plot of network that 
decays at ~ 3100  ms (indicated by * in 3a). Spikes are shown for a 
set of 50 neurons and from 2800 to 3200 ms. Spike times are irregu-
lar and uncorrelated across neurons. Mean firing rate of the network 
when the new hybrid model is implemented. The network activity 

peaks around 50 Hz and drops to a plateau level at about 30 Hz that 
maintains for extended time periods. (c) The relation between the fir-
ing rate just above criticality of the UP state in a bi-stable network 
and the conductance of the  ICAN channel(g

max
) . As gmax , increases 

the firing rate just above criticality decreases. (d) The T vs W curves 
for AIF networks with different gmax values. In the LIF network 
( g

max
= 0 , black) a very steep curve is obtained. As gmax is increased, 

the curves become progressively less steep. The recurrent weights in 
the x axis are normalized in that they are divided by Wc; the minimal 
W at which the network becomes bistable
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This framework described here is qualitatively robust to 
many variations in the scheme. As shown in the examples 
in Fig. 4a networks with many different sizes and degrees of 
sparsity can exhibit the similar dynamics given and appro-
priate synaptic efficacy parameter. Additionally, weight 
matrixes do not have to have identical non-zero elements. 
In Fig. 4b we compare networks in which all non-zero ele-
ments have the same value (solid lines) to networks in which 
weights were chosen from a uniform distribution with the 
same mean but a large variance (dashed lines). If we define 
the non-zero weights in the uniform sparse network as  wuni, 
then in the randomized network the weights are chosen from 
a uniform distribution with the range [0  2wuni]. Network 
dynamics slightly differ from run to run due to noisy input 
spike trains, and random instantiation of the sparse connec-
tivity matrixes. Network dynamics with identical non-zero 
weights and random weights were similar.

3  Learning temporal dynamics

We have shown that recurrent networks with AIF neurons 
significantly outperform LIF networks in terms of the range 
of temporal intervals they can represent. Here we show, 
using a previously described learning rule (Gavornik et al., 
2009; Shouval & Gavornik, 2011) that AIF neurons can 
learn to represent these temporal intervals from stimuli 
paired with a delayed reward. The learning rule is based 
on the idea of reward dependent expression (RDE) of syn-
aptic plasticity. The RDE rule works by generating Heb-
bian temporal traces, that are converted into changes in 
synaptic efficacies only when a reward is provided. These 
traces solve the temporal credit assignment over a range of 
seconds. The rule also stops changing efficacies once the 

target learning is achieved (Gavornik et al., 2009; Huertas 
et al., 2015; Shouval & Gavornik, 2011). When learning is 
complete, the network is expected to predict the timing of 
expected reward. We have defined learning as successful 
when the predicted time is within a 15% range of the target 
time (|Perr| < 15% ). The prediction error, Perr is defined as: 
Perr ≤ 100 ∗ (Ep∕Trew) > ; whereEp is the difference between 
the network decay time T  , and the reward time Trew , and 
the < > denote running average over a set number of trials.

We have compared the ability to train LIF and AIF net-
works with RDE over a large range of target times (Fig. 5). 
Each subplot of Fig.  5 shows the network decay time 
T  , as a function of the training trial number. On the top 
(Fig. 5a–c) this is shown for the LIF model, and on the bot-
tom (Fig. 5d–f) for the AIF model. Initial weights at each 
subplot were not zero, and therefore the initial T  , is not zero 
either. During training, the duration of the network activ-
ity increases for each trial until the reward time is reached 
and stabilizes close the target. The fluctuations around the 
target reward line are used to calculate Perr(red bar). If the 
fluctuations are high in when divided by target delay period 
(|Perr| > 15% , the training is deemed unsuccessful.

Training for target times of 600 and 900  ms using 
the LIF model is successful (Fig. 5a,b). As the delay is 
increased from 600 to 900 ms, the fluctuations increase 
from 40 to 150 ms, giving 6.7% and 15% prediction error 
( Perr ), respectively. The network is unable to sufficiently 
stabilize its synaptic efficacy values and dynamics when 
attempting to learn longer delays. For a target decay time 
of 1100 ms, we obtain Perr = 40% , significantly above 
the target fluctuation of 15% that we have defined as our 
threshold for successful training. In contrast we were able 
to successfully train the AIF for up to 16,000 ms delayed 
reward (Fig. 5d, e). For 8000 ms and 16,000 ms target 

Fig. 4  Robustness. (a) Network dynamics are nearly identical for dif-
ferent sizes. Several examples shown over a range of different net-
work sizes (N = 400–2000), and levels of sparseness (0.125–0.62). 
Different combinations are color coded as shown in legend. (b) Net-
work is robust to randomness in weight matrix. Three runs are shown 

for a weight matrix in which all non-zero synaptic efficacies have the 
same value (solid lines) and three runs in which the non-zero weights 
were chosen from a uniform random distribution (dashed lines). The 
results are quite similar
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decay times, the prediction errors were 2.5% and 9.4% 
Perr , respectively (Fig. 5d, e). For a 20,000 ms target, the 
network had a prediction error, Perr of 19%, slightly above 
our target cutoff error.

Apart from the ability to represent much longer tem-
poral intervals, recurrent AIF networks also exhibit firing 
rate dynamics, and specifically firing rates that are more 
consistent with experimental results.

Apart from the ability to represent much longer tem-
poral intervals, recurrent AIF networks also exhibit firing 
rate dynamics, and specifically firing rates that are more 
consistent with experimental results.

In Fig. 6, we compare the temporal firing rate patterns 
for the LIF model (top) and the AIF model (bottom) which 
are trained to different target reward times, shown with 
green arrows. Trained LIF networks result in unreasonably 
high firing rates. For longer duration targets, these exceed 
100 Hz (Fig. 6a); rates that are not characteristic of experi-
mentally observed results. In contrast, the levels of the 
transient plateaus for the AIF model are between 20 and 
30 Hz (Fig. 6b) for every reward delay for which training 
was successful. Such rates are consistent with experimen-
tal results (Namboodiri et al., 2015; Shuler & Bear, 2006).

4  Methods

4.1  The Network structures

The goal of this study is to examine the impact of intrinsic 
conductances, here high voltage activated calcium chan-
nels, on network dynamics and synaptic plasticity. We first 
analyze the behavior of the network built up with basic LIF 
neurons, investigate the capacity of the model for learning 
and looking at the network’s response for a delayed reward 
task. Later, we implement the gcan conductance Eq. (1) to 
represent the AIF neuron model and perform the same 
analysis keeping the previous parameters identical. Same 
network structure is preserved for both models to have a 
solid comparison.

Our goal here is to specifically elucidate the role of 
intrinsic conductances, we have therefore chosen the 
simplest network form in order to reduced unnecessary 
complexity. The network is composed of randomly and 
sparsely connected, ( N = 1000 ), excitatory neurons, with 
a sparsity of10% . The network gets activated through a 
transient feedforward Poisson input “ Iext ” Eq. (2) initi-
ated from an outside population of 1000 neurons. The 

Fig. 5  Learning reward times using RDE in recurrent networks with 
and without active conductances. Network decay time (T) changes are 
plotted with respect to training trials for different target times and for 
both LIF (top plots) and AIF (bottom plots) models. Learning reward 
times with LIF model (top). For 600 ms, and 900 ms (a and b) learn-
ing is stable, but for 1100 ms (c), the learning leads to large fluctua-
tions. Inset shows weight fluctuations which lead to large decay time 

fluctuations. Learning reward time AIF model (bottom). For 8000 ms, 
and 16,000 ms (d and e) but for 20000 ms (f), learning leads to large 
fluctuations. In all plots, thick dashed gray lines show target decay 
times, filled circles decay time on single trial, blue line is a moving 
average, thin dashed lines confidence interval of the decay times, 
and vertical red bar is the confidence interval used for determining if 
learning is stable
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connections among those two populations are sparse with 
an all-to-all 10% connectivity. The membrane potential of 
each post synaptic neuron,i , is described by conductance 
based leaky-integrate and fire model. In the absence of the 
external input, the activity of the network is maintained 
through the recurrent connections. The duration of the 
delay period is correlated with the summation of the syn-
aptic transmission and intrinsic conductance if activated.

We also tested robustness to this connectivity scheme. 
In Fig. 4a we changed the network size between N = 400 
to N = 2000 , and varied the sparsity between 12.5 and 
50%. In Fig. 4b we chose non zero weight matrix ele-
ments from a uniform distribution, with the same mean of 
the networks with the fixed non-zero matrix elements. If 
the non-zero weight matrix elements of the non-random 
matrix had a value wuni , then in the randomized matrixes 
we chose values in the range [0 2wuni] , which have the 
same mean.

The details of the basic LIF based model and AIF model 
networks are explained in the following sections.

4.2  LIF neurons and recurrent network

The membrane voltage of a single neuron is constructed 
by (a) the leakage term, (b) the excitatory feedback current 
and (c) feedforward input;Ileak , Irec and,Iext , respectively 

Eq. (1). As the membrane potential reaches the threshold 
level, the neuron fires an action potential.

(a) The leakage term Ileak , represents the role of the summed 
ion channels and pumps dragging the voltage down to rest-
ing membrane potential, El . Eq. (2)

(b) Iext ” is the input received from the external population 
Eq. (2). The input conductance “ gext ” is dynamic, modulated 
by instant synaptic activity levels, “ Sext

i
 ”, and the synaptic 

strengths “ Jext
i
(t)”of each input node. Eq. (4) At each time 

step, synaptic transmission “ Sext
i

 ”, is updated at the post syn-
aptic neuron, for the active nodes. Each presynaptic spike 
adds to the synaptic activity by “ �s ” of the available post 
synaptic receptors, (1 − Sext

i
(t)) . Eq. (5)

(c) Each neuron receives an excitatory feedback current, 
Irec Eq. (6), from approximately 10% of the recurrently con-
nected network. As the presynaptic neuron fires an action 
potential at time tj , the conductance of the post synaptic neu-
ron, grec

i
 Eq. (8), is enhanced as a consequence of activated 

synaptic transmission, “ Srec ” Eq. (7).

We use different time constant of recurrent connections 
from 20 to100 ms. In the slow end of this range synaptic 
conductance has a value similar to that of NMDA receptors, 
however we have not incorporated here the voltage depend-
ence of NMDA receptors. Note also that these synaptic effi-
cacies saturate at higher presynaptic firing rates due to the 
(1 − Srec

i
(t)) in the dynamical equations of synaptic efficacy. 

Addition of the limiting term is methodologically sound 
because there is a maximal level of receptors and bound 
receptors cannot be bound again. Saturation is often ignored 
for receptors with fast time constants because at moderate 
firing rates fast receptors are far from saturation. Since we 

(1)Cm

d

dt
Vi(t) = Ileak

i
(t) + Irec

ij
(t) + Iext

ij
(t)

(2)Ileak
i

= −gleak(Vi(t) − El
i
)

(3)Iext
i

= −gext
i
(Vi(t) − Eext

i
)

(4)gext
i

= Sext
i
(t)Jext

i
(t)

(5)
d

dt
Sext
i
(t) = −

1

�s
S
ext

i

(t) + �s(1 − Sext
i
(t))

∑n

j
�(t − tj)

(6)Irec
i

= −grec
i
(Vi(t) − Erec

i
)

(7)
d

dt
Srec
i
(t) = −

1

�s
S
rec

i

(t) + �s(1 − Srec
i
(t))

∑n

j
�(t − tj)

(8)grec
i

= Srec
i
(t)Jrec

i
(t)

Fig. 6  Temporal dynamics in trained recurrent networks with LIF 
and AIF Neurons. Average network firing-rate activity for trained 
networks using LIF neurons (a) and AIF neurons (b). Yellow arrows 
represent target training times, and dashed red line represents target 
firing rate at target time. Note the different scales of the x and y axes. 
The dashed gray line illustrates the different x axis scale
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vary our receptor time constants over a large range, and since 
we simulate networks that attain high firing-rates which are 
not experimentally realistic we found it simpler to include 
saturation in all of our synaptic conductances.

4.3  AIF neuron model

For the AIF neuron model, in addition to the leakage term, 
feedforward and feedback input, each neuron is implemented 
with both calcium dependent non-selective cation current, 
Ican , and high voltage activated (HVA) calcium channels. 
Eq. (9) (Fig. 2a)

The HVA calcium conductance is active for depolar-
ized membrane voltages of − 20 mV and higher (Lacinova, 
2005). This condition is met only during the fast action 
potential window since the threshold for generating an action 
potential is set to − 55 mV. With each action potential, � 
amount of calcium fuses into the cell, and the intracellular 
calcium concentration is calculated by the Equation10.

The intracellular calcium concentration level,[Ca] , modu-
lates the dynamics of the non-selective cation conductance, 
“ gcan ”. As seen in Fig. 2b, gcan gets activated during the 
transient input window, reaches to its maximum value and 
stays open until the calcium concentration gets low. The gcan 
conductance is represented by a hill function Eq. (11), where 
gmax is the maximum conductance limit the  Ican channels 
can hold Eq. (12).

The addition of the Ican currents creates an intracellular 
feedback mechanism where the activity of the cell activates 
the Ican conductance and the Ican currents enhances the cel-
lular activity in return.

4.4  The learning rule

The plasticity rule used here is the reward dependent 
expression rule (RDE) which has been shown to solve 
the temporal credit assignment problem (Gavornik 
et al., 2009; Huertas et al., 2015; Shouval & Gavornik, 
2011).

(9)Cm

d

dt
Vi(t) = Ileak

i
(t) + Irec

ij
(t) + Ican

i
(t) + Iext

ij
(t)

(10)
d

dt
[Ca](t) = −

[Ca]

�Ca
+ �Ca

∑n

j
�(t − tj)

(11)gcan
i

([Ca]) = gmax
[Ca]m

[Ca]m + �m
Ca

(12)Ican
i

(t) = −gcan
i

(Vi(t) − Ecan
i

)

In order to implement this rule, a moving temporal aver-
age of the firing rate for neuron “ i ” is calculated by:

�r
d

dt
Ri(t) = −Ri(t)+

∑
k �

�
t − ti,k

�
 , where �r is the width of 

the exponential time window, and ti,k are the times of the kth 
spike in the i th neuron.

Using this variable, a Hebbian is calculated for each 
recurrent synapse between neuron “ i ” and “ j ” such that:

In order to implement RDE we calculate synaptic eligibil-
ity traces: Lp

ij
(t) by the equation:

These eligibility traces are only converted to long last-
ing synaptic efficacies, “Lij” Eq. (15), when a reward ( r0) is 
delivered. The value of r0 is the target activity level at time 
of reward, and in order to stop learning when this value is 
attained the effective reward used is:

(r0(t) − Ri(t)) , where Ri(t) is the firing rate of the i’th 
neuron.

4.5  Parameters

(13)Hij(t) = Ri(t)Rj(t)

(14)�p
d

dt
L
p

ij
(t) = −L

p

ij
(t)+Hij(t)

(15)
d

dt
Lij(t) = �L

p

ij
(t)+(r0(t) − Ri(t))

S = 10% �Ca = 100ms

N = 1000% �
Ca

= 0.0785

Cm = 1�F Gcan = 0.0135 S

El
i
= 0mV �m

Ca
= 1

Eext
i

= 55mV m = 4

Jext
i

= 0.021mS Ecan
i

= 80mV

�s = 20ms �r = 50ms

�s = 1∕7 �p = 5000ms

Erec
i

= 55mV r0 = 4.5Hz

Jrec
i

= 0mV � = 10−6 to 10−9
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In the simulations in Fig. 4, in which we tested robust-
ness, we changed these parameters, and these specific 
changes are indicated in the text and the figures.

5  Discussion

Single neurons are highly complex and they possess many 
intrinsic active conductances that contribute significantly 
to the function of neural circuits. In contrast, many theo-
retical circuit models ignore single neuron complexity and 
use instead highly simplified models of the single neu-
rons. This simplified approach is justified because it helps 
understand the role of the circuit itself, but it might not 
faithfully represent the properties of a circuit composed 
of more complex neurons. Generally, intrinsic proper-
ties of single neurons can and do affect circuit dynamics 
(Jin et al., 2007; Marder et al., 1996). In this paper we 
demonstrate how a specific set of intrinsic conductances 
can affect the dynamics of bi-stable and slowly decaying 
networks.

Recurrent networks can exhibit bi-stability, in which the 
network activity can be either in a low or high activity state 
which lasts indefinitely (Compte et al., 2000). Networks 
with the same type of structure, but at parameters that 
are subcritical for bi-stability can exhibit slow transient 
dynamics(Gavornik et al., 2009). For both of these cases 
slow synaptic dynamics, on the order of 100ms are typi-
cally assumed for the networks to quantitively approach 
physiological measurements of firing rates and possible 
decay times, and in some systems such long time-constants 
might be justified (Wang et al., 2013). In this paper, we 
examined if the addition of specific active conductances to 
the single neuron model can improve the circuit behavior, 
in the absence of slow synaptic conductances. We chose a 
combination of  ICAN and voltage gated calcium channels 
that form a subthreshold positive feedback loop, which 
acts as a conditional slow intrinsic time constant. We show 
that by including these channels, we improve significantly 
the agreement between the network performance and 
experimental results. With active intrinsic conductances, 
the bi-stable network achieves bi-stability at much lower 
firing rates than obtained by a network with fast conduct-
ances, and even lower than the networks with NMDA-like 
slow synaptic time constants. These results are in much 
better agreement with firing rates observed experimentally 
(Fuster & Alexander, 1971; Goldman-Rakic, 1995). We 
have also shown that the slowly decaying networks have 
plateaus at much lower firing rates, consistent with experi-
mental results (Namboodiri et al., 2015; Shuler & Bear, 
2006). In this subthreshold mode, the network can real-
istically exhibit decays of up to 16 seconds, much larger 
than can be accomplished with networks of IAF neurons 

with fast or even slow synaptic time constants alone. This 
network can also be trained, with a biophysically plausible 
learning rule, to decay at short or long intervals over a 
much larger range than networks with relatively slow syn-
aptic time constants (Gavornik & Shouval, 2011; Gavornik 
et al., 2009). We have also shown that these networks with 
AIF neurons are robust to network size, degree of sparse-
ness, and randomness in the recurrent connectivity matrix. 
Moreover, they exhibit biologically plausible spike rasters.

The single cell mechanisms assumed here are inspired by 
previous experimental papers that observed persistent activ-
ity in single cells in various brain regions (Egorov et al., 
2002; Fransén et al., 2006; O’Malley et al., 2020; Rahman & 
Berger, 2011) and by the dependance of this persistent activ-
ity on non-specific cationic channels and calcium currents, 
as identified in those papers. This work is also based on pre-
vious single cell models of such observations (Egorov et al., 
2002; Fransén et al., 2006; Shouval & Gavornik, 2011). 
However, other experiments in slices (Winograd et al., 2008) 
and cultures (Volman et al., 2007) have indicated alternative 
mechanisms that can lead to slow time constants and to per-
sistent or reverberating synaptic plasticity. It is quite feasible 
that such alternative mechanisms that generate effective slow 
time constants in single neurons or single synapses would 
produce qualitatively similar results to those described here. 
Indeed, it is quite likely that any mechanism that generates 
a conditional slow time constant in single neurons or syn-
apses will have a similar effect on circuit dynamics. Such 
a mechanism is conditional in the sense that the slow time 
constant are turned on only when cellular activity exceeds 
a threshold, such that onset dynamics are still rapid, but the 
decay dynamics are slowed down.

revious work (Tegnér et al., 2002) has simulated recur-
rent networks with using more realistic and complex single 
cell models, and in that case as well a large NMDA/AMPA 
ratio is typically required. However, this paper also explored 
a similar mechanism to the one proposed here, in which 
 ICAN channels were added to the single neurons which 
also had voltage gated calcium channels. The Tengér et al. 
(2002) paper has shown that the addition of  ICAN channels 
lowers the minimal NMDA/AMPA ratio that is required 
for attaining bi-stability. However, this previous publica-
tion did not explicitly investigate how such intrinsic active 
condutances affect the firing rates in the active state, it did 
examine how it affects the spike statistics of the slowly 
decaying network, how it extends the range of decay times 
of a slowly decaying networks by an order of magnitude or 
how it enables a learning rule based on reward dependent 
synaptic plasticity (Gavornik et al., 2009) to learn decay 
times of up to 16 s.

In order to obtain bi-stability with realistic firing rates in 
the UP state, simply adding a recurrently connected inhibi-
tory population is not a solution. Adding a population of 

130 Journal of Computational Neuroscience (2022) 50:121–132



1 3

recurrent inhibitory neurons without changing other parame-
ters will indeed reduce firing rates, but it will also destabilize 
the UP state. In order to restabilize the UP state excitatory 
conductances can be increased resulting in an increase in fir-
ing rates. Networks that receive external input, even with fast 
intrinsic time constants can exhibit bi-stability with lower 
firing rates in the UP state (Renart et al., 2006; Shouval & 
Gavornik, 2011). Such networks are not self-sustained, since 
attaining bi-stability depends on this external input (Renart 
et al., 2004, 2006). When such networks include balanced 
excitatory and inhibitory conductances they can also attain 
bi-stability in which spike count variability is high in both 
the UP and DOWN states, consistent with experimental 
observations (Renart et al., 2006). This fluctuation driven bi-
stability requires fine tuning of the ratio between excitatory 
and inhibitory weights. In addition, networks that can sustain 
an UP state with experimentally realistic firing rates, due 
to an external current still have very steep T vs W curves, 
similar to those in figure 1c. Therefore, it is not simple to 
use such a model in combination with synaptic plasticity of 
excitatory weights, which alone will easily move the network 
out of the balanced, fluctuation driven state, resulting in high 
firing rates, and low variability. Moreover, such networks 
could not be trained to generate long-duration transients that 
are longer than those that can be learned by a self-sustaining 
network of LIF neurons with fast conductances.

Another use of recurrent networks is to produce integrator-
like networks. Such networks have a continuum of fixed points 
and the activity level at each fixed point is proportional to 
the integral of an external signal. At the fixed points of such 
networks, the leak term is exactly equal to the feedback term 
that results from the recurrent network. The fixed points of 
such integrator networks are highly sensitive to their param-
eters, and very small variability in such parameters can result 
either in a decay or an explosion in network activity. Several 
approaches to overcome such ultra-sensitivity of been pro-
posed (Goldman et al., 2003; Koulakov et al., 2002) . Robust-
ness in these models arises from the networks being composed 
of robust hysteretic sub-networks (Koulakov et al., 2002), or 
the existence of hysteretic subunits in dendrites (Goldman 
et al., 2003). Interestingly the hysteretic sub-networks have 
also been assumed to required NMDAR like receptors, either 
for their slow dynamics, or because of the voltage dependence 
of the NMDAR receptors (Koulakov et al., 2002). Similarly, 
the hysteretic dendritic compartments are also assumed to 
have slow time constants which are assumed to arise from 
slow calcium channels or NMDA receptors (Goldman et al., 
2003). Models of sensory integration or of decision making 
also employ recurrent networks. Such models might be multi-
stable and the different states represent decisions or sensory 
processing. In such models, activity in the network depends 

on a persistent external input, and they do not maintain the 
firing of the network solely due to feedback in the recurrent 
network, and therefore do not need to maintain as high a firing 
rate while persistently active. However, in practice such mod-
els also typically assume that excitatory recurrent connections 
are dominated by slow, NMDAR-like, synaptic transmission 
(Wang, 2002; Wimmer et al., 2015).

Although we have added some biologically realistic 
complexity to our neural model, real neurons in the brain 
are much more complex, they include active sodium and 
potassium conductances that are necessary for spiking 
and a slew of other active conductances, which are dif-
ferentially expressed in different types of neurons. Neu-
rons also have a complex spatial structure with different 
types of compartments that also express different chan-
nel types. The neuron used here is still very simple, it is 
a single compartment model with only two additional 
channels expressed. Action potentials, in the model, are 
still simply generated by threshold crossing. Obviously, 
such a simple model is also not a faithful representa-
tion of real cortical neurons. We adopt the approach in 
order to understand what role such channels can play, and 
demonstrate that with such channels, firing statistics in 
networks have more realistic properties and the networks 
are more robust. By using this conservative approach for 
adding complexity, we can interpret the model and under-
stand the possible role of such channels, at the possible 
cost of reduced biological realism. The networks used 
here are simplified in other respects as well, for example 
they do not include any inhibitory neurons. Although 
these recurrent networks either with LIF or AIF neu-
rons, are composed of only excitatory neurons the sim-
ple addition of an unstructured, randomly connected, 
population of inhibitory neurons does not qualitatively 
change the network behavior. An addition of recurrently 
connected inhibitory neurons, without any other param-
eter changes, will clearly reduce the firing rates of the 
network, destabilize bi-stability and eliminate the slow 
decay. However, an increase of the recurrent excitatory 
efficacies can reestablish both these behaviors, without 
significant qualitative differences in firing rates in the 
UP state, or the shapes of the decay times vs. recurrent 
weight curves. In contrast, an addition of structured 
inhibitory connections can have a more profound effect 
on network dynamics. Structured connections can for 
example be used to generate competitive networks that 
can be used for decision making (Wang, 2002; Wimmer 
et al., 2015), or to generate different classes of neuronal 
dynamics within the network (Huertas et al., 2015). The 
analysis of such network dynamics is beyond the scope 
of the current paper.
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